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Abstract—DLRM is a state-of-the-art recommendation system
model that has gained widespread adoption across various
industry applications. The large size of DLRM models, however,
necessitates the use of multiple devices/GPUs for efficient train-
ing. A significant bottleneck in this process is the time-consuming
all-to-all communication required to collect embedding data from
all devices. To mitigate this, we introduce a method that employs
error-bounded lossy compression to reduce the communication
data size and accelerate DLRM training. We develop a novel
error-bounded lossy compression algorithm, informed by an
in-depth analysis of embedding data features, to achieve high
compression ratios. Moreover, we introduce a dual-level adaptive
strategy for error-bound adjustment, spanning both table-wise
and iteration-wise aspects, to balance the compression benefits
with the potential impacts on accuracy. We further optimize our
compressor for PyTorch tensors on GPUs, minimizing compres-
sion overhead. Evaluation shows that our method achieves a
1.38x training speedup with a minimal accuracy impact.

I. INTRODUCTION

Deep Learning Recommendation Models (DLRMs) have
significantly risen to prominence in both research and industry
sectors in recent years. These models integrate sparse input
embedding learning with neural network architectures, mark-
ing a notable advance over traditional collaborative filtering-
based recommendation systems [1]. DLRMs have been suc-
cessfully implemented in various industry applications, includ-
ing product recommendations system by Amazon [2], person-
alized advertising by Google [3], and e-commerce service by
Alibaba [4]. As a result, they constitute a significant portion
of deep learning applications across multiple industries.

DLRMs are uniquely designed to process high-dimensional
categorical features, typically represented by one- or multi-
hot vectors matching the size of the category, which leads to
significant data sparsity. To efficiently manage this, DLRMs
utilize embedding tables that transform these high-dimensional
sparse vectors into lower-dimensional, dense vector represen-
tations. In a typical DLRM architecture, dense features are
processed through a multi-layer perceptron (MLP), combined
with sparse embedding lookups in a feature interaction mod-
ule, and then fed into the top MLP. This process culminates
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Fig. 1: Performance profiling of DLRM training with 32 GPUs.

in generating a click-through rate (CTR) prediction. Such a
structure elegantly combines sparse and dense data processing,
underscoring the complexity and challenges associated with
the efficient implementation and scaling of DLRMs.

A critical challenge in deploying large-scale DLRMs lies
in managing the massive size of embedding tables, which
can extend to terabytes, far exceeding the memory capac-
ity of a single GPU. To address this issue, hybrid-parallel
distributed training systems are widely employed. In these
systems, MLP layers are replicated across multiple GPUs
for data-parallel training, while embedding tables are parti-
tioned and distributed for model-parallel training. This setup
necessitates the use of collective communication primitives for
synchronization across all GPUs. Specifically, the partitioning
of sparse embedding tables requires nodes to aggregate sparse
embedding lookups during forward passes and their corre-
sponding gradients during backward passes. Consequently, all-
to-all communication is utilized in both forward and backward
passes for synchronizing sparse lookups and gradients, while
all-reduce is employed for synchronizing dense/MLP gradients
during the backward pass.

Communication for synchronizing embedding lookups and
gradients across all GPUs during each mini-batch iteration
significantly contributes to the overall training time. For ex-
ample, Figure 1 shows that all-to-all communication accounts
for more than 60% of the total training time for DLRM on an
8-node, 32 A100 GPUs cluster (connected through a Slingshot
10 interconnect [5]). Consequently, various studies have been
conducted to address these communication challenges.

One method involves the application of low-bit quantization
(e.g., FP16, FP8) to represent embedding tables [6]. How-
ever, quantization has two primary limitations: @ Its capacity
for data reduction (e.g., 2x) is relatively limited. & While
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quantization is viable for inference, training with a quantized
embedding table often results in significant accuracy losses
[7]. Another approach is the use of lossless compression to
compress embedding lookups just before the all-to-all commu-
nication [8]. However, this method also faces challenges due
to the sparse and random nature of embedding lookups and
the mantissa of floating-point data, which limits the achievable
compression ratio.

Unlike quantization and lossless compression approaches,
error-bounded lossy compression achieves a significantly
higher data reduction ratio while maintaining strict error con-
trol in the reconstructed data. However, effectively employing
lossy compression in DLRM training necessitates addressing
several key challenges: @ Low Compression Ratio: Existing
error-bounded lossy compression methods, such as SZ [9]
and ZFP [10], also face the challenge of achieving a high
compression ratio on embedding lookups (which will be
explained in Section III). Thus, it is essential to develop a lossy
compression algorithm optimized for embedding lookups. @
High Compression Overhead: Compression for every all-to-
all communication at each iteration introduces a high compres-
sion overhead; thus, implementing an efficient compression
algorithm on GPUs and seamlessly integrating it into both the
communication and DLRM computation workflows is vital,
ensuring minimal performance overhead. ® Error Propaga-
tion: Lossy compression introduces errors to the reconstructed
embedding lookups after all-to-all communication. Thus, de-
veloping a strategy for adaptively controlling error bounds
across different embedding tables and training iterations is
critical to ensure an acceptable impact on accuracy.

To address these challenges, we introduce a highly efficient
approach to accelerate communication in DLRM training
through the use of error-bounded lossy compression, deeply
optimizing and adaptively applying it.

Our key contributions include:

o We introduce a novel hybrid compression method for
embedding lookups/vectors, consisting of two algorithms:
a newly developed LZ compression algorithm for embed-
ding vectors and an optimized entropy-based Huffman
compression algorithm for vector elements.

o We develop a two-level adaptive strategy for error-bound
adjustment for different embedding tables and training
iterations, aiming to maintain relatively large error bounds
(for higher compression ratios) while minimizing the
impact on accuracy.

o We optimize our compression method on modern GPUs,
enabling parallel compression of multiple tensors into
a single compressed tensor, effectively minimizing data
movements and kernel launches.

o We evaluate our method using three widely used DLRM
datasets with up to 32 GPUs and demonstrate that our
method significantly accelerates all-to-all communication
in DLRM training by 8.6, with an accuracy loss of less
than 0.02%—well within the tolerable level.

II. BACKGROUND AND PROBLEM STATEMENT
A. Deep Learning Recommendation Model (DLRM)

DLRM is a widely used recommendation model, which is
designed to utilize both categorical and numerical inputs for
personalized recommendations. We will discuss the architec-
ture, pipeline, and large-scale training of DLRM.

DLRM Architecture Generallyy, DLRM comprises three
components: Embedding tables, Interaction Module, and MLP.
The architecture is shown in Figure 2. Embedding tables in
DLRM process categorical data by looking up each categorical
feature and mapping it into an embedding vector representa-
tion as the output vector. The Interaction Module will apply
input vectors from the embedding tables and the Bottom MLP,
and perform interactions on them to generate a new output
vector. There are two MLPs in DLRM: the Bottom MLP and
the Top MLP. The Bottom MLP transforms dense features
to match the length of embedding vectors. The Top MLP
applies the concatenated data as input and calculates the Click-
Through Rate (CTR) as output.

