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ABSTRACT

Cyberattacks have been increasing in volume and intensity, necessi-
tating proactive measures. Cybersecurity risk management frame-
works are deployed to provide actionable intelligence to mitigate 
potential threats by analyzing the available cybersecurity data. 
Existing frameworks, such as MITRE ATT&CK, provide timely mitigation 
strategies against attacker capabilities yet do not account for hacker 
data when developing cyber threat intelligence. Therefore, we devel-
oped a novel information technology artifact, ATT&CK-Link, which 
incorporates a novel transformer and multi-teacher knowledge distil-
lation design, to link hacker threats to this broadly used framework. 
Here, we illustrated how hospital systems can use this framework to 
proactively protect their cyberinfrastructure against hacker threats. 
Our ATT&CK-Link framework has practical implications for cybersecur-
ity professionals, who can implement our framework to generate 
strategic, operational, and tactical cyber threat intelligence. ATT&CK- 
Link also contributes to the information systems knowledge base by 
providing design principles to pursue targeted cybersecurity analytics, 
risk management, and broader text analytics research through simul-
taneous multi-modal (e.g., text and code) distillation and 
classi4cation.

KEYWORDS 

Hacker forums; cyber threat 
intelligence; cybersecurity 
analytics; knowledge 
distillation; ATT&CK; 
cybersecurity risk 
management; deep learning; 
transformers; computational 
design science; risk 
management frameworks

Introduction

Harmful cyber-attacks that target vulnerabilities in critical cyberinfrastructure (e.g., servers 

hosting confidential data) cost an average of $8.64 million per breach [31]. Many organiza-

tions are leveraging cybersecurity risk management frameworks (CRMFs) to identify infor-

mation about attacker capabilities, threat scenarios, and mitigation and remediation strategies 

to support an organization’s cyber threat intelligence (CTI) capabilities [52,67]. CTI is an 

emerging area of cybersecurity that focuses on developing actionable intelligence to mitigate 

potential threats by carefully analyzing cybersecurity data (e.g., exploits, vulnerabilities, etc.) 

[58]. CTI can be strategic (e.g., reports and briefings), operational (e.g., timing and intent of 

threat actors), and tactical (e.g., tactics, techniques, and procedures of a threat actor) [67].
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As part of their CTI efforts, cybersecurity professionals often use automated vulnerability 

assessment scanners to identify the susceptibilities in their cyberinfrastructure. CRMFs are 

a valuable resource for CTI professionals to identify viable remediation or mitigation 

strategies for identified vulnerabilities [58]. However, the number of vulnerabilities that 

scanners return can often exceed tens of thousands. This volume can often lead to CTI 

professionals’ mis-prioritizing suitable remediation strategies for their vulnerabilities [7]. 

Furthermore, CRMFs and vulnerability assessments do not often consider extant threat 

actors (e.g., hackers); therefore, it is unclear how attackers could target vulnerabilities and 

execute their cyber-attacks.

To help address these concerns, Information Systems (IS) scholars are increasingly 

focused on developing CTI by studying online hacker community platforms [5,60,61,70]. 

Online hacker community platforms, such as hacker forums, public exploit repositories, 

and exploit DarkNet Markets, can be valuable sources for CTI [60]. Each platform contains 

large quantities of threats (often in the form of exploit source code) from prominent threat 

actors often used in harmful cyber-attacks [6,61]. Hacker forums are social media platforms 

that allow hackers to develop, discuss, and freely share exploits [5]. Public exploit reposi-

tories are large repositories of patched and proof-of-concept exploits put together by 

cybersecurity experts for research. Exploit DarkNet Markets specialize in targeted exploits. 

Sample exploits from each platform are presented in Figure 1.

Figure 1. An example of descriptions and exploit code from a: (a) hacker forum, (b) public exploit 
repository, and (c) exploit DarkNet market
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Each exploit contains source code with long-range dependencies (e.g., functions span-

ning multiple lines) and sometimes provides a description (which can often vary in quality 

or length). Successfully linking exploits to a CRMF can help CTI professionals create 

mitigation and remediation strategies against potential cyber-attacks that may be targeting 

their vulnerabilities. In 2018, MITRE created the prevailing CRMF, the ATT&CK Matrix for 

Enterprise [63]. This matrix models 14 tactics (adversary goals), 156 techniques (technical 

means), and procedures (real-world examples) that an attacker can take when executing 

a cyber-attack. The ATT&CK framework provides general and targeted mitigation strate-

gies for each tactic, technique, and procedure. We present the 14 ATT&CK tactics in 

Figure 2.

Generally, an attacker moves sequentially across tactics from initial access to 

execution when performing a targeted cyber-attack. Some tactics, such as recon or 

initial access, are exploratory and require simple manual prodding from attackers. Six 

tactics (defense evasion, privilege escalation, discovery, collection, lateral movement, 

and impact) require hacker exploits, which are programs that can automatically evade 

cyber-defensive capabilities implemented by an organization [63]. While external data 

(e.g., hosts, addresses, etc.) can be mapped to the ATT&CK framework, this is often 

a manual and rule-based process that is time-consuming and require ongoing updates 

due to the ever-evolving cyber-threat landscape [45]. Moreover, prior research has not 

focused on connecting data from hacker forums, public exploit repositories, and 

exploit DarkNet Markets to CRMFs. Taking these limitations together, is unclear 

how an attacker could leverage hacker exploits to attack an organization’s 

vulnerabilities.

Understanding the tactics that hackers are employing can help CTI professionals 

identify mitigation strategies specific to vulnerabilities in their cyberinfrastructure. 

Given the size of these data sources (hundreds of thousands of potential exploits), 

extant literature has leveraged deep learning techniques to extract proactive CTI 

[6,59]. Similarly, deep learning methods such as recurrent neural networks with 

attention mechanisms have been successfully adapted for situated implementations 

of ATT&CK (e.g., detecting malicious behaviors from structured API calls) within 

organizational contexts [27]. However, hacker exploits found in forums and exploit 

DarkNet Markets often contain multiple modalities of data (namely exploit source 

code and exploit descriptions) with long sequential dependencies (e.g., exploit func-

tions) that can negatively impact the performance of deep learning models [17]. 

These limitations necessitate a novel artifact that can match the textual features in 

hacker exploits to ATT&CK tactics.

In this research, we developed a novel ATT&CK-Link artifact based on the transformer 

architecture and knowledge distillation principles to automatically link exploit source code 

Figure 2. The MITRE ATT&CK Enterprise Matrix Tactic Chain (Adapted from attack.mitre.org)
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found in hacker forums to six MITRE ATT&CK tactics. The proposed ATT&CK-Link has 

two key novelties in its design:

● First, we incorporated a long short-range attention (LSRA) mechanism into the 

conventional transformer architecture to help capture the long- and short-range 

dependencies in hacker exploit source code.
● Second, we developed a multi-teacher knowledge distillation approach that distills 

knowledge from the RoBERTa and CodeBERT large pre-trained language models 

with a custom inter-layer loss function to process the unreliable hacker exploit 

jargon and exploit source code, respectively, into our proposed transformer 

architecture.

Consistent with the guidelines of the design science paradigm [48,49,53], we evaluated 

our proposed ATT&CK-Link with a series of benchmark experiments. We also con-

ducted a case study to demonstrate the potential proof-of-value of ATT&CK-Link by 

identifying vulnerabilities in major US hospitals and providing mitigation strategies 

for them. The ATT&CK-Link framework can assist cybersecurity professionals in 

executing CTI tasks at the strategic, operational, and tactical levels. ATT&CK-Link 

furthers cybersecurity literature by providing a computational framework to incorpo-

rate industry-standard knowledge bases (MITRE ATT&CK) into non-standardized 

cybersecurity tasks (hacker community analytics). Additionally, our research contri-

butes generalizable design principles to the IS knowledge base. While our ATT&CK- 

Link artifact is situated within cybersecurity, the LSRA and multi-teacher knowledge 

distillation novelties can be implemented into text classification frameworks that 

require multiple data modalities and long sequential dependencies. The research 

objectives, novelties, contributions, and practical implications of our work are shown 

in Figure 3.

