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Abstract—Scanning Tunneling Microscopes (STMs) have led 

to many scientific breakthroughs in nanoscience. The STMs 

cannot achieve their full imaging potential due to signal overlaps 

and interference. This project seeks to treat the signal interference 

using a Gaussian Mixture Neural Network (GMNN) with physics-

based constraints incorporated. This method is able to localize the 

individual atomic signals within an STM image, providing a 

quantitative analysis of nano-material properties. The GMNN is 

applied to a case study of Graphene Nano-Ribbon (GNR). The 

underlying atomic structures of GNR are successfully extracted 

from blurry STM images. Additionally, the extracted atomic 

signals of GNR from STM images provide a unique way to 

measure the pairwise atom distances, which enables us to gain 

important insight into the irregularity of experimental GNR 

structures. This will allow us to study the correlation between 

GNR structure irregularity and its superconductivity and 

superfluidity in the future. 
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I. INTRODUCTION

Since its invention in 1981, the Scanning Tunneling 
Microscope (STM) is known to be one of the most powerful 
microscopes in existence. STMs are capable of imaging surfaces 
of materials at an atomic level, contributing to many scientific 
breakthroughs and advancements in nanophysics, 
semiconductor science, and biochemistry [1]. However, the 
STM has not reached its full potential yet. Applying advanced 
machine learning methods can further improve the resolution of 
STM images [2, 3], which allow us to gain new insights into the 
atomic world.   

When the STM scans atomic topography, it guides a metal 
wire tip above the sample, recording the scanning tunneling 
current. The signal interference occurs due to the nature of the 
geometry of the scanning process and the tunneling current 
phenomenon. Each atomic signal take the form of a Gaussian 
wider than the actual atomic signal, resultng in individual signal 
overlaps [4]. This overlap creates a Gaussian mixture problem 
where the individual signals are unable to be detected. 
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This project seeks to enhance STM images using machine 
learning approach to isolate overlapping atomic signals so that 
we can perform precision analysis of structures, bonds, and size. 
In this study, target molecules are scanned and prepared as raw 
images by the STM. Then, a physics-informed Gaussian 
Mixture Neural Network (GMNN) is developed and trained to 
localize the individual atomic signals within the STM image. 
GMNN recognizes individual Gaussians, representing atomic 
signals, within the sample image, and isolates them. GMNN 
enables the sample molecule structures to be viewed in a clearer 
image, allowing precise measurements and observations to be 
made.  

These methods are applied to a case study observing the 
Graphene Nano-Ribbons (GNR). After successfully applying 
GMNN, identifying the underlying hexagonal carbon structure 
within GNR images, we are able to measure pairwise carbon 
atom distances and derive their distribution, which can be used 
to characterize the structure irregularity in GNR samples. This 
novel approach will have the potential to lead to future 
breakthroughs and advancements to be made beyond the current 
capabilities of the STM. 

II. BACKGROUND

A. Scanning Tunneling Microscope (STM)

The STM is a microscope of atomic resolution with
maximum lateral resolution of 0.1nm and maximum depth 
resolution of 0.01nm. STMs work by scanning a sharp metal 
wire tip over a surface of material samples to generate images 
[5]. Using the piezoelectric effect, the STM can achieve the 
angstrom level of control for scanning. When the STM tip 
approaches the surface at a sub-nanometer distance, the voltage 
bias across the tip and scanning surface allows electrons to form 
a tunneling current, travelling across the vacuum in between due 
to quantum tunneling effect [6]. The tunneling current changes 
as the tip encounters sample features of different heights [7]. The 
tunneling current is monitored and coordinated with the position 
of the tip resolving the conformations of individual atoms. 
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B. Gaussian Mixture Model (GMM)

A GMM is a probabilistic model that assumes data is
generated from a mixture of multiple Gaussian distributions, 
each with its own mean and variance. GMM is commonly used 
under an unsupervised learning technique. The parameters of the 
GMM are typically estimated using the Expectation-
Maximization algorithm, which iteratively refines the estimates 
of the means, variances, and mixing coefficients of the Gaussian 
distributions. GMM is particularly useful in situations where 
data sets exhibit multimodal distributions [8]. 

