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The rapid proliferation of complex information systems has been met by an ever-increasing quantity of
exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and
industry have placed a significant focus on proactively identifying and labeling exploits developed by the
international hacker community. However, prevailing approaches for labeling exploits in hacker forums
do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling
performance. In this study, we adopted the computational design science paradigm to develop a novel
information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL
incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention
mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-
EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep
learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based
on accuracy, precision, recall, and FI-score. Our proposed DTL-EL framework provides important
practical implications for key stakeholders such as cybersecurity managers, analysts, and educators.
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Introduction I

The rapid proliferation of new information technology (IT) in
recent years has created significant benefits for modern
society. Despite its usefulness, IT often possesses numerous
vulnerabilities that can allow unauthorized users unfettered
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access to an organization’s networks, systems, private data,
and other critical assets. Sophisticated hackers often develop
exploits (e.g., SQL injections, cross-site scripting, etc.) in
plain-text source code to execute cyber breaches (Samtani et
al., 2017). Each cyber breach is estimated to cost an average
of $7,910,000 to an organization (Sun et al., 2020). This cost
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underscores the importance for organizations to proactively
identify exploits. To this end, organizations are increasingly
investing in cyber threat intelligence (CTI) capabilities to
detect emerging exploits (Wagner et al., 2019).

To develop proactive CTI, academia and industry are
increasingly examining openly accessible exploits in major
international hacker forums, exploit darknet markets (DNMs),
and public exploit repositories (Samtani et al., 2020). Hacker
forums are large discussion boards that provide freely
accessible exploits developed by the large and evolving
international hacker community. These forums often contain
millions of user-generated posts and span multiple geopolitical
countries and regions such as Russia, the United States, the
Middle East, and others. Exploit DNMs allow hackers to share
and sell highly specialized exploits (e.g., 0-days). While less
common than in hacker forums, the exploits found within
exploit DNMs are more sophisticated than those found in
hacker forums. Public exploit repositories are collections of
exploits manually labeled and vetted by industry professionals
and CTI experts. These repositories are more common than
exploit DNMs and provide more exploit details (e.g., attack
type, common vulnerabilities and exposures, etc.) than hacker
forums. Sample exploits from a hacker forum, an exploit DNM,
and a public exploit repository are shown in Figure 1.

Hacker forum posts with exploit source code (top left of
Figure 1) often lack a clear exploit label (i.e., category). In
contrast, exploit DNMs (top right of Figure 1) and public
exploit repositories (bottom middle of Figure 1) offer a rich
set of metadata and clear exploit labels (e.g., local, web). A
recent CTI report from the renowned SANS Institute
indicated that cyber analysts at leading CTI companies
require assistance in identifying, collecting, and analyzing
unknown exploits from hacker communities to proactively
develop knowledge about hacker capabilities (Brown & Lee,
2021; Newman, 2020). This is partly in response to the Mirai
malware that caused widespread damage across the United
States. The source code for Mirai was posted on a hacker
community platform two months before its large-scale usage
(Yue et al., 2019). These attacks show that hacker forum
posts can be a valuable source for identifying precursors to
attacks and require up-to-date monitoring. However, most of
the exploits found in hacker forums are unlabeled (Ampel et
al., 2020). Unlabeled exploits can often prevent cyber
analysts from identifying the specific tactics and strategies
of hackers and stymie the production of timely and relevant
CTI (Tounsi & Rais, 2018). Extant procedures to label
exploits are currently manual, which is a time-consuming
and nontrivial process (Wagner et al., 2019). Cyber analysts
frequently cite these manual processes and high workloads
as their primary challenges, leading to burnout and turnover
(Agyepong et al., 2020). Automating the exploit labeling
process can reduce manual processes and provide cyber
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analysts with tactical, strategic, and operational CTI
capabilities. We present selected benefits that exploit
labeling can provide to each CTI type in Table 1.

Tactical CTI is the techniques, tactics, and procedures used
by threat actors (Wagner et al., 2019). Providing clear labels
to hacker forum source code allows cyber analysts to quickly
organize discovered exploits, operationalize them, and
discover the capabilities of threat actors. For example, once
a cyber analyst knows a set of exploits are SQL injections
(as opposed to other exploits), the analyst can build a secure
copy of their IT (e.g., a virtual machine with an SQL server),
conduct targeted penetration testing with the labeled
exploits, and identify suitable mitigations and cyber-
defenses against the successfully executed exploits. This
hacker emulation is known as red teaming and is essential to
modern cybersecurity practices (Alomar et al., 2020). From
an operational CTI perspective, labeled exploits can help
cyber analysts monitor new exploits posted on hacker
forums and choose relevant exploits to investigate further in
a targeted fashion (Tounsi & Rais, 2018). This operational
CTI can be combined with tactical CTI and external
resources (e.g., SANS CTI reports) to strengthen cyber-
systems against specific attacks (e.g., Mirai malware). For
example, SANS CTI reports may link web application
exploits to a specific advanced persistent threat group. An
analyst can use the combined information of newly labeled
exploits and known strategies employed by that APT group
to select the appropriate system-hardening strategies. From
a strategic perspective, exploit labels allow senior officials
to identify attack trends (e.g., how exploits rise or fall over
time) in a timely fashion such that they can make the
appropriate security investments (Tounsi & Rais, 2018).
Moreover, such information can be integrated into cyber-risk
assessment models to create proactive, preventive, and
dynamic insights that facilitate effective cybersecurity
investments (Shin & Lowry, 2020).

In this study, we adopted the computational design science
paradigm (Rai, 2017) to develop a novel deep transfer
learning exploit labeler (DTL-EL) framework that leverages
the rich metadata and large quantities from exploit DNMs
and public exploit repositories (source domain) to
automatically label each exploit’s source code found in
hacker forums (target domain). The proposed framework is
based on deep transfer learning (DTL), a prevailing
approach in cybersecurity analytics and CTI literature in IS.
DTL can transfer knowledge from a large and labeled source
domain to improve model performance when the target
domain is not large or rich enough to create a fit model
(Zhuang et al., 2020). DTL has particular value in CTI
applications that do not often have rich labeled datasets, such
as hacker forum analysis (Samtani et al., 2020).
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Figure 1. Examples of Posts with Exploits from: (a) a Hacker Forum, (b) an Exploit DNM, and (c) a Public

Exploit Repository

Table 1. Selected Benefits of Exploit Labeling for CTI

CTI type Selected benefits of exploit labeling References

Tactical Improved profiling and operationalization of hacker capabilities to guide cyber- Wagner et al., 2019
defense strategies, including red-teaming exercises

Operational | Automated real-time statistics and threat prioritization to guide internal control Brown & Lee, 2021
implementations

Strategic Trend analysis of emerging exploits and hackers for executives and security Tounsi & Rais, 2018
managers to more effectively make security investments

Moreover, recent information systems (IS) cybersecurity
research has shown the applicability of deep transfer
learning (DTL) for CTI, where a model trained on a larger
labeled source domain (English darknet market postings)
provided significant benefits to three smaller target domain
models (Russian, French, and Italian darknet market
postings) (Ebrahimi et al., 2022). In addition to DTL, the
proposed DTL-EL framework also incorporates several
state-of-the-art methods in deep learning (DL) and attention
mechanisms that were carefully designed for exploit
labeling. First, DTL-EL includes a bidirectional long short-

term memory (BiLSTM) with its hidden and cell states pre-
initialized with the titles of professionally vetted exploits in
exploit DNMs and public exploit repositories. The pre-
initialization design emulates how a cybersecurity
professional reads the title of an exploit before examining its
source code. Second, DTL-EL transfers the pre-initialized
BiLSTM model’s learned representation of the source
domain dataset (i.e., exploit DNMs and public exploit
repositories) to help label exploit source code in hacker
forums (target domain). Third, the DTL-EL incorporates a
self-attention mechanism to identify and capture semantic
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and long sequential dependencies within the exploit source
code to improve DTL-EL’s performance. Consistent with
the guidelines of the computational design science paradigm,
we rigorously evaluated the proposed DTL-EL with a series
of benchmark experiments (Rai, 2017). The DTL-EL
framework can help future IS researchers execute targeted
cybersecurity analytics on exploit labeling, trend analysis,
real-time monitoring, and other critical CTI tasks.

This paper is organized as follows. First, we review IS
cybersecurity analytics research, computational design
science guidelines, and hacker-forum exploit analysis
literature. Second, we identify research gaps from prior
literature and pose research questions. Third, we present
DTL-EL’s methodological foundation by reviewing the
BiLSTM with attention mechanism and DTL. Fourth, we
describe the proposed DTL-EL. Fifth, we present the results
of our experiments. Sixth, we summarize our proposed DTL-
EL’s practical implications and contributions to the IS
knowledge base. Finally, we conclude this research and
discuss potential future directions.

Literature Review I

IS Cybersecurity Analytics Literature and
Computational Design Science Guidelines

IS scholars have made remarkable advances in cybersecurity
analytics research in recent years. We summarize selected
recent cybersecurity analytics literature published in
prevailing IS journals in Table 2. For each study, we
summarize the year of publication, author(s), cybersecurity
focus, whether the approach was multi-dataset or not,
analytical method(s), and if a system or UI was built to
present the analytical results.

Most prior cybersecurity analytics studies have examined
hacker forums to proactively identify, detect, and mitigate
cyber threats (Benjamin et al., 2019; Ebrahimi et al., 2020;
Samtani et al., 2017; Yin et al., 2019; Yue et al., 2019).
Earlier cybersecurity analytics traditionally relied on
classical machine learning (ML) or text mining methods
(Benaroch, 2018; Karhu et al., 2018; Samtani et al., 2017;
Sen et al., 2020; Yin et al., 2019), while more recent studies
have leveraged the DL-based BiLSTM to automatically
extract feature representations (i.e., embeddings) from the
inputted hacker forum post content (Ebrahimi et al., 2022;
Samtani et al., 2022). Despite providing timely contributions
to our understanding of hacker forum content, most studies
do not conduct the critical CTI task of assigning a specific
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label to each exploit within hacker forums. Additionally,
researchers rarely embed their algorithm(s) into a system or
UL Consequently, CTI researchers or practitioners may have
difficulty leveraging a cybersecurity analytics IT artifact for
their cyber-defense workflow and CTI tasks (Samtani et al.,
2017; Silic & Lowry, 2020).

Designing a novel IT artifact for a high-impact societal
application (e.g., hacker exploit labeling) requires a
principled approach. Past IS cybersecurity analytics
literature has leveraged the computational design science
paradigm (Hevner et al., 2004; Rai, 2017) to guide and
ground their work. The computational design science
paradigm provides IS scholars with three concrete
guidelines to design and evaluate novel algorithms,
computational models, and systems for advanced data
analytics applications (Rai, 2017). First, the IT artifact’s
design can be inspired by key domain requirements or data
characteristics. In a recent example within extant
cybersecurity analytics literature, the webpage structure
from DNMs guided the design of a novel transductive
support vector machine (SVM) (Ebrahimi et al., 2020).
Second, IS scholars should demonstrate the novelty of their
design by comparing the quantitative performance (e.g.,
accuracy, precision, recall, F1-score) of their proposed IT
artifact against well-established baseline methods. Finally,
the IT artifact should contribute back to the IS knowledge
base. Contributions can include a situated implementation
of the IT artifact (e.g., user interface) and/or nascent design
theory (e.g., design principles) (Rai, 2017). Executing each
guideline requires understanding the application for which
the artifact is being developed. For this study, we identify
what data characteristics have been used to analyze hacker
forum exploits.