The remainder of this paper is organized as follows. First, we review literature 

related to IS cybersecurity research, analytics for cybersecurity risk management 

frameworks, transformers for multi-class classification, and knowledge distillation. 

Second, we identify research gaps and pose research questions for the study. Third, 

we demonstrate the proposed ATT&CK-Link research design and detail each of its 

constituent components. Fourth, we present the results of our experiments and discuss 

their implications. Fifth, we demonstrate the potential proof-of-value of our proposed 

DTL framework with an in-depth case study on major US hospitals. Sixth, we discuss 

Figure 3. Overview of research objectives, novelties, contributions, and practical implications.
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the potential contributions to the IS knowledge base and the practical implications of 

our work. Finally, we conclude this research and discuss promising directions for 

future research.

Literature review

IS Cybersecurity Research

Cybersecurity has emerged as a critical stream of research within the IS community 

[14]. In particular, the IS cybersecurity community has focused on analytics [17,38,59], 

behavioral compliance [46,51], investment [8,40], treatment effects [77], and risk 

management [11,80]. Cybersecurity risk management is of particular interest to the 

IS community due to the increasing number of cyber-attacks and organizational 

neglect [42]. CRMFs are increasingly being used within enterprise contexts to combat 

rising cyber-attacks, and many organizations are requesting assistance in building their 

CRMF profile [28]. Therefore, research into CRMFs is a potential high-impact area 

within the IS community. For example, organizations may see significant benefits 

when incorporating text-mining analytics into their risk mitigation processes [11]. 

Since we propose a novel text-mining artifact to link exploits to a CRMF, we 

summarize recent cybersecurity analytics literature published in prevailing IS journals 

to position our work in Table 1. For each study, we summarize the year of publica-

tion, author(s), cybersecurity focus, analytical methodologies, and if a CRMF was 

included as part of the study.

Much of the prior work in IS cybersecurity analytics literature aimed to proactively identify, 

detect, or mitigate cyber threats within hacker communities [9,10,17,18,39,59,60,76]. Prior IS 

cybersecurity analytics studies have traditionally relied on classical machine learning methods 

[9–11,60,76], while more recent studies have leveraged deep learning algorithms [17,18,59]. 

Despite the tremendous contributions from past studies, only one identified work has 

incorporated a CRMF to improve its analytics [11]. However, this work did not examine 

Table 1. Summary of Recent IS Cybersecurity Analytics Literature

Year Author Cybersecurity Focus Methodologies CRMF?

2022 Ebrahimi et al. [17] Cross-lingual analysis to discover hacker specialties ADREL No
2022 Samtani et al. [59] Linking hacker exploits to vulnerabilities DSSM No
2022 Li and Chen [38] Topic detection of hacker content LDA No
2021 Biswas et al. [11] Determining hacker risk TF-IDF Yes
2020 Ebrahimi et al. [18] Identifying and classifying cyber threats in DarkNet Markets SVM No
2020 Sen et al. [62] Impact of cyber-attacks on software markets Regression No
2019 Yin et al. [76] Tracking cyber-criminals across blockchain transactions XGBoost No
2019 Yue et al. [79] Impact of hacker forum discussions on real attacks LDA No
2019 Benjamin et al. [9] Framework for executing DarkNet research Regression No
2017 Samtani et al. [60] Malware source code classification SVM No
2016 Li et al. [39] Identification and profiling of key DarkNet sellers LDA No
2016 Benjamin et al. [10] Examining hacker participation in IRC channels SVM No

*Note: ADREL = Adversarial Deep Representation Learning; DSSM = Deep Structured Semantic Model; LDA = Latent Dirichlet 
Allocation; SVM = Support Vector Machine, TF-IDF = Term Frequency – Inverse Document Frequency; XGBoost = Gradient 
Boosted
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hacker exploits and developed new risk-evaluation metrics instead of using industry-standard 

frameworks. The rapid growth and evolution of hacker communities necessitate novel 

cybersecurity IT artifacts that link a CRMF to hacker exploits to help CTI professionals 

identify mitigation strategies for vulnerabilities within cyberinfrastructure. To help facilitate 

the development of such an IT artifact, we review prior literature on analytics for CRMFs.

Analytics for Cybersecurity Risk Management Frameworks

CRMFs are structured knowledge bases that facilitate the systematic identification, assess-

ment, and mitigation of cybersecurity risks and serve as guidelines for organizations to align 

their cybersecurity practices with industry best practices [28]. The current industry stan-

dard CRMF is the MITRE ATT&CK framework [63], which has attracted significant 

analytics research in recent years. Analytics research on MITRE ATT&CK has primarily 

focused on two categories: (1) the improvement of ATT&CK and (2) the use of ATT&CK to 

improve cybersecurity tasks. First, extant research has employed machine and deep learning 

strategies to improve various aspects of MITRE ATT&CK [2,4,22,34,43]. This includes 

predicting new ATT&CK techniques [2] and combining external information (e.g., 

Common Vulnerabilities and Exposures, CVEs) with ATT&CK tactics [4] and techniques 

[22,34,43]. Second, the tactics, techniques, and procedures in the MITRE ATT&CK frame-

work have been used to enhance downstream cybersecurity analytic research 

[1,16,23,27,41]. Research in this category has integrated MITRE ATT&CK knowledge to 

enhance malware visualization [1], malware detection [16,27], alerting [41], and network 

vulnerability analysis [23]. Studies within this category of ATT&CK research primarily 

focus on internal datasets (e.g., network traffic), often neglecting external threats.

Our proposed research falls into the second category, as we leverage ATT&CK to apply 

mitigation strategies to external hacker threats. Research on ATT&CK and hacker commu-

nities has not yet combined industry-standard mitigation strategies from ATT&CK to these 

hacker threats. To conduct hacker threat analytics, research most often analyzes post 

content (e.g., descriptions) and source code [5,59,60]. However, both post content and 

source code are rarely used within the same study [5]. This may be because post content is 

unreliable when source code is present (i.e., source code is often posted in snippets without 

a clear description) [70]. Therefore, designing a novel cybersecurity artifact that links 

identified hacker threats to a CRMF using available metadata (e.g., post content and source 

code) requires an automated and data-driven approach. However, the prevailing deep 

learning approaches for analyzing hacker threats (e.g., BiLSTM) often miss the long- 

range dependencies in source code (e.g., called functions) and do not differentiate source 

code and post content (e.g., same model for each) [6]. Capturing long-range dependencies is 

necessary for source code analysis since functions are often called many lines after being 

defined. Transformers are a promising approach for capturing long-range dependencies 

due to their attention mechanisms and state-of-the-art results in various natural language 

processing tasks [56].

