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Abstract—Scanning Tunneling Microscopes (STMs) have led
to many scientific breakthroughs in nanoscience. The STMs
cannot achieve their full imaging potential due to signal overlaps
and interference. This project seeks to treat the signal interference
using a Gaussian Mixture Neural Network (GMNN) with physics-
based constraints incorporated. This method is able to localize the
individual atomic signals within an STM image, providing a
quantitative analysis of nano-material properties. The GMNN is
applied to a case study of Graphene Nano-Ribbon (GNR). The
underlying atomic structures of GNR are successfully extracted
from blurry STM images. Additionally, the extracted atomic
signals of GNR from STM images provide a unique way to
measure the pairwise atom distances, which enables us to gain
important insight into the irregularity of experimental GNR
structures. This will allow us to study the correlation between
GNR structure irregularity and its superconductivity and
superfluidity in the future.
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I. INTRODUCTION

Since its invention in 1981, the Scanning Tunneling
Microscope (STM) is known to be one of the most powerful
microscopes in existence. STMs are capable of imaging surfaces
of materials at an atomic level, contributing to many scientific
breakthroughs and  advancements in  nanophysics,
semiconductor science, and biochemistry [1]. However, the
STM has not reached its full potential yet. Applying advanced
machine learning methods can further improve the resolution of
STM images [2, 3], which allow us to gain new insights into the
atomic world.

When the STM scans atomic topography, it guides a metal
wire tip above the sample, recording the scanning tunneling
current. The signal interference occurs due to the nature of the
geometry of the scanning process and the tunneling current
phenomenon. Each atomic signal take the form of a Gaussian
wider than the actual atomic signal, resultng in individual signal
overlaps [4]. This overlap creates a Gaussian mixture problem
where the individual signals are unable to be detected.
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This project seeks to enhance STM images using machine
learning approach to isolate overlapping atomic signals so that
we can perform precision analysis of structures, bonds, and size.
In this study, target molecules are scanned and prepared as raw
images by the STM. Then, a physics-informed Gaussian
Mixture Neural Network (GMNN) is developed and trained to
localize the individual atomic signals within the STM image.
GMNN recognizes individual Gaussians, representing atomic
signals, within the sample image, and isolates them. GMNN
enables the sample molecule structures to be viewed in a clearer
image, allowing precise measurements and observations to be
made.

These methods are applied to a case study observing the
Graphene Nano-Ribbons (GNR). After successfully applying
GMNN, identifying the underlying hexagonal carbon structure
within GNR images, we are able to measure pairwise carbon
atom distances and derive their distribution, which can be used
to characterize the structure irregularity in GNR samples. This
novel approach will have the potential to lead to future
breakthroughs and advancements to be made beyond the current
capabilities of the STM.

II. BACKGROUND

A. Scanning Tunneling Microscope (STM)

The STM is a microscope of atomic resolution with
maximum lateral resolution of 0.Inm and maximum depth
resolution of 0.0lnm. STMs work by scanning a sharp metal
wire tip over a surface of material samples to generate images
[5]. Using the piezoelectric effect, the STM can achieve the
angstrom level of control for scanning. When the STM tip
approaches the surface at a sub-nanometer distance, the voltage
bias across the tip and scanning surface allows electrons to form
a tunneling current, travelling across the vacuum in between due
to quantum tunneling effect [6]. The tunneling current changes
as the tip encounters sample features of different heights [7]. The
tunneling current is monitored and coordinated with the position
of the tip resolving the conformations of individual atoms.
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B. Gaussian Mixture Model (GMM)

A GMM is a probabilistic model that assumes data is
generated from a mixture of multiple Gaussian distributions,
each with its own mean and variance. GMM is commonly used
under an unsupervised learning technique. The parameters of the
GMM are typically estimated using the Expectation-
Maximization algorithm, which iteratively refines the estimates
of the means, variances, and mixing coefficients of the Gaussian
distributions. GMM is particularly useful in situations where
data sets exhibit multimodal distributions [8].

