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ABSTRACT

Cyberattacks have been increasing in volume and intensity, necessi-
tating proactive measures. Cybersecurity risk management frame-
works are deployed to provide actionable intelligence to mitigate
potential threats by analyzing the available cybersecurity data.
Existing frameworks, such as MITRE ATT&CK, provide timely mitigation
strategies against attacker capabilities yet do not account for hacker
data when developing cyber threat intelligence. Therefore, we devel-
oped a novel information technology artifact, ATT&CK-Link, which
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incorporates a novel transformer and multi-teacher knowledge distil-
lation design, to link hacker threats to this broadly used framework.
Here, we illustrated how hospital systems can use this framework to
proactively protect their cyberinfrastructure against hacker threats.
Our ATT&CK-Link framework has practical implications for cybersecur-
ity professionals, who can implement our framework to generate
strategic, operational, and tactical cyber threat intelligence. ATT&CK-
Link also contributes to the information systems knowledge base by
providing design principles to pursue targeted cybersecurity analytics,
risk management, and broader text analytics research through simul-
taneous multi-modal (e.g., text and code) distillation and
classification.

Introduction

Harmful cyber-attacks that target vulnerabilities in critical cyberinfrastructure (e.g., servers
hosting confidential data) cost an average of $8.64 million per breach [31]. Many organiza-
tions are leveraging cybersecurity risk management frameworks (CRMFs) to identify infor-
mation about attacker capabilities, threat scenarios, and mitigation and remediation strategies
to support an organization’s cyber threat intelligence (CTI) capabilities [52,67]. CTI is an
emerging area of cybersecurity that focuses on developing actionable intelligence to mitigate
potential threats by carefully analyzing cybersecurity data (e.g., exploits, vulnerabilities, etc.)
[58]. CTI can be strategic (e.g., reports and briefings), operational (e.g., timing and intent of
threat actors), and tactical (e.g., tactics, techniques, and procedures of a threat actor) [67].
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As part of their CTT efforts, cybersecurity professionals often use automated vulnerability
assessment scanners to identify the susceptibilities in their cyberinfrastructure. CRMFs are
a valuable resource for CTI professionals to identify viable remediation or mitigation
strategies for identified vulnerabilities [58]. However, the number of vulnerabilities that
scanners return can often exceed tens of thousands. This volume can often lead to CTI
professionals’ mis-prioritizing suitable remediation strategies for their vulnerabilities [7].
Furthermore, CRMFs and vulnerability assessments do not often consider extant threat
actors (e.g., hackers); therefore, it is unclear how attackers could target vulnerabilities and
execute their cyber-attacks.

To help address these concerns, Information Systems (IS) scholars are increasingly
focused on developing CTI by studying online hacker community platforms [5,60,61,70].
Online hacker community platforms, such as hacker forums, public exploit repositories,
and exploit DarkNet Markets, can be valuable sources for CTT [60]. Each platform contains
large quantities of threats (often in the form of exploit source code) from prominent threat
actors often used in harmful cyber-attacks [6,61]. Hacker forums are social media platforms
that allow hackers to develop, discuss, and freely share exploits [5]. Public exploit reposi-
tories are large repositories of patched and proof-of-concept exploits put together by
cybersecurity experts for research. Exploit DarkNet Markets specialize in targeted exploits.
Sample exploits from each platform are presented in Figure 1.

Hacker Forum b) Public Exploit Repository

X Mumara Classic 2.93 - 'license'
[n our case, we need to place our address according to the SQL InJeCtlon (Unau‘then'“ca‘ted)

following parameters: 824

268 + 4 = 268 + 1 (269) +1 (270) +1 (271) +1 (272). Our Descrlptlon
address will fall within the radius of 268 - 272. It turns out just 4 YN SQL injection vulnerability in
characters (bytes) and 8 (4 characters in hex) bytes as an 1 dat b i 4 ra C1 .
indication of the address to which control will be transferred icense_update.php: in Fumara As51C

after an overflow. through 2.93 allows a remote unauthenticated

Code: Source Code
[

#include <stdio.h>

attacker to execute
arbitrary SQL commands via the license parameter.

Source Code
sqlmap -u https://target/license_update.php --
method POST --data "license=MUMARA-Delux-
01x84ndsadd&install=install” -p license --
cookie="PHPSESSID=any32gbaer3jaeif108fjcidx" --
dbms=mysql

#include <string.h>

char shellcode[] =
"\x31\xc@\x31\xdb\xbd\x17\xcd\x80"
"\x31\xc@\x50\x68\x2f \x2f\x73\x68"
"\x68\x2f\x62\x69\x6e\x89\xe3\x50"
"\x53\x89\xe1\x99\xbd\x8b\xcd\x80";

Exploit DarkNet Market

SuiteCRM 7.11.18 - Remote Code Execution Exploit
This module exploits an input validation error on the log file extension parameter.
def execute_php
print_status("Executing php code in log file: #{@php_fname}")
res = send_request_cgi(

s
1

‘uri® => normalize_uri(target_uri, @php_fname),

Description

Source Code

‘keep cookies' => true

Figure 1. An example of descriptions and exploit code from a: (a) hacker forum, (b) public exploit
repository, and (c) exploit DarkNet market
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Figure 2. The MITRE ATT&CK Enterprise Matrix Tactic Chain (Adapted from attack.mitre.org)

Each exploit contains source code with long-range dependencies (e.g., functions span-
ning multiple lines) and sometimes provides a description (which can often vary in quality
or length). Successfully linking exploits to a CRMF can help CTI professionals create
mitigation and remediation strategies against potential cyber-attacks that may be targeting
their vulnerabilities. In 2018, MITRE created the prevailing CRMF, the ATT&CK Matrix for
Enterprise [63]. This matrix models 14 tactics (adversary goals), 156 techniques (technical
means), and procedures (real-world examples) that an attacker can take when executing
a cyber-attack. The ATT&CK framework provides general and targeted mitigation strate-
gies for each tactic, technique, and procedure. We present the 14 ATT&CK tactics in
Figure 2.

Generally, an attacker moves sequentially across tactics from initial access to
execution when performing a targeted cyber-attack. Some tactics, such as recon or
initial access, are exploratory and require simple manual prodding from attackers. Six
tactics (defense evasion, privilege escalation, discovery, collection, lateral movement,
and impact) require hacker exploits, which are programs that can automatically evade
cyber-defensive capabilities implemented by an organization [63]. While external data
(e.g., hosts, addresses, etc.) can be mapped to the ATT&CK framework, this is often
a manual and rule-based process that is time-consuming and require ongoing updates
due to the ever-evolving cyber-threat landscape [45]. Moreover, prior research has not
focused on connecting data from hacker forums, public exploit repositories, and
exploit DarkNet Markets to CRMFs. Taking these limitations together, is unclear
how an attacker could leverage hacker exploits to attack an organization’s
vulnerabilities.

Understanding the tactics that hackers are employing can help CTI professionals
identify mitigation strategies specific to vulnerabilities in their cyberinfrastructure.
Given the size of these data sources (hundreds of thousands of potential exploits),
extant literature has leveraged deep learning techniques to extract proactive CTI
[6,59]. Similarly, deep learning methods such as recurrent neural networks with
attention mechanisms have been successfully adapted for situated implementations
of ATT&CK (e.g., detecting malicious behaviors from structured API calls) within
organizational contexts [27]. However, hacker exploits found in forums and exploit
DarkNet Markets often contain multiple modalities of data (namely exploit source
code and exploit descriptions) with long sequential dependencies (e.g., exploit func-
tions) that can negatively impact the performance of deep learning models [17].
These limitations necessitate a novel artifact that can match the textual features in
hacker exploits to ATT&CK tactics.

In this research, we developed a novel ATT&CK-Link artifact based on the transformer
architecture and knowledge distillation principles to automatically link exploit source code
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Research Objective Novelties Contributions Practical Implications
Collect comprehensive Domain: CTI: Outputs:
hacker exploit dataset State-of-the-art tool to DL-based approach to link Linked exploits provide
link hacker exploits and exploits to CRMFs insights on how attackers may
Build a novel IT artifact MITRE ATT&CK tactics proceed on their objective.
to automatically link N N Design Principles: ™
exploit source code Methodological: Prescriptive knowledge to Stakeholders:
found in hacker forums Transformer enhanced help process multi-modal CTI professionals at the
to MITRE ATT&CK's with LSRA and KD to text with long and strategic, operational, and
tactics. analyze source code sequential dependencies tactical levels.