Transformers for Multi-Class Text Classi�cation

The transformer is a prevailing deep learning architecture that has attained state-of-the-art 

results in numerous natural language processing classification and source code analysis 
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tasks [19,37]. This success in natural language processing is in part due to the multi-head 

attention mechanism employed by the transformer [37]. However, the standard multi-head 

attention (scaled dot-product attention performed several times) has a quadratic computa-

tional complexity to the input length, often resulting in performance loss for long sequences 

(e.g., code) [73]. To solve the issues of scalability to long sequences in transformers, 

researchers suggest integrating depthwise convolutions with a sliding fixed-size window 

into the multi-head attention mechanism [72,81]. Unlike a standard convolution that 

applies to all channels of data, depthwise convolutions prevent information mixing from 

different channels and thereby effectively reduce parameters and keep a local context to 

a single channel. Depthwise convolutions can be formulated as: 

where X is the input, k is the kernel width, i is each context element in a sequence, c is the 

output dimension, and W is the weight of the kernel matrix. This design can improve 

performance in benchmark natural language processing tasks when modeling sequential 

dependencies is necessary (e.g., machine translation, summarization, language modeling) 

[29]. However, this approach only emphasizes local contexts, potentially missing the global 

context required for our source code input. LSRA is a state-of-the-art approach that splits 

the input into two channels (i.e., feature dimensions) to improve long-range dependency 

modeling [73]. One channel is a global context multi-head attention (formulated like the 

transformer), and the other is a local depthwise convolution extractor specializing in short- 

range token relationships. Augmenting a transformer with LSRA can help capture short- 

and long-range dependencies in exploit source code that traditional multi-head attention 

approaches may miss. However, LSRA alone cannot address the issue of multi-modal 

textual data (e.g., source code and natural text) and jargon observed in extant hacker exploit 

analysis studies.

Large pre-trained language models are a potential solution to the jargon issue due to 

being trained on corpora with billions of records to understand natural language. 

Additionally, transformers are often the architecture used to create language models. In 

Table 2, we summarize the three major types of language models: autoregressive, masked, 

and encoder-decoder [74].

Of the categories of language models, masked language models (e.g., RoBERTa, 

CodeBERT) are the suitable for linking hacker exploits to CRMFs due to their general-

izability and state-of-the-art performance in sequence and source code classification tasks 

Table 2. Major Categories of Language Models

Language 
Model Type Description

Seminal 
Models

Common 
Application(s) References

Autoregressive Trained by predicting the next word in 
a sequence using a transformer’s 
decoder.

GPT, GPT- 
2, GPT-3

Generative Tasks Radford et al. [55]

Masked Trained to predict a masked word with 
bidirectional information using the 
encoder of a transformer.

BERT Language sequence 
classification

Devlin et al. [15]
RoBERTa Liu et al. [44]
CodeBERT Code classification Feng et al. [19]

Encoder- 
Decoder

Trained to match two sequences  
using a transformer’s encoder  
and decoder.

BART, T5 Machine Translation; 
Text Summarization

Lewis et al. [36]  
Raffel et al. [57]
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[19]. However, hacker exploits often contain highly-specialized language (e.g., jargon) and 

code [17]. Language models often fail to generalize to datasets with large out-of-vocabulary 

text [33] and require intermediate steps (e.g., fine-tuning) before being used for a targeted 

task [56]. Knowledge distillation (KD) is an emerging paradigm that can extract generalized 

information and parameters from a language model (teacher) to enhance the training of 

a targeted model (student) [25].

Knowledge Distillation (KD)

Pre-trained language models are often too computationally expensive to train from scratch 

[15]. KD and transfer learning are two prominent techniques that allow researchers to 

leverage knowledge from pre-trained language models to improve the performance of 

a downstream model [25,65]. While both KD and transfer learning aim to enhance the 

learning process of a target model, they differ in their underlying principles, objectives, and 

the scenarios in which they are most effective. Transfer learning leverages knowledge 

acquired from a source domain model to enhance the learning process of the target 

model by transferring relevant knowledge, representations, or parameters [65]. Transfer 

learning is advantageous when the target domain has limited labeled data or when there is 

a domain shift between the source and target domains [6]. However, transfer learning is not 

appropriate for multi-modal (source code and post content) and multi-source (RoBERTa 

and CodeBERT) tasks. Multi-source transfer learning often suffers from the negative 

transfer phenomenon, where a target domain model loses performance due to the source 

domain distribution being divergent from the target domain [26,69].

KD aims to improve the performance of a student model by enabling it to mimic the 

behavior and predictions of a teacher model [68]. KD is effective in scenarios where 

computational resources or model size constraints prevent the direct use of large teacher 

Figure 4. A General Transformer Student-Teacher Knowledge Distillation Framework Note: Feat-KD 
=Feature-based KD, Res-KD=Response-based KD, Rel-KD=Relation-based KD
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models [30]. Additionally, KD has been shown to improve student performance over the 

teacher by incorporating knowledge from multiple teachers to leverage diverse perspectives 

and complementary information [78]. We illustrate the three types of knowledge distillation 

in a deep student-teacher network in Figure 4 [20].

Response-based KD teaches the student model to mimic the output of the teacher model 

using a loss function defined as LKD ¼
P

i

ti ÿ log sið Þ, which aims to minimize the difference 

in class probability outputs i between a teacher t and a student s [25]. Feature-based KD 

learns a feature representation of each layer of the teacher model, distilling knowledge at 

a layer level. Generally, the loss function LKD is used to reduce the difference between a set 

of student feature maps θs for each model layer and the teacher model, θT [64], generally 

denoted as: LKD ¼ LF Φt θtð Þ;Φs θsð Þð Þ , where Φ represents a transformation function to 

align the feature maps and LF is a chosen similarity function (e.g., cross-entropy). Layers to 

distill knowledge from and choice of LF are chosen based on model design and task type 

[30]. Relation-based KD combines representations of data samples and layers, distilling loss 

based on the relations of data samples. Relation-based KD can be denoted 

LKD ¼ LR ψt f̂ t; f
^

t

ÿ ÿ

;ψs f̂ s; f
^

s

ÿ ÿÿ ÿ

, where f̂ ; f
^

ÿ ÿ

represents a pair of feature maps gener-

ated for data samples and ψ represents a transformation function. However, this form of KD 

is best suited for computer vision tasks where images can be easily augmented. For text 

classification tasks, feature-based KD has often outperformed response-based and relation- 

based KD techniques [54].

Since hacker forum text has source code and natural language, it is important to develop 

a KD framework that can account for each data modality concurrently. While the goal of 

KD is often to reduce model parameters to create a powerful small model [30], multi- 

teacher KD (i.e., distilling from multiple teacher models simultaneously) provides 

a mechanism to achieve state-of-the-art model performance for multi-modal frameworks 

[47]. Multi-teacher KD can capture and aggregate diverse knowledge into a single student 

model [25]. Multi-teacher KD approaches often provide significant improvements over 

single-teacher KD in several benchmark natural language processing tasks as they reduce 

the influence of a single teacher on a student model and improve the domain invariance of 

the student [78]. Past literature uses the softmax confidence of each teacher’s output to 

perform multi-teacher KD to balance distillation from the more confident teacher on each 

sample [71]. Further, feature- and response-based KD can be combined in a KD framework 

to create more generalized student models [20]. However, distillation at the feature and 

response layers from multiple teachers is a non-trivial task and requires further exploration.

Research Gaps and Questions

We identified several research gaps in our literature review. First, analytics for CRMF 

research primarily focuses on internal datasets and not external hacker exploits to improve 

organizational cybersecurity. Second, the models commonly used in hacker exploit litera-

ture often focus on post content only and omit source code despite the source code 

containing rich information about the exploit [6,9]. Moreover, the classical machine or 

deep learning models used for CRMF and hacker exploit analysis can miss long-range 

sequential dependencies commonly found in source code. Finally, hacker forum descrip-

tions can potentially benefit linking performance despite being inconsistently available. 

244 B. M. AMPEL ET AL.



However, how to use exploit descriptions to improve source code classification perfor-

mance and not lead to a negative transfer effect requires careful consideration. Multi- 

teacher KD is a potential solution to improving the generalizability of a student model 

trained on exploit source code by distilling exploit post content knowledge [20]. However, 

balancing two teachers in response- and feature-based multi-teacher KD approach is a non- 

trivial task due to the requirement of balancing confidence at the output and feature level. 