DLRM Training Parallelisms and Bottlenecks Training
DLRM involves both model and data parallelism to manage
its diverse computational needs efficiently. Model parallelism
is crucial for handling the large Embedding Tables (EMBs)
distributed across different devices due to their size, while data
parallelism is applied to the Multilayer Perceptrons (MLPs),
which, despite requiring full access every epoch, consume a
relatively small amount of memory. This dual approach allows
for the division of a global batch of embedding vectors into
smaller local batches, facilitating interaction operations and
subsequent processing by the Top MLP through an all-to-
all communication pattern. This setup is particularly effective
for implementing various second-order interaction methods,
including dot products between pairs of embedding vectors
and dense features, which are then concatenated with dense
features for input to the Top MLP, ultimately enabling classifi-
cation. During backward propagation, a symmetrical all-to-all
communication redistributes gradients back to their respective
devices for updating the Embedding tables and Bottom MLP,
reflecting the forward phase’s operations.

The bottlenecks across DLRM’s components vary: embed-
ding layers are bandwidth-dominated due to high-bandwidth
memory access requirements for lookup operations, MLP
layers are computation-dominated, and the feature interaction
layer is communication-dominated. Our profiling indicates that
DLRM training is notably communication-intensive, under-
scoring the necessity of optimizing these parallelism strategies
for large-scale training efficiency (see details in Section IV).

B. Floating-point Data Compression

There are two principal classes of data compression: loss-
less and lossy. While lossless compression preserves data
integrity perfectly, lossy compression achieves significantly
higher compression ratios at the cost of acceptable accuracy
loss. Traditional lossy compressors, such as JPEG [11] for
images and MPEG [12] for videos, are designed with human
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Fig. 2: Illustration of DLRM architecture.

perception in mind, lacking precise error-control mechanisms
for scientific post-analysis.

A new generation of lossy compression techniques for
scientific data, particularly floating-point data, has emerged,
exemplified by SZ [9, 13, 14], ZFP [10], and TTHRESH
[15]. Unlike their counterparts for media, these scientific data
compressors offer strict error-controlling schemes, enabling
users to manage accuracy loss both in the reconstructed data
and during post-analysis.

With the proliferation of GPU-based HPC systems and
applications, compressors like SZ and ZFP have introduced
GPU-optimized versions (i.e., cuSZ [16] and cuZFP [10]),
delivering significantly enhanced throughput compared to their
CPU-based implementations. ZFP, a transform-based com-
pressor, allows users to set a desired bitrate, while SZ, a
prediction-based compressor, enables the specification of a
maximum tolerable error. ZFP in fixed-rate mode tends to offer
consistently higher throughput, whereas SZ in error-bounded
mode achieves superior compression ratios.

C. Problem Statement

Dominance of Communication Overhead. As illustrated
in Figure 1, all-to-all communication accounts for over 60% of
DLRM’s total training time, establishing communication as the
bottleneck rather than computation. This bottleneck is exacer-
bated when training DLRM with datasets of various sizes. For
instance, the Criteo Kaggle dataset, with sparse feature lengths
of 32, generates more than 121 GB of lookup data per epoch.
This figure escalates dramatically with larger datasets, such
as the Criteo Terabyte dataset, which can accumulate up to
terabytes of lookup data per epoch. The scale increases further
with industry-level recommendation models, often exceeding
multiple terabytes, necessitating larger volumes of training
data and distributed systems of larger scales for parameter stor-
age. This significantly increases communication data across
devices, highlighting the urgent need to reduce communication
data volume in DLRM training.
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Fig. 3: Overview of proposed DLRM training framework

However, as aforementioned, there are several challenges to
addressing this issue due to the limitations of directly applying
current error-bounded lossy compression techniques. To effec-
tively tackle these hurdles, this paper focuses on the following
key research questions: @ Error Bound Configuration: It’s
essential to determine the optimal error bounds for various
embedding tables across different training iterations to main-
tain training accuracy while enhancing compression ratios.
6O DLRM-specific Lossy Compression Algorithm: There’s
a critical need to devise a compression algorithm uniquely
suited for DLRM’s embedding tables, aiming for elevated
compression ratios without substantially compromising data
integrity. ® GPU Compression Performance Optimization:
Optimizing the GPU execution of our specialized compression
and ensuring its smooth incorporation within DLRM training
is crucial for improving overall training performance.

III. SYSTEM DESIGN

In this section, we discuss our approach to accelerating
DLRM training, divided into four main parts. First, we provide
an overview of our proposed training pipeline that incorporates
lossy compression in Section III-A. Second, we share our
observations of DLRM data features in Section III-B. Fol-
lowing this, we explain how we dynamically adjust our error
bound during training. Lastly, we introduce our optimized
compression algorithm designed to enhance performance.

A. Overview of DLRM Training Pipeline with Compression

First, we present the complete framework, showcasing the
overview pipeline in Figure 3. This pipeline can be divided
into two main components: an offline analysis process and a
training pipeline that incorporates lossy compression.

Offline Analysis. The purpose of this step is to obtain
an optimized configuration by sampling and analyzing some
iterations from the original training process. There are two
tasks involved in offline analysis: Compressor Selection and
Embedding Table Classification. In the Compressor Selection
task, we evaluate various compressors using sampled data to
select the best one for the current system. In the Embedding
Table Classification task, we analyze the characteristics of em-
bedding tables using sampled data and classify them according
to different error-bound adjustment strategies.



Training Pipeline with Compression. Our proposed train-
ing process incorporates lossy compression into all-to-all
communications. Unlike fix-rate compression, error-bounded
compression does not maintain a consistent compression ratio,
making our pipeline distinctive by accommodating variable-
size all-to-all communication. The pipeline is organized into
four primary stages: @ Compressing data on each device;
@ Sending metadata through all-to-all communication; @
Transmitting compressed data via all-to-all communication;
and @ Decompressing data on each device for training. Stages
@® and @ introduce additional steps for compression and
decompression, respectively, where we employ our online
error bound adjustment strategy to dynamically tune the error
bound. Stage @ addresses the challenges of executing variable-
size all-to-all by managing metadata, including the size of
compressed data and compressor specifications.

B. Observation and In-Depth Analysis of Embedding Vector

O False Prediction. Prediction is a crucial technique in
lossy compression algorithms like SZ [9, 13], leveraging
spatial correlations among data points to estimate the value
of a point based on its neighbors, as seen with the Lorenzo
predictor we mentioned. This approach is effective in many
scientific datasets where floating-point numbers represent real-
world phenomena, thanks to substantial spatial correlation.
However, DLRM embedding vectors are markedly different
from scientific data. In a batch of embedding vectors, the spa-
tial correlation is minimal, both within individual vectors and
among neighboring ones. It is attributed to the independence
of data points across dimensions within an embedding vector
and the random order of the vectors. In contrast, the use of
prediction can even result in False Prediction (illustrated in
Figure 4), a phenomenon we will elaborate on subsequently.

® Vector Homogenization. This phenomenon, stemming
from quantization and precision loss, significantly impacts data
representation. Note that repeated vectors occur not only in
original EMB vectors but also increase after quantization, as
depicted in Figure 4. Within a lossy compression algorithm,
two distinct floating-point values within an error-bound range
can be considered identical, leading to two EMB vectors being
treated as the same if their values at each dimension are
sufficiently similar. We term this occurrence Vector Homog-
enization, where similar vectors are transformed into more
repetitive ones. Our findings indicate that this phenomenon
is more pronounced in certain tables compared to others,
attributed to the unique data characteristics of those tables.