Hacker Forum Exploit Analysis

Hackers use forums, carding shops, DNMs, and internet-
relay-chat (IRC) to share goods (e.g., credit cards) and assets
(e.g., exploits) (Benjamin et al., 2019). Hackers freely post
tens of thousands of assets in forum posts, making them a
viable and attractive data source for developing CTI
(Samtani et al., 2017; Yue et al., 2019). Moreover, assets
found within hacker forums (e.g., exploits) have been used
in recent cyberattacks (Samtani et al., 2020). As a result, a
growing body of literature aims to explore and categorize
exploits in hacker forums. We summarize selected recent
literature analyzing exploits in hacker forums in Table 3.
Each study is summarized based on the year, author(s),
objective, data source, the data type used, analytics, and
identified exploits.
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Table 2. Summary of Selected Recent IS Cybersecurity Analytics Literature

Year | Author(s) Cybersecurity focus Multi- Analytical method(s) | System
dataset? or UI?

2022 | Samtani et al. Exploit-vulnerability linking Yes DSSM with BILSTM No

2022 | Ebrahimi et al. Detecting hacker assets in multilingual hacker forums | No GAN with BILSTMs No

2020 | Ebrahimi et al. Identifying threats in DNMs No Transductive SVM No

2020 | Senetal. Quantifying the impact of cyberattacks on software No Regression No
markets

2020 | Silic & Lowry Improving organizational security No HMSAM Yes

2019 | Yueetal. Correlating DDoS mentions in hacker forums and DdoS | Yes LDA, dynamic panel No
victims fixed effects

2019 |Yinetal. De-anonymization of blockchain transactions amongst | No Gradient boosting No
criminals classifier

2019 | Benjaminetal. | Darknet predictive analytics No OLS Regression No

2018 | Benaroch Proactively mitigating risk for cybersecurity investments | No Real options model No

2018 | Karhuetal. Opening digital platforms while protecting them from Yes Resource-based View | No
exploitation

2017 | Samtani et al. Code classification in hacker forums No LDA, SVM Yes

Note: Ul = user interface; BILSTM = bidirectional long-short term memory; COC = convention on cybercrime; DdoS = distributed denial of service;
DSSM = deep structured semantic model; GAN = generative adversarial network; HMSAM = hedonic-motivation system adoption model; IRC =
internet-relay-chat; LDA = latent Dirichlet allocation; OLS = ordinary least squares; SVM = support vector machine.

Table 3. Selected Recent Literature Analyzing Exploits in Hacker Forums

Year | Author(s) Objective Data source Data type used Analytical Identified exploits
method(s)

2021 | Zhao et al. Attack event Hacker forums Post content, SNA DoS, overflow,
prediction attachments SQLi

2019 | Schafer et al. Trend Hacker forums Titles, users, posts, SNA, LDA Leaks, botnets,
identification topics, keywords DdoS

2019 | Benjamin et al. | Darknet Hacker forums Post content, OLS Rootkit, XSS, SQLi,
identification, attachments, code, DdoS, drive-by
collection keywords, reputation

2018 | Williams et al. | Exploit Hacker forums Posts content, LSTM Keyloggers, DdoS
categorization attachments

2018 | Goyal et al. Cyberattack Hacker forums, Post content, tweets, LSTM, RNN Trojan, phishing
prediction Twitter, blogs blogs

2018 | Deliu et al. Exploit Nulled.IO leak Post content SVM, CNN Botnet, crypter,
categorization keylogger

2017 | Samtani etal. | Exploit Hacker forums Post content, authors, | LDA, SVM Crypters,
categorization source code keyloggers

Note: CNN = convolutional

injection; SVM = support vector machine; XSS = cross-site scripting

neural network; DdoS = distributed denial of service; LDA = latent Dirichlet allocation; LSTM = long-short term
memory; OLS = ordinary least squares; RNN = recurrent neural network; SNA = social network analysis; SQLi = structured query language
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Most hacker-forum exploit analytics studies have analyzed the
post content, which often contains significant jargon,
surrounding an exploit’s source code to categorize posts into
broad categories (e.g., botnets, keyloggers, malware). Similar to
IS cybersecurity analytics literature, earlier studies (2017-
2018) often used classical ML (e.g., SVM) based on their tasks
(Deliu et al., 2018; Samtani et al., 2017). Since classical ML
approaches rely on a manually defined set of features (which is
labor intensive and time-consuming to construct), scholars in
recent years have relied on the DL-based LSTM or BiLSTM for
their tasks (Goyal et al, 2018; Williams et al.,, 2018).
Irrespective of the analytical method, past studies have not
examined how to assign a specific label to each exploit in
hacker forums based on its source code or the metadata (e.g.,
exploit titles) in exploit DNMs or public exploit repositories.

Research Gaps and Questions I

We identified several research gaps from prior literature. First,
past studies analyzing exploits in hacker forums primarily
analyze post content and often omit source code. However,
source code contains significant, often precise, syntax and
information (e.g., function names, exploit actions, etc.) that is
not in natural language (Nufiez-Varela et al., 2017). Second,
hacker-forum exploit source code is nontrivial to categorize, as
it often lacks clear exploit labels and metadata (e.g., informative
titles). Additionally, prevailing DL-based methods (e.g.,
LSTM, BIiLSTM) used for hacker forum analysis were
designed for natural language and often struggle to capture long
semantic relationships (e.g., dependencies) within exploit code.
Finally, despite containing professionally vetted exploits, rich
metadata, and overlapping hacker content, exploit DNMs and
public exploit repositories have not been leveraged in a multi-
dataset model to help label hacker forum exploits. Based on
these research gaps, we pose the following research questions:

How can we extend a BIiLSTM model to capture the long
semantic dependencies found within exploit source code?

How can we transfer the knowledge from metadata-rich exploit

DNMs and public exploit repositories to help label exploits in
hacker forums based on their source code?

Methodological Foundation I

To set the methodological foundation for this work, we first
review the BiLSTM with attention model. BiLSTM is the
prevailing algorithm for DL-based hacker community text
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analytics (Ebrahimi et al., 2022, 2018) and other text
classification tasks (Thangaraj & Sivakami, 2018). In the
following subsections, we review DTL as the prevailing
approach for transferring knowledge from an information-rich
source domain (e.g., exploit DNMs and public exploit
repositories) to a target domain (e.g., hacker forums).

Bidirectional LSTM (BiLSTM) with Attention
Model

The BiLSTM improves upon other popular DL-based text
classification models (e.g., LSTM, GRU, RNN) by using
hidden states (working memory) with past and future contexts
of the input tokens to make a prediction (Yenter & Verma,
2017). The state-of-the-art BiLSTM for text classification
incorporates a convolutional layer and an attention
mechanism to capture local correlations of temporal structures
and long-range phrases with sequential dependencies (Liu &
Guo, 2019). A single LSTM cell within the BiLSTM with
attention model is presented in further detail on the bottom left
and bottom right, respectively, of Figure 2.

The BiLSTM with attention model first converts a textual
input into word embeddings for input into a convolutional
layer. The convolutional layer extracts contextual and
sequential features from the embeddings to learn local and
latent representations of the input. The BiLSTM layer
processes the features and concatenates the results of the

forward (E;) and backward (E) hidden states to output a

single hidden state, h; = [(h_t hT]T at each time step (t). The
same process also occurs with the BiLSTM cell states to
output a single matrix, C; (long-term memory). In an untrained
model, the forward and backward LSTM cell and hidden
memories are initialized to zero (C;,—o = 0 and h;—, = 0) and
updated over time (t). However, using the final E, E, E;, and
a of a BILSTM model to pre-initialize the starting hidden and
cell state weights of a subsequent BiLSTM model can reduce
error to improve model performance (Elsheikh et al., 2019).

In a BiLSTM with attention, the attention weight matrix takes
the hidden states H = (hy, h,, ... h,,) as input and calculates a
weighted sum for each hidden state. The weighted sum
extracts the most informative hidden states to represent the
input sequence, which can be used as input into another layer
for subsequent tasks (e.g., classification). Attention
mechanisms operate with a query and a set of key-value pairs.
The query determines which aspects of the input embedding
the attention mechanism will attend according to the weighted
sum of the values and their corresponding key-value pairs.
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Figure 2. BiLSTM with Attention Mechanism (Adapted from Liu & Guo, 2019)

Currently, three categories of attention mechanisms can be
incorporated into a BiLSTM: (1) hard attention, (2) soft
attention, and (3) self-attention. Hard attention focuses on part
of the input (Luong et al., 2015), while soft attention focuses on
the entire input space and learns weights for all input features
(Bahdanau et al., 2014). Hard attention and soft attention are
often used when a parallel corpus is available (e.g., machine
translation). Self-attention mechanisms relate to various
positions of the same input sequence, finding the context vector
between each value of an input, and applying a weight. When
the dataset has one long-sequence input, the hidden state matrix
H from the prior layer is linearly projected into a query (Q), key
(K), and value (V) (Vaswani et al., 2017). Dot-product
multiplication operations are applied to each to create learned
parameters. Formally, self-attention is calculated as:

HWCeHWKT
Vi

where d,, is the dimension of K (i.e., HW¥) and W, WX, and
WV are learned parameters. Self-attention-based models
consistently outperform models without attention mechanisms
in various natural language processing (NLP) tasks (Shen et al.,
2018). Past studies have indicated that the self-attention
mechanism’s weighting approach can improve the performance
of predictive models by capturing short- and long-range
contextual information within the input text (Adadi & Berrada,
2018). Additionally, researchers can implement and evaluate
adversarial perturbations to identify if the feature weights
learned from the self-attention mechanism explain how the

SelfAttn(H) = softmax( )HWV,

model reached its end decision (Wiegreffe & Pinter, 2019).
However, a BiLSTM with self-attention cannot address the
issue of missing metadata (e.g., descriptive titles, labels) in
hacker forum exploits. DTL is an emerging DL-based method
that can leverage the learned knowledge from the rich metadata
in public exploit repositories and exploit DNMs to help label
exploits in hacker forums.

Deep Transfer Learning (DTL)

DTL aims to improve the performance of a task T (e.g.,
classification) in a target domain D; by transferring
knowledge from a source domain Dg (Zhuang et al., 2020).
Generally, each domain D is represented by D = {X, P(X)},
where X is the feature space and P(X) is the marginal
distribution of data instances X = {xy, x5, ..., X, }. Foreach D,
T is represented by T = {y, f(-)}, defined by a label space &/
and a function f(-), which is a conditional probability
function P(Y| -). DTL transfers the latent knowledge from Dy
and T to improve the predictive function fr(+) for 7. DTL is
commonly used when a J; conducted in Dy achieves low
performance due to insufficient training data ('), and Ng >
N7 (Pan & Yang, 2010).