Based on these gaps, we pose the following research questions for the study:

● How can we develop a framework that accounts for the short- and long-range 

sequential dependencies in exploit source code to link exploits to the MITRE 

ATT&CK framework?
● How can we effectively weigh the importance of multiple teachers in a multi-teacher 

KD design to train a student model to link exploits to the MITRE ATT&CK 

framework?

Proposed research design

To answer the posed research questions, we develop a novel ATT&CK-Link framework 

(Figure 5) with four major components: (1) Data Collection, (2) Dataset Construction and 

Pre-Processing, (3) ATT&CK-Link Architecture, and (4) Experiments and Evaluations.

Our proposed ATT&CK-Link architecture was informed by our research gaps. Each gap 

necessitated a component of the model architecture. We detail each gap, requirement, 

component, and justification in Table 3.

Data Collection

Three sources of exploits are collected for our research: hacker forums, public exploit 

repositories, and exploit DarkNet Markets. We developed a Python-based web crawler to 

Figure 5. Proposed Research Framework
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collect hacker forums and exploit DarkNet Markets, while public APIs were used to collect 

the public exploit repositories. Our overall data collection contains nine hacker forums 

(82,693 code snippets), six public exploit repositories (148,902 code snippets), and one 

exploit DarkNet Market (34,732 code snippets). Compared to recent hacker exploit litera-

ture [6,59], our testbed is the largest. Our data testbed contains exploit features that include 

the title, author, source, date, source code, description, attack type, and CVE.

Dataset Construction and Pre-Processing

Since there is currently no direct way to match exploit source code to ATT&CK tactics, we 

extracted the snippets within our research testbed that contained a CVE label. A CVE is 

a publicly disclosed cybersecurity vulnerability that is widely accepted by the cybersecurity 

community [13]. CVEs are manually created by the CVE Numbering Authority and are not 

commonly coupled with specific exploits or ATT&CK tactics. Since CVE labels have been 

previously matched to ATT&CK tactics in extant literature [4,24,34], we matched the exploits 

in our testbed with an associated CVE to a MITRE ATT&CK tactic. Consistent with best 

practices in prior IS literature [59], we constructed a gold-standard dataset of exploit source 

code snippets with an included description and their related ATT&CK tactic. We summarize 

the label distribution of the gold-standard dataset based on the ATT&CK tactic in Table 4.

Our overall exploit dataset contains 35,901 exploit source code snippets (and related 

descriptions) across six ATT&CK tactics. Of the fourteen ATT&CK tactics, eight tactics 

(recon, resource development, initial access, execution, persistence, credential access, lateral 

movement, command and control, and exfiltration) do not require an exploit to conduct 

Table 3. Design Rationale for Addressing Extant Research Gaps

Research Gap Design Requirement
Framework 
Component Justification(s)

Current hacker exploit analysis does 
not link to CRMFs for CTI 
applications

A methodology that 
can link exploits to 
ATT&CK tactics

ATT&CK-Link ATT&CK-Link provides insights into 
the tactics that are most used by 
hackers, which can inform future 
strategies

Extant hacker forum analytics do not 
use source code, which is valuable 
for linking to ATT&CK

A model that can 
categorize source 
code

CodeBERT, 
Student 
transformer

Exploit code is an underutilized 
feature for exploit analysis [6]. 
CodeBERT and transformers are 
state-of-the-art source code 
classification methods [19]

Long-range sequential dependencies 
that appear in hacker source code 
are difficult to account for

A mechanism that can 
properly account for 
long sequential 
dependencies

Transformer 
extended 
with LSRA 
mechanism

LSRA is a suitable solution for 
modeling long-range 
dependencies [73], but has not 
been explored for source code

Balancing teachers for multi-teacher 
KD based on hacker exploit content 
requires a novel strategy to balance 
confidence

A mechanism that can 
balance two 
teachers’ confidence

Custom Inter 
Layer loss 
function

Balancing teachers for multi-teacher 
KD is crucial to ensure that the 
distilled model is generalizable, 
accurate, and reliable for linking 
exploits to ATT&CK [71].

Table 4. Gold-Standard Dataset Label Distribution

ATT&CK Tactic Defense Evasion Privilege Escalation Discovery Collection Lateral Movement Impact Total

CVE Quantity 15,244 10,295 5,227 2,311 1,811 1,013 35,901
Dataset Percent 42.46% 28.68% 14.46% 6.44% 5.04% 2.80% 100%
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since they require manual and exploratory processes by the attacker. Hacker exploits cannot 

be mapped to these exploratory tactics [3]. Therefore, our dataset connects to six of the 

available fourteen tactics. Defense evasion is 42.46% of our gold-standard dataset, 28.68% is 

privilege escalation, discovery is 14.56%, collection is 6.44%, lateral movement is 5.04%, and 

impact is 2.8%. Available exploit descriptions were concatenated, lower-cased, lemmatized, 

tokenized, and padded to ensure proper lengths for all inputs. Exploit code was tokenized 

and padded to the longest piece of code [6].

ATT&CK-Link Architecture

To process long hacker exploit source code and their associated descriptions, we designed 

a novel ATT&CK-Link architecture with a multi-teacher KD design and custom loss 

function. Additionally, we adapted the LSRA mechanism into our student transformer 

model to link hacker exploits to ATT&CK tactics. The proposed ATT&CK-Link architec-

ture is shown in Figure 6.

The ATT&CK-Link architecture follows a four-step training procedure: (1) PTLM fine- 

tuning, (2) student model training, (3) loss extraction, and (4) model convergence. Each 

step of the ATT&CK-Link process is described in further detail below.

Figure 6. Proposed ATT&CK-Link Architecture. Note: PTLM = Pre-trained Language Model
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Step 1 (PTLM Fine-Tuning): To improve performance from language models in 

classification tasks, it is vital to fine-tune them with a target dataset [56]. Fine-tuning 

a language model adjusts pre-trained weights based on an input (e.g., textual data) and 

a target task (e.g., sequence classification), similar to a transfer learning approach [65]. 

Exploit descriptions from our gold-standard dataset were used to fine-tune a state-of-the- 

art RoBERTa teacher model [44]. We selected RoBERTa as it has demonstrated excellent 

performance in natural language sequence classification tasks [54]. Exploit source code was 

used to fine-tune a CodeBERT teacher model [19], trained on over six million source code 

snippets from GitHub repositories. CodeBERT uses the model architecture of the RoBERTa 

model (important for compatibility) and is the largest source code language model. Our 

proposed multi-teacher KD design aims to allow each language model (i.e., RoBERTa and 

CodeBERT) to distill distinct types of knowledge between natural language vs code. Exploit 

source code is input into our proposed ATT&CK-Link student model (right side of 

Figure 6).

Step 2 (Student Model Training): The long dependencies of code necessitate capturing 

the global positions of tokens, including global and local contexts. Our proposed student 

transformer model includes an LSRA that operates after the embedding layer processes the 

input. We compare the conventional multi-head attention to the proposed modified LSRA 

design in Figure 7.

The proposed LSRA design (right side of Figure 7) implements an attention extractor 

that applies scaled dot-product multi-head attention to only global features in an indepen-

dent input channel [73]. The LSRA’s local attention extractor uses a light, depthwise 

mechanism (formulated in the bottom right of Figure 7) that performs a convolution for 

Figure 7. Standard Multi-head attention (MHA) mechanism (left) and the proposed long short-range 
attention (LSRA) mechanism (Adapted from Wu et al., 2020) (right)
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element i and output channel c over each channel. Combining the outputs of the global and 

local attention extractors allows our proposed LSRA mechanism to effectively capture the 

long- and short-range dependencies of exploit source code compared to a multi-head 

attention mechanism.