Figure 3. Overview of research objectives, novelties, contributions, and practical implications.

found in hacker forums to six MITRE ATT&CK tactics. The proposed ATT&CK-Link has
two key novelties in its design:

e First, we incorporated a long short-range attention (LSRA) mechanism into the
conventional transformer architecture to help capture the long- and short-range
dependencies in hacker exploit source code.

e Second, we developed a multi-teacher knowledge distillation approach that distills
knowledge from the RoBERTa and CodeBERT large pre-trained language models
with a custom inter-layer loss function to process the unreliable hacker exploit
jargon and exploit source code, respectively, into our proposed transformer
architecture.

Consistent with the guidelines of the design science paradigm [48,49,53], we evaluated
our proposed ATT&CK-Link with a series of benchmark experiments. We also con-
ducted a case study to demonstrate the potential proof-of-value of ATT&CK-Link by
identifying vulnerabilities in major US hospitals and providing mitigation strategies
for them. The ATT&CK-Link framework can assist cybersecurity professionals in
executing CTI tasks at the strategic, operational, and tactical levels. ATT&CK-Link
furthers cybersecurity literature by providing a computational framework to incorpo-
rate industry-standard knowledge bases (MITRE ATT&CK) into non-standardized
cybersecurity tasks (hacker community analytics). Additionally, our research contri-
butes generalizable design principles to the IS knowledge base. While our ATT&CK-
Link artifact is situated within cybersecurity, the LSRA and multi-teacher knowledge
distillation novelties can be implemented into text classification frameworks that
require multiple data modalities and long sequential dependencies. The research
objectives, novelties, contributions, and practical implications of our work are shown
in Figure 3.

The remainder of this paper is organized as follows. First, we review literature
related to IS cybersecurity research, analytics for cybersecurity risk management
frameworks, transformers for multi-class classification, and knowledge distillation.
Second, we identify research gaps and pose research questions for the study. Third,
we demonstrate the proposed ATT&CK-Link research design and detail each of its
constituent components. Fourth, we present the results of our experiments and discuss
their implications. Fifth, we demonstrate the potential proof-of-value of our proposed
DTL framework with an in-depth case study on major US hospitals. Sixth, we discuss
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the potential contributions to the IS knowledge base and the practical implications of
our work. Finally, we conclude this research and discuss promising directions for
future research.

Literature review
IS Cybersecurity Research

Cybersecurity has emerged as a critical stream of research within the IS community
[14]. In particular, the IS cybersecurity community has focused on analytics [17,38,59],
behavioral compliance [46,51], investment [8,40], treatment effects [77], and risk
management [11,80]. Cybersecurity risk management is of particular interest to the
IS community due to the increasing number of cyber-attacks and organizational
neglect [42]. CRMFs are increasingly being used within enterprise contexts to combat
rising cyber-attacks, and many organizations are requesting assistance in building their
CRMF profile [28]. Therefore, research into CRMFs is a potential high-impact area
within the IS community. For example, organizations may see significant benefits
when incorporating text-mining analytics into their risk mitigation processes [11].
Since we propose a novel text-mining artifact to link exploits to a CRMF, we
summarize recent cybersecurity analytics literature published in prevailing IS journals
to position our work in Table 1. For each study, we summarize the year of publica-
tion, author(s), cybersecurity focus, analytical methodologies, and if a CRMF was
included as part of the study.

Much of the prior work in IS cybersecurity analytics literature aimed to proactively identify,
detect, or mitigate cyber threats within hacker communities [9,10,17,18,39,59,60,76]. Prior IS
cybersecurity analytics studies have traditionally relied on classical machine learning methods
[9-11,60,76], while more recent studies have leveraged deep learning algorithms [17,18,59].
Despite the tremendous contributions from past studies, only one identified work has
incorporated a CRMF to improve its analytics [11]. However, this work did not examine

Table 1. Summary of Recent IS Cybersecurity Analytics Literature

Year Author Cybersecurity Focus Methodologies ~ CRMF?
2022 Ebrahimi et al. [17]  Cross-lingual analysis to discover hacker specialties ADREL No
2022 Samtani et al. [59]  Linking hacker exploits to vulnerabilities DSSM No
2022 Li and Chen [38] Topic detection of hacker content LDA No
2021 Biswas et al. [11] Determining hacker risk TF-IDF Yes
2020 Ebrahimi et al. [18] Identifying and classifying cyber threats in DarkNet Markets SVM No
2020 Sen et al. [62] Impact of cyber-attacks on software markets Regression No
2019  Yinetal. [76] Tracking cyber-criminals across blockchain transactions XGBoost No
2019 Yue et al. [79] Impact of hacker forum discussions on real attacks LDA No
2019 Benjamin et al. [9]  Framework for executing DarkNet research Regression No
2017 Samtani et al. [60]  Malware source code classification SVM No
2016 Li et al. [39] Identification and profiling of key DarkNet sellers LDA No
2016 Benjamin et al. [10] Examining hacker participation in IRC channels SVYM No

*Note: ADREL = Adversarial Deep Representation Learning; DSSM = Deep Structured Semantic Model; LDA = Latent Dirichlet
Allocation; SVM = Support Vector Machine, TF-IDF = Term Frequency - Inverse Document Frequency; XGBoost = Gradient
Boosted
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hacker exploits and developed new risk-evaluation metrics instead of using industry-standard
frameworks. The rapid growth and evolution of hacker communities necessitate novel
cybersecurity IT artifacts that link a CRMF to hacker exploits to help CTI professionals
identify mitigation strategies for vulnerabilities within cyberinfrastructure. To help facilitate
the development of such an IT artifact, we review prior literature on analytics for CRMFs.

Analytics for Cybersecurity Risk Management Frameworks

CRMFs are structured knowledge bases that facilitate the systematic identification, assess-
ment, and mitigation of cybersecurity risks and serve as guidelines for organizations to align
their cybersecurity practices with industry best practices [28]. The current industry stan-
dard CRMF is the MITRE ATT&CK framework [63], which has attracted significant
analytics research in recent years. Analytics research on MITRE ATT&CK has primarily
focused on two categories: (1) the improvement of ATT&CK and (2) the use of ATT&CK to
improve cybersecurity tasks. First, extant research has employed machine and deep learning
strategies to improve various aspects of MITRE ATT&CK [2,4,22,34,43]. This includes
predicting new ATT&CK techniques [2] and combining external information (e.g.,
Common Vulnerabilities and Exposures, CVEs) with ATT&CK tactics [4] and techniques
[22,34,43]. Second, the tactics, techniques, and procedures in the MITRE ATT&CK frame-
work have been used to enhance downstream cybersecurity analytic research
[1,16,23,27,41]. Research in this category has integrated MITRE ATT&CK knowledge to
enhance malware visualization [1], malware detection [16,27], alerting [41], and network
vulnerability analysis [23]. Studies within this category of ATT&CK research primarily
focus on internal datasets (e.g., network traffic), often neglecting external threats.

Our proposed research falls into the second category, as we leverage ATT&CK to apply
mitigation strategies to external hacker threats. Research on ATT&CK and hacker commu-
nities has not yet combined industry-standard mitigation strategies from ATT&CK to these
hacker threats. To conduct hacker threat analytics, research most often analyzes post
content (e.g., descriptions) and source code [5,59,60]. However, both post content and
source code are rarely used within the same study [5]. This may be because post content is
unreliable when source code is present (i.e., source code is often posted in snippets without
a clear description) [70]. Therefore, designing a novel cybersecurity artifact that links
identified hacker threats to a CRMF using available metadata (e.g., post content and source
code) requires an automated and data-driven approach. However, the prevailing deep
learning approaches for analyzing hacker threats (e.g., BILSTM) often miss the long-
range dependencies in source code (e.g., called functions) and do not differentiate source
code and post content (e.g., same model for each) [6]. Capturing long-range dependencies is
necessary for source code analysis since functions are often called many lines after being
defined. Transformers are a promising approach for capturing long-range dependencies
due to their attention mechanisms and state-of-the-art results in various natural language
processing tasks [56].