C. Graphene Nanoribbon (GNR)

GNR is a 2D allotrope of carbon exhibiting unique electrical,
optical, mechanical, and quantum properties. In a GNR layer,
carbon atoms are arranged in a hexagonal, honeycomb lattice, as
shown in Figure 1, with armchair or zig-zag edges. GNRs have
many remarkable properties and have been suggested for a wide
range of applications, such as nano-filter, semi-conductor, and
catalyst [9]. In practice, these properties are impacted by GNR
structural irregularity [10].

Arm Chair

Zig-Zac

Figure 1: Structure of GNR with Hexagonal, Honeycomb
Lattice

III. METHODS

A. The Physics Behind

STM measures the tunneling current by scanning a sharp
metal tip over a surface of material samples. When the tip is
sufficiently close to the surface, the voltage bias enables
electrons to tunnel through the vacuum in between the tip and
the scanned surface to form tunneling current. According to
equation (1), as the tip encounters the sample surface from
different distances, the tunneling current changes, according to
the tunneling current equation which is inversely proportional to

e.

2mae

I(d)=k-eV-e T r ¢ (1)

where k is the constant, e is the charge of an electron, m is the
mass of an electron, @ is the work function, and d is the tip-
sample distance.

Thus, the tunneling current density increases as tip-sample
distance d decreases. When an atom is scanned by the STM, a
Gaussian tunneling current density is formed. In reality, the
atom is much smaller than the width of the Gaussian. Therefore,
when multiple atoms are present, their tunneling current
densities can easily mix together, resulting in a Gaussian
mixture and thus a blurry, low-resolution STM image [11].
Since the Gaussians represent the underlying atom structures,
narrowing the Gaussians leads to a reveal of the precise atomic
signals and therefore a clear, high-resolution STM image. Fig. 2
shows the process of an STM scan, where the mixture of
individual atomic signals results in blurry STM images.

Tunneling Current Feed-back
Loop
STM Metal Tip
Sample .:- Tunneling Electrons
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Individual
Signals

Actual STM
Reading

' l Blurred, Low-
resolution

STM Image
Fig. 2. STM Scanning of the Sample Surface. Mixture of the
Individual Atomic Signals leads to Blurred, Low-resolution
STM Images.

B. Architechture of Gaussian Mixture Nerual Network

We develop a GMNN model to identify and isolate the
individual Gaussian signals from the STM image. The neural
network in GMNN takes random noise as an input. It then runs
through a fully connected layer with 1,000 hidden nodes
followed by a retified linear unit (ReLU) activation function
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layer. The output layer is the parameters of 1,000 2D Gaussians.
Each Gaussian is recorded as a center, two variances (x and y
direction), a covariance (rotation), and a magnitude.
Considering that an image is a mixture of many 2D Gaussian
distributions, the predicted Gaussians by GMNN are then
applied to create a generated image to approximate the target
STM image.

C. Loss Function

This new image generated by GMNN is compared to the
target STM image by measuring the Mean Squared Error (MSE)
of the pairwise pixels to determine the reconstruction loss.
GMNN works in a form of supervised learning and seeks to
minimize the loss function. The training stops when the loss
function can no longer be reduced.

D. Physics Constraints

Physics-Informed
Gaussian Mixture
Neural Network
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Gaussian
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Fig. 3 Architecture of Physics-Informed GMNN and
Reconstruction of Clear, High-resolution STM image from
Isolated Individual Gaussian Signals

While the above GMNN model is able to generate Gaussians
of any shapes, we are only interested in the Gaussian signals
representing the actual atomic signals within the STM image.

Therefore, we incorporate the physics constraints into the
GMNN to limit the shape of the generated Gaussians to
approximate the size of an atom. We also filter the generated
Gaussians with small magnitudes, which typically representing
the background noise. Using these physics constraints, our
GMNN model becomes a physics-informed GMNN made
specifically for identifying the atomic signals within the STM
images.