Step 3 (Loss Extraction): To formulate our multi-teacher KD, we designed a novel inter- 

layer loss (LCIL) function to balance the distillation from the teacher RoBERTa and 

CodeBERT models and the student model. Extant literature suggests that an exploit’s source 

code has different information than its description [6]. Training a model directly on exploit 

source code and descriptions may lead to a decline in model performance due to the 

negative transfer effect [69]. However, exploit descriptions should still provide some 

predictive value to a model [59]. Therefore, our LCIL function considers the confidence of 

RoBERTa’s and CodeBERT’s prediction for each output to weight feature distillation 

importance. This distillation strategy combines the strategies of calculating inter-layer 

(i.e., feature-based) and output loss (i.e., response-based) from a single teacher [30] and 

balancing the confidence distribution between multiple teachers [71]. After each exploit 

batch, LCIL is calculated by extracting each model’s hidden states, output, and softmax 

probabilities. The loss of the hidden states is balanced by each teacher’s confidence to create 

the proposed LCIL function, formally: 

,

where N is the number of teacher models, zi is the logit for each class, Lil is the intermediate 

layer loss, Lout is the loss at the output of the model. Intermediate layer loss is calculated 

with:Lil ¼ MSE Hs
i ;Ht

i

� ÿ

þ MSE As
i ;At

i

� ÿ

, where Hs and Ht are the hidden state matrices of 

the student and teacher models, At and As are the attention parameters pulled from the 

multi-head attention mechanisms, and MSE is the mean-squared error of the hidden states. 

This is a commonly accepted hidden state loss function for feature-based KD [68,71]. 

Response-based knowledge is also distilled with:Lout ¼ CE zs
i ; zt

i

� ÿ

,where and zT are the 

predicted logit vectors from the student and teacher models. Response-based KD to 

supplement feature-based KD often improves student model performance [30]. The soft-

max equation calculates the confidence of each teacher model for each prediction. A teacher 

model distills more information when it has a higher softmax confidence score on correct 

prediction and less information when it has lower softmax confidence score on correct 

prediction. In the student model, the parameters are extracted only from the global 

attention extractor of the LSRA. This supplements the LSRA’s long-range dependency 

detection. Knowledge is not distilled to the local attention extractor as depthwise convolu-

tions do not have reported issues in identifying local dependencies and do not appear in our 

teacher models.

Step 4 (Model Convergence): ATT&CK-Link adjusts internal model weights after each 

epoch to minimize LCIL . Then, Steps 1-4 are repeated, and the learning rate of the model is 

reduced until the model converges (i.e., model weights no longer change).
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Experiments and Evaluations

Consistent with the computational design science paradigm, we rigorously evaluated our 

proposed ATT&CK-Link artifact with a series of benchmark experiments [49,53] drawn 

from hacker forum exploit analysis and deep learning-based ATT&CK literature. The 

justification, models, and evaluation metrics for each experiment are summarized in 

Table 5.

In Experiment 1, we examined ATT&CK-Link’s performance against the classical 

machine and deep learning approaches commonly used in past literature cybersecurity 

analytics. Classical machine learning models included random forest, naïve Bayes, logistic 

regression, and SVM. A grid search for each model was conducted to find ideal parameters. 

Deep learning models included RNN, GRU, LSTM, and BiLSTM. These recurrent neural 

networks are commonly found in hacker exploit and ATT&CK literature [6,18,27,70]. 

Consistent with recent deep learning work on MITRE ATT&CK implementations, we 

also evaluated ATT&CK-Link against the BiLSTM with self-attention and the baseline 

transformer [27,34]. We also evaluated a transformer augmented with the LSRA design. 

Finally, we fine-tuned a RoBERTa and CodeBERT model for analysis, comparing them 

individually and using a weighted average of their outputs [12,32]. Each model was trained 

with exploit source code (except for RoBERTa, which was trained on exploit descriptions as 

the model was not pre-trained on source code). For each model, we used the model 

architectures detailed within the relevant literature.

In Experiment 2, we evaluated single-teacher and multi-teacher KD variations of our 

transformer models to determine if ATT&CK-Link’s multi-teacher and LSRA design 

improved performance over the standard transformer and single-teacher designs. More 

details about each model can be found in Online Appendix A. For Experiment 3, we 

Table 5. Summary of Benchmark Experiments

Experiment Justification Type
Benchmark 

Models References
Evaluation 

Metrics

1 ATT&CK-Link 
Against 
Benchmark 
Machine and 
Deep Learning 
Models

Classical machine and deep 
learning models are 
commonly used for 
sequential text classification 
tasks in hacker literature

Classical  
Machine 
Learning

Random Forest, 
Naïve Bayes, 
Logistic 
Regression, 
SVM

Ampel et al. 
[6] 
Ebrahimi 
et al. [18] 
Huang 
et al. [27] 
Kuppa 
et al. [34] 
Williams 
et al. [70]

Accuracy, F1- 
Score, 
Precision, 
Recall

Deep 
Learning

RNN, GRU, 
LSTM, 
BiLSTM, 
BiLSTM w/ 
Attention, 
Transformer

2 ATT&CK-Link 
Against 
Knowledge 
Distillation 
Strategies

Identify differences between 
KD models and paradigms

KD; LSRA RoBERTa, 
CodeBERT

Feng et al. 
[19] 
Qiu et al. 
[54] 
Yuan et al. 
[78]

3 ATT&CK-Link’s CIL 
Against 
Prevailing Loss 
Functions

Sensitivity analysis to identify 
the highest performing loss 
functions

Loss  
Functions

CE, CS, FSP, 
MSE, NST

Yim et al. 
[75] 
Wu et al. 
[71]

*Note: BiLSTM = Bidirectional LSTM, CE = Cross-Entropy, CIL = Custom Inter-Layer, CS = Cosine Similarity, FSP = Flow of 
Solution Procedure, GRU = Gated Recurrent Unit, KD = Knowledge Distillation, LSTM = Long Short-Term Memory, MSE = 
Mean-Squared Error, NST = Neuron Selectivity Transfer, RNN = Recurrent Neural Network, SVM = Support Vector Machine.
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conducted an ablation analysis that compared our custom inter-layer loss function LCIL 

against the prevailing loss functions in KD literature. Cross-entropy, cosine similarity, and 

mean squared error loss are response-based loss functions and measure the difference in 

outputs between the student and teachers. Flow of solution procedure is a state-of-the-art 

loss function for relation-based KD and attempts to minimize the difference in the flow of 

solution procedure from the teacher and student networks [75]. Neuron selectivity transfer 

is a state-of-the-art loss function for feature-based KD which derives an attention map from 

the intermediate feature maps. This experiment assists in ruling out different loss functions 

in our KD framework.

For each experiment, we used accuracy, precision, recall, and F1-score (harmonic mean 

of precision and recall) as metrics to evaluate each model’s linking performance. We used 

True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) to 

compute each metric. The formulas for each metric are as follows: 

Among the four metrics, scholars conducting IS cybersecurity analytics literature have 

indicated that F1-score is the best metric for comparing models, as it is not sensitive to data 

imbalance [17]. Stratified 10-fold cross-validation is used for each model with the same split 

to allow for comparisons across folds. One-tailed paired t-tests are used to evaluate if the 

differences between the proposed approach and benchmarks are statistically significant.

The evaluations of supervised deep learning algorithms within cybersecurity IS literature 

is based on gold-standard training, validation, and testing datasets [17,59]. Our overall 

exploit dataset contains 35,901 exploit source code snippets connected to ATT&CK tactics. 