Four general types of DTL approaches exist: (1) instance
transfer, (2) mapping transfer, (3) adversarial transfer, and
(4) network transfer (Tan et al., 2018). Instance-transfer
selects instances from the source domain dataset X5 based on
a similarity distance formula to supplement the target

MIS Quarterly Vol. 48 No. 1/ March 2024 143



Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

domain dataset X;. However, this approach cannot account
for different features in the source and target domains (e.g.,
exploit titles in one domain but not another). Mapping
transfer merges instances from the source and target dataset
to one data space for tasks such as multi-task domain
adaptation learning for sequence tagging (Peng & Dredze,
2017) and multilingual text classification (Ebrahimi et al.,
2018). Mapping transfer is best suited for semi-supervised
domain adaptation where the target domain is unlabeled
(Peng & Dredze, 2017). Adversarial transfer uses adversarial
learning techniques to capture the shared features of
different tasks independently (Liu et al., 2017). Like
mapping transfer, adversarial transfer works best for
unsupervised or self-supervised domain adaptation tasks
(Liu et al., 2017). Network transfer reuses parts of a neural
network trained on a source domain dataset to approximate
the predictive function f7(+) for a task in the target domain.
Network transfer is powerful when the source and target
domains contain labeled data. Past IS studies employing
DTL approaches have used multi-layer transfer learning
(MLTL) when the model in the source domain was
initialized with specific features and had multiple layer types
(Zhu et al., 2020). Pretraining tasks (e.g., pre-initialization)
often improve MLTL performance (Liu et al., 2019). Other
DTL methods include updating existing model weights with
an ensemble method or using pretrained language models
(Ruder et al., 2019). Prevailing approaches to evaluate DTL
are comparisons against non-DTL models and/or different
DTL types and ablation analyses on layer and parameter
transfer (Houlsby et al., 2019).

Research Testbed and Design I

We developed a novel research design based on our
methodological foundation to help address the posed research
questions. The proposed research design has four major
components (Figure 3): (1) data collection, (2) preprocessing
and dataset construction, (3) DTL-EL model, and (4)
experiments and evaluations. We describe each component in
the following subsections.

Data Collection

We collected three sources of exploits for our research: hacker
forums, exploit DNMs, and public exploit repositories. The
three sources contain varying metadata, which can fall into one
of four categories. First, description metadata provides high-
level information about the exploit, including title, exploit
source, and date. Second, author metadata provides details
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about a user, including name and reputation score. Third,
content metadata provides the exploit source code and the post
and discussion describing the exploit. Finally, operation
metadata pertains to how the exploit operates, including attack
type and targeted platform. These categories are detailed in
Table 4, along with features of each category, their descriptions,
an example, and whether a feature is present in the three exploit
collections (v'means the feature is present, X means it is not).

Exploit DNMs and public exploit repositories contain key
operation metadata not found in hacker forums, such as attack
type and platform. Source code and post content can be
collected from all three platforms and can therefore serve as the
basis for a DTL model. We collected nine hacker forums, one
exploit DNM, and six public exploit repositories. Each platform
was identified based on the input of cybersecurity domain
experts, the popularity of the platform in the hacker community,
and link-following techniques (Samtani et al., 2022). We
summarize each collected platform’s type, name, language,
dates, posts, source code snippets, and authors in Table 5.

Our collection included 16 platforms across three languages,
258,739 source code snippets, and 999,012 unique authors. The
hacker forum testbed contained 79,437 unlabeled source code
snippets posted between 2002 and 2020. Hacker-forum source
code snippets were identified through special code blocks used
on each forum (Samtani et al., 2017). One significant exploit
DNM containing 33,766 exploits made by 6,052 authors was
collected. Six public exploit repositories with 145,536
professionally vetted exploits were collected. Taken together,
our research testbeds far exceed the quantity presented in
prevailing IS cybersecurity analytics literature (Benjamin et al.,
2019; Samtani et al., 2022; Samtani et al., 2017).

Preprocessing and Dataset Construction

For exploit DNMs and public exploit repositories, the eight
most popular exploit labels based on attack type were retained.
These included web applications (43,475 exploits), denial of
service (DoS) (12,121 exploits), remote (11,787 exploits),
local (7,993 exploits), SQL injection (7,187 exploits), cross-
site scripting (XSS) (7,025 exploits), file inclusion (3,412
exploits), and overflow (3,333 exploits). Source code was
stripped of non-alphanumeric, lower-cased, lemmatized, and
tokenized characters. Consistent with best practices in DL-
based text analytics, the input sequence for DL models was
padded with a special token to ensure proper lengths for all
inputs (Yenter & Verma, 2017). For ML models, a fixed
corpus was built from the training data vocabulary. Fixed-
length vectors were created for each input via count
vectorization and term frequency-inverse document
frequency weighting.
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Figure 3. Proposed Research Design
Table 4. Summary of Key Metadata Available in Exploit-Specific Platforms

Category | Feature Description Example Hacker Exploit Public
Forum DNM repository
Description | ID A unique post identifier EDB-ID: 812 v v v
Title Exploit header inoERP 4.15 SQL injection v v v
Exploit Where the exploit was exploitDB X X v
source collected from
Date Postdate of exploit 26-Sep-19 v v v
Author Author The person who posted the | Alexandrovich Lyhin v v v
exploit
Reputation| Respect for the author in the | 3/5 stars v v X
score community
Content Post A short paragraph explaining | inoERP version 4.15 suffers v v v
what the code does from a remote SQL injection
vulnerability.
Discussion| Comments that follow the This still worked for me on v v X
posting of the code Adobe 13.03
Source The code of the exploit itself | def generatePayload(query): v v v
code b64_query
Operation | Attack type| Categorizes the code based | Local, remote, SQL injection X v v
on its operations
Platform | System exploit targets Windows, Apple, Linux X v v
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Table 5. Summary of Research Testbeds

Platform type | Platform name | Language Start date End date # of code # of unique
shippets authors
Hacker 0x00sec English 4/13/2017 7/15/2020 397 1,004
forums Altenens English 3/22/2010 4/1/2020 1,403 580,220
AntiChat Russian 4/1/2004 7/15/2020 64,890 84,143
AntiOnline English 4/10/2002 7/15/2020 2,063 13,017
Cipher English 5/1/2015 7/15/2020 2,207 3,551
Godexpert English 12/25/2004 7/15/2020 5,800 15,213
PersianTools Persian 8/18/2015 4/1/2020 528 19,360
WWHClIub Russian 2/6/2014 7/15/2020 53 133,598
WildersSecurity | English 2/8/2002 7/15/2020 2,096 127,103
Summary 9 Forums 3 Languages 2/8/2002 — 7/1/2020 79,437 977,209
Exploit DNM Oday.today English 1/1/1996 4/1/2020 33,766 6,052
Public exploit | Seebug English 12/12/2001 4/1/2020 56,657 291
repository ExploitDB English 8/1/1988 4/1/2020 43,120 7,814
PacketStorm English 8/17/1999 4/1/2020 39,433 7,102
Metasploit English 10/12/2005 4/1/2020 4,040 1
Vulnerlab English 7/14/2009 4/1/2020 1,635 525
Zeroscience English 7/8/2008 4/1/2020 651 18
Summary: 6 Repositories English 1/1/1988 - 7/1/2020 145,536 15,751
Total: 16 Sources 3 Languages 1/1/1988 - 7/1/2020 258,739 999,012

Training and evaluating a supervised DTL model requires a
source and target domain dataset (Zhu et al., 2020). In this study,
the source domain dataset was created from collected exploits in
exploit DNMs and public exploit repositories that contained an
exploit label. These data sources were chosen for the source
domain, as they were carefully curated and reviewed by
cybersecurity domain experts and contain rich metadata such as
descriptive titles and exploit labels (Samtani et al., 2020). The
target domain consists of hacker-forum exploit source code posts.

The ground-truth target domain dataset was constructed in
three steps. First, we carefully defined keywords for each
exploit label in the source domain to retrieve relevant exploits
from hacker forums based on each post’s thread title and
content’. Second, exploit source code snippets of fewer than
100 characters in length were omitted, as these often contain
irrelevant information (e.g., IPs for proxies). Third, we
manually verified the remaining data and discarded irrelevant
content. The source and target domain datasets are summarized
by the exploit label in Table 6.

2We conducted preliminary analysis to assess keyword matching as a viable
exploit labeling strategy. In this analysis, 100 exploits were separately
labeled by two experts with over half a decade of experience in CTI, dark
web analytics, and exploit analysis. Keywords were generated based on
common tags provided to exploits by cybersecurity domain experts. The
initial Cohen’s kappa between the ratings was 0.88. The raters met after the
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The source domain dataset contained 96,333 labeled exploits
in eight exploit label categories. For our target domain dataset,
the preprocessing steps reduced the 79,437 unlabeled hacker
forum source code snippets in our research testbed to 4,842
labeled exploit source code snippets. The dataset reduction is
attributable to the lack of related metadata in hacker forums
that allows targeted keyword matching (thus further
motivating our proposed approach). Keyword matching
requires a predefined lexicon which is often time-consuming
to develop and maintain. This time cost is pronounced in
hacker community research, as terminology is constantly
evolving and changing (Samtani et al., 2020). Moreover,
direct keyword matching can often fail due to small content
mismatches (e.g., term variations or misspellings) (Samtani et
al., 2022). Even with the significant reduction in dataset size,
the target domain dataset exceeds the size of the testbeds used
in related IS studies (Benjamin et al., 2019; Samtani et al.,
2022; Samtani et al., 2017). The most considerable disparity
in our domains is in the web applications category, which is
the most common exploit type in the source domain but the
second least common in the target domain.

first round of labeling to resolve differences and attained 100% agreement
on exploit labels. Compared to DTL-EL, the keyword-matching approach
correctly labeled fewer exploits (37 vs. 56), incorrectly labeled more
exploits (8 vs. 2), and was unable to label most exploits (55 vs. 42). These
results indicate that a keyword-based approach alone attains suboptimal
exploit labeling performance.
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Table 6. Source and Target Domains in Ground-Truth Exploit Dataset

Exploit label Source domain count Target domain count
Web Applications 43,475 57

DoS 12,121 714

Remote 11,787 672

Local 7,993 1,952

SQL Injection 7,187 702

XSS 7,025 485

File Inclusion 3,412 29

Overflow 3,333 231

Total 96,333 4,842

Table 7. Source Code Metrics by Domain in the Ground-Truth Dataset

Domain ASCL HAE MACC
Source (exploit DNMs and public repository) 2493 371.24* 6.67"*
Target (hacker forums) 15.48 215.79 414

Note: *: p < 0.05 ##: p < 0.01 %% : p < 0.001

Extant literature suggests proving a systematic difference
between source and target domain datasets to rule out other
DTL types (e.g., mapping) or learning paradigms (e.g.,
incremental learning) (Zhuang et al., 2020). Consistent with
best practices in source code analysis literature, we calculated
the average source code length (ASCL), Halstead average effort
(HAE), and McCabe average cyclomatic complexity (MACC)
for each domain (Nuiiez-Varela et al., 2017). ASCL measures
the average lines of code. HAE measures the difficulty of
developing a piece of source code based on the number of
unique operands and operators in the source code. MACC
measures the source code’s average number of control flow
statements (e.g., if, else, for). These measures were chosen as
they are seminal and language-agnostic. The Radon Python
package (Lacchia, 2020) was used to calculate each metric for
each ground-truth domain. Consistent with source code analysis
literature, a one-tailed r-test was conducted to measure
statistically significant differences between domains (Kapllani
et al., 2020). The results of our analysis appear in Table 7.