The architecture of the physics-informed GMNN is
illustrated in Fig. 3. By reducing the variances of the extracted
individual Gaussian signals, a clear, high-resolution STM image
can be reconstructed.

IV. RESULTS

A. Case Study on GNR

To validate the effectiveness of GMNN on STM images, a
case study is performed on STM images for GNR. GNR has a
well-known chemical structure, which is ideal for verify the
correctness of GMNN results.

We select two GNR images scanned by the STM at Old
Dominion University (ODU) Atom Manipulation Lab, where
one is at the resolution of 1nm and the other at 3nm. These two
images are rather blurry due to the overlaps of the underlying
atom signals. Fig. 4 shows the results of applying GMNN to
these two GNR images. By narrowing the variances of the
extracted Gaussians, we can show each individual signal
separated from one another. One can find that the reconstructed
STM images from the Gaussian signals extracted by GMNN
exhibit much clearer structures, where the location of each
honeycomb composed of six carbon atoms can be clearly
identified in a hexagonal geometry. It is observed that we can
reconstruct the GNR chemical structure precisely, which
resemble the theoretical GNR structure illustrated in Fig. 1. The
accurate localization of atomic signals by GMNN allows us to
measure the important nano-properties of the experimental GNR
samples that cannot be done before.

B. Measurement of GNR Irregularity

By localizing the atomic signals precisely, we can measure
the distances between the centers of each individual signal,
representing a honeycomb structure composed of six carbon
atoms. Fig. 5 shows the distributions of the pairwise honeycomb
distances on the two STM images. One can find that there exist
irregularities within these two experimental GNR samples.
These irregularities can be measured by the standard deviations
of the first peak of the pairwise honeycomb distance
distribution, representing the distance between the nearest
honeycombs. The means of the nearest honeycomb are at 4.26
Angstrom. The standard deviation of the first peak is 0.439 in
the first GNR image and 0.366 in the second one, indicating that
the first GNR sample is more irregular than the second one.
These irregularity measurements can help provide crucial
insight into the physical properties of GNR samples, such as
superconductivity and superfluidity.
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Extracting Gaussian Signals in GNR Images

Original GNR Image

Extracted Gaussians (narrowed variances) using GMNN

Fig. 4 Images in the left column are the original STM images of the GNR samples. Images in the right column are the results from
GMNN. Clearer structures are found in the GMNN generated GNR images, matching the theoretical hexagonal GNR structures.
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Fig. 5. Histogram of pairwise honeycomb distances. The
standard deviation (std) of the first peak indicates the
irregularity of the GNR sample.

V. DISCUSSION

Considering an STM image representing a 2D probability
distribution function, the Gaussian mixture model (GMM) [12],
a classical soft clustering algorithm, can also be used to
determine the Gaussians underlying the STM image. In order to
do so, GMM has to specify a fixed number of Gaussians. Also,
GMM is difficult to restrict the shape of the generated
Gaussians. In comparison, GMNN has the advantage of
incorporating physics constraints into the machine learning
model to focus on extracting Gaussians with respect to the
underlying atomic signals. Moreover, GMNN can adaptively
determine the number of Gaussians by filtering those with small
magnitudes, without the need of specifying the number of
Gaussians beforehand.

VI. CONCLUSION

In this study, we develop a physics-informed machine
learning model, GMNN, to isolate the underlying atomic signals
within STM images. The method has been successfully
validated on a case study of GNR where the localized signals
match the theoretical chemical structure. The localized signals
not only provide us clearer STM images, but also allow us to
measure the nano properties such as irregularity, which cannot
be done before.

VII. FUTURE WORK

The next steps of this work are to give further analysis of the
STM images, thanks to the new nano property measurements
enabled by GMNN. The association between nano-properties
and macro-properties of the nanomaterials can be quantitatively
studied. These will help us further understand how to design
materials with desired properties in everyday use.
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