Of these records, 28,711 are used for training, 3,190 for validation, and 4,000 for testing.

Table 6. Results for Experiment 1: ATT&CK-Link Against Benchmark Machine and Deep Learning Models

Model Type Model Accuracy Precision Recall F1-score

Classical Machine Learning Random Forest 58.33%*** 9.72%*** 16.67%*** 12.14%***
Naïve Bayes 59.13%*** 33.78%*** 18.53%*** 22.01%***
Logistic Regression 63.73%*** 33.04%*** 21.57%*** 25.99%***
SVM 66.48%*** 55.21%*** 28.58%*** 37.50%***

Deep Learning RNN 72.80%*** 73.70%*** 71.68%*** 72.67%***
GRU 78.40%*** 79.18%*** 78.08%*** 78.62%***
LSTM 77.93%*** 78.70%*** 77.03%*** 77.85%***
BiLSTM 79.75%** 80.61%*** 79.28%*** 79.94%***
BiLSTM with Attention 78.20%*** 78.46%*** 77.95%*** 78.21%***
Transformer 81.58%*** 81.45%*** 81.33%*** 81.41%***
Transformer with LSRA 82.15%*** 83.71%*** 82.38%*** 83.14%***

PTLM RoBERTa 73.14%*** 55.87%*** 51.08%*** 53.23%***
CodeBERT 79.32%*** 83.49%*** 83.29%*** 83.45%***
RoBERTa + CodeBERT 79.48%*** 84.02%*** 82.74%*** 83.26%***

KD Proposed ATT&CK-Link 87.31% 89.14% 86.80% 88.36%

*Note: KD=Knowledge Distillation, PTLM = Pre-Trained Language Model 
ÿ : p< 0:05, ÿÿ : p< 0:01 , ÿ ÿ ÿ : p< 0:001
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Results and discussion

Experiment 1: ATT&CK-Link Against Benchmark Machine and Deep Learning Models

In Experiment 1, we evaluated ATT&CK-Link against the classical machine and deep 

learning benchmarks for linking exploit source code to ATT&CK tactics. The accuracy, 

precision, recall, and F1-score are summarized in Table 6, and top model performances are 

highlighted in bold-face.

Overall, the proposed ATT&CK-Link with distilled knowledge from the RoBERTa and 

CodeBERT models attained the best performance in terms of accuracy (87.31%), precision 

(89.14%), recall (86.80%), and F1-score (88.36%). The differences between the proposed 

ATT&CK-Link and all other benchmark models in terms of F1-score were statistically signifi-

cant. The best-performing classical machine learning model in terms of F1-score is the SVM 

(37.50%). The recurrent-based deep learning models (e.g., RNN, GRU, LSTM) all perform better 

in F1-score than the classical machine learning models. The recurrent-based models better adapt 

to sequential input when compared to classical machine learning models, with the BiLSTM 

model performing best in F1-score (79.94%). Attention-based deep learning models without 

recurrence (e.g., transformer) often capture long-term dependencies that recurrent-based mod-

els cannot, leading to an F1-score of 81.41%. Replacing the multi-head attention with LSRA 

improved F1-score over the baseline transformer (from 81.41% to 83.14%). These results suggest 

that the LSRA mechanism stabilized the transformer model for long sequences. The RoBERTa 

language model fine-tuned on exploit descriptions only had a lower F1-score (53.23%) than 

other deep learning models. These results suggest that the descriptions alone cannot accurately 

link exploits to tactics. Fine-tuning CodeBERT on exploit code slightly improved the F1-score 

Figure 8. Example Exploits Correctly linked by ATT&CK-Link but Missed by Best Competing Non-KD 
Approach
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compared to the transformer with LSRA (83.45% vs 83.14%). Taking the weighted average of 

output predictions from RoBERTa and CodeBERT did not improve performance over 

CodeBERT (83.45% vs 83.26%). CodeBERT often had a much higher softmax confidence than 

RoBERTa, leading to CodeBERT determining the final output prediction. These results suggest 

that combining RoBERTa and CodeBERT in a standard ensemble was not able to aid final model 

outputs in the non-distillation setting, thus necessitating our multi-teacher KD architecture.

To further illustrate the value of our proposed approach, we present an exploit code 

snippet ATT&CK-Link labeled correctly but was missed by the best non-KD approach 

(CodeBERT) in Figure 8. Boxes around the source code indicate vital lines encased within 

a function, which contains the main capabilities (e.g., payloads) of the source code [50]. 

Therefore, these functions contain important dependencies that reveal the tactic of the 

exploit. These dependencies were often on multiple and non-adjacent lines, which 

ATT&CK-Link may have detected with its LSRA mechanism.

Compared to ATT&CK-Link, CodeBERT does not use LSRA, and could therefore miss 

the long relationships across an exploit’s source code. For example, DoS exploits in the 

impact tactic rely on timers to send packets to disrupt systems. Figure 8a indicates that the 

packet commands appear on two non-adjacent lines. Local exploits in the privilege escala-

tion tactic often use a shell to deliver a payload. Figure 8b indicates that the code to build 

and deliver the payload requires multiple lines. These results demonstrate the potential 

benefits of the LSRA.

Experiment 2: ATT&CK-Link Against Knowledge Distillation Strategies

In Experiment 2, we evaluated whether the features extracted from the RoBERTa and 

CodeBERT improved student model performance. The accuracy, precision, recall, and F1- 

score for each model are summarized in Table 7. The top model performances appear in 

bold-face.

Using a transformer with LSRA as the student model in a multi-teacher KD approach 

attained the highest accuracy (85.31%), precision (89.14%), recall (86.80%), and F1-score 

(88.36%). Within the single-teacher distillation category, CodeBERT outperformed 

RoBERTa in F1-score on the base transformer and transformer with LSRA. This result 

suggests that distilling a model just on source code leads to better results than from just the 

description, in line with the results of CodeBERT and RoBERTa in Experiment 1. Distilling 

into a transformer with LSRA extensions in the single-teacher KD models had a minor 

improvement in F1-score when compared to the base transformer models. However, using 

both CodeBERT and RoBERTa in a multi-teacher distillation paradigm increased F1-score 

Table 7. Experiment 2 Results: ATT&CK-Link Against Knowledge Distillation Strategies

Distillation Approach Teacher Model Student Model Accuracy Precision Recall F1-score

Single-Teacher RoBERTa Base Transformer 72.74%*** 55.18%*** 50.54%*** 52.62%***
Transformer with LSRA 74.33%*** 55.53%*** 50.88%*** 52.96%***

CodeBERT Base Transformer 76.65%*** 81.01%*** 80.98%*** 82.00%***
Transformer with LSRA 78.92%*** 83.04%*** 83.01%*** 83.01%***

Multi-Teacher CodeBERT + RoBERTa Base Transformer 83.14%*** 87.63%*** 84.79%** 86.21%**
Proposed ATT&CK-Link Transformer with LSRA 85.31% 89.14% 86.80% 88.36%

ÿ : p< 0:05, ÿÿ : p< 0:01 , ÿ ÿ ÿ : p< 0:001
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by 3.20% over the best single-teacher approach (from 83.01% to 86.21%). These results 

suggest that the careful weighing of multiple teachers’ features may lead to a more general-

ized model for exploit-ATT&CK tactic linking.

Experiment 3: ATT&CK-Link’s CIL Against Prevailing Loss Functions

In Experiment 3, we aimed to identify the best-performing MKTD loss function. The 

accuracy, precision, recall, and F1-score are presented in Table 8. Top scores appear in bold- 

face.

The results of the ablation analysis indicate that LCIL attains the best performance in 

terms of accuracy (85.31%), precision (89.14%), recall (86.80%), and F1-score (88.36%). 