® Gaussian Distribution of Data Values. In our analysis
of the distribution of embedding vectors across different em-
bedding tables, we observe that the distributions tend to vary
between Gaussian and uniform, contingent upon the specific
table. Embedding tables characterized by significantly unbal-
anced query frequencies are more inclined to demonstrate a
Gaussian distribution. This is attributed to repeated vectors,
which result in certain values appearing more frequently, hence
deviating the distribution from a uniform to a Gaussian pattern.

TABLE I: Characteristics of

EMB Table ID 1 3 . .

ave their representative EMB tables
False Prediction v v v  from Criteo Kaggle dataset.
Violently Vector
Homogenization vooxoox
Gaussian
Distribution vovox

C. Adaptive Fine-Grain Error-Bound Adjust Strategy

Next, we discuss our two-level adaptive strategy for se-
lecting the error bound to ensure the high accuracy of the
trained model. As the error bound increases, the compression
ratio also increases, but the precision of the decompressed
data decreases. There exists a trade-off between reducing
communication data size and preserving original information.
To address this, we introduce an adaptive strategy for choosing
the error bound along two dimensions.

O Iteration-wise Configuration. This approach involves
gradually decreasing the error bound over iterations, akin
to adjusting the learning rate during model training. Two
well-recognized insights support this strategy: first, applying
different learning rate schedules can yield diverse conver-
gence outcomes for the same model. Second, optimizers do
not guarantee an optimal direction for gradient optimization;
instead, they aim for a sub-optimal approach, meaning they
can tolerate noise on the ideal gradient. Viewing the effects of
lossy compression as introducing noise to intermediate data,
this noise affects calculations, impacting the gradient during
backward propagation. Given that controllable noise does not
result in model non-convergence, the key consideration is the
acceptable noise amplitude. Similarly to how the learning
rate determines the optimization step size, the error bound
can be adjusted over time. In the early stages of training,
a larger error bound does not hinder convergence. However,
as training advances and optimization steps require greater
precision, tightening the error bound becomes necessary to
limit the noise’s impact.

Specifically, we divide the training period into two phases:
an initial phase, characterized by rapid loss reduction, and

1.00

[0.045, 0.27, 0.45, 0.63, 0.89] ! 0.75
:Quantization

v
. New Vector . 0.25

[0.05, 0.3, 0.5, 0.7, 0.99] Vector |

|
SimilarTVector Vector 2

Vector
Homogenization

+ Vector | =+ Vector 2

Lorenzo Prediction Lorenzo Prediction

‘ector Vector

False prediction with Lorenzo predictor

Fig. 4: Illustration of observed Vector Homogenization and false
prediction with Lorenzo predictor.



Kaggle

A ! i
78.5 o A ”"n e
S /
& 780 .- —
o WA
877 ] 78.75 VVYW W
e
260 280 30

78.50

0

76.0

75.5

i
i
i
i
i
i
i
i
i
0

50 100 150 200 250 300
Iteration

—-—— Decay_linear —-—— Decay_log —-—— Decay_step
(a) Accuracy
Kaggle
8.50
o
B 825
o
< 8.00
o
Q775
S
Q. 7.50
£
G2
7.00
0 50 100 150 200 250 300
Iteration
—— Decay_linear —— Decay_log —— Decay_step

(b) Compression Ratio

Fig. 5: Accuracy and CR with different decay functions.

a later phase, where the loss tends to stabilize. During the
initial phase, we gradually decrease the error bound via a
predefined decay function (e.g., logarithmic, stepwise) to min-
imize deviation from the original data, facilitating swift model
convergence. In the later phase, we maintain a consistent error
bound to ensure the model converges effectively. According to
experiment results in Figure 5, it demonstrated that a step-
wise (staircase descent) decay function offers the greatest
compression benefits while ensuring model convergence. In
that case, we select step-wise decay as the default decay
function.

® Table-wise Configuration. Different embedding tables
necessitate distinct error bounds, a principle stemming from
the inherent properties of the lossy compression algorithm:
data quality varies with different characteristics even under
identical compression ratios. Embedding vectors within tables
symbolize items with diverse semantic meanings. Given the
wide variation in embedding table sizes—ranging from fewer
than ten to over a million, as depicted in Figure 6—the data
characteristics among embedding tables significantly diverge.

Specifically, the phenomenon of Vector Homogenization is
pivotal for setting error bounds tailored to each embedding
table, accounting for their unique semantic representations.
This necessitates assigning distinct error bounds to ensure
uniform quality across tables. Hence, we introduce the Ho-
mogenization Index (written in Homo Index in the following
text), a metric to assess the quality of embedding tables. This
index spans from 0 to 1, where 0 indicates no homogenization
and 1 denotes complete vector homogenization into a singular
vector. The Homogenization Index is calculated as follows:

n= Noriginal - Ncompressed (l)
N, original )
Subsequently, embedding tables are categorized into three

Criteo Kaggle

107 5 ] I

Size (log scale)

10 15
EmbeddingTable Index

Criteo Terabytes

Size (log scale)

0 5 10 15 20 25
EmbeddingTable Index

Fig. 6: EMB table sizes in Criteo Kaggle and Terabytes datasets.

groups based on their Homo Index, corresponding to three
levels of error bounds: Large, Medium, and Small.

Distinguishing Error Bound and Homo Index. While
the error bound for DLRM embedding vectors primarily
addresses point-wise error, functioning as a black-box metric,
the Homogenization Index (Homo Index) sheds light on the
compressed embedding vectors’ quality, facilitating adaptive
error bound adjustments according to specific requirements.
Note that Error Bound and Homo Index serve different pur-
poses and operate on distinct levels: the former at the point-
wise level and the latter at the vector-wise level.

Overall, we detail our proposed adaptive error bound ad-
justment strategy, as outlined in Algorithm 1. In pseudo-code,
line 1 defines the error-bound parameter to adjust. Lines 2 to 7
define hyper-parameter to adjust the error bound. Homo index
calculation in line 11 refers to Equation (1).

D. Optimized Compression Algorithm for DLRM Data

After identifying the optimal error bound for training, the
next step involves fine-tuning the compressor within that error
bound. Compressors typically aim to balance achieving a
high compression ratio with maintaining high compression
speed. The ideal compressor for our purposes should satisfy
three criteria: @ Operate on the GPU to avoid data trans-
fers between the device and host since embedding vectors
reside on the GPU. @ Offer high compression throughput to
minimize compression overhead and, consequently, accelerate
overall DLRM training. ® Achieve a high compression ratio
to maximize the benefits of reduced data volume during
communication. To meet these requirements, we propose an
optimized hybrid error-bounded lossy compression algorithm
tailored specifically for DLRM data.