Transformers for Multi-Class Text Classification

The transformer is a prevailing deep learning architecture that has attained state-of-the-art
results in numerous natural language processing classification and source code analysis
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Table 2. Major Categories of Language Models

Language Seminal Common

Model Type Description Models Application(s) References

Autoregressive Trained by predicting the next word in GPT, GPT-  Generative Tasks Radford et al. [55]
a sequence using a transformer’s 2, GPT-3
decoder.

Masked Trained to predict a masked word with BERT Language sequence Devlin et al. [15]
bidirectional information using the RoBERTa classification Liu et al. [44]
encoder of a transformer. CodeBERT  Code classification Feng et al. [19]

Encoder- Trained to match two sequences BART, T5 Machine Translation; Lewis et al. [36]

Decoder using a transformer’s encoder Text Summarization Raffel et al. [57]

and decoder.

tasks [19,37]. This success in natural language processing is in part due to the multi-head
attention mechanism employed by the transformer [37]. However, the standard multi-head
attention (scaled dot-product attention performed several times) has a quadratic computa-
tional complexity to the input length, often resulting in performance loss for long sequences
(e.g., code) [73]. To solve the issues of scalability to long sequences in transformers,
researchers suggest integrating depthwise convolutions with a sliding fixed-size window
into the multi-head attention mechanism [72,81]. Unlike a standard convolution that
applies to all channels of data, depthwise convolutions prevent information mixing from
different channels and thereby effectively reduce parameters and keep a local context to
a single channel. Depthwise convolutions can be formulated as:

k
Zj:l Wej- X(l‘ﬂ"%)ﬁ

where X is the input, k is the kernel width, 7 is each context element in a sequence, c is the
output dimension, and W is the weight of the kernel matrix. This design can improve
performance in benchmark natural language processing tasks when modeling sequential
dependencies is necessary (e.g., machine translation, summarization, language modeling)
[29]. However, this approach only emphasizes local contexts, potentially missing the global
context required for our source code input. LSRA is a state-of-the-art approach that splits
the input into two channels (i.e., feature dimensions) to improve long-range dependency
modeling [73]. One channel is a global context multi-head attention (formulated like the
transformer), and the other is a local depthwise convolution extractor specializing in short-
range token relationships. Augmenting a transformer with LSRA can help capture short-
and long-range dependencies in exploit source code that traditional multi-head attention
approaches may miss. However, LSRA alone cannot address the issue of multi-modal
textual data (e.g., source code and natural text) and jargon observed in extant hacker exploit
analysis studies.

Large pre-trained language models are a potential solution to the jargon issue due to
being trained on corpora with billions of records to understand natural language.
Additionally, transformers are often the architecture used to create language models. In
Table 2, we summarize the three major types of language models: autoregressive, masked,
and encoder-decoder [74].

Of the categories of language models, masked language models (e.g., RoOBERTa,
CodeBERT) are the suitable for linking hacker exploits to CRMFs due to their general-
izability and state-of-the-art performance in sequence and source code classification tasks
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[19]. However, hacker exploits often contain highly-specialized language (e.g., jargon) and
code [17]. Language models often fail to generalize to datasets with large out-of-vocabulary
text [33] and require intermediate steps (e.g., fine-tuning) before being used for a targeted
task [56]. Knowledge distillation (KD) is an emerging paradigm that can extract generalized
information and parameters from a language model (teacher) to enhance the training of
a targeted model (student) [25].

Knowledge Distillation (KD)

Pre-trained language models are often too computationally expensive to train from scratch
[15]. KD and transfer learning are two prominent techniques that allow researchers to
leverage knowledge from pre-trained language models to improve the performance of
a downstream model [25,65]. While both KD and transfer learning aim to enhance the
learning process of a target model, they differ in their underlying principles, objectives, and
the scenarios in which they are most effective. Transfer learning leverages knowledge
acquired from a source domain model to enhance the learning process of the target
model by transferring relevant knowledge, representations, or parameters [65]. Transfer
learning is advantageous when the target domain has limited labeled data or when there is
a domain shift between the source and target domains [6]. However, transfer learning is not
appropriate for multi-modal (source code and post content) and multi-source (RoBERTa
and CodeBERT) tasks. Multi-source transfer learning often suffers from the negative
transfer phenomenon, where a target domain model loses performance due to the source
domain distribution being divergent from the target domain [26,69].

KD aims to improve the performance of a student model by enabling it to mimic the
behavior and predictions of a teacher model [68]. KD is effective in scenarios where
computational resources or model size constraints prevent the direct use of large teacher

Teacher Model Student Model
Res-KD

Output Probabilities Output Probabilities

Lo = ) t;-og(s)
Softmax i Softmax

Cincar
Feat-KD (
Hidden Layers > 0, 6 l Hidden Layers

Lyp = Le(P(6,), Ps(65))

Positional Positional
Encoding Encoding
Input s Rel-KD Input
Embeddings el f s f5) Embeddings
1 Lip = La@e(Fer fo), s (s, ) 1

Inputs

Figure 4. A General Transformer Student-Teacher Knowledge Distillation Framework Note: Feat-KD
=Feature-based KD, Res-KD=Response-based KD, Rel-KD=Relation-based KD
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models [30]. Additionally, KD has been shown to improve student performance over the
teacher by incorporating knowledge from multiple teachers to leverage diverse perspectives
and complementary information [78]. We illustrate the three types of knowledge distillation
in a deep student-teacher network in Figure 4 [20].

Response-based KD teaches the student model to mimic the output of the teacher model
using a loss function defined as Lxp = >_ ¢t; - log(s;), which aims to minimize the difference
in class probability outputs i between a'teacher t and a student s [25]. Feature-based KD
learns a feature representation of each layer of the teacher model, distilling knowledge at
a layer level. Generally, the loss function Lkp is used to reduce the difference between a set
of student feature maps 0; for each model layer and the teacher model, 01 [64], generally
denoted as: Lxp = Lr(D;(6;), Ds(6;)) , where @ represents a transformation function to
align the feature maps and Lr is a chosen similarity function (e.g., cross-entropy). Layers to
distill knowledge from and choice of L are chosen based on model design and task type
[30]. Relation-based KD combines representations of data samples and layers, distilling loss
based on the relations of data samples. Relation-based KD can be denoted

Lxp = Lp (‘/’z (ft,ft> Y (fs,fs)) , where (f,f) represents a pair of feature maps gener-
ated for data samples and y represents a transformation function. However, this form of KD
is best suited for computer vision tasks where images can be easily augmented. For text
classification tasks, feature-based KD has often outperformed response-based and relation-
based KD techniques [54].

Since hacker forum text has source code and natural language, it is important to develop
a KD framework that can account for each data modality concurrently. While the goal of
KD is often to reduce model parameters to create a powerful small model [30], multi-
teacher KD (i.e., distilling from multiple teacher models simultaneously) provides
a mechanism to achieve state-of-the-art model performance for multi-modal frameworks
[47]. Multi-teacher KD can capture and aggregate diverse knowledge into a single student
model [25]. Multi-teacher KD approaches often provide significant improvements over
single-teacher KD in several benchmark natural language processing tasks as they reduce
the influence of a single teacher on a student model and improve the domain invariance of
the student [78]. Past literature uses the softmax confidence of each teacher’s output to
perform multi-teacher KD to balance distillation from the more confident teacher on each
sample [71]. Further, feature- and response-based KD can be combined in a KD framework
to create more generalized student models [20]. However, distillation at the feature and
response layers from multiple teachers is a non-trivial task and requires further exploration.