C. Graphene Nanoribbon (GNR)

GNR is a 2D allotrope of carbon exhibiting unique electrical,
optical, mechanical, and quantum properties. In a GNR layer, 
carbon atoms are arranged in a hexagonal, honeycomb lattice, as 
shown in Figure 1, with armchair or zig-zag edges. GNRs have 
many remarkable properties and have been suggested for a wide 
range of applications, such as nano-filter, semi-conductor, and 
catalyst [9]. In practice, these properties are impacted by GNR 
structural irregularity [10]. 
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Figure 1: Structure of GNR with Hexagonal, Honeycomb 
Lattice 

III. METHODS

A. The Physics Behind

STM measures the tunneling current by scanning a sharp

metal tip over a surface of material samples. When the tip is 

sufficiently close to the surface, the voltage bias enables 

electrons to tunnel through the vacuum in between the tip and 

the scanned surface to form tunneling current. According to 

equation (1), as the tip encounters the sample surface from 

different distances, the tunneling current changes, according to 

the tunneling current equation which is inversely proportional to 

��.

���� = � ∙ �
� ∙ �
�
√

���
�

�, (1) 

where � is the constant, �
 is the charge of an electron, � is the
mass of an electron, � is the work function, and � is the tip-
sample distance. 

Thus, the tunneling current density increases as tip-sample 
distance d decreases. When an atom is scanned by the STM, a 
Gaussian tunneling current density is formed. In reality, the 
atom is much smaller than the width of the Gaussian. Therefore, 
when multiple atoms are present, their tunneling current 
densities can easily mix together, resulting in a Gaussian 
mixture and thus a blurry, low-resolution STM image [11]. 
Since the Gaussians represent the underlying atom structures, 
narrowing the Gaussians leads to a reveal of the precise atomic 
signals and therefore a clear, high-resolution STM image. Fig. 2 
shows the process of an STM scan, where the mixture of 
individual atomic signals results in blurry STM images. 
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Fig. 2. STM Scanning of the Sample Surface. Mixture of the 
Individual Atomic Signals leads to Blurred, Low-resolution 

STM Images. 

B. Architechture of Gaussian Mixture Nerual Network

We develop a GMNN model to identify and isolate the
individual Gaussian signals from the STM image. The neural 
network in GMNN takes random noise as an input. It then runs 
through a fully connected layer with 1,000 hidden nodes 
followed by a retified linear unit (ReLU) activation function 
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layer. The output layer is the parameters of 1,000 2D Gaussians. 
Each Gaussian is recorded as a center, two variances (x and y 
direction), a covariance (rotation), and a magnitude. 
Considering that an image is a mixture of many 2D Gaussian 
distributions, the predicted Gaussians by GMNN are then 
applied to create a generated image to approximate the target 
STM image. 

C. Loss Function 

 This new image generated by GMNN is compared to the 
target STM image by measuring the Mean Squared Error (MSE) 
of the pairwise pixels to determine the reconstruction loss. 
GMNN works in a form of supervised learning and seeks to 
minimize the loss function. The training stops when the loss 
function can no longer be reduced. 

D. Physics Constraints 
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Fig. 3 Architecture of Physics-Informed GMNN and 
Reconstruction of Clear, High-resolution STM image from 

Isolated Individual Gaussian Signals 
 

While the above GMNN model is able to generate Gaussians 
of any shapes, we are only interested in the Gaussian signals 
representing the actual atomic signals within the STM image. 

Therefore, we incorporate the physics constraints into the 
GMNN to limit the shape of the generated Gaussians to 
approximate the size of an atom. We also filter the generated 
Gaussians with small magnitudes, which typically representing 
the background noise. Using these physics constraints, our 
GMNN model becomes a physics-informed GMNN made 
specifically for identifying the atomic signals within the STM 
images. 

The architecture of the physics-informed GMNN is 
illustrated in Fig. 3. By reducing the variances of the extracted 
individual Gaussian signals, a clear, high-resolution STM image 
can be reconstructed.  