Global
Global
Global
Global
Global
Global
Global

EBConf = {}

LargeEB < GlobalEB X «
SmallEB < GlobalEB + [
MediumEB < GlobalEB
L_EMB_hindex, S_EMB_hindex
DecayPhase

func DecayFunc

func OfflineAnalysis ():
for t in EMB_Tables:

sd < sampleData(t)
hIndex < homoIndexCal (sd)
c < EMBClassification(hIndex)
if ¢ is 'large': EBConf[t] < LargeEB
if ¢ is 'small': EBConf[t] <« SmallEB
else EBConf[t] <« MediumEB

func OnlineDecay(iter: i):
for t in EMB_Tables:
if i € DecayPhase:
EMBConf [t] < DecayFunc(i) * EMBConf [t]
func EMBClassification(hindex):
if hindex > S_EMB_hindex:
return 'small'
elif hindex < L_EMB_hindex:
return 'large'
else: return 'medium'

Algorithm 1: Proposed Error Bound Adjustment Strategy

Our algorithm comprises two main components: a quantiza-
tion encoder and a lossless encoder. Initially, the quantization
encoder converts floating-point numbers into discrete bins, rep-
resenting them as integers. These integers are then compressed
using a hybrid method that incorporates two types of lossless
encoders: LZ encoder [17][18] and Entropy encoder such as
Huffman encoder [19].

Vector-based LZ Encoding. The phenomenon of unbal-
anced queries, as illustrated in numerous studies [20], is
pivotal in DLRM training. The imbalance in query frequency
implies that recognizing frequently recurring queries can dra-
matically boost the compression ratio. A distinct feature of
repetitive patterns in DLRM applications is the consistency
of bytes within an embedding vector for repeated queries,
independent of the vector’s size. This indicates that the length
of the repeating pattern is predetermined and constant. While
traditional LZ algorithms are designed to identify repeating
patterns of varying lengths, we propose to refine the LZ
compression algorithm specifically for DLRM by introducing
vector-based LZ compression. This innovation significantly di-
minishes data volume and amplifies the compression ratio for
certain embedding tables through effective pattern recognition.

Optimized Entropy Encoding. Our design of the optimized
compression algorithm is informed by two critical observa-
tions. The first, observation @, underscores the effectiveness
of an entropy-based compressor, such as Huffman encoding,
given the high entropy typically exhibited by such data. The
second, observation @, highlights that identical vectors within
the same batch might be surrounded by different neighboring
vectors, which can lead to divergent predictions for vectors
that are initially identical. This phenomenon not only risks
misrepresentation and loss of identical embedding vectors

but also elevates the data’s entropy. An example depicted in
Figure 4 (right part) illustrates how employing a 2x2 Lorenzo
predictor [21] on embedding vectors can transform identical
vectors into distinct ones. These insights lead to the conclusion
that traditional prediction techniques are ill-suited for our
DLRM training-specific compression algorithm.

Selection Between Two Encoders. During the offline
analysis phase, we sample data and evaluate the two encoders
to identify the most effective one. Given the complexity of
many systems, it is not justifiable to compare compressors
solely based on compression ratio or throughput. In our
proposed compressor, we utilize a sample-based speed-up
approximation to determine the optimal compressor. Equation
(2) illustrates the method for estimating theoretical speed-
up. In this equation, C'R denotes the compression ratio, B
represents network bandwidth, and 7. and T, refer to the
compression and decompression throughputs, respectively.

1
&+ Bx (- + )

Overall, in our hybrid compression framework, we use this
formula to pinpoint the most efficient compressor that maxi-
mizes speed-up for the given system configuration. We present
the detail in Algorithm 2. In this pseudo code, Line 1 defines
the compressor selection parameter. Line 2 defines the hyper-
parameter for alternative compressors. The speedup calculation
in line 6 refers to Equation (2). Although theoretically any
compression algorithm could be included in our selection pool,
for simplicity and effectiveness, we limit our final design to
these two encoders.

speedup = 2

Global TableCompressorConfig = {}

Global Compressors = {}
func OfflineCompConfig(e):
for t in EMB_Talttfamilybles:
d < sampleEMBData(t)
speedups < SpeedUpCompute(d, Compressors)
maxSup, bestCompressor = Max(speedups)
TableCompressorConfig[t] < bestCompressor

Algorithm 2: Compressor Selection

E. System Implementation and Performance Optimization

Finally, we detail our system implementation and perfor-
mance optimization, focusing on fine-tuning the vector-based
LZ compressor and GPU compression kernels.

Compressor Fine-tuning. First, we refine our vector-based
LZ compression algorithm, distinguishing it from the original
LZ approach in two significant ways. @ Extended window
size: Traditional LZ algorithms typically opt for a relatively
small window size, like 4KB/8KB. However, given the longer
repeated patterns observed in DLRM applications, with lengths
ranging from 128-256 bytes (considering an embedding vector
length of 32/64 with 32-bit floating point data type), we
extend the window size to accommodate these patterns. @
Fixed pattern length: To minimize memory access and byte
comparison time, we introduce fixed-length pattern matching.
In contrast to the standard LZ process, which advances the
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pointer to the next byte in the absence of a match, our knowl-
edge of the repeated pattern length allows us to leap forward
many bytes in search of the next match, thereby avoiding
fruitless comparisons and pointer movements. If the initial
bytes of two embedding vectors differ, further comparison is
unnecessary. This optimization also forces the compressor to
match longer patterns rather than shorter patterns. Compared
to the current state-of-the-art (SOTA) GPU lossless compressor
nvCOMP-LZ4, our approach achieves 2.72x and 4.88 x higher
compression ratios on two datasets, respectively.

Buffer Optimization. Next, we implement multi-threading
to minimize memory copy overhead and speed up decom-
pression. Typically, compressors output compressed data to a
memory chunk and return a pointer, a versatile but overhead-
inducing solution. Given the all-to-all collective communica-
tion in DLRM training, where each data chunk must be com-
pressed separately for transmission to each rank, this method
introduces unnecessary memory copying since compressed
data may not be stored contiguously. Besides, launching
kernel multiple times introduces overhead of a lot of kernel
launching. To address these, we optimize our compressor
that not only introduces one kernel launching but also writes
directly to the sending buffer. Figure 7 shows the workflow of
compression and decompression in buffer optimization. In the
compression process, we involve synchronization and Atomic
Add to get the writing offset of each chunk. Furthermore, we
leverage multi-threading for compression and decompression,
partitioning the compressed data into multiple chunks for si-
multaneous processing. Although GPU compressors typically
achieve high resource utilization, some operations cannot fully
leverage GPU resources. Thus, executing multiple decompres-
sion kernels in parallel is faster than serial decompression.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

Platform, Software, and Dataset. Our experimental plat-
forms include a workstation with two NVIDIA A4000 GPUs
(16GB memory each) and an HPC cluster comprising 8 GPU
nodes. Each node of the cluster is equipped with 256 GB of
memory, a 64-core 2.0 GHz 225-watt AMD EPYC 7713 pro-
cessor, and four NVIDIA A100 GPUs (40GB memory each).
Experiments were conducted using PyTorch 2.0.1, CUDA
11.7, and NCCL 2.14.3. We employed the Criteo Ad Kaggle
dataset [22] and the Criteo Terabyte dataset [23] for our
experiments. They feature 13 continuous and 26 categorical
features, totaling about 45 million samples over 7 days.

Baselines. To evaluate our design, we compare it against
three baselines that focus on reducing communication data
volume: @ The open-source release version of DLRM [1],
serving as the original DLRM training baseline. ® The low-
precision approach, is a straightforward method to reduce
communication data volume. Various works [24, 25] have
demonstrated the feasibility of DLRM training with FP8 data
type, making this approach a SOTA solution for reducing
communication overhead. ® We also use nvCOMP [26], a
software developed by Nvidia that integrates several SOTA
lossy and lossless compressors, as a baseline. We compare the
compression ratio and throughput between nvCOMP and our
optimized compressor.