Research Gaps and Questions

We identified several research gaps in our literature review. First, analytics for CRMF
research primarily focuses on internal datasets and not external hacker exploits to improve
organizational cybersecurity. Second, the models commonly used in hacker exploit litera-
ture often focus on post content only and omit source code despite the source code
containing rich information about the exploit [6,9]. Moreover, the classical machine or
deep learning models used for CRMF and hacker exploit analysis can miss long-range
sequential dependencies commonly found in source code. Finally, hacker forum descrip-
tions can potentially benefit linking performance despite being inconsistently available.
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However, how to use exploit descriptions to improve source code classification perfor-
mance and not lead to a negative transfer effect requires careful consideration. Multi-
teacher KD is a potential solution to improving the generalizability of a student model
trained on exploit source code by distilling exploit post content knowledge [20]. However,
balancing two teachers in response- and feature-based multi-teacher KD approach is a non-
trivial task due to the requirement of balancing confidence at the output and feature level.
Based on these gaps, we pose the following research questions for the study:

e How can we develop a framework that accounts for the short- and long-range
sequential dependencies in exploit source code to link exploits to the MITRE
ATT&CK framework?

e How can we effectively weigh the importance of multiple teachers in a multi-teacher
KD design to train a student model to link exploits to the MITRE ATT&CK
framework?

Proposed research design

To answer the posed research questions, we develop a novel ATT&CK-Link framework
(Figure 5) with four major components: (1) Data Collection, (2) Dataset Construction and
Pre-Processing, (3) ATT&CK-Link Architecture, and (4) Experiments and Evaluations.

Our proposed ATT&CK-Link architecture was informed by our research gaps. Each gap
necessitated a component of the model architecture. We detail each gap, requirement,
component, and justification in Table 3.

Data Collection

Three sources of exploits are collected for our research: hacker forums, public exploit
repositories, and exploit DarkNet Markets. We developed a Python-based web crawler to

N T a s 1 "
1) Data Collection 3) ATT&CK-Link Architecture 1 4) Experiments and
e ————— | - 1 Evaluations
RoBERTa Model ATT&CK-Link Student Model e —
m I Output: Tactic Output: Tactic I Experiment 1
1 Probabilities Probabilities 1 ATT&CK-Link
e — t Step3. Loss 1 )
" N Natural Language [HT—>  Extraction Against Benchmark
Public Exploit Repos : r..a.mt RoBERTa Lo I | ML and DL Models
G |
Step 1.
e — R | PTLM Input: Tokenized 1 "
Fine-Tuning | Exploit Description Step 4. Model Experiment 2
! c ! ATT&CK-Link
I I | Against Knowledge
| CodeBERT Model I Distillation
2) Dataset Construction | Output: Tactic 1 Strategies
and Pre-Processing | Probabilities Long Short-Range I
1 . Attention (LSRA) ]
Gold-standard 1 "";:';‘h“:j"' an I 1 Experiment 3
construction 1 CodeBERT 1 ATT&CK-Link’s CIL
1 t Step 2. Student | | Asainst Prevailing
| ataceaning | | iy | “Eeirsee || | (o
| FineTuning Code Input: Tokenized Exploit Source Code 1
2 2

Figure 5. Proposed Research Framework
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Table 3. Design Rationale for Addressing Extant Research Gaps

Framework

Research Gap Design Requirement Component Justification(s)

Current hacker exploit analysis does A methodology that ATT&CK-Link ATT&CK-Link provides insights into
not link to CRMFs for CTI can link exploits to the tactics that are most used by
applications ATT&CK tactics hackers, which can inform future

strategies

Extant hacker forum analytics do not A model that can CodeBERT, Exploit code is an underutilized
use source code, which is valuable categorize source Student feature for exploit analysis [6].
for linking to ATT&CK code transformer CodeBERT and transformers are

state-of-the-art source code
classification methods [19]
Long-range sequential dependencies A mechanism that can Transformer LSRA is a suitable solution for

that appear in hacker source code properly account for ~ extended modeling long-range
are difficult to account for long sequential with LSRA dependencies [73], but has not
dependencies mechanism been explored for source code
Balancing teachers for multi-teacher A mechanism that can Custom Inter ~ Balancing teachers for multi-teacher
KD based on hacker exploit content  balance two Layer loss KD is crucial to ensure that the
requires a novel strategy to balance  teachers’ confidence  function distilled model is generalizable,
confidence accurate, and reliable for linking

exploits to ATT&CK [71].

Table 4. Gold-Standard Dataset Label Distribution
ATT&CK Tactic Defense Evasion Privilege Escalation Discovery Collection Lateral Movement Impact Total

CVE Quantity 15,244 10,295 5,227 2,311 1,811 1,013 35,901
Dataset Percent 42.46% 28.68% 14.46% 6.44% 5.04% 2.80% 100%

collect hacker forums and exploit DarkNet Markets, while public APIs were used to collect
the public exploit repositories. Our overall data collection contains nine hacker forums
(82,693 code snippets), six public exploit repositories (148,902 code snippets), and one
exploit DarkNet Market (34,732 code snippets). Compared to recent hacker exploit litera-
ture [6,59], our testbed is the largest. Our data testbed contains exploit features that include
the title, author, source, date, source code, description, attack type, and CVE.

Dataset Construction and Pre-Processing

Since there is currently no direct way to match exploit source code to ATT&CK tactics, we
extracted the snippets within our research testbed that contained a CVE label. A CVE is
a publicly disclosed cybersecurity vulnerability that is widely accepted by the cybersecurity
community [13]. CVEs are manually created by the CVE Numbering Authority and are not
commonly coupled with specific exploits or ATT&CK tactics. Since CVE labels have been
previously matched to ATT&CK tactics in extant literature [4,24,34], we matched the exploits
in our testbed with an associated CVE to a MITRE ATT&CK tactic. Consistent with best
practices in prior IS literature [59], we constructed a gold-standard dataset of exploit source
code snippets with an included description and their related ATT&CK tactic. We summarize
the label distribution of the gold-standard dataset based on the ATT&CK tactic in Table 4.
Our overall exploit dataset contains 35,901 exploit source code snippets (and related
descriptions) across six ATT&CK tactics. Of the fourteen ATT&CK tactics, eight tactics
(recon, resource development, initial access, execution, persistence, credential access, lateral
movement, command and control, and exfiltration) do not require an exploit to conduct



JOURNAL OF MANAGEMENT INFORMATION SYSTEMS e 247

since they require manual and exploratory processes by the attacker. Hacker exploits cannot
be mapped to these exploratory tactics [3]. Therefore, our dataset connects to six of the
available fourteen tactics. Defense evasion is 42.46% of our gold-standard dataset, 28.68% is
privilege escalation, discovery is 14.56%, collection is 6.44%, lateral movement is 5.04%, and
impact is 2.8%. Available exploit descriptions were concatenated, lower-cased, lemmatized,
tokenized, and padded to ensure proper lengths for all inputs. Exploit code was tokenized
and padded to the longest piece of code [6].

ATT&CK-Link Architecture

To process long hacker exploit source code and their associated descriptions, we designed
a novel ATT&CK-Link architecture with a multi-teacher KD design and custom loss
function. Additionally, we adapted the LSRA mechanism into our student transformer
model to link hacker exploits to ATT&CK tactics. The proposed ATT&CK-Link architec-
ture is shown in Figure 6.

The ATT&CK-Link architecture follows a four-step training procedure: (1) PTLM fine-
tuning, (2) student model training, (3) loss extraction, and (4) model convergence. Each
step of the ATT&CK-Link process is described in further detail below.

RoBERTa Model ATT&CK-Link Student Model
Output: Tactic Output: Tactic
Probabilities Probabilities

t Step 3. Loss
Natural Language >  Extraction
Teacher: ROBERTa Lepg

S t

PTLM Input: Tokenized del
Fine-Tuning | Exploit Description Step 4. Mode|
’ Convergence f-—l Add & Norm |\
1

| Feed Forward |
CodeBERT Model _‘I
Output: Tactic _.I Add &'Norm |
Probabilities Long Short-Range
t Attention (LSRA)
Programming Y
Teacher: HB L1 )
CodeBERT
1 . Step 2. Student
Step 1. Input: Tokenized Model Training
PTLM Exploit Source
Fine-Tuning Code Input: Tokenized Exploit Source Code

Figure 6. Proposed ATT&CK-Link Architecture. Note: PTLM = Pre-trained Language Model
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Step 1 (PTLM Fine-Tuning): To improve performance from language models in
classification tasks, it is vital to fine-tune them with a target dataset [56]. Fine-tuning
a language model adjusts pre-trained weights based on an input (e.g., textual data) and
a target task (e.g., sequence classification), similar to a transfer learning approach [65].
Exploit descriptions from our gold-standard dataset were used to fine-tune a state-of-the-
art RoBERTa teacher model [44]. We selected RoBERTa as it has demonstrated excellent
performance in natural language sequence classification tasks [54]. Exploit source code was
used to fine-tune a CodeBERT teacher model [19], trained on over six million source code
snippets from GitHub repositories. CodeBERT uses the model architecture of the RoBERTa
model (important for compatibility) and is the largest source code language model. Our
proposed multi-teacher KD design aims to allow each language model (i.e., RoBERTa and
CodeBERT) to distill distinct types of knowledge between natural language vs code. Exploit
source code is input into our proposed ATT&CK-Link student model (right side of
Figure 6).