Code in the source domain has a longer ASCL (24.93 vs 15.48
average lines), a higher HAE (371.24 vs 215.79), and a higher
MACC (6.67 vs 4.14 average control flow statements) than our
target domain. These results are significant at p < 0.001 and
suggest systematic differences in the coding practices of the
source and target domain datasets. More specifically, the results
suggest that our source domain dataset is longer, more difficult
to code, and more complex on average than our target domain
dataset. Since our dataset consists of significantly distinct and
labeled source and target domains, we selected network-based
DTL for our task of exploit labeling.

Deep Transfer Learning Exploit Labeler (DTL-
EL) Model

The proposed DTL-EL is a supervised network-based DTL
model that trains and transfers the layers of a BILSTM model
with pre-initialized hidden and cell states from
professionally vetted exploits (source domain) to a BILSTM
with self-attention designed to label hacker-forum exploit
source code in a target domain. The proposed DTL-EL
model is presented in Figure 4.

The DTL-EL model follows a five-step procedure for
labeling source code from hacker forums. A sketch of our
proposed DTL-EL model is presented below:

Step 1 (exploit metadata training): An exploit title
BiLSTM model is trained using professionally vetted exploit
titles (metadata) from exploit DNMs and public exploit
repositories as input. At ¢ = 0, The hidden state h;—, and
cell state C;—, memories start at O and output a concatenated

hlmeta — [‘}Tl E]Tand Cimeta — [‘C_‘L a’]T

Step 2 (pre-initialization design): An exploit source code
BiLSTM model is pre-initialized at ¢ = 0 with the hidden
states and long-term memories obtained from the exploit title
BiLSTM: h,—o = h!™*® and C,—, = C/™'“. The hidden
states and long-term memories are not static (i.e., are
trainable) and are updated during the model training process.
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Figure 4. lllustration of the Proposed DTL-EL Model

Step 3 (source domain exploit source code training): The
pre-initialized exploit source code BiLSTM model is trained
using professionally vetted exploit DNM and public exploit
repository exploits to learn a representation for the source

domain task of labeling hacker forum exploits. Our classifier
i > .
: where 3 is the

5 ;(=1 ez 7
input vector given from the self-attention mechanism, i is the
i class, and K is the number of classes. The output of the
model is a probability distribution where the input is labeled
with the class having the highest probability in the
distribution.

uses the softmax function, o(Z); =

Step 4 (layer transfer): Consistent with recent IS literature,
we implemented a multi-layer transfer learning (MLTL)
design from Dg to Dy (Zhu et al., 2020). MLTL is chosen due
to the heterogeneity of our layer weights: The pre-
initialization design updates the BiLSTM and self-attention
layer weights but does not directly update convolutional and
embedding layers. A new exploit source code BILSTM model
in the target domain (Dy) (i.e., for hacker-forum exploit
source code) is constructed by reusing n layers from the
trained source-domain exploit source code BiLSTM model.
Following best practices in DTL literature, we fine-tune the
weights for all of the reused layers since Dy contains labeled
data (Mou et al., 2016).
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Step 5 (target domain exploit source code training): The
target domain model is trained using ground-truth hacker
exploit source code as input to adapt the feature representation
from Dg to Dy. The training process is the same as Step 3.

The input word embeddings for each BiLSTM model were
created with GloVe, a prevailing context-free embedding
technique that can learn the global statistic information of
input sequences and is robust to long sequences compared to
other context-free models (e.g., Word2Vec) (Kowsari et al.,
2019). GloVe was chosen over contextual embedding models
(e.g., BERT) because the performance of contextual
embeddings often degrades with noisy text (e.g., text in hacker
forums) (Srivastava et al., 2020). Consistent with best
practices in text classification literature, the embedding
vectors produced by GloVe were inputted into a convolutional
layer with a kernel size of 3 and a rectified linear unit (ReLU)
activation function (Yenter & Verma, 2017). The
convolutional layer can capture and engineer local features by
focusing on word combinations in the size of the kernel (e.g.,
kernel size of 3 means the convolutional layer learns
trigrams). The hybrid convolutional-BiLSTM model has
significantly outperformed BiLSTM models on benchmark
text classification tasks (e.g., sentiment analysis) by learning
local and low-dimensional vectors for each input (Yenter &
Verma, 2017).
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Since hybrid DL models are prone to overfitting and can
become unstable without proper tuning and construction (Liu
& Guo, 2019), we implemented a dropout layer to improve
generalizability and a batch normalization layer to stabilize
the model by reducing internal covariate shifts (Ioffe &
Szegedy, 2015). To help attain consistent performances, we
combined the dropout and batch normalization layers with a
nonadaptive optimizer (Chen et al., 2019). We also fine-tuned
GloVe embeddings to stabilize our input embedding layer.
Fine-tuned GloVe embeddings (learned across training) have
significant benefits in text classification tasks when combined
with convolutional, BILSTM, and attention layers (Son et al.,
2019). The full details of our parameter settings and
embeddings are detailed in Appendix A.

The key novelty in our proposed DTL-EL is the (trainable)
pre-initialization design. The DL models developed in past
hacker forum analytics studies did not pre-initialize hidden
and cell states for their cybersecurity tasks (Ebrahimi et al.,
2022). Pre-initialization can boost classification performance
and learn representations of the input data missed by non-
initialized models (Peng & Dredze, 2017). Since
concatenating the title and the exploit source code as input
may cause the model to overfit due to overly descriptive titles,
our pre-initialization design followed a multitask learning
(MTL) approach, where the exploit source code BiLSTM
learns from the exploit title BILSTM. MTL approaches have
been used in IS literature to improve classification
performance (Lin et al., 2017). However, in contrast to the
traditional MTL paradigm, we did not leverage the final
output of the exploit title BILSTM. We compared a standard
LSTM cell within the BiLSTM for source code processing
and our proposed pre-initialized LSTM cell in Figure 5.

In the pre-initialized LSTM cell (the right side of Figure 5),

h; = [EE]T and C; = [E E{]T represent the concatenated
forward and backward hidden and cell state vectors of the
exploit title BILSTM model in Ds. Then, h; and C; were used
to pre-initialize h;_, and C;—y of a new and untrained exploit
source code BiLSTM. The pre-initialized BiLSTM was then
trained on the exploit DNM and public exploit repository
exploit source code and label (e.g., SQL injection).

In addition to including the pre-initialized BiLSTM into DTL-
EL, we incorporated a self-attention mechanism into each
BiLSTM in the DTL-EL to process sequences that appear
within exploit code data while considering the context of the
code for each timestep. To the best of our knowledge, no IS
study has implemented a self-attention mechanism that takes
pre-initialized hidden states as input. However, past IS
cybersecurity analytics literature has leveraged self-attention
mechanisms on exploit content (specifically titles) to improve
model performance (Samtani et al., 2022). A self-attention

mechanism can help improve exploit labeling performance by
capturing long-range semantic relationships (e.g., a function
called lines after it is defined) while simultaneously
differentiating between labels (Liu, 2020). Therefore, we
implemented the BILSTM with self-attention model, where
all queries and key-value pairs are attained from the output
and hidden states in the previous BiLSTM layer, respectively
(Liu & Guo, 2019).

After source domain training, the embedding, convolutional,
BiLSTM, and/or attention layers were transferred to the target
domain model to label each hacker forum exploit. In our
design, D did not contain a pre-initialization design in the
BILSTM layer, as hacker forum thread titles were not
consistently available or indicative of an exploit’s intended
purpose (Samtani et al., 2017). However, the weights
transferred from the BiLSTM and attention layers in Ds were
calculated with our pre-initialization design. The exact layers
that are transferred were determined through an ablation
analysis, which is further detailed in the next subsection.

Experiments and Evaluations

Consistent with the computational design science paradigm
(Rai, 2017), we rigorously evaluated our proposed DTL-EL
artifact with a series of technical benchmark experiments. Each
experiment’s goal, model types, benchmark models, and
evaluation metrics appear in Table 8.

Experiment 1 aimed to identify if our pre-initialization design
and added self-attention mechanism in the source domain DTL-
EL improved exploit labeling performance over benchmark
models. Additionally, IS literature (Zhu et al., 2020) and
fundamental DTL principles (Zhuang et al., 2020) recommend
evaluating a source domain model to find the best-performing
model to transfer features to a target domain. Therefore, we
evaluated whether transferring the knowledge learned from
exploit DNMs and public exploit repositories (DTL-EL)
improved exploit labeling when compared to non-DTL
approaches in Experiment 2. Two sets of benchmark models
were used in Experiments 1 and 2: (1) classical ML models that
included naive Bayes, logistic regression, decision tree, SVM,
extreme gradient boosting (XGBoost), and light gradient
boosting machine (LightGBM) and (2) DL-based models that
included RNN, GRU, LSTM, BiLLSTM without self-attention,
a pre-initialized BiLSTM, and BiLSTM with self-attention.
These models are commonly used in past hacker forum
analytics literature (Ebrahimi et al., 2018; Goyal et al., 2018;
Samtani et al., 2017). In Experiment 2, we trained three
variations of each model: one with the target domain dataset,
one with the source domain dataset, and a concatenated dataset
of the source and target domains. We kept the same target
domain validation dataset for each variation.
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Figure 5. Standard LSTM Cell for Text Processing (Adapted from Thangaraj & Sivakami, 2018) (left) and

Our Proposed Pre-Initialized LSTM Cell (right)

Table 8. Summary of Experiment Designs

# | Experiment Goal Type Benchmarks Metrics References
1| DTL-EL against | An evaluation that our Classical | Naive Bayes, logistic Accuracy, | Ebrahimi et al.,

prevailing pre-initialization design | machine | regression, decision tree, precision, | 2018;

classification and self-attention learning | SVM, XGBoost, LightGBM recall, F1- | Goyal et al., 2018;

methods on the | mechanism in the SUfGe [ peep [ RN, GRU, LSTM, BILSTM, | %' Samtani et al.,

) learning | BILSTM with self-attention 2017,
Tan et al., 2018;

2 | DTL-EL against | An evaluation to find Classical | Naive Bayes, logistic Zhuang et al.,

non-transfer differences between machine | regression, decision tree, 2020

learning DTL, prevailing classical | learning SVM, XGBoost, LightGBM

f‘hpep{gf“;hte; on. B‘%‘fh'”e 'earﬂ'”g’ ”Oc;" Deep RNN, GRU, LSTM, BILSTM,

get domain q approaches, an learning | BiLSTM with self-attention
ataset variations.

3 | DTL-EL against | An evaluation to rule out | Transfer | Adaptive SVM, parameter Houlsby et al.,

alternate transfer | superior design within learning | sharing, adversarial, BERT 2019

learning DTL literature. Liu et al., 2017;

approaches Peng & Dredze
4 | DTL-EL against | Ablation analysis to Layer DTL-EL: Embedding, CNN, 2017;

transfer learning | identify the value of selection | LSTM, attention layers Peng et al., 2008

layer selection on| transferring different

the target domain| layers for DTL-EL with

and without pre-
initialization.

Note: BiLSTM = bidirectional long-short term memory; CNN = convolutional neural network; DTL-EL = deep transfer learning exploit labeler;
GRU = gated recurrent unit; LightGBM = light gradient boosting machine; LSTM = long-short term memory RNN = recurrent neural network;
SVM = support vector machine; XGBoost = eXtreme gradient boosting.