EMB Tables Classification. We apply our proposed Ho-
mogenization Index to classify embedding tables into three
categories, as detailed in Table II. These categories correspond
to large, medium, and small error bounds, denoted as L, M,
and S, respectively. In Table IIT and Table IV, we select some
representative EMB Table to show how Homo Index ranking
achieves EMB Table Classification.

B. Evaluation of Error Bound Adjustment Strategy

To assess the effects of lossy compression on model ac-
curacy, we evaluate the model prediction accuracy of our
training method compared with original DLRM training using
both FP32 and FP16 precisions, alongside a SOTA low preci-
sion approach employing 8-bit quantization. Current standards
deem an accuracy loss within 0.02% as acceptable in produc-
tion models [27].

Figure 8a and figure 8b display a comparison of accuracy
convergence curves and accuracy delta curves across these
methods, respectively. Through extensive experimentation, we
determine and apply a suitable fixed global error bound (i.e.,
0.02) for each model to guarantee convergence. On the two
datasets we utilized, the average prediction accuracy losses are
0.0031% and 0.0042%, respectively.

Table-wise Error Bound Adjustment. Next, to evaluate
the effectiveness of our table-wise error bound adjustment
strategy, we evaluate the model prediction accuracy and com-
pression ratio throughout the training process, comparing the
use of a fixed global error bound against tailored error bounds
for different embedding tables.



TABLE 1I: Classification of EMB tables on test datasets.

EMB ID o112 |3 |4 |5|6 |7 |89 |10 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25
Kaggle M M|S|S M| M M|M|IL|S| M|SI MM M|S|L|{M{M|L|S|L|L|S|L]|S
Terabytes | S | M| M| M| M|L | M|{M|L|S|S|M|L| M|M|L|L|L|L|S|S|S|S|M|L|L

TABLE III: Ranked Homo Index on Criteo Kaggle dataset.

# Quant.

TB.ID  EB. A £QUant pachsize  Homo Index
20 001 110 68 128 0.618182
11 001 110 69 128 0.627273
2 001 110 73 128 0.663636
15 001 108 76 128 0.703704
3 001 103 86 128 0.834951
23 001 84 77 128 0.916667
25 001 67 63 128 0.940299
0o 001 19 19 128 1
1 o001 6 61 128 1

TABLE IV: Ranked Homo Index on Criteo Terabytes dataset.

TAB.ID EB. phQM. #Quant  paichsize  Homo Index
0 0.005 1055 484 2048 0.458768
19 0.005 1072 576 2048 0.537313
21 0.005 1042 623 2048 0.597889
9 0.005 1025 621 2048 0.605854
20 0.005 937 795 2048 0.848453
1 0.005 983 983 2048 1
2 0.005 1302 1302 2048 1
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Fig. 8: (a) Accuracy and (b) delta accuracy (versus baseline) with
different compression methods.

As illustrated in Table II, embedding tables are classified
into three categories according to their Homogenization In-
dex scores, with assigned error bounds of 0.01, 0.03, and
0.05, respectively. The accuracy evaluation, detailed in Figure
9a, reveals that our approach, which applies specific error
bounds to different tables rather than a uniform global error
bound, maintains the model’s accuracy intact. Additionally,
this method achieves a higher compression ratio, up to 1.21x
on the Criteo Kaggle dataset, compared to the fixed global
error bound strategy.
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Fig. 9: Accuracy and compression ratio of our method with proposed
table-wise EB configuration strategy on different datasets. e.g. sub-
graph(b) represents compression ratio on embedding table 0

Error Bound Decay Strategy. Furthermore, to evaluate the
effectiveness of our error bound decay strategy, we compare
model prediction accuracy and compression ratio throughout
the training process using two distinct day approaches: a more
aggressive method that abruptly reduces the error bound at a
predetermined moment and a gradual approach that decreases
the error bound according to a decay function.

As we discussed in III-C. This experiment’s results of
different compressors led us to employ the step-wise function
for comparison against the aggressive adjustment approach.
Comparative experiments illustrated in Figure 10 reveal how
the model training and compression ratios are affected when
the error bound is reduced from twice and three times the
conservative error bound down to the conservative error bound.

Our analysis indicates that while starting with a larger error
bound at the beginning of training and aggressively reducing
it can hinder model convergence, a gradual decrease promotes
convergence. The comparison of compression ratios clearly
shows that, compared to a sharp reduction, our error bound
decay strategy allows for starting from a much larger error
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bound, which is then gradually reduced over time. As a
result, this approach yields further 1.09x and 1.03x higher
compression ratios (i.e., 1.32x and 1.06x over the fixed global
error bound solution) on Criteo Kaggle and Criteo Terabytes
datasets, respectively, delivering more significant benefits.
Based on our evaluations, we choose LargeEB: 0.05, Medi-
umEB: 0.03, SmallEB: 0.01, Decay Func: stepwise as the
optimal error bound configuration for subsequent evaluations.

C. Evaluation on Compression Performance

In this section, we evaluate the overall compression perfor-
mance including compression ratio and throughput of different
compressors on different DLRM datasets and models.

Overall Compression and Communication Performance.
Figure 11 illustrates the average compression ratio and
throughput during DLRM training. Each sub-graph’s left bars
depict the average compression ratio of each compressor for a
given dataset, while the right bars display each compressor’s
throughput of compression and decompression. As afore-
mentioned, our hybrid compressor includes two compression
algorithms: our vector-based LZ compression algorithm and
our optimized entropy compression algorithm.

The results indicate that, for the datasets utilized in DLRM
training, our hybrid compressor outperforms other compres-
sors in terms of compression ratio and achieves exceptionally
high throughput. It reaches an overall 11.2x and 19.9x
compression ratio on Criteo Kaggle and Criteo Terabytes,
respectively. Our two proposed compressors, vector-based LZ
can reach 40.5GB/s in compression, and 205.4GB/s in decom-
pression, while the optimized entropy compressor can reach
78.4GB/s in compression, and 38.9GB/s in decompression.
Compared to the SOTA lossless compressors nvCOMP LZ4
our compressor achieves a compression ratio 5.3x and 8.1x
higher on two datasets respectively. The other SOTA nvCOMP
Deflate achieves a similar compression ratio to nvCOMP LZ4
but compression and decompression throughput are 30.1GB/s
and 109.7GB/s. The SOTA lossy compressor FZ-GPU [28]
has the highest throughput which is over 136GB/s in both
compression and decompression, since it relies on a very fast
encoder (i.e., bitshuffle and sparse encoding) [28]. However,
its compression ratio is significantly lower than our hybrid
compressor attained, leading to a greater overall speedup in
end-to-end communication.

As shown in Figure 11, our proposed hybrid compressor
achieves a 6.22x and 8.6x speedup for two different datasets
in all-to-all communication, surpassing all other approaches
when all-to-all communication throughput is 4GB/s.