Cross-entropy (82.26% F1-score), cosine similarity (82.73% F1-score), and mean squared 

error (83.04% F1-score) loss only use the output from the final layer of the teacher and 

student models (i.e., response-based KD), potentially leading to lower performance. In 

contrast, the flow of solution procedure (84.52% F1-score) uses a relation-based approach 

to distilling the latent features of the teacher model. Neuron selectivity transfer (84.93% F1- 

score) and our proposed CIL distill knowledge from intermediate layers (i.e., feature-based 

KD) to improve performance. This is consistent with literature stating that feature-based 

KD is superior for textual input tasks. Our proposed LCIL weights the features within the 

intermediate and output layers and balances the distillation from each teacher based on the 

confidence scores produced by the softmax function.

Case study: identifying risk in hospitals

IS scholars have emphasized the importance of demonstrating the proof-of-value of 

a proposed IT artifact [48,49]. Our proposed ATT&CK-Link model can help CTI profes-

sionals execute previously manual or ad-hoc tasks in organizational contexts, including 

vulnerability remediation due to hard-to-assess vulnerability reports and a lack of mitiga-

tion strategies. We demonstrate the proof-of-value of our proposed ATT&CK-Link frame-

work through a case study linking exploit source code to ATT&CK tactics and 

vulnerabilities.

Consistent with prior IS cybersecurity literature, we identified the Internet Protocol (IP) 

addresses of the top five major hospital systems as identified by the U.S. News and World 

Report [59]. Since large hospitals often own their IP ranges, we first identified a target IP 

address by visiting each hospital’s web page. We then used a suite of IP lookup tools to 

extract every IP address owned by these hospital systems using the hospital seed IP address. 

The identified IP addresses were validated, and more information about them (i.e., server 

Table 8. Experiment 3 Results: ATT&CK-Link’s CIL Against Prevailing Loss Functions

Model Type Loss Function Accuracy Precision Recall F1-score

Multi-Teacher CodeBERT + RoBERTa Cross-Entropy Loss 77.79%*** 82.28%*** 82.23%*** 82.26%***
Cosine Similarity Loss 78.50%*** 82.69%*** 82.77%*** 82.73%***
Mean Squared Error Loss 78.98%*** 83.00%*** 83.09%** 83.04%***
Flow of Solution Procedure Loss 80.43%*** 85.45%*** 83.59%** 84.52%***
Neuron Selectivity Transfer Loss 81.64%*** 85.90%*** 83.95%** 84.93%**
Custom Inter-Layer (CIL) Loss 85.31% 89.14% 86.80% 88.36%

ÿ : p< 0:05, ÿÿ : p< 0:01 , ÿ ÿ ÿ : p< 0:001
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information, location, software, open ports, etc.) was extracted using the Shodan tool, which 

emulates the external reconnaissance tactic and aligns with extant IS cybersecurity literature 

[59]. To gather vulnerability information from these IPs, we employed Nessus, a prevailing 

commercial vulnerability assessment scanner designed to probe workstations and servers to 

discover vulnerabilities. Nessus is the primary tool for conducting non-invasive vulner-

ability scanning [35,66]. Each discovered Nessus vulnerability from the hospital IPs was 

connected to an associated ATT&CK tactic via their CVE [4]. We linked our 84,271 

unlabeled exploit source codes to MITRE ATT&CK tactics using ATT&CK-Link to quan-

tify what attacks a hacker can use against vulnerable hospital IPs. Table 9 summarizes the 

vulnerability assessment of the top five hospitals with the count of exploits for each severity. 

For each severity level, we list the count of vulnerabilities, the number of exploits that can 

target the vulnerable tactic, the most prominent targeted tactic, and the most vulnerable IP 

address by exploit count. Low-severity vulnerabilities were often targeted by defense eva-

sion and discovery tactics. Medium-severity vulnerabilities were often targeted by exfiltra-

tion, lateral movement, and privilege escalation tactics.

High severity vulnerabilities were often targeted by impact and exfiltration tactics. With 

severity, exploit count, and IP address information, CTI professionals can use ATT&CK- 

Link to identify the cyberinfrastructure (e.g., IP addresses in Table 9) that requires urgent 

care. The results of ATT&CK-Link can help CTI professionals identify scenarios where an 

attacker can exploit a system to proceed with their objective (e.g., systems at New York 

Presbyterian). We demonstrate one such use case in Figure 9.

In Figure 9, we illustrate how an attacker could remotely exploit a vulnerable Apache 

webserver to escalate their privileges on the network (Step 1). Then, they can pivot to other 

systems, such as a web portal with Single-Sign-On (SSO; provided by Ping Identity) on the 

network and move up the tactic chain (Step 2). The attacker could then leverage XSS 

exploits in hacker forums on the web portal to bypass the SSO’s access controls to 

Table 9. Counts Of Exploits That Target the Tactic a Vulnerability is Vulnerable To

Hospital Severity
Vuln. 
Count

Exploits 
Targeting  

Vulnerable Tactic
Most Prominent 

Tactic Most Vulnerable IP Address

John Hopkins High - - - -
Medium 68 7,389 Defense Evasion 162.129.6.59
Low 51 7,992 Defense Evasion 162.129.45.60
Total 119 15,381 Defense Evasion 162.129.6.59

Mayo Clinic High - - - -
Medium 18 3,544 Exfiltration 129.176.16.13
Low 3 1,238 Discovery 129.176.1.203
Total 21 4,782 Defense Evasion 129.176.16.13

New York Presbyterian High 6 2,214 Impact 143.104.237.134
Medium 140 23,674 Privilege Escalation 143.104.111.134
Low 156 27,143 Defense Evasion 143.104.237.139
Total 302 53,031 Privilege Escalation 143.104.237.134

Cleveland Clinic High 2 967 Exfiltration 139.137.100.100
Medium 42 6,301 Lateral Movement 139.137.254.12
Low 103 22,678 Discovery 139.137.254.12
Total 147 29,946 Discovery 139.137.254.12

UCLA Medical High - - - -
Medium 26 4,256 Lateral Movement 216.41.228.241
Low 34 5,931 Defense Evasion 216.41.228.251
Total 60 10,187 Lateral Movement 216.41.228.241

Overall 649 113,327 Defense Evasion 143.104.237.134
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manipulate the underlying database and its connected systems (Step 3). To mitigate against 

these attack scenarios, CTI professionals can use the strategies provided by ATT&CK for 

each tactic. We list the most vulnerable IP from each hospital, the top tactic, the tactic’s 

description, and ATT&CK’s suggested mitigation strategies in Table 10.

The most prominent tactic for Johns Hopkins and Mayo Clinic was defense evasion. 

Defense evasion tactics can often be protected by implementing MFA (e.g., password and 

email confirmation), encrypting disks to prevent unauthorized access, employing file 

signatures to detect changes, and creating honeypots to lead attackers into compromising 

themselves. New York Presbyterian is most vulnerable to exploits in the privilege escalation 

tactic. Suitable mitigation strategies for issues in this tactic include anomaly detection and 

behavior analysis models, which include automatically locking accounts and terminating 

anomalous processes. Cleveland Clinic is vulnerable to discovery tactics, where adversaries 

attempt to exploit the internal network. Properly configuring and auditing the operating 

system, monitoring processing, and isolating systems when appropriate can mitigate against 

discovery tactics. Finally, UCLA Medical is most vulnerable to the lateral movement tactic. 

Organizations should implement MFA, file hashing, traffic filtering and deny-listing, and 

sender reputation analysis to protect their systems.