Step 2 (Student Model Training): The long dependencies of code necessitate capturing
the global positions of tokens, including global and local contexts. Our proposed student
transformer model includes an LSRA that operates after the embedding layer processes the
input. We compare the conventional multi-head attention to the proposed modified LSRA
design in Figure 7.

The proposed LSRA design (right side of Figure 7) implements an attention extractor
that applies scaled dot-product multi-head attention to only global features in an indepen-
dent input channel [73]. The LSRA’s local attention extractor uses a light, depthwise
mechanism (formulated in the bottom right of Figure 7) that performs a convolution for

Multi-Head Attention (MHA) Long Short-Range Attention (LSRA)
4
Embedding
4
Linear
T Global Local
C Attention Attention
encatenate Extractor Extractor
[} [}
Scaled Dot-Product Attention Embedding
[) [ L) 4 L) [
Linear Linear Linear Linear Linear Linear
t L) L) [ L) L)
K vV Q K vV Q
Scaled dot — product attention(Q,K,V) Local attention extractor
KT = DepthwiseConv (X, softmax(W i, ¢
= softmax(Q—)V priise nv( ftmax( I%I*)l )
k

Figure 7. Standard Multi-head attention (MHA) mechanism (left) and the proposed long short-range
attention (LSRA) mechanism (Adapted from Wu et al., 2020) (right)
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element i and output channel ¢ over each channel. Combining the outputs of the global and
local attention extractors allows our proposed LSRA mechanism to effectively capture the
long- and short-range dependencies of exploit source code compared to a multi-head
attention mechanism.

Step 3 (Loss Extraction): To formulate our multi-teacher KD, we designed a novel inter-
layer loss (Lcp) function to balance the distillation from the teacher RoBERTa and
CodeBERT models and the student model. Extant literature suggests that an exploit’s source
code has different information than its description [6]. Training a model directly on exploit
source code and descriptions may lead to a decline in model performance due to the
negative transfer effect [69]. However, exploit descriptions should still provide some
predictive value to a model [59]. Therefore, our L¢y function considers the confidence of
RoBERTa’s and CodeBERT’s prediction for each output to weight feature distillation
importance. This distillation strategy combines the strategies of calculating inter-layer
(i.e., feature-based) and output loss (i.e., response-based) from a single teacher [30] and
balancing the confidence distribution between multiple teachers [71]. After each exploit
batch, Ly is calculated by extracting each model’s hidden states, output, and softmax
probabilities. The loss of the hidden states is balanced by each teacher’s confidence to create
the proposed L¢y function, formally:

N, €f
Len = (Zzl(w> Lit) + Lout

where N is the number of teacher models, z; is the logit for each class, £;; is the intermediate
layer loss, L, is the loss at the output of the model. Intermediate layer loss is calculated
with:Ly = MSE(H:, H!) + MSE(AS, A!), where H* and H' are the hidden state matrices of
the student and teacher models, A’ and A® are the attention parameters pulled from the
multi-head attention mechanisms, and MSE is the mean-squared error of the hidden states.
This is a commonly accepted hidden state loss function for feature-based KD [68,71].
Response-based knowledge is also distilled with:L,,; = CE(zf,zf),where and zT are the
predicted logit vectors from the student and teacher models. Response-based KD to
supplement feature-based KD often improves student model performance [30]. The soft-
max equation calculates the confidence of each teacher model for each prediction. A teacher
model distills more information when it has a higher softmax confidence score on correct
prediction and less information when it has lower softmax confidence score on correct
prediction. In the student model, the parameters are extracted only from the global
attention extractor of the LSRA. This supplements the LSRA’s long-range dependency
detection. Knowledge is not distilled to the local attention extractor as depthwise convolu-
tions do not have reported issues in identifying local dependencies and do not appear in our
teacher models.

Step 4 (Model Convergence): ATT&CK-Link adjusts internal model weights after each
epoch to minimize L¢y . Then, Steps 1-4 are repeated, and the learning rate of the model is
reduced until the model converges (i.e., model weights no longer change).
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Table 5. Summary of Benchmark Experiments

Benchmark Evaluation
Experiment Justification Type Models References Metrics
1 ATT&CK-Link Classical machine and deep Classical Random Forest, Ampel et al.  Accuracy, F1-
Against learning models are Machine Naive Bayes, [6] Score,
Benchmark commonly used for Learning Logistic Ebrahimi Precision,
Machine and sequential text classification Regression, et al. [18] Recall
Deep Learning tasks in hacker literature SVM Huang
Models Deep RNN, GRU, et al. [27]
Learning LSTM, Kuppa
BiLSTM, et al. [34]
BiLSTM w/ Williams
Attention, et al. [70]
Transformer
2 ATT&CK-Link Identify differences between KD; LSRA RoBERTa, Feng et al.
Against KD models and paradigms CodeBERT [19]
Knowledge Qiu et al.
Distillation [54]
Strategies Yuan et al.
[78]
3 ATT&CK-Link's CIL  Sensitivity analysis to identify ~ Loss CE, CS, FSP, Yim et al.
Against the highest performing loss Functions MSE, NST [75]
Prevailing Loss functions Wu et al.
Functions [71]

*Note: BiLSTM = Bidirectional LSTM, CE = Cross-Entropy, CIL = Custom Inter-Layer, CS = Cosine Similarity, FSP = Flow of
Solution Procedure, GRU = Gated Recurrent Unit, KD = Knowledge Distillation, LSTM = Long Short-Term Memory, MSE =
Mean-Squared Error, NST = Neuron Selectivity Transfer, RNN = Recurrent Neural Network, SVM = Support Vector Machine.

Experiments and Evaluations

Consistent with the computational design science paradigm, we rigorously evaluated our
proposed ATT&CK-Link artifact with a series of benchmark experiments [49,53] drawn
from hacker forum exploit analysis and deep learning-based ATT&CK literature. The
justification, models, and evaluation metrics for each experiment are summarized in
Table 5.

In Experiment 1, we examined ATT&CK-Link’s performance against the classical
machine and deep learning approaches commonly used in past literature cybersecurity
analytics. Classical machine learning models included random forest, naive Bayes, logistic
regression, and SVM. A grid search for each model was conducted to find ideal parameters.
Deep learning models included RNN, GRU, LSTM, and BiLSTM. These recurrent neural
networks are commonly found in hacker exploit and ATT&CK literature [6,18,27,70].
Consistent with recent deep learning work on MITRE ATT&CK implementations, we
also evaluated ATT&CK-Link against the BiLSTM with self-attention and the baseline
transformer [27,34]. We also evaluated a transformer augmented with the LSRA design.
Finally, we fine-tuned a RoBERTa and CodeBERT model for analysis, comparing them
individually and using a weighted average of their outputs [12,32]. Each model was trained
with exploit source code (except for ROBERTa, which was trained on exploit descriptions as
the model was not pre-trained on source code). For each model, we used the model
architectures detailed within the relevant literature.

In Experiment 2, we evaluated single-teacher and multi-teacher KD variations of our
transformer models to determine if ATT&CK-Link’s multi-teacher and LSRA design
improved performance over the standard transformer and single-teacher designs. More
details about each model can be found in Online Appendix A. For Experiment 3, we
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conducted an ablation analysis that compared our custom inter-layer loss function L¢yp
against the prevailing loss functions in KD literature. Cross-entropy, cosine similarity, and
mean squared error loss are response-based loss functions and measure the difference in
outputs between the student and teachers. Flow of solution procedure is a state-of-the-art
loss function for relation-based KD and attempts to minimize the difference in the flow of
solution procedure from the teacher and student networks [75]. Neuron selectivity transfer
is a state-of-the-art loss function for feature-based KD which derives an attention map from
the intermediate feature maps. This experiment assists in ruling out different loss functions
in our KD framework.