Our proposed DTL-EL model incorporates a BILSTM with
self-attention mechanism in the target domain. Consequently,
the weights assigned to the input features from the self-
attention during the labeling process can be visualized to
explain how the model reached its output prediction.
Explainability in our task of exploit labeling is defined as how
well our model identifies tokens that consistently make up
each exploit label (Wiegreffe & Pinter, 2019). However, there
is debate on whether self-attention mechanisms truly provide
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explainability in NLP tasks (Jain & Wallace, 2019).
Therefore, we performed an adversarial test on the DTL-EL
for both Experiments 1 and 2 to find out whether the self-
attention mechanism found meaningful tokens in our inputs
for each output. To perform this task, we implemented an
adversarial experiment where we compared the self-attention
weights of DTL-EL with weights learned from an adversarial
model (adversarial DTL-EL). The goal of the adversarial
model is to obtain similar prediction scores as DTL-EL with a
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different attention weight distribution. Adversarial attention
weights were learned using the loss function proposed by
Wiegreffe and Pinter (2019):

LM, M)® =TVD (52, 90) = KL (a’

),

where M, is the DTL-EL base model, M, is the adversarial
model, @ are the predictions, and a® are the attention
distributions. A model with good explainability would
perform better in their specified tasks (e.g., exploit labeling)
than their adversarial variation.

Although a network-based DTL approach was ideal for our
context, we were interested in how seminal DTL approaches
compared to the proposed DTL-EL. Therefore, in
Experiments 3 and 4, we explored the boundaries of our
network-based implementation of DTL. In Experiment 3, we
evaluated transfer learning with the popular classical ML
model, SVM (Peng et al., 2008), MTL (Peng & Dredze,
2017), adversarial learning (Liu et al., 2017), and an adapted
bidirectional encoder representations from transformers
(BERT) model (Houlsby et al., 2019). In Experiment 4, we
performed an ablation analysis on the effect of layer transfer
from a pre-initialized and non-pre-initialized source domain
model. We performed this analysis from a single- and multi-
layer transfer perspective.

Since the source domain dataset is imbalanced (45.13% of the
dataset belongs to web applications), accuracy alone is not a
viable performance measure (Ebrahimi et al., 2022).
Therefore, we included precision, recall, and F1-score
(harmonic mean of precision and recall) as metrics to evaluate
each model’s exploit labeling performance in each
experiment. Each metric was computed using true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). The formulas for each metric are as follows:

P _ TP+TN procision — 17
ey = rp TN+ FP+ FN' P S Tp P
Recall = TP 1 _ 2 X Precision X Recall
et =1p +FN’ SCOTe = P ecision + Recall

Among the four metrics, scholars conducting IS cybersecurity
research suggest that the Fl-score is the best metric for
comparing models, as it is not sensitive to data imbalance
(Ebrahimi et al., 2022). The reported metrics for each model
are a weighted average across each class label based on the
support (i.e., count) of each class. This weighted average
formula is:

XiSiM;

Weighted Average = N

where S; is the support for a class label, M; is the calculated
metric for the class label (e.g., accuracy), and N is the total
number of samples. One-tailed paired #-tests were used to
evaluate statistically significant differences between the
proposed approach and benchmarks. Our source and target
domain datasets were split into a training and testing dataset
wherein all exploits in the testing set are newer than those in
the training datasets in both domains. Exploits posted before
2019 were placed in the training dataset, while exploits posted
in 2019 or later were placed in the testing dataset. We chose
this split to provide enough data to our testing set in both
domains and test whether the DTL-EL model could label new
and unseen exploits. In the source domain, 80,582 exploits
were used for training (83.63% of the dataset) and 15,751
exploits were used for testing (16.35% of the dataset). In the
target domain, 3,902 exploits were used for training (80.58%
of the dataset) and 940 exploits were used for testing (19.42%
of the dataset). We implemented a stratified 10-fold cross-
validation split to conduct model training.

Results and Discussion I

Experiment 1: DTL-EL against Prevailing
Classification Methods on the Source Domain

Experiment 1 compared our proposed DTL-EL (a pre-
initialized BiLSTM with attention) against classical ML and
DL benchmarks on the source domain dataset. We also
compared BiLSTM models with and without a self-attention
mechanism. The accuracy, precision, recall, and F1-score for
each model are presented in Table 9.

Our proposed DTL-EL, which combines a BiLSTM, our pre-
initialization design, and a self-attention mechanism,
outperformed all classical ML and DL models in accuracy
(90.75%), precision (91.12%), recall (90.83%), and F1-score
(90.91%). The F1-score for the classical ML methods ranged
from 57.39% for naive Bayes to 78.82% for LightGBM.
However, the LightGBM and other ML models were quickly
overfit on the training data, suggesting that ML models are not
complex enough to fully capture exploit source code
representations. All DL methods reached higher F1-scores
than LightGBM. RNN outperformed LightGBM by 1.30%
(from 78.82% to 80.12%); however, the Fl1-score increased
when the RNN was replaced with a GRU (85.80%), LSTM
(86.20%), or BiLSTM (86.62%) layer. One possible
explanation for this improvement is that GRU, LSTM, and
BiLSTM include a gating mechanism to fix the vanishing
gradient problem that RNNs suffer from when processing
long sequences (e.g., exploit code) (Liu & Guo, 2019).

MIS Quarterly Vol. 48 No. 1/ March 2024 151



Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

Table 9. Experiment 1: DTL-EL against Prevailing Classification Methods on the Source Domain

Model Type | Model Initial State Accuracy Precision Recall F1-score
Classical Naive Bayes N/A 58.12%*** 57.97%"** 56.82%*** | 57.39%***
Machine Logistic regression N/A 66.01%*** 66.23%*** 70.86%*** | 68.12%***
Learning Decision tree N/A 70.55%"** 70.05%** 67.14% | 68.87%"**
SVM N/A 78.21%*** 79.86%*** 77.02%** | 78.43%***
XGBoost N/A 83.54%*** 78.96%*** 78.29%*** | 78.53%***
LightGBM N/A 83.83%*** 78.98%*** 78.82%** | 78.82%***
Deep RNN Zero 80.12%*** 82.01%"** 78.31%** | 80.12%***
Learning GRU Zero 86.54%** 86.81%** 84.31%** | 85.80%"*
LSTM Zero 86.22%"** 86.48%"** 85.93%*** | 86.20%"**
BILSTM Zero 87.14%** 86.76%"* 86.37%* | 86.62%**
BIiLSTM with self-attention | Zero 87.95%** 87.29%"* 86.74% | 87.23%**
Pre-Initialized BiLSTM Pre-Initialized | 88.21%** 88.98%* 87.62%** | 88.29%**
Proposed DTL-EL Pre-Initialized | 90.75% 91.12% 90.83% 90.91%

Note: *: p < 0.05**: p < 0.01 **x : p < 0.001. Top scores are highlighted in boldface.

Adding a self-attention mechanism to the BiILSTM marginally
increased the F1-score (87.23%) over the best-performing DL
algorithm without an attention mechanism, BiLSTM
(86.62%). The self-attention mechanism looks at the hidden
states of each BiLSTM cell, capturing important aspects of the
input sequence. Incorporating the proposed pre-initialization
design into the BiLSTM with no self-attention mechanism
further increased BILSTM’s performance from 87.41% to
88.29%. The difference is statistically significant at p < 0.05.
These results suggest that using the exploit title to pre-
initialize the BILSTM’s hidden and cell states can improve
exploit source code categorization. The DTL-EL attained
higher Fl-scores than the BiLSTM with a self-attention
mechanism (from 87.23% to 90.91%) and the pre-initialized
BiLSTM without a self-attention mechanism (from 88.29% to
90.91%). The differences in both cases were statistically
significant at p < 0.01. These results indicate that the self-
attention mechanism can identify important exploit features
from the pre-initialized hidden states.

In addition to evaluating the performance of DTL-EL
against benchmark methods in the source domain, we
implemented the proposed adversarial test to identify if the
self-attention mechanism identified (i.e., weighed) tokens
that contributed to the model’s output (Wiegreffe & Pinter,
2019). The adversarial DTL-EL model obtained an F1-
score of 76.34%. This score is 14.62% lower than the F1-
score of the DTL-EL model (90.91%). The steep decline in
the F1-score suggests the adversarial weights lose essential
information needed to label exploit source code. These
results also indicate that our self-attention mechanism
focused on the most valuable tokens for each exploit label
and attained the best labeling performance.
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Experiment 2: DTL-EL against Non-Transfer
Learning Approaches on the Target Domain

Experiment 2 evaluated whether the features extracted from
the source domain improve the classification performance of
DTL-EL in the target domain. We evaluated our proposed
DTL-EL model against state-of-the-art classical ML and DL
benchmarks on the target domain ground-truth dataset (hacker
forum exploits). We compared training models using the
source domain, the target domain, and both training datasets
concatenated (i.e., combined). All models used the same target
domain validation dataset. The accuracy, precision, recall, and
Fl-score for each model are summarized in Table 10. The
performances for each model in each of the eight exploit
categories are presented in Appendix B.

For each model, the performance for all tracked metrics was
the highest on the target domain dataset, followed by source +
target and source. The performance differences may be due to
the fundamental coding differences (e.g., ASCL) between
professionally vetted exploits (source domain) and hacker
forum exploits (target domain). These coding differences in
the source domain dataset may have prevented each model
from generalizing to the target domain evaluation dataset.
Given these results, we discuss the results of the models
trained on the target domain only.

The four classical ML methods attained an F1-score between
13.45% (naive Bayes) and 46.32% (LightGBM). This F1-score
range for classical ML models is lower than the range seen in
Experiment 1 on the source domain because hacker-forum
exploit source code is often less structured than professionally
vetted exploits (shown previously in Table 7). Our proposed
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DTL-EL improved on the best-performing classical ML model
(LightGBM) in the Fl-score by 24.02% (from 46.32% to
70.34%), and this difference was statistically significant at p <
0.001. These results suggest that the complex DL models can
capture latent and more representative features of exploit
content better than the ML models (which were overfit in the
imbalanced classification setting).

All DL methods outperformed the classical ML methods in
the F1-score. RNN achieved the lowest Fl-score at 55.12%.
Similar to the results from Experiment 1, the F1-score
increased when the RNN layer was replaced with a GRU
(60.69%), LSTM (60.02%), or BiLSTM (60.71%) layer.
Adding a self-attention mechanism to the BILSTM marginally
increased the Fl-score from 60.71% to 62.52%. However,
DTL-EL outperformed the BiLSTM with attention and no
DTL layers (from 62.52% to 70.34%, Fl-score), and the
difference was statistically significant at p < 0.001. These
results indicate that identifying and transferring layers from a
metadata-rich hacker exploit source domain to a target domain
significantly outperforms the single dataset-based model
approaches prevalent in extant literature (Ebrahimi et al.,
2018; Williams et al., 2018). Transferred pretrained layers
leading to stronger performances than random initialization in
similar tasks is consistent with the seminal literature (Y osinski
et al., 2014). The performance gain may be attributable to the
source domain model learning generalized information and
inductive bias (i.e., model assumptions when making a
prediction) that is being transferred to our DTL-EL model (Li
et al., 2018).