CTI professionals can often be paralyzed by choice when developing vulnerability 

remediation plans due to information overload from vulnerability scan results and exploits 

from the online hacker community [7]. The ATT&CK-Link framework being joined with 

the vulnerability scanning process can help provide three types of CTI. First, the framework 

provides a ranked list of the most vulnerable IPs based on severity and the number of 

Figure 9. Example of Potential Attack Scenario of Vulnerable Hospital Systems
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exploits that could potentially target the identified vulnerabilities. Second, the framework 

lists targeted mitigation strategies that CTI professionals can consider. Third, the frame-

work can provide attack scenarios on how attackers can proceed with their objectives 

(capabilities that are not provided by vulnerability assessment tools). Taken together, 

ATT&CK-Link can help analysts potentially save time and cost when prioritizing and 

mitigating vulnerabilities in their cyberinfrastructure.

While our case study provides an example use case of the ATT&CK-Link model to 

emulate adversary behavior and mitigate against it, there are some limitations. First, we do 

not have access to each hospital’s internal cyberinfrastructure. Second, our model analyzes 

six key MITRE ATT&CK tactics. However, an organization will still need to research and 

maintain controls for the additional eight tactics to which exploits cannot be linked. Third, 

ATT&CK-Link requires retraining and maintenance as the ATT&CK framework updates 

and new hacker community exploits are collected. Further, new exploits may use tactics not 

yet documented by the framework, limiting the model’s effectiveness in identifying and 

mitigating those attacks before retraining and ATT&CK updates.

Contributions to the is knowledge base and practical implications

Contributions to the IS Knowledge Base

While IS scholars have made considerable progress in cybersecurity analytics research in 

recent years, they have rarely connected their work to industry-standard CRMFs or 

provided mitigation strategies for their identified hacker assets. This work aims to con-

tribute a novel cybersecurity framework, ATT&CK-Link, to the IS knowledge base to set the 

foundation for future IS scholars and CTI professionals to pursue targeted cybersecurity 

analytics research on exploit linking, cyberinfrastructure vulnerability mitigation, cyber- 

alerting systems, and others.

IS scholars have stressed the importance of contributing prescriptive knowledge to 

the IS knowledge base with a novel IT artifact [21]. This knowledge can be in the form 

of constructs, models, methods, instantiations, and/or design theory. Our proposed 

ATT&CK-Link framework contributes a novel multi-teacher KD design to simulta-

neously capture multiple modalities of hacker exploit data and an extended transformer 

architecture incorporating LSRA to capture long-range sequential dependencies from 

hacker exploit text. Since the proposed multi-teacher KD and transformer extend extant 

methods for a new context (linking exploits to a CRMF), they fall into the exaptation 

category of knowledge contributions [21]. Although developed for cybersecurity analy-

tics, the design principles followed by the proposed multi-teacher KD, and transformer 

could be applied to research inquiries in other bodies of IS research. We present the two 

Table 11. Design Principles Offered by our Proposed ATT&CK-Link for Selected Bodies of IS Literature

ATT&CK-Link 
Component General Design Principle

Relevant Bodies of 
IS Literature Potential Classes of Research Inquiry

Multi-teacher 
KD

Student-teacher model training -Social Media 
Analytics 
-Healthcare 
Informatics

-Leveraging social media-based language 
models to improve predictive performance 
-Synthesize lengthy electronic health recordsExtended 

Transformer
Capturing long- and short- 

range sequential 
dependency
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ATT&CK-Link design components, the general design principle, a relevant body of IS 

literature in which the design principle can be used, and potential research inquiry 

classes in Table 11.

Social Media Analytics: Online social networking platforms contain a wealth of text data 

usable for product review analysis, sentiment classification, and more. However, social 

media discussions often have jargon and are semantically incorrect, making text classifica-

tion tasks non-trivial. The results of Experiments 2 and 3 suggest that the formulation of 

single vs multi-teacher KD and choice of the loss function can have significant effects on 

text linking performance. Therefore, IS scholars can consider these two choices when 

distilling knowledge from a social media-based language model (e.g., BERTweet) to an 

extended transformer student model to improve predictive performance for a similar and 

targeted dataset. While IS researchers cannot often train a massive language model, they can 

use Design Principles 1 and 2 to extract knowledge from a language model in a multi- 

teacher KD design to improve performance.

Healthcare Informatics: Patients’ electronic health records (EHRs) are becoming leng-

thier as it becomes easier for doctors to record health information (e.g., dictation to text). 

Patient information at the beginning or middle of an EHR may be relevant to information 

found near the end. However, a doctor with little time to evaluate the EHR may be unable to 

make connections between separate passages of text. The results of Experiment 1 suggest 

that classical machine learning models and recurrent-based deep learning models may not 

be as accurate as transformer-based architectures for lengthy text. Lengthy EHRs can be 

synthesized using the global and local contexts discovered by Design Principle 2 with 

assistance from distilled information from generalized language models (e.g., BERT) to 

provide doctors with quick and automated insights from a noisy EHR.

Practical Implications

ATT&CK-Link can provide CTI to cybersecurity professionals at the strategic, operational, 

and tactical levels. We enumerate the value that the proposed ATT&CK-Link can provide 

for each level of CTI below.

Strategic CTI is high-level information that is often presented as reports and consumed 

by decision-makers. A goal of CTI professionals is to obtain automated and timely reports 

about the security of their organization’s cyberinfrastructure [61]. Our proposed ATT&CK- 

Link can provide summary statistics of vulnerable cyberinfrastructure and the most com-

mon mitigation strategies for remediation. This information can be disseminated to an 

organization’s chief executive and information security officers to guide policy implemen-

tations and cybersecurity investments.

Operational CTI relates to the impending attacks against an organization. While our 

framework cannot provide specific attacks that will be tried against a specific organization, 

it can identify specific exploits shared by hacker communities that an organization is 

vulnerable to. Cybersecurity analysts working in cybersecurity operation centers (CSOCs) 

can continuously monitor new exploits posted in hacker communities. Analysts in CSOCs 

can then apply the ATT&CK-Link framework to see suitable mitigation strategies for 

emerging exploits.

Tactical CTI is the tactics, techniques, and procedures that threat actors follow to 

conduct an attack. The ATT&CK-Link framework effectively links procedures and tactics 
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and provides them to an organization. CTI professionals implementing the MITRE 

ATT&CK CRMF can continuously update their implementation with new exploits to 

facilitate ongoing tactical CTI.

Conclusion and future directions

Exploits disseminated in large international hacker communities are increasingly used in 

complex cyber-attacks. Detecting and mitigating hacker exploits is of utmost importance to 

CTI professionals. To mitigate against these cyber-attacks, IS scholars have primarily 

focused on proactively identifying and labeling exploits from hacker forums. However, 

prevailing approaches for labeling hacker exploits do not leverage CRMFs to apply tactics 

and mitigation strategies to discover hacker exploits. In this study, we adopted the compu-

tational design science paradigm to develop a novel knowledge distillation framework 

(ATT&CK-Link) for linking hacker exploits to the MITRE ATT&CK framework. 

Empirical evaluations suggest that our method significantly improves exploit linking across 

multiple exploit types (i.e., DoS, local, remote, and web applications). We then demon-

strated ATT&CK-Link’s potential practical utility with a case study that links exploits to the 

vulnerabilities found within U.S. hospitals.

There are several promising directions for future work. First, our research framework can 

be adapted and extended for different CRMFs (e.g., NIST) to provide additional information 

on hacker exploits. Second, we can leverage network science to build a knowledge graph of 

hacker exploits, CRMFs, and vulnerabilities to assist CTI professionals identify and mitigate 

new cyber threats. Third, researchers can apply ATT&CK-Link on exploits from new sources 

(e.g., paste sites). Each direction can significantly improve CTI efforts and contribute to 

a safer cyberspace for organizations, individuals, and governments.
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