 

IV. RESULTS 

A. Case Study on GNR 

To validate the effectiveness of GMNN on STM images, a 
case study is performed on STM images for GNR. GNR has a 
well-known chemical structure, which is ideal for verify the 
correctness of GMNN results. 

 We select two GNR images scanned by the STM at Old 
Dominion University (ODU) Atom Manipulation Lab, where 
one is at the resolution of 1nm and the other at 3nm. These two 
images are rather blurry due to the overlaps of the underlying 
atom signals. Fig. 4 shows the results of applying GMNN to 
these two GNR images. By narrowing the variances of the 
extracted Gaussians, we can show each individual signal 
separated from one another. One can find that the reconstructed 
STM images from the Gaussian signals extracted by GMNN 
exhibit much clearer structures, where the location of each 
honeycomb composed of six carbon atoms can be clearly 
identified in a hexagonal geometry. It is observed that we can 
reconstruct the GNR chemical structure precisely, which 
resemble the theoretical GNR structure illustrated in Fig. 1. The 
accurate localization of atomic signals by GMNN allows us to 
measure the important nano-properties of the experimental GNR 
samples that cannot be done before. 

B. Measurement of GNR Irregularity 

By localizing the atomic signals precisely, we can measure 
the distances between the centers of each individual signal, 
representing a honeycomb structure composed of six carbon 
atoms. Fig. 5 shows the distributions of the pairwise honeycomb 
distances on the two STM images. One can find that there exist 
irregularities within these two experimental GNR samples. 
These irregularities can be measured by the standard deviations 
of the first peak of the pairwise honeycomb distance 
distribution, representing the distance between the nearest 
honeycombs. The means of the nearest honeycomb are at 4.26 
Angstrom. The standard deviation of the first peak is 0.439 in 
the first GNR image and 0.366 in the second one, indicating that 
the first GNR sample is more irregular than the second one. 
These irregularity measurements can help provide crucial 
insight into the physical properties of GNR samples, such as 
superconductivity and superfluidity. 

 

 

Authorized licensed use limited to: Old Dominion University. Downloaded on July 01,2025 at 20:10:30 UTC from IEEE Xplore.  Restrictions apply. 



  

Fig. 4 Images in the left column are the original STM images of the GNR samples. Images in the right column are the results from 
GMNN. Clearer structures are found in the GMNN generated GNR images, matching the theoretical hexagonal GNR structures. 

 

  

 

Original GNR Image  
Extracted Gaussians (narrowed variances) using GMNN 

Extracting Gaussian Signals in GNR Images 
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Fig. 5. Histogram of pairwise honeycomb distances. The 

standard deviation (std) of the first peak indicates the 

irregularity of the GNR sample. 

V. DISCUSSION 

Considering an STM image representing a 2D probability 
distribution function, the Gaussian mixture model (GMM) [12], 
a classical soft clustering algorithm, can also be used to 
determine the Gaussians underlying the STM image. In order to 
do so, GMM has to specify a fixed number of Gaussians. Also, 
GMM is difficult to restrict the shape of the generated 
Gaussians. In comparison, GMNN has the advantage of 
incorporating physics constraints into the machine learning 
model to focus on extracting Gaussians with respect to the 
underlying atomic signals. Moreover, GMNN can adaptively 
determine the number of Gaussians by filtering those with small 
magnitudes, without the need of specifying the number of 
Gaussians beforehand. 

VI. CONCLUSION 

In this study, we develop a physics-informed machine 
learning model, GMNN, to isolate the underlying atomic signals 
within STM images. The method has been successfully 
validated on a case study of GNR where the localized signals 
match the theoretical chemical structure. The localized signals 
not only provide us clearer STM images, but also allow us to 
measure the nano properties such as irregularity, which cannot 
be done before. 

VII. FUTURE WORK 

The next steps of this work are to give further analysis of the 
STM images, thanks to the new nano property measurements 
enabled by GMNN. The association between nano-properties 
and macro-properties of the nanomaterials can be quantitatively 
studied. These will help us further understand how to design 
materials with desired properties in everyday use.  
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