Similar to Experiment 1, we performed an adversarial
experiment for DTL-EL. The adversarial DTL-EL model
obtained an Fl-score of 43.76%—26.58% lower than the
DTL-EL (70.34%). These results suggest that our self-
attention mechanism finds the most valuable tokens for each
exploit label to improve classification performance. In Figure
6, we illustrate sample exploits that DTL-EL correctly
identified but the best competing approach (BiLSTM with
self-attention) missed. Specifically, we visualized the
semantic relationships between input tokens for DTL-EL and
the BILSTM with self-attention on a remote exploit (operates
over a network without direct machine access) and local
exploit (requires machine access). These lines demonstrate a
simplified control flow of how the code operates. We present
an excerpt (for space considerations) of each exploit’s code in
each category at the top of Figure 6. Thicker lines indicate
stronger (i.e., higher weighted) semantic relationships
between two tokens in the input exploit source code.

3 CKA measures the similarities between internal feature representations
of model layers. Comparing similarities across models trained on the same
datasets can help explain differences in model performance.

As shown in Figure 6, DTL-EL developed higher-weighted
(thicker lines) semantic relationships (i.e., dependencies)
between specific tokens for remote and local exploits. In
contrast, the BILSTM with the self-attention model weighted
most of the relationships between tokens nearly identically. In
the remote exploit, DTL-EL found long-term dependencies
between “def” and “end,” which are the beginning and end of
the exploit function, respectively. Additionally, DTL-EL
found strong dependencies on the “authenticate” token, which
is vital for accessing machines in remote exploit attacks. The
BiLSTM with the self-attention model did not find strong
dependencies between tokens, leading to it incorrectly
assigning a label of “denial of service” to the code instead of
the correct “remote” label. In the local exploit, DTL-EL found
strong semantic relationships between tokens such as
“process” and “executable,” “cmd” and “grep,” and “def” and
“config.” Using the grep Unix command in the command line
(cmd) is a common local privilege escalation technique. As
with the previous example, the BiLSTM with the self-
attention model did not find these dependencies; instead, it
classified the exploit as a “web application” instead of a
“local” exploit.

We conducted a centered kernel alignment (CKA) analysis to
further identify the internal differences between the source
and target domain model and identify the specific layers that
were affected as a result of transfer learning (Kornblith et al.,
2019)%. The results of our analysis (presented in Appendix C)
suggest that the lower-level layers of the DTL-EL model
(embedding, convolution, pooling, batch norm, and dropout)
are more similar to higher-level layers (BiLSTM, self-
attention, dropout, dense) than the non-DTL BiLSTM with
self-attention. These differences in similarities demonstrate
that the transfer and fine-tuning of source domain layers
creates a more closely linked internal feature representation
than a non-DTL approach and therefore potentially improves
performance and results in differences in attention weighting.

Experiment 3: DTL-EL against Alternate
Transfer Learning Approaches

For Experiment 3, we explored the results of four types of
transfer learning. We implemented an adaptive SVM that uses
the hinge loss function and an L2 regularization term to adapt
a classifier from a source domain for the target domain (Peng
et al., 2008). We then implemented two types of MTL: hard
and soft. In hard MTL, we merged both domain inputs after
the embedding layer and had the same model layers from the
convolutional layer through the BiLSTM layer with separate
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output layers. In soft MTL, we implemented two separate
BiLSTM models with a custom loss function that used the
sum of categorical cross-entropy, mean-squared error, and
cosine proximity between the true exploit label and predicted
exploit label to minimize the distance between weights of the
two models. Our adversarial DTL used the same design as Liu
et al. (2017), wherein a shared-private model with domain
discriminators for each feature was defined and a custom
adversarial loss function was implemented. Our
implementation of adapter-based transfer learning followed
the fine-tuning of the BERT model in Houlsby et al. (2019).
The accuracy, precision, recall, and F1-score of each transfer
learning design are presented in Table 11.

Overall, DTL-EL had the highest performance in accuracy
(72.11%), precision (70.57%), recall (70.15%), and F1-score
(70.34%). The difference in performance was statistically
significant against all benchmark models. MTL approaches
outperformed classical ML models on all four metrics. Within
the MTL paradigm, soft parameter sharing (64.02%)
outperformed hard parameter sharing (61.09%) in terms of the
F1-score. Hard parameter sharing works well when the source
and target tasks are similar. However, our source and target
domains were dissimilar enough to cause decreases in
performance. Soft parameter sharing can alleviate this issue
through feature sharing. Adversarial DTL (62.72%)
outperformed hard parameter sharing, possibly because it
maximizes the training error with a reversed gradient.
However, the adversarial approach performed worse than the
soft parameter sharing model. Finally, BERT attained a higher
Fl-score (65.31%) than MTL approaches, the adversarial
approach, and classical ML but underperformed compared to
DTL-EL on the target hacker forum dataset. This suggests that
pretrained contextual models like BERT may be too general
for our dataset, and a more targeted approach is needed
(Srivastava et al., 2020).

Experiment 4: DTL-EL against Transfer
Learning Layer Selection on the Target
Domain

In Experiment 4, we explored combinations of transferred
layers from the source domain to the target domain. The
embedding, convolutional, BILSTM, and self-attention layers
had transferable weights and features in the source domain
DTL-EL model. We first evaluated transferring each layer
individually. This included trained embeddings from
Word2Vec, GloVe, and BERT to evaluate the best transfer
performance of unsupervised embeddings. We then evaluated
an MLTL approach, which is common in IS literature (Zhu et
al., 2020) and recommended when performing homogeneous
(e.g., source and target domain datasets share attributes)
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transfer learning (Yosinski et al., 2014). Since our pre-
initialization design is a core novelty of DTL-EL, we also
compared layer transfer from the source domain BiLSTM
with the self-attention model without pre-initialized hidden
and cell states. Each model was trained on the target domain
dataset used in Experiment 2. The accuracy, precision, recall,
and F1-score are summarized in Table 12.

For each transfer type and layer, the transferred pre-initialized
layers always performed better than the non-pre-initialized
layers. Single-layer transfer with pre-initialization attained
Fl-scores between 64.56% to 68.16%, with the GloVe
embedding layer performing the best. The GloVe embedding
holds global information about the word vectors of
professionally vetted exploits that Word2Vec and BERT may
have missed. These results suggest that our dataset was too
noisy for the embeddings from large contextual models to
adequately generalize (Srivastava et al., 2020). Therefore, we
only considered the GloVe embedding in our MLTL design.

Within MLTL, we found that adding additional layers to the
GloVe layer provided higher F1-scores. The GloVe layer with
a convolutional layer (68.69%) or BiLSTM layer (69.31%)
attained better scores than all single-layer models and the
model with a transferred convolutional, BiLSTM, and
attention layer (68.41%). However, using the GloVe,
convolutional, BILSTM, and attention layers from the source
domain DTL-EL model led to the highest accuracy (72.11%),
precision (70.57%), recall (70.15%), and F1-score (70.34%).
The differences in the Fl-score over the second-best layer
transfer technique (GloVe, convolutional, and attention) were
significant at p < 0.05.

Practical Implications and Contributions
to the IS Knowledge Base I

Practical Implications

Recent IS cybersecurity studies have identified three
cybersecurity stakeholders that can benefit from IT artifacts
equipped with advanced cybersecurity analytics: (1)
cybersecurity managers, (2) educators, and (3) analysts (Yue
etal., 2019). Past IS studies have frequently integrated a novel
algorithm into a system with a user interface to help
stakeholders access the algorithm and results (Samtani et al.,
2017). Although not the focus of our study, we implemented
a system with DTL-EL to illustrate an example of such an
implementation. Details about this system are presented in
Appendix D. We further elaborate on the practical
implications of the proposed DTL-EL framework for each
stakeholder below.
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Cybersecurity managers: Cybersecurity managers often
require automatically generated and easily digestible reports
and visualizations to determine the best course of action for
their organization’s cyber policy (Samtani et al., 2020).
Chief information security officers (CISOs) are typically
responsible for allocating security investments and
resources. However, CISOs can often be overwhelmed and
make suboptimal decisions due to the large quantities of
unstructured information available from external resources
(Alomar et al., 2020). The results produced by the proposed
DTL-EL can be carefully synthesized to create dynamic
visualizations of exploit trends and summary statistics to
reduce the strain on a CISO. For example, suppose a CISO
sees a sharp increase in web application exploits posted in
hacker communities. In that case, they can invest resources
internally (e.g., assign cyber analysts to focus on web
application exploits) and externally (purchase software and
additional protections for their web application servers).
Furthermore, cybersecurity managers can customize their
organization’s DTL-EL implementation based on their
cyber-risk profile. For example, DTL-EL can be tuned to
minimize cost instead of error using a cyber-risk cost matrix
(Kim et al., 2012). In Appendix E, we provide an illustration
of how applying a cost-sensitive classifier and a MetaCost
wrapper to our proposed DTL-EL model leads to a trade-off
between total cost, average misclassification cost, F1-score,
and mislabeled exploits.

Cyber analysts: Common tasks that many security analysts
in cybersecurity operations centers (CSOCs) often conduct
include monitoring, identifying, and ranking threats to their
cyber infrastructure (Samtani et al., 2020). However, there
are significant difficulties in collecting and sifting through
large cyber threat data sources (Agyepong et al., 2020). To
conduct common tasks, cyber analysts require a framework
that can facilitate red teaming (Alomar et al., 2020). CSOC
analysts can benefit from the automatic and incremental
collection and labeling features provided by the DTL-EL
framework through custom alerts for new exploits. The new
exploits and their visualized semantic relations could help
CSOC analysts gain insight into protections against the code
via operationalized penetration testing, professional domain
knowledge, or consultation.

Cybersecurity educators: Training cyber analysts with data
mining skills is an essential component of the National
Institute of Standards and Technology (NIST) Initiative for
Cybersecurity Education (Shoemaker et al., 2018). However,
this often means that educators typically require up-to-date
and labeled datasets to keep their curriculums current. The
large, international hacker community datasets in this study
can be leveraged in emerging cybersecurity analytics
curricula. For example, the labeled exploit datasets from our
three collected sources and auto-generated summary statistics

labeled testbed can be incorporated into massively open online
courses (MOOCs) for dissemination to domestic and
international institutions. Since the collection is updated
weekly, cybersecurity educators can provide up-to-date
content to their students.

Contributions to the IS Knowledge Base

IS scholars have stressed the importance of contributing
prescriptive knowledge to the IS knowledge base with a
novel IT artifact (Rai, 2017). Our proposed framework is
situated within the growing body of IS cybersecurity
analytics research. This stream of literature has primarily
relied on a single dataset type and rarely included an
explanation (attention visualization) for end users to interact
with (limiting the potential practical utility of the analytics).
Considering these issues, this work aims to contribute a
novel multimodal cybersecurity analytics approach to the IS
knowledge base. The large international hacker community
testbeds and DTL-EL can help future IS scholars and
cybersecurity stakeholders pursue advanced cybersecurity
analytics research on exploit labeling.