For each experiment, we used accuracy, precision, recall, and F1-score (harmonic mean
of precision and recall) as metrics to evaluate each model’s linking performance. We used
True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) to
compute each metric. The formulas for each metric are as follows:

TP+ TN o TP
Accuracy = , Precision = ————
TP + TN + FP + FN TP + FP
TP 2 X Precision x Recall
Recall = ———  F1 — score = —
TP + FN Precision + Recall

Among the four metrics, scholars conducting IS cybersecurity analytics literature have
indicated that F1-score is the best metric for comparing models, as it is not sensitive to data
imbalance [17]. Stratified 10-fold cross-validation is used for each model with the same split
to allow for comparisons across folds. One-tailed paired t-tests are used to evaluate if the
differences between the proposed approach and benchmarks are statistically significant.

The evaluations of supervised deep learning algorithms within cybersecurity IS literature
is based on gold-standard training, validation, and testing datasets [17,59]. Our overall
exploit dataset contains 35,901 exploit source code snippets connected to ATT&CK tactics.
Of these records, 28,711 are used for training, 3,190 for validation, and 4,000 for testing.

Table 6. Results for Experiment 1: ATT&CK-Link Against Benchmark Machine and Deep Learning Models

Model Type Model Accuracy Precision Recall F1-score
Classical Machine Learning Random Forest 58.33%*** 9.72%%*** 16.67%*** 12.14%***
Naive Bayes 59.13%*** 33.78%*** 18.539%0*** 22.01%***
Logistic Regression 63.73%*** 33.04%*** 21.57%*** 25.99%%**
SVM 66.48%*** 55.21%*** 28.58%*** 37.50%***
Deep Learning RNN 72.80%*** 73.70%*** 71.68%*** 72.67%***
GRU 78.40%*** 79.18%*** 78.08%*** 78.62%***
LSTM 77.93%%*** 78.70%*** 77.03%*** 77.85%***
BiLSTM 79.75%** 80.61%*** 79.28%*** 79.94%***
BiLSTM with Attention 78.20%*** 78.46%*** 77.95%%** 78.21%***
Transformer 81.58%*** 81.45%*** 81.33%*** 81.41%***
Transformer with LSRA 82.15%*** 83.71%*** 82.38%*** 83.149%***
PTLM RoBERTa 73.14%*** 55.87%%*** 51.08%*** 53.23%***
CodeBERT 79.32%*** 83.49%*** 83.29%*** 83.45%***
RoBERTa + CodeBERT 79.48%*** 84.02%*** 82.74%*** 83.26%***
KD Proposed ATT&CK-Link 87.31% 89.14% 86.80% 88.36%

*Note: KD=Knowledge Distillation, PTLM = Pre-Trained Language Model
* 1 p<0.05 % : p<0.0T, xxx:p<0.001
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Results and discussion
Experiment 1: ATT&CK-Link Against Benchmark Machine and Deep Learning Models

In Experiment 1, we evaluated ATT&CK-Link against the classical machine and deep
learning benchmarks for linking exploit source code to ATT&CK tactics. The accuracy,
precision, recall, and F1-score are summarized in Table 6, and top model performances are
highlighted in bold-face.

Overall, the proposed ATT&CK-Link with distilled knowledge from the RoBERTa and
CodeBERT models attained the best performance in terms of accuracy (87.31%), precision
(89.14%), recall (86.80%), and Fl-score (88.36%). The differences between the proposed
ATT&CK-Link and all other benchmark models in terms of F1-score were statistically signifi-
cant. The best-performing classical machine learning model in terms of F1-score is the SVM
(37.50%). The recurrent-based deep learning models (e.g., RNN, GRU, LSTM) all perform better
in F1-score than the classical machine learning models. The recurrent-based models better adapt
to sequential input when compared to classical machine learning models, with the BiLSTM
model performing best in Fl-score (79.94%). Attention-based deep learning models without
recurrence (e.g., transformer) often capture long-term dependencies that recurrent-based mod-
els cannot, leading to an F1-score of 81.41%. Replacing the multi-head attention with LSRA
improved F1-score over the baseline transformer (from 81.41% to 83.14%). These results suggest
that the LSRA mechanism stabilized the transformer model for long sequences. The RoBERTa
language model fine-tuned on exploit descriptions only had a lower F1-score (53.23%) than
other deep learning models. These results suggest that the descriptions alone cannot accurately
link exploits to tactics. Fine-tuning CodeBERT on exploit code slightly improved the F1-score

a) Denial of Service b) Local
def printit(): def attempt exploit(hmac):
thread.Timer(5, printit).start() file.open("/tmp/payload”, w")
interval=time.time() as f
‘_’";"t( I‘)’tal WA Beconds™ f.write(build payload(hmac))
interva
—————Y oetput=she11£ cat /tmp/pazload I &)
JIPVE )\ File.delete("/tmp/payload")
/ICMPV6ND_RA(prefix=RandIP6()
io.popen("gcc -xc -o #{$target}"
try: mode="r+"
sendp(packet, loop=1) I io.write(shellcode)
except: io.close
pass end
Model Predicted Tactic Model Predicted Tactic
CodeBERT Defense Evasion CodeBERT Discovery
ATT&CK-Link | Impact ATT&CK-Link | Privilege Escalation

Figure 8. Example Exploits Correctly linked by ATT&CK-Link but Missed by Best Competing Non-KD
Approach
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compared to the transformer with LSRA (83.45% vs 83.14%). Taking the weighted average of
output predictions from RoBERTa and CodeBERT did not improve performance over
CodeBERT (83.45% vs 83.26%). CodeBERT often had a much higher softmax confidence than
RoBERT4, leading to CodeBERT determining the final output prediction. These results suggest
that combining RoOBERTa and CodeBERT in a standard ensemble was not able to aid final model
outputs in the non-distillation setting, thus necessitating our multi-teacher KD architecture.

To further illustrate the value of our proposed approach, we present an exploit code
snippet ATT&CK-Link labeled correctly but was missed by the best non-KD approach
(CodeBERT) in Figure 8. Boxes around the source code indicate vital lines encased within
a function, which contains the main capabilities (e.g., payloads) of the source code [50].
Therefore, these functions contain important dependencies that reveal the tactic of the
exploit. These dependencies were often on multiple and non-adjacent lines, which
ATT&CK-Link may have detected with its LSRA mechanism.

Compared to ATT&CK-Link, CodeBERT does not use LSRA, and could therefore miss
the long relationships across an exploit’s source code. For example, DoS exploits in the
impact tactic rely on timers to send packets to disrupt systems. Figure 8a indicates that the
packet commands appear on two non-adjacent lines. Local exploits in the privilege escala-
tion tactic often use a shell to deliver a payload. Figure 8b indicates that the code to build
and deliver the payload requires multiple lines. These results demonstrate the potential
benefits of the LSRA.

Experiment 2: ATT&CK-Link Against Knowledge Distillation Strategies

In Experiment 2, we evaluated whether the features extracted from the RoBERTa and
CodeBERT improved student model performance. The accuracy, precision, recall, and F1-
score for each model are summarized in Table 7. The top model performances appear in
bold-face.

Using a transformer with LSRA as the student model in a multi-teacher KD approach
attained the highest accuracy (85.31%), precision (89.14%), recall (86.80%), and F1-score
(88.36%). Within the single-teacher distillation category, CodeBERT outperformed
RoBERTa in Fl-score on the base transformer and transformer with LSRA. This result
suggests that distilling a model just on source code leads to better results than from just the
description, in line with the results of CodeBERT and RoBERTa in Experiment 1. Distilling
into a transformer with LSRA extensions in the single-teacher KD models had a minor
improvement in F1-score when compared to the base transformer models. However, using
both CodeBERT and RoBERTa in a multi-teacher distillation paradigm increased F1-score

Table 7. Experiment 2 Results: ATT&CK-Link Against Knowledge Distillation Strategies

Distillation Approach Teacher Model Student Model Accuracy  Precision Recall F1-score

Single-Teacher RoBERTa Base Transformer 72.74%*** 55.18%*** 50.54%*** 52.62%***

Transformer with LSRA  74.33%*** 55.53%%*** 50.88%*** 52.96%***

CodeBERT Base Transformer 76.65%*** 81.01%*** 80.98%*** 82.00%***

Transformer with LSRA  78.92%*** 83.04%*** 83.01%*** 83.01%***

Multi-Teacher CodeBERT + RoBERTa Base Transformer 83.14%***  87.63%*** 84.79%** 86.21%**
Proposed ATT&CK-Link Transformer with LSRA  85.31% 89.14% 86.80% 88.36%

* 1 p<0.05 *x : p<0.01, * x*: p<0.001



254 (&) B.M.AMPEL ET AL.

Table 8. Experiment 3 Results: ATT&CK-Link’s CIL Against Prevailing Loss Functions

Model Type Loss Function Accuracy  Precision Recall F1-score

Multi-Teacher CodeBERT + RoBERTa Cross-Entropy Loss 77.79%***  82.28%*** 82.23%*** 82.26%***
Cosine Similarity Loss 78.50%***  82.69%*** 82.77%*** 82.73%***
Mean Squared Error Loss 78.98%*** 83.00%*** 83.09%**  83.04%***

Flow of Solution Procedure Loss 80.43%*** 85.45%*** 83.59%**  84.52%***
Neuron Selectivity Transfer Loss  81.64%*** 85.90%*** 83.95%**  84.93%**
Custom Inter-Layer (CIL) Loss 85.31% 89.14% 86.80% 88.36%

*:p<0.05 %% : p<0.01, xxx:p<0.001

by 3.20% over the best single-teacher approach (from 83.01% to 86.21%). These results
suggest that the careful weighing of multiple teachers’ features may lead to a more general-
ized model for exploit-ATT&CK tactic linking.

Experiment 3: ATT&CK-Link’s CIL Against Prevailing Loss Functions

In Experiment 3, we aimed to identify the best-performing MKTD loss function. The
accuracy, precision, recall, and F1-score are presented in Table 8. Top scores appear in bold-
face.

The results of the ablation analysis indicate that L¢y; attains the best performance in
terms of accuracy (85.31%), precision (89.14%), recall (86.80%), and Fl-score (88.36%).
Cross-entropy (82.26% F1-score), cosine similarity (82.73% F1-score), and mean squared
error (83.04% F1-score) loss only use the output from the final layer of the teacher and
student models (i.e., response-based KD), potentially leading to lower performance. In
contrast, the flow of solution procedure (84.52% F1-score) uses a relation-based approach
to distilling the latent features of the teacher model. Neuron selectivity transfer (84.93% F1-
score) and our proposed CIL distill knowledge from intermediate layers (i.e., feature-based
KD) to improve performance. This is consistent with literature stating that feature-based
KD is superior for textual input tasks. Our proposed Ly, weights the features within the
intermediate and output layers and balances the distillation from each teacher based on the
confidence scores produced by the softmax function.

Case study: identifying risk in hospitals

IS scholars have emphasized the importance of demonstrating the proof-of-value of
a proposed IT artifact [48,49]. Our proposed ATT&CK-Link model can help CTI profes-
sionals execute previously manual or ad-hoc tasks in organizational contexts, including
vulnerability remediation due to hard-to-assess vulnerability reports and a lack of mitiga-
tion strategies. We demonstrate the proof-of-value of our proposed ATT&CK-Link frame-
work through a case study linking exploit source code to ATT&CK tactics and
vulnerabilities.

Consistent with prior IS cybersecurity literature, we identified the Internet Protocol (IP)
addresses of the top five major hospital systems as identified by the U.S. News and World
Report [59]. Since large hospitals often own their IP ranges, we first identified a target IP
address by visiting each hospital’s web page. We then used a suite of IP lookup tools to
extract every IP address owned by these hospital systems using the hospital seed IP address.
The identified IP addresses were validated, and more information about them (i.e., server
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Table 9. Counts Of Exploits That Target the Tactic a Vulnerability is Vulnerable To

Exploits
Vuln. Targeting Most Prominent
Hospital Severity Count Vulnerable Tactic Tactic Most Vulnerable IP Address
John Hopkins High - - - -
Medium 68 7,389 Defense Evasion 162.129.6.59
Low 51 7,992 Defense Evasion 162.129.45.60
Total 119 15,381 Defense Evasion 162.129.6.59
Mayo Clinic High - - - -
Medium 18 3,544 Exfiltration 129.176.16.13
Low 3 1,238 Discovery 129.176.1.203
Total 21 4,782 Defense Evasion 129.176.16.13
New York Presbyterian High 6 2,214 Impact 143.104.237.134
Medium 140 23,674 Privilege Escalation 143.104.111.134
Low 156 27,143 Defense Evasion 143.104.237.139
Total 302 53,031 Privilege Escalation 143.104.237.134
Cleveland Clinic High 2 967 Exfiltration 139.137.100.100
Medium 42 6,301 Lateral Movement 139.137.254.12
Low 103 22,678 Discovery 139.137.254.12
Total 147 29,946 Discovery 139.137.254.12
UCLA Medical High - - - -
Medium 26 4,256 Lateral Movement 216.41.228.241
Low 34 5,931 Defense Evasion 216.41.228.251
Total 60 10,187 Lateral Movement 216.41.228.241
Overall 649 113,327 Defense Evasion 143.104.237.134

information, location, software, open ports, etc.) was extracted using the Shodan tool, which
emulates the external reconnaissance tactic and aligns with extant IS cybersecurity literature
[59]. To gather vulnerability information from these IPs, we employed Nessus, a prevailing
commercial vulnerability assessment scanner designed to probe workstations and servers to
discover vulnerabilities. Nessus is the primary tool for conducting non-invasive vulner-
ability scanning [35,66]. Each discovered Nessus vulnerability from the hospital IPs was
connected to an associated ATT&CK tactic via their CVE [4]. We linked our 84,271
unlabeled exploit source codes to MITRE ATT&CK tactics using ATT&CK-Link to quan-
tify what attacks a hacker can use against vulnerable hospital IPs. Table 9 summarizes the
vulnerability assessment of the top five hospitals with the count of exploits for each severity.
For each severity level, we list the count of vulnerabilities, the number of exploits that can
target the vulnerable tactic, the most prominent targeted tactic, and the most vulnerable IP
address by exploit count. Low-severity vulnerabilities were often targeted by defense eva-
sion and discovery tactics. Medium-severity vulnerabilities were often targeted by exfiltra-
tion, lateral movement, and privilege escalation tactics.

High severity vulnerabilities were often targeted by impact and exfiltration tactics. With
severity, exploit count, and IP address information, CTI professionals can use ATT&CK-
Link to identify the cyberinfrastructure (e.g., IP addresses in Table 9) that requires urgent
care. The results of ATT&CK-Link can help CTT professionals identify scenarios where an
attacker can exploit a system to proceed with their objective (e.g., systems at New York
Presbyterian). We demonstrate one such use case in Figure 9.

In Figure 9, we illustrate how an attacker could remotely exploit a vulnerable Apache
webserver to escalate their privileges on the network (Step 1). Then, they can pivot to other
systems, such as a web portal with Single-Sign-On (SSO; provided by Ping Identity) on the
network and move up the tactic chain (Step 2). The attacker could then leverage XSS
exploits in hacker forums on the web portal to bypass the SSO’s access controls to
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Figure 9. Example of Potential Attack Scenario of Vulnerable Hospital Systems

manipulate the underlying database and its connected systems (Step 3). To mitigate against
these attack scenarios, CTT professionals can use the strategies provided by ATT&CK for
each tactic. We list the most vulnerable IP from each hospital, the top tactic, the tactic’s
description, and ATT&CK’s suggested mitigation strategies in Table 10.

The most prominent tactic for Johns Hopkins and Mayo Clinic was defense evasion.
Defense evasion tactics can often be protected by implementing MFA (e.g., password and
email confirmation), encrypting disks to prevent unauthorized access, employing file
signatures to detect changes, and creating honeypots to lead attackers into compromising
themselves. New York Presbyterian is most vulnerable to exploits in the privilege escalation
tactic. Suitable mitigation strategies for issues in this tactic include anomaly detection and
behavior analysis models, which include automatically locking accounts and terminating
anomalous processes. Cleveland Clinic is vulnerable to discovery tactics, where adversaries
attempt to exploit the internal network. Properly configuring and auditing the operating
system, monitoring processing, and isolating systems when appropriate can mitigate against
discovery tactics. Finally, UCLA Medical is most vulnerable to the lateral movement tactic.
Organizations should implement MFA, file hashing, traffic filtering and deny-listing, and
sender reputation analysis to protect their systems.

CTI professionals can often be paralyzed by choice when developing vulnerability
remediation plans due to information overload from vulnerability scan results and exploits
from the online hacker community [7]. The ATT&CK-Link framework being joined with
the vulnerability scanning process can help provide three types of CTL. First, the framework
provides a ranked list of the most vulnerable IPs based on severity and the number of
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Table 11. Design Principles Offered by our Proposed ATT&CK-Link for Selected Bodies of IS Literature

ATT&CK-Link Relevant Bodies of
Component General Design Principle IS Literature Potential Classes of Research Inquiry
Multi-teacher Student-teacher model training -Social Media -Leveraging social media-based language
KD Analytics models to improve predictive performance
Extended Capturing long- and short- -Healthcare -Synthesize lengthy electronic health records
Transformer range sequential Informatics
dependency

exploits that could potentially target the identified vulnerabilities. Second, the framework
lists targeted mitigation strategies that CTT professionals can consider. Third, the frame-
work can provide attack scenarios on how attackers can proceed with their objectives
(capabilities that are not provided by vulnerability assessment tools). Taken together,
ATT&CK-Link can help analysts potentially save time and cost when prioritizing and
mitigating vulnerabilities in their cyberinfrastructure.

While our case study provides an example use case of the ATT&CK-Link model to
emulate adversary behavior and mitigate against it, there are some limitations. First, we do
not have access to each hospital’s internal cyberinfrastructure. Second, our model analyzes
six key MITRE ATT&CK tactics. However, an organization will still need to research and
maintain controls for the additional eight tactics to which exploits cannot be linked. Third,
ATT&CK-Link requires retraining and maintenance as the ATT&CK framework updates
and new hacker community exploits are collected. Further, new exploits may use tactics not
yet documented by the framework, limiting the model’s effectiveness in identifying and
mitigating those attacks before retraining and ATT&CK updates.

Contributions to the is knowledge base and practical implications
Contributions to the IS Knowledge Base

While IS scholars have made considerable progress in cybersecurity analytics research in
recent years, they have rarely connected their work to industry-standard CRMFs or
provided mitigation strategies for their identified hacker assets. This work aims to con-
tribute a novel cybersecurity framework, ATT&CK-Link, to the IS knowledge base to set the
foundation for future IS scholars and CTI professionals to pursue targeted cybersecurity
analytics research on exploit linking, cyberinfrastructure vulnerability mitigation, cyber-
alerting systems, and others.

IS scholars have stressed the importance of contributing prescriptive knowledge to
the IS knowledge base with a novel IT artifact [21]. This knowledge can be in the form
of constructs, models, methods, instantiations, and/or design theory. Our proposed
ATT&CK-Link framework contributes a novel multi-teacher KD design to simulta-
neously capture multiple modalities of hacker exploit data and an extended transformer
architecture incorporating LSRA to capture long-range sequential dependencies from
hacker exploit text. Since the proposed multi-teacher KD and transformer extend extant
methods for a new context (linking exploits to a CRMF), they fall into the exaptation
category of knowledge contributions [21]. Although developed for cybersecurity analy-
tics, the design principles followed by the proposed multi-teacher KD, and transformer
could be applied to research inquiries in other bodies of IS research. We present the two
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ATT&CK-Link design components, the general design principle, a relevant body of IS
literature in which the design principle can be used, and potential research inquiry
classes in Table 11.

Social Media Analytics: Online social networking platforms contain a wealth of text data
usable for product review analysis, sentiment classification, and more. However, social
media discussions often have jargon and are semantically incorrect, making text classifica-
tion tasks non-trivial. The results of Experiments 2 and 3 suggest that the formulation of
single vs multi-teacher KD and choice of the loss function can have significant effects on
text linking performance. Therefore, IS scholars can consider these two choices when
distilling knowledge from a social media-based language model (e.g., BERTweet) to an
extended transformer student model to improve predictive performance for a similar and
targeted dataset. While IS researchers cannot often train a massive language model, they can
use Design Principles 1 and 2 to extract knowledge from a language model in a multi-
teacher KD design to improve performance.

Healthcare Informatics: Patients” electronic health records (EHRs) are becoming leng-
thier as it becomes easier for doctors to record health information (e.g., dictation to text).
Patient information at the beginning or middle of an EHR may be relevant to information
found near the end. However, a doctor with little time to evaluate the EHR may be unable to
make connections between separate passages of text. The results of Experiment 1 suggest
that classical machine learning models and recurrent-based deep learning models may not
be as accurate as transformer-based architectures for lengthy text. Lengthy EHRs can be
synthesized using the global and local contexts discovered by Design Principle 2 with
assistance from distilled information from generalized language models (e.g., BERT) to
provide doctors with quick and automated insights from a noisy EHR.

Practical Implications

ATT&CK-Link can provide CTI to cybersecurity professionals at the strategic, operational,
and tactical levels. We enumerate the value that the proposed ATT&CK-Link can provide
for each level of CTI below.

Strategic CTI is high-level information that is often presented as reports and consumed
by decision-makers. A goal of CTI professionals is to obtain automated and timely reports
about the security of their organization’s cyberinfrastructure [61]. Our proposed ATT&CK-
Link can provide summary statistics of vulnerable cyberinfrastructure and the most com-
mon mitigation strategies for remediation. This information can be disseminated to an
organization’s chief executive and information security officers to guide policy implemen-
tations and cybersecurity investments.

Operational CTI relates to the impending attacks against an organization. While our
framework cannot provide specific attacks that will be tried against a specific organization,
it can identify specific exploits shared by hacker communities that an organization is
vulnerable to. Cybersecurity analysts working in cybersecurity operation centers (CSOCs)
can continuously monitor new exploits posted in hacker communities. Analysts in CSOCs
can then apply the ATT&CK-Link framework to see suitable mitigation strategies for
emerging exploits.

Tactical CTI is the tactics, techniques, and procedures that threat actors follow to
conduct an attack. The ATT&CK-Link framework effectively links procedures and tactics
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and provides them to an organization. CTI professionals implementing the MITRE
ATT&CK CRMF can continuously update their implementation with new exploits to
facilitate ongoing tactical CTL

Conclusion and future directions

Exploits disseminated in large international hacker communities are increasingly used in
complex cyber-attacks. Detecting and mitigating hacker exploits is of utmost importance to
CTI professionals. To mitigate against these cyber-attacks, IS scholars have primarily
focused on proactively identifying and labeling exploits from hacker forums. However,
prevailing approaches for labeling hacker exploits do not leverage CRMFs to apply tactics
and mitigation strategies to discover hacker exploits. In this study, we adopted the compu-
tational design science paradigm to develop a novel knowledge distillation framework
(ATT&CK-Link) for linking hacker exploits to the MITRE ATT&CK framework.
Empirical evaluations suggest that our method significantly improves exploit linking across
multiple exploit types (i.e., DoS, local, remote, and web applications). We then demon-
strated ATT&CK-Link’s potential practical utility with a case study that links exploits to the
vulnerabilities found within U.S. hospitals.

There are several promising directions for future work. First, our research framework can
be adapted and extended for different CRMFs (e.g., NIST) to provide additional information
on hacker exploits. Second, we can leverage network science to build a knowledge graph of
hacker exploits, CRMFs, and vulnerabilities to assist CTI professionals identify and mitigate
new cyber threats. Third, researchers can apply ATT&CK-Link on exploits from new sources
(e.g., paste sites). Each direction can significantly improve CTI efforts and contribute to
a safer cyberspace for organizations, individuals, and governments.
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