DLRM End-to-end Performance Speed-up Figure 12
shows the breakdown of DLRM training with lossy compres-
sion on our cluster with 32 A100 GPUs. Our compression
accelerates all-to-all communication in forward propagation
which takes 31.3% proportion of the whole training time. On
the Criteo Kaggle dataset, our proposed compressor achieves
6.22x overall speed-up in communication and 1.30x in end-
to-end training, by reducing all-to-all in forward propagation
cost to 5.03%. On the Criteo Terabytes dataset, our compressor
achieves 8.6 and 1.38 in all-to-all communication and end-
to-end training, respectively.
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Fig. 12: Breakdown of optimized end-to-end DLRM training time on
different DLRM datasets.



TABLE V: Compression ratio of different compressors on the two datasets (left: Criteo Kaggle, right: Terabytes). Bolded numbers indicate

the highest compression ratios among compressors.

] +
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ng N 5} 085 o 234 Eis £58
T 3 o = = M—D_D
me 3 h 325 32 &2N 83 2652
0 240/ 6.40 584/ 5.14 7.58/ 14.94 8.74/ 10.94 587/ 1.62 6.32/ 1.67 8.74/ 14.94
1 240/ 9.90 6.45/ 7.70 396/ 593 1120/ 21.44 190/ 1.30 205/ 1.34 1120/ 21.44
2 234/ 867 537/ 7.28 4.46/ 4.47 9.44/ 17.18 111/ 1.1 147/ 118 9.44/ 17.18
3 230/ 6.53 533/ 5.87 401/ 16.44 8.78/ 10.13 119/ 3.69 127/ 3.44 8.78/ 16.44
4 253/ 6.64 622/ 598  12.96/ 10.49 8.68/ 1065  10.23/ 246 1065/ 242 1296/ 10.65
5 2.39/ 12.34 6.05/ 9.87 9.90/915.47 9.81/ 11.03  12.86/ 67.84  13.71/ 41.44 9.90/915.47
6 250/ 8.38 6.99/ 7.15 3.88/ 4.87  14.03/ 16.02 1.08/ 1.20 116/ 125  14.03/ 16.02
7 245/ 677 6.13/ 6.07 9.96/ 9.38 8.67/ 11.30 816/ 2.17 8.61/ 2.07 9.96/ 11.30
8 281/ 833 892/ 6.84  41.92/12477 1005/ 13.46  37.55/ 16.81  34.06/ 11.68  41.92/124.77
9 223/ 6.22 4.93/ 5.09 4.07/ 11.77 7.55/ 10.31 132/ 163 142/ 1.68 7.55/ 11.77
10 248/ 6.07 6.84/ 5.18 3.87/ 934 1328/ 9.51 115/ 1.98 124/ 197  13.28/ 9.51
1 234/ 9.14 530/ 6.82 455/ 8.03 9.28/ 18.69 112/ 1.31 119/ 1.38 9.28/ 18.69
12 248/ 7.32 6.73/ 6.37 3.87/188.52  13.47/ 11.50 119/ 20.84 1.28/ 1359  13.47/188.52
13 2.38/ 7.40 575/ 6.33 9.74/ 25.54 9.51/ 10.67 968/ 592 1029/ 5.83 9.74/ 2554
14 256/ 875 7.33/ 7.33 3.88/ 648 1527/ 17.94 114/ 155 122/ 154 1527/ 17.94
15 235/ 7.83 548/ 6.51 4.23/ 70.26 9.70/ 12.16 114/ 12.76 1.20/ 9.9 9.70/ 70.26
16 241/ 752 6.38/ 6.35 8.09/338.78  10.49/ 11.26  10.80/ 36.04  11.53/ 2506  10.49/338.78
17 247/ 8.08 6.66/ 6.47 3.88/ 41.66 1277/ 12.44 134/ 8.43 144/ 721 1277/ 41.66
18 244/ 781 6.25/ 6.49 8.31/136.59 9.40/ 11.67 4.63/ 18.32 4.94/ 12,53 9.40/136.59
19 246/ 6.35 651/ 522 1372/ 1372 1062/ 11.05 1862/ 1.61 1993/ 1.66 1372/ 13.72
20 2.37/ 6.00 542/ 5.8 451/ 9.00 9.93/ 9.58 113/ 1.69 1.20/ 173 9.93/ 9.58
21 266/ 6.31 668/ 511 2150/ 11.81 1087/ 1067 1923/ 162 1913/ 167 2150/ 11.81
22 246/ 6.24 6.48/ 5.15 840/ 1259 1181/ 915 1040/ 273 1111/ 278 8.40/ 12.59
23 221/ 819 508/ 7.03 399/ 475  12.59/ 15.25 143/ 1.18 153/ 128 1259/ 15.25
24 249/ 778 6.95/ 6.58 7.21/110.97 1203/ 12.63 7.32/ 16.30 7.87/ 11.67  12.03/110.97
25 225/ 7.59 509/ 6.46 527/ 80.88  12.08/ 12.69 2.09/ 13.09 223/ 961  12.08/ 80.88
avg 242/ 742 6.09/ 6.22 573/ 1250  10.45/ 12.06 210/ 247 225/ 247 1119/ 19.89
Compression Performance across Embedding Tables. Table 1
Furthermore, we outline the compression ratios our com- 25000 1 # fnique EMB Vector: 2
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compression ratios for various compressors across different <000
embedding tables. We can draw three key observations from
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this result. Firstly, the compression ratios for all compressors -010 -0.05 0.10

vary significantly across embedding tables, underscoring the
importance of choosing a compressor that’s well-suited for
each specific table. Secondly, our optimized vector-based LZ
algorithm excels with certain embedding tables, while its per-
formance on others is less impressive. Lastly, the performance
trends of our optimized entropy-based compressor and the
vector-based LZ algorithm appear to be in stark contrast.

We employ data sampling to shed light on the substantial
variance in compression ratios among different embedding ta-
bles. Figure 13 illustrates the matched pattern number and data
distribution for two representative tables from the Terabytes
dataset. The data histogram reveals that EMB Table 1 exhibits a
highly concentrated Gaussian distribution, whereas EMB Table
5 displays a broad dispersion of data with similar frequencies.
This distinction in data entropy explains the higher compres-
sion ratio achieved with the Huffman encoder for EMB Table
1. Due to the limited unique embedding vectors in EMB
Table 5, the likelihood of LZ encoder matching patterns is
significantly high, resulting in a superior compression ratio.
The marked difference in the number of matched patterns
elucidates why the LZ encoder outperforms embedding tables
like EMB Table 5.

(a) Sampled Batch of EMB Table 1
Table 5
# UniqueﬁMB Vector: 964
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(b) Sampled Batch of EMB Table 5
Fig. 13: Data features of two representative EMB tables.

Compression Performance across Training Phases. Based
on Figures 9b and 10b, we observe that our compressor
performs effectively throughout all training phases, maintain-
ing a consistently high compression ratio. Implementing an
error-bound decay to enhance the quality of compressed data
results in only a slight decrease in the compression ratio.
This stable compression ratio can be attributed to two main
factors. Firstly, the Vector-based LZ encoder, which relies
on pattern matching, maintains its effectiveness due to the
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TABLE VI: Compression ratio improvement of fine-tuned LZ encoder
with different window sizes.

Window Size 32 64 128 255
Criteo Kaggle 1x 221x 3.89x 5.23x
Criteo Terabytes 1x  1.47x  1.52x 1.54x

presence of identifiable patterns in each batch, a factor that
remains constant regardless of the training phase. Secondly, the
uniformity in data distribution across the training, as depicted
in Figure 14, ensures consistent compression performance.

D. Evaluation of Compression Optimization

Finally, we evaluate the performance of our optimized
compression compared to the non-optimized solution.

LZ Fine-tuning. First, we evaluate our optimized com-
pressor with different LZ fine-tuning window sizes. Table
VI shows the compression ratio and throughput on DLRM
data with varying window sizes. Generally, larger window
sizes result in more pattern matches. For the Criteo Terabyte
dataset, we observe that the overall compression ratio with
the window sizes of 128 and 255 are 3.9x and 5.2x higher,
respectively, compared to the baseline window size of 32.
On the Criteo Kaggle dataset, the difference between the
window sizes of 128 (1.52x) and 255 (1.54x) is negligible.
In instances of small batch sizes, our vector-based LZ is
less beneficial with the increase in window size. This is due
to the proportion between the sliding window size and the
volume of data. In the model of the Criteo Kaggle dataset,
for example, BatchSize is 128 by default and can be fully
covered by one sliding window. The scaled compression ratios
of the Criteo Terabyte dataset demonstrate that increasing the
window size does not linearly increase the compression ratio.
This phenomenon is attributed to the unbalanced frequency
of queries. EMB vectors with very high frequency can be
matched with an appropriate window size, whereas EMB
vectors with low frequency require a window size that exceeds
hardware limitations and is inefficient.

Buffer Optimization. Second, we evaluate our buffer op-
timization in both compression and decompression processes.
We split the EMB vectors into chunks, with the number of
chunks equal to the RANK in distributed training, which
reflects the scalability of the training process. Figure 15
illustrates the compression speedup across different EMB
vector sizes, with the number of chunks ranging from 2 to
16. The term ’single_comp’ denotes our solution. The results
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Fig. 15: Normalized time of our work with and without buffer
optimization for different EMB vector sizes. ‘single_comp*‘ denotes
our solution, while the chunk number indicates how many chunks
the original EMB vector is equally partitioned and compressed.

indicate that our design achieves higher speedups with an
increased number of chunks. According to our evaluation, our
optimizations achieve a maximum speedup of 2.04x.

Our proposed buffer optimization technique performed as
expected. When evaluating speed-up across different data
chunk sizes, we observed that with 8MB data blocks, the
performance is 1.86x better than with 64MB blocks. As
discussed previously, for limited data sizes, the volume of
an individual chunk is too small to achieve optimal GPU
utilization. The bottleneck in compression for these small
chunks arises from frequent kernel launches rather than from
the compression process or memory copying itself. Conversely,
for larger data volumes, the advantage of buffer optimization
becomes less significant because each chunk’s larger volume
allows the GPU to attain higher utilization, even when com-
pressing chunks sequentially.

V. RELATED WORK

A variety of research efforts have sought to expedite DLRM
training, generally falling into three categories: embedding
compression, embedding caching, and low-precision training.

Embedding Compression. Yin er al.’s TT-Rec [29] and
Wang et al.’s EL-Rec [20] utilize Tensor Train decomposition
to reduce memory consumption in Embedding Tables, aiming
to lessen resource usage in constrained environments. Despite
their advantages, these model-compression techniques face
challenges: firstly, they may not always ensure convergence
or maintain high model accuracy; secondly, they can introduce
significant computational overheads. Specifically, the recovery
of embedding vectors for each batch necessitates extra matrix



multiplications. Given the often long and narrow shape of
these matrices, such operations can prove highly inefficient
on GPUs. Furthermore, it is important to highlight that these
techniques are complementary to our approach. Essentially,
our method could be combined with model compression in
DLRM training to further enhance performance in scenarios
with limited resources.

Embedding Caching. Strategies like Pattern-Aware Sparse
Communication by He et al. [30], cDLRM by Balasubrama-
nian et al. [31], and a heterogeneous SmartNIC system by
Guo et al. [32] aim to alleviate caching overhead. Unlike these
approaches that may require additional memory for data copies
or hardware support for caching, our compression technique
avoids extra storage demands for heterogeneous embedding
table access. Moreover, maintaining cache involves computa-
tional costs, such as updating cache entries and ensuring cache
coherence, which our method does not incur.

Low-precision Training. Exploring low-precision data
types, as proposed by Rouhani et al. with the new datatype
MX][27] and mixed-precision strategies by Yang et al.[33], is
another direction of research. These methods, though direct,
offer limited compression benefits due to their fixed com-
pression ratio and lack of fine-tuning capabilities, providing a
coarse granularity control over data compression. Our strategy,
in contrast, allows for a smooth adjustment of error bounds,
offering a more flexible and efficient solution to communica-
tion reduction in DLRM training.

General Compression-accelerated Communication. In
addition, several studies have explored leveraging compression
to boost communication speeds more generally. Zhou et al.
have contributed a series of works [34], [35] that empha-
size enhancing collective communication efficiency through
compression. Similarly, Ramesh er al. introduced Efficient
Pipelined Communication Schemes [36], aimed at minimizing
blocking time and maximizing bandwidth utilization.

Our approach, however, stands out from these efforts in
a couple of key ways. Firstly, unlike the aforementioned
studies, our method is tailor-made for DLRM applications,
incorporating adaptive error-bound adjustments that are absent
in general compression techniques. These general approaches
often provide a low-level interface that may prove challenging
to finely tune in real-world scenarios. Secondly, our compres-
sion algorithm is specifically optimized for DLRM training,
offering both higher compression throughput and ratios com-
pared to existing GPU compressors—Iet alone CPU compres-
sors, which generally deliver significantly lower throughput.
Overall, our method provides an integrated end-to-end solution
specifically for enhancing DLRM training communication,
unlike the general methods that only offer a compression-
accelerated communication library or tool without tailoring to
the specific needs of the application.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a method that employs error-
bounded lossy compression to reduce the communication data

size and accelerate DLRM training. We develop a novel error-
bounded lossy compression algorithm to achieve hybrid by
hybridizing our optimized LZ encoder and entropy encoder on
GPU. Moreover, we introduce a dual-level adaptive strategy
for error-bound adjustment, spanning both table-wise and
iteration-wise aspects, to balance the compression benefits
with the potential impacts on accuracy. We further optimize
our compressor for PyTorch tensors on GPUs, minimizing
compression overhead. The evaluation shows that our method
achieves an 8.6 all-to-all communication speedup and 1.38x
end-to-end training speedup with a minimal accuracy impact.

In the future, we plan to further refine our system to reduce
compression overhead by employing strategies like kernel
fusion on GPUs and seamlessly integrating (de)compression
processes with communication libraries such as NCCL. Addi-
tionally, we aim to develop a more advanced and automated
approach for offline selection of a fixed global error-bound
and for online error-bound adjustments.
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Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1  We develop a two-level adaptive strategy for error-
bound adjustment for different embedding tables and
training iterations. We aim to maintain relatively
large error bounds (for higher compression ratios)
while minimizing accuracy loss.

Cs  We develop a new hybrid compression method for
DLRM embedding lookups/vectors, including a new
LZ encoder and entropy-based Huffman encoder,
achieving a high compression ratio on specific data
domains.

Cs  We optimize our compression method on GPUs,
including parallel compression and decompression of
multiple tensors and compression algorithm param-
eter fine-tuning.

B. Computational Artifacts
Aj, A310.5281zenodo.13119688

Artifact ID  Contributions Related
Supported Paper Elements

A Cp Tables 1-2, 5
Figure 4, 8

Ay Cy Tables 3-4
Figures 5-6, 9-11

Ay Cs Tables 6
Figures 15

II. ARTIFACT IDENTIFICATION

A. Computational Artifact Aq
Relation To Contributions

See Table I-B for the relation among artifacts, contributions,
and related paper figures and tables.

Expected Results

This artifact will output DLRM training accuracy results
with lossy compression enabled. It will also output embedding
vectors in DLRM training.

Expected Reproduction Time (in Minutes)

Without data pre-processing, the end-to-end training times
of Criteo Kaggle and Criteo Terabytes datasets are 21 hours
and 70 hours, respectively. With data pre-processing, Criteo
Kaggle and Criteo Terabytes datasets need an additional 2
days and 7 days, respectively.

Artifact Setup (incl. Inputs)

Hardware: Storage: 50GB for the Criteo Kaggle dataset,
1.5TB for the Criteo Terabytes dataset.

CPU: no specific requirement.

RAM: 128GB for training, up to 1TB for faster pre-
processing.

GPU: 1 Nvidia A100(40GB) for Criteo Kaggle dataset, 2
Nvidia A100(40GB) for Criteo Terabytes dataset.

Software: Python@3.9.18, PyTorch@1.10.2, CUDA@11.7,
nvCOMP@3.02, nvecc@11.3.58, NCCL@2.10.3

Datasets / Inputs: There are two links for downloading two
open-source dataset we used. Criteo Kaggle, Criteo Terabyte.

Installation and Deployment: We prepared two installation
methods, a Singularity image and a build from source instruc-
tion. To use the Singularity image, reviewers should install
Singularity first, then download the pre-built image, and run
this image. To build from source, reviewers should install
Python, PyTorch, and CUDA first. Then they should build the
compressors we mentioned above.

Artifact Execution

A workflow may consist of two tasks: 77,75 and T53. The
task 77 will training DLRM with two-level adaptive error
bound lossy compression enabled. The task 75 will dump
embedding vectors during training to disk storage. The task
T3 will profile the training process.

Artifact Analysis (incl. Outputs)

Task 77 will output accuracy convergence curves with lossy
compression enabled. Task 75 will output original DLRM
embedding vector data in training. Task 75 will output the
overhead breakdown in DLRM training.

B. Computational Artifact As
Expected Results

This artifact will output compression evaluation results,
data features analysis results in DLRM embedding tables and
vectors, and optimized compressor evaluation results.

Expected Reproduction Time (in Minutes)

It takes about 5 minutes to produce per compression eval-
uation result with a parameter combination. It takes about 1
minute to produce the Homo Index result of one checkpoint. It
takes about 1 minute to produce data distribution of sampled
embedding tables. It takes about 5 minutes to produce the
results of compressor parameter fine-tuning and system opti-
mization. The total time is 50 minutes including compression
evaluation(30 minutes in total), Homo Index calculation(10
minutes in total), data distribution analysis(5 minutes in total),
and optimization on compressor(5 minutes).

Artifact Setup (incl. Inputs)

Inputs should dump embedding vector data from artifact A;.


https://zenodo.org/doi/10.5281/zenodo.13119688
https://www.kaggle.com/c/criteo-display-ad-challenge/data
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/

Hardware: CPU: no specific requirement. GPU: 1 Nvidia
A100(40GB) Storage: 5 GB

Software: Besides software we used in A;, we also
need compressors below: GPULZ(GPULZ), cuSZ(cuSZ), FZ-
GPU(FZ-GPU)

Datasets / Inputs: We applied dumped embedding vector
data in A; as input in this artifact.

Installation and Deployment: Same as A;.

Artifact Execution

A workflow may consist of three tasks: 77,75, and 73. The
task 77 will apply compressors on input data to calculate
compression ratio, compression throughput, and speed-up.
Task 77 will also make compressor selection based on speed-
up. The task 75 will calculate various data features including
distribution and Homo Index based on the input embedding
data. Task 75 will also do embedding table classification
based on these data features. The task 73 will apply different
compression parameters on the optimized compressor and
evaluate the performance of the compressor.

Artifact Analysis (incl. Outputs)

Task 77 will output the compression ratio and throughput
on embedding data with all compressors we used. Task 75 will
output data feature results, and embedding table classification
results. Task T35 will output performance improvement of fine-
tuning and optimized compressor.

Artifact Evaluation (AE)

A. Computational Artifact Aq
Artifact Setup (incl. Inputs)

We provide an image includes needed software of artifact
evaluation. Please install Singularity and run the image. To
get the dataset, please download two dataset via these two url,
Kaggle, Criteo-Terabytes.

Artifact Execution

There are two main tasks, the first one is to train DLRM
with adaptive lossy compression, the second one is to draw

accuracy curve with logs in first task.
Please use command to run singularity.

$ sudo singularity build sc24_dlrm.sif dlrm_image
$ sudo singularity shell --writable --nv dlrm_image

To train DLRM. Execute these commands.

$ bash SC_ADAE_scripts/kaggle_run.sh
$ bash SC_ADAE_scripts/tb_run.sh

To draw accuracy curve. Execute these commands.

$ python accuracy_parser.py
$ python accuracy_curve.py

Artifact Analysis (incl. Outputs)
The training log should be like.

Finished training it 1/3 of epoch 0, -1.00 ms/it, loss 0.451893, accuracy 0.000%
Finished training it 2/3 of epoch 0, -1.00 ms/it, loss 0.402002, accuracy 0.000%
Finished training it 3/3 of epoch 0, -1.00 ms/it, loss 0.275460, accuracy 0.000%

B. Computational Artifact As
Artifact Setup (incl. Inputs)

Same as A;. Should be executed after A;.
Artifact Execution

We use dumped data to do compression evaluation. First,
please run quantization script to introduce lossy error.

$ python python quantization.py EMB_file_path decay_stac

Then, please run lossless encoder script to apply different
lossless encoder based on lossy input.

$ python lossless_encoder.py

Finally, please run parser script to extract compression ratio
and throughput from compressors’ output log in previous step.
In
$ python

$ python
$ python

We also provide a jupyter-notebook file to generate raw
compression ratio. parser.ipynb will parse and generate raw
information.

huffman_parser.py
nvcomp_parser.py
gpulz_parser.py

Artifact Analysis (incl. Outputs)

The first step will generate quantized binary files. For exam-
ple, EMB_{emb_table}_iter_{iter}.bin.quan The second
step will generate compression logs with different compressor
as log files. The third step will generate averaged or raw
compression ratio and throughput as text files.


https://github.com/hipdac-lab/ICS23-GPULZ
https://github.com/hipdac-lab/cuSZ
https://github.com/szcompressor/FZ-GPU
https://www.kaggle.com/datasets/mrkmakr/criteo-dataset
https://ailab.criteo.com/download-criteo-1tb-click-logs-dataset/
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