Our study also follows the guidelines of Type I ML research
and contributes a BILSTM model IT artifact with a carefully
combined feature-based model pretraining, expert-
knowledge layer transfer, and long sequential text
classification to the IS knowledge base (Padmanabhan et al.,
2022). While our IT artifact has been built for exploit
labeling (rich textual source domain, noisy textual target
domain), DTL-EL could be adapted for other classification
tasks of interest to the IS discipline. If an IS researcher has a
source domain with two textual features, they can pre-
initialize with short textual features that are fully populated
in the dataset and have some explanatory value to warm up
the model. The source domain model should then be trained
with long-sequential textual features. The layers of the
source domain model should then be highly transferrable to
a similar but noisier domain. This transferability can be
tested via an ablation analysis and a CKA similarity
measurement to identify the specific model components that
DTL improves. Additionally, transfer learning can be
conducted at the embedding layer. The model training
results indicated that transferring pretrained embeddings
(e.g., GloVe) consistently improved performance. While the
GloVe embedding outperformed other options for our task,
contextual embeddings (e.g., BERT) could perform better
than context-free embeddings for a DTL task than with a
semantically consistent textual dataset (e.g., product
descriptions). We provided two examples of domains of
interest to the IS community that can benefit from DTL-EL
to further demonstrate its applicability and generalizability.
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Healthcare informatics: Recent IS literature has focused on
improving the quality of electronic health records (EHRs)
(Kohli & Tan, 2016). EHRs are unstructured text documents
detailing a patient’s medical history. DTL-EL could be
adapted to perform EHR classification tasks (e.g., medical
diagnosis) by constructing a ground-truth dataset of EHRs and
related diagnoses, pre-initializing the high-level summaries,
and training the model with the full EHR (containing long-
term dependencies of the patient’s medical history). This
model could be leveraged via transfer to a target domain
without high-level summaries or detailed EHRs.

Social media analytics: Online social networking platforms
contain a wealth of text that can be used for important tasks
such as product review analysis, conversation
disentanglement, and more (Chen et al., 2012). However,
discussions on social media often use long sentences with
uncommon phrases and semantic issues. Scholars can
consider adapting DTL-EL to process long social media texts.
For example, annotated Twitter datasets can be used as a
source domain where the model is pre-initialized with the
annotations and trained with the tweet content. Additionally,
embeddings trained on Twitter data (e.g., BERTweet) can be
applied to the model to boost performance. Then, a target
domain model can be trained on a similar social network (e.g.,
Reddit) with transferred features from the Twitter dataset to
improve model performance.

Conclusion And Future Directions Il

The rapid proliferation of complex IS systems has been met
by new exploits designed to circumvent vulnerabilities and
cause irreparable cyber breaches. Recently, practitioners and
academics have placed significant focus on proactively
identifying and labeling exploits from hacker forums to
mitigate these cyber threats. However, prevailing
approaches for labeling hacker exploits do not leverage
knowledge from exploit DNMs or public exploit repositories
to enhance hacker exploit labeling performance.
Consequently, executing critical CTT tasks that rely on labels
remains a significant challenge.

In this study, we adopted the computational design science
paradigm to develop a novel deep transfer learning exploit
labeler (DTL-EL) framework for labeling exploits from
hacker forums. DTL-EL incorporates a novel approach for
pre-initializing the BILSTM with a self-attention mechanism
in the source domain based on the rich metadata (e.g., exploit
titles) found in exploit DNMs and public exploit repositories.
We demonstrated through a series of benchmark experiments
that DTL-EL outperformed state-of-the-art non-DTL ML and
DL techniques in labeling hacker exploit source code in
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hacker forums. The results indicated that the pre-initialized
BiLSTM with an attention mechanism better identified and
weighted key features than their non-pre-initialized
counterparts. DTL-EL offers proactive CTI capabilities at the
tactical, operational, and strategic levels to help companies
improve their security posture against cyberattacks.

We identified three promising directions for future work.
First, DTL-EL can be adapted and extended for cybersecurity
tasks such as identifying, collecting, and labeling personally
identifiable information, malicious pastes, and DNM postings.
Second, linking our labeled exploits to prevailing
cybersecurity risk management frameworks (e.g., MITRE
ATT&CK) can allow for a more fine-grained analysis of
exploit types, risk assessments, and targeted mitigation
strategies. These new insights can provide information about
exploit types outside this project’s scope (e.g., multi-label
exploits). Third, social network analysis and named entity
resolution can be performed to link hackers, forums, and
exploits with specific target users or organizations. Each
direction can significantly improve proactive CTI collection
and dissemination efforts and ultimately contribute to a safer
cyberspace for organizations, individuals, and governments.
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Appendix A

Benchmark Model Specifications I

The naive Bayes, logistic regression, decision tree, and support vector machine (SVM) models were implemented using the Scikit-Learn
library (Pedregosa et al., 2011). The XGBoost model was implemented using the XGBoost Python library (Chen & Guestrin, 2016). The
LightGBM was implemented using the LightGBM Python library (Ke et al., 2017). Our input was transformed using a term frequency-
inverse document frequency (TF-IDF) calculation that was applied to turn the co-occurrence counts into vector representations. The output
of the TF-IDF transformation was then inputted into each classification model. The GridSearchCV module in Scikit-Learn was used for each
model to search for the best parameters for our exploit code labeling task. We summarize the parameters determined by grid-search for each
of the models below:

e Naive Bayes: Additive smoothing parameter (alpha in Scikit-Learn) of 1.

e  Logistic Regression: L2 penalty term, the liblinear solver, and a C parameter of 0.01.
e  Decision Tree: had a max depth of 5.

e  SVM: Linear support vector classification (linearSVC in Scikit-Learn).

e XGBoost: Learning rate of 0.01, max tree depth of 10, minimum child weight of 6, multi-softmax objective function, sub-sample
of 0.8.

e  LightGBM: Learning rate of 0.01, no max depth, minimum child weight of 0, 1,000 estimators, sub-sample of 0.85.

Each deep learning model was implemented with the Keras Python library (Chollet, 2015). Model parameters were adjusted based on best
practices in related literature (Li et al., 2020). When we evaluated the changes in performance by swapping out specific layers, such as gated
recurrent unit (GRU), long-short term memory (LSTM), or bidirectional LSTM (BiLSTM), we kept the embedding, convolutional, batch
normalization, and dropout layers constant. The convolutional layer was one-dimensional, had a kernel size of 3, and a rectified linear unit
(ReLU) activation function. Each dropout layer was set to 0.5. All subsequent benchmark models followed the same structure (unless there
was an attention layer or pre-initialization design). The self-attention mechanism uses the Keras L2 regularizer set to 1e — 4 for the kernel,
and the L1 regularizer set to 1e — 4 for the bias term. To implement our pre-initialization design, the BILSTM layer in the exploit title model
had the return state set to true with no concatenation. We manually concatenated the returned hidden and cell states. The concatenated output
was fed into the exploit code model at the BiLSTM layer by setting the initial state equal to the concatenated output. The remainder of the
model was the same as the BILSTM.
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Appendix B

Per Exploit Label Analysis for Experiments 1 and 2 I

In the main text, we presented the results of the proposed DTL-EL and all benchmark methods across all eight exploit labels in Experiment 1 and
Experiment 2. However, we were also interested in identifying how each approach performed at the exploit category level for each domain. In
Experiment 1, our proposed DTL-EL did not always produce the highest precision or recall score for each exploit label, but always produced the
highest F1-score. DTL-EL’s precision was lower than the pre-initialized BiLSTM without attention on cross-site scripting (XSS; 93.31% to
96.14%) and web applications (94.71% to 95.88%). Each exploit’s properties can partially explain these results. XSS attacks and web application
exploits are targeted (e.g., written for a specific website) and contain named entities that do not frequently appear in other exploits and may
adversely affect our self-attention mechanism. DTL-EL attained a lower F1-score than the pre-initialized BILSTM for SQL injections (88.98%
to 90.04%), remote exploits (83.55% to 80.91%), and file inclusion exploits (88.45% to 86.76%), which are three of the four most infrequent
exploits in the source domain (possibly causing lower recall scores). Since Experiment 2 examined DTL-EL’s labeling performance (our core
objective), we provide the precision, recall, and F1-score for each exploit target label in Table B1. Our proposed DTL-EL outperformed all
models in each exploit label in terms of recall and F1-score in the target domain. DTL-EL performed best in precision for five exploit labels
but underperformed LSTM in SQL injection (91.27% to 91.45%) and XSS exploits (75.67% to 77.11%). DTL-EL’s precision underperformed
LightGBM for file inclusion exploits (50.77% to 58.68%). In the target domain, the code for XSS, file inclusion, and SQL injection are often
much shorter than exploits in the other five labels, possibly explaining DTL-EL’s precision scores.

Table B1. Per Label Results for Experiment 2: DTL-EL against Non-Transfer Learning Approaches on

the Target Domain

Exploit label Model type Model Precision Recall F1-Score
Web applications Classical Naive Bayes 76.92%*** 08.93%*** 16.00%***
machine learning | Logistic regression 65.32%"*** 08.04%*** 14.75%"**
Decision tree 39.18%** 33.93%** 36.36%**
SVM 54.71%** 19.64%*** 30.14%**
XGBoost 52.83%*** 25.00%*** 33.94%***
LightGBM 55.56%*** 26.79%*** 36.14%***
Deep learning RNN 56.48%*** 25.11%** 35.87%***
GRU 59.39%*** 31.61%** 37.93%***
LST™M 59.80%*** 40.18%* 44.22%***
BILSTM 60.48%*** 40.46%* 45.47%***
BiLSTM with attention 62.31%" 41.14% 47.67%"*
Proposed DTL-EL 65.97% 41.43% 49.17%
Denial of service (DoS) Classical Naive Bayes 64.81%* 43.54%*** 57.54%***
machine learning | Logistic regression 67.14%** 50.32%*** 60.91%***
Decision tree 67.16% 56.91%* 61.61%*
SVM 64.46%*** 53.19%*** 62.05%***
XGBoost 67.89%*** 56.27%*** 65.33%***
LightGBM 75.35%*** 57.80%*** 65.42%"**
Deep learning RNN 65.12%*** 52.18%*** 59.31%***
GRU 70.03%*** 59.87%*** 64.55%***
LSTM 72.48%*** 70.59%*** 71.52%***
BiLSTM 74.75%** 67.46%™ 70.92%***
BiLSTM with attention 75.15%"** 69.42%™** 72.67%*
Proposed DTL-EL 78.48% 72.42% 75.57%
Remote Classical Naive Bayes 64.29%*** 09.00%*** 15.79%***
machine learning | Logistic regression 68.60%*** 23.60%*** 35.12%***
Decision tree 49.88%*** 42.00%*** 45.60%***
SVM 62.55%*** 30.40%*** 40.92%***
XGBoost 67.14%*** 37.60%*** 48.21%***
LightGBM 62.17%*** 37.80%*** 47.01%**
Deep learning RNN 61.08%*** 39.15%*** 50.11%***
GRU 61.01%*** 41.20%*** 51.66%"**
LST™M 63.74%*** 45.99%*** 53.16%***
BILSTM 67.13%** 48.41%*** 56.21%***
BiLSTM with attention 68.02%*** 48.88%*** 58.03%***
Proposed DTL-EL 75.88% 51.20% 63.41%
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Local Classical Naive Bayes 59.92%*** 37.61%™ 46.21%*
machine learning | Logistic regression 58.77%*** 51.16%*** 54.70%***
Decision tree 57.50%*** 53.85%"** 55.61%"**
SVM 61.72%*** 53.36%*** 57.24%***
XGBoost 65.40%*** 56.78%*** 60.78%"**
LightGBM 64.43%*** 58.61%*** 61.38%"**
Deep learning RNN 65.87%*** 57.12%*** 61.62%***
GRU 68.14%*** 62.97%*** 65.35%"**
LST™M 70.63%*** 65.20%*** 67.81%"*
BILSTM 70.08%*** 66.91%*** 68.46%***
BiLSTM with attention 71.13%* 67.22%*** 69.71%***
Proposed DTL-EL 75.73% 71.43% 73.68%
SQL Injection Classical Naive Bayes 77.01%™ 82.45%* 79.64%**
machine learning | Logistic regression 83.03%*** 81.47%** 82.24%***
Decision tree 80.38%*** 80.20%*** 80.29%***
SVM 83.22%*** 81.10%*** 82.14%***
XGBoost 84.58%*** 85.15%*** 84.86%"**
LightGBM 83.60%*** 84.92%*** 84.26%"***
Deep learning RNN 83.29%*** 83.75%*** 83.54%***
GRU 81.47%*** 85.45%*** 83.41%***
LSTM 91.45% 77.79%*** 84.07%***
BILSTM 87.81%* 84.85%*** 86.30%***
BiLSTM with attention 88.14%*** 85.06%*** 86.61%**
Proposed DTL-EL 91.27% 92.12% 91.84%
Cross-Site Scripting Classical Naive Bayes 60.50%*** 54.05%** 57.09%***
(XsS) machine learning | Logistic regression 60.46%*** 62.96%*** 61.68%**
Decision tree 58.65% 58.19%** 58.42%***
SVM 60.70%*** 65.82%*** 63.16%***
XGBoost 68.39%*** 65.34%*** 66.83%"**
LightGBM 68.07%*** 66.77%*** 67.42%***
Deep learning RNN 69.78%*** 67.08%*** 68.29%"***
GRU 69.08%*** 66.49%*** 67.83%"**
LST™M 7711% 65.72%*** 70.96%***
BiLSTM 74.40%" 71.02%*** 72.67%"*
BiLSTM with attention 75.06%* 71.69%*** 73.36%"*
Proposed DTL-EL 75.67% 74.99% 75.43%
File Inclusion Classical Naive Bayes 55.71%** 25.00%** 38.71%**
machine learning | Logistic regression 33.56%** 12.50%*** 22.22%***
Decision tree 44.44%** 33.33%* 38.10%***
SVM 57.78% 29.17%** 42.42%***
XGBoost 57.02% 29.83%*** 41.81%***
LightGBM 58.68% 33.15%*** 47.06%"***
Deep learning RNN 43.32%*** 35.57%"* 39.88%***
GRU 45.10%*** 36.12%*** 41.87%***
LSTM 47.50%** 39.03%™** 42.73%***
BiLSTM 43.33%"** 39.17%™* 41.11%™
BiLSTM with attention 45.46%*** 41.08%*** 43.24%***
Proposed DTL-EL 50.77% 46.67% 48.72%
Overflow Classical Naive Bayes 69.15%*** 25.30%** 38.35%***
machine learning | Logistic regression 65.00%*** 49.24%*** 56.03%***
Decision tree 61.07%** 53.48%*** 57.03%***
SVM 63.19%*** 54.09%*** 58.29%***
XGBoost 69.38%*** 59.39%*** 64.00%"**
LightGBM 69.23%*** 61.36%"*** 65.06%"***
Deep learning RNN 71.45%™** 61.92%" 66.21%**
GRU 71.62%*** 61.85%*** 66.30%"***
LSTM 69.02%*** 63.79%*** 66.30%***
BILSTM 72.76%** 68.79%*** 70.78%***
BiLSTM with attention 73.04%*** 69.46%*** 71.87%**
Proposed DTL-EL 75.76% 72.94% 74.52%

Note: * p < 0.05, **p < 0.01, *+*p < 0.001. Top scores appear in boldface.

162  MIS Quarterly Vol. 48 No. 1/ March 2024



Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

Appendix C

Model Similarity Analysis I

As indicated in the main text, we implemented centered kernel alignment (CKA) to visualize the internal representations of our target domain
model (BiLSTM with self-attention) and DTL-EL to identify if the transfer learning process transfers layers that improve exploit labeling.
CKA outputs a heatmap of similarities (from 0-1, 1 being highest) between layers (Kornblith et al., 2019). If the internal representations of
the two models are similar, it may demonstrate that transfer learning is not providing significant model benefits, i.e., not transferring layers
that improve performance. We present the CKA analysis results in Figure C1.

The results of our CKA analysis show that the lower-level layers of the DTL-EL model (0: embedding, 1: convolution, 2: pooling, 3: batch
norm, 4: dropout) are more similar to higher-level layers (5: BiLSTM, 6: self-attention, 7: dropout, 8: dense) than the non-DTL model.
Additionally, the higher-level layers are more similar to each other in the DTL model compared to the non-DTL model. Conversely, the DTL
lower-level layers are less similar than the lower-level layers in the non-DTL model. These internal differences suggest that the transferred
layers are learning lower-level feature representations of the exploits, potentially explaining the difference in performance over the randomly
initialized weights of the target domain model. The differences also may suggest that the model is learning longer-range dependencies
(BiLSTM and attention layers) at the cost of local-range dependencies (lower-level layers).
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Figure C1. Results of DTL-EL's CKA (left) and Target Domain Model’s CKA (right)
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Appendix D

Implementation of DTL-EL Into a Web-Based User Interface I

We applied DTL-EL to the unlabeled source code from our hacker forum testbed (74,605 source code snippets). DTL-EL only applied a label to the
source code if the softmax function probability was greater than 80% for a given label*. Overall, the DTL-EL labeling process yielded 27,143 exploits
from eight international hacker forums from 2002 to 2020. DoS (6,726 exploits), SQL injection (6,685 exploits), and local (4,098 exploits) were the
most common exploits among all forums, while file inclusion (118 exploits) was the least common. Past IS literature has indicated that a system with
a user interface (UI) can help CTI stakeholders effectively interact with a novel algorithm and its results (Samtani et al. 2017). However, most past IS
cybersecurity analytics studies have not incorporated their proposed IT artifact into a system or UL Our collection of labeled hacker forum exploits was
incorporated into a UT to highlight the value of our artifact for organizational use. Our Ul aims to facilitate the needs of cybersecurity stakeholders based
on a targeted analysis of relevant literature. Figure D1 illustrates how our proposed DTL-EL framework is integrated into a UI for organizational use.

The UI offers several functions that help address relevant cybersecurity stakeholders' requirements when interacting with systems with advanced
cybersecurity analytics. First, cyber analysts using the UI can explore our content, input a single exploit, or upload a comma separated value (CSV) file
or JavaScript object notation (JSON) object with multiple exploits to return a list of exploit labels (top left of Figure D1) using the proposed DTL-EL.
Second, cybersecurity managers can explore automated trends in exploits from our crawlers or their CSV at a total or per-label level (bottom left of
Figure D1). The dates and exploit labels can be adjusted to generate custom visualizations for targeted analysis. For example, we see in Figure D1 that
local exploits saw a steep increase in posted source code from October 2019 to February 2020. Third, cyber analysts and cybersecurity educators can
closely look at the labeled exploits once a particular trend has been identified for more in-depth analysis (top middle of Figure D1). These tables can be
filtered based on year, hacker name, exploit type, or forum to facilitate strategic CTL. Additionally, cyber analysts and educators can download filtered
content of interest. Finally, cyber analysts can click on any exploit to see visualized semantic dependencies of the exploit. These dependencies show
how the source code operates from a token importance standpoint. After identifying recent local exploits, a cyber analyst could compare the semantic
dependencies between many local exploits and further determine specific trends within the coding practices of each exploit for tactical CTL In the
example, a cyber analyst using the Ul could identify the increase in local attacks and investigate the most recent source code further. This will illuminate
characteristics of how the code operates that could allow an analyst to operationalize the exploits and create countermeasures against them.
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Figure D1. Screenshots Showing DTL-EL Integration into a Ul. Users Can: (1) Upload or Crawl New

Code, (2) Investigate Exploit Label Trends, (3) Study Recent or Relevant Exploits, and (4) Generate
Semantic Dependencies for Any Exploit

4 Within our gold-standard dataset, exploits labeled at 80% softmax achieved 94.87% accuracy and a 93.26% F1-score. Raising softmax higher than 80% did
not lead to a statistically significant increase in accuracy/F1-score.
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Appendix E

Cost-Sensitive Analysis for Exploit Labeling I

Error minimization is commonly the goal of classification models. However, organizations will have different goals based on their internal
cyber-risk tolerance, cyberinfrastructure, threat surfaces, etc. Therefore, DTL-EL should offer some flexibility to meet the goals of different
organizations. Cost-sensitive analysis provides organizations with the flexibility to minimize cost instead of error by prioritizing the high-
cost exploits specific to the organization (Kim et al., 2012). Therefore, we provide an example of cost-sensitive analysis using estimated costs
of successful cyberattacks from reputable sources. In our cost matrix, a misclassified denial-of-service is $1,100,000,° local is $600,000,2
remote is $2,500,000,% SQL injection is $196,000,” and web applications is $1,400,000.% Overflow is $100 as they often do not incur costs.
Information on file inclusion and XSS exploits could not be found, so they were set to the closest exploit (local, web applications,
respectively). Consistent with best practices in past literature, we compared error minimization to a cost-sensitive classifier and a MetaCost
wrapper (Kim et al., 2012). A cost-sensitive classifier estimates class probabilities and uses them to minimize the expected cost at each
prediction. MetaCost relabels training instances to estimate more accurate probabilities while predicting an exploits label. The results of each
strategy by total cost (sum of mislabeled exploits of each type multiplied by the cost of that type), average misclassification cost (AMC, total
cost divided by predictions), F1-score, and count of mislabeled exploits appear in Table E1.

The error minimization strategy had the highest F1-score (70.34%) compared to the cost-sensitive (66.14%) and MetaCost (69.16%)
strategies. However, error minimization also led to the highest total cost ($276.2 million) and AMC ($57,042.54) among the three models.
The cost-sensitive classifier strategy led to the lowest total cost ($245.8 Million) and AMC ($50,764.15) despite achieving the lowest F1-
score (66.14%) and the highest number of mislabeled exploits (329). This difference suggests that the cost-sensitive strategy classifies high-
cost exploits (e.g., remote) at the expense of misclassifying many lower-cost exploits (e.g., SQL injection). A cost-sensitive classifier
therefore may be ideal for organizations prioritizing AMC and not mislabeled exploits. MetaCost achieved a close F1-score with error
minimization (69.16%) while reducing total cost ($263.6 million) and AMC ($54,440.31). Organizations may choose MetaCost when the
underlying predictive model produces inaccurate probabilities.

Table E1. Cost Comparison Between DTL-EL Model Strategies

Model strategy Total cost AMC F1-score Mislabeled exploits
Error minimization (DTL-EL) $276.2 Million $57,042.54 70.34% 262
Cost-sensitive classifier $245.8 Million $50,764.15 66.14%*** 329
MetaCost $263.6 Million $54,440.31 69.16% 276

Note: * p < 0.05, **xp < 0.01, ***p < 0.001

5 https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
¢ https://purplesec.us/resources/cyber-security-statistics/
7 https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-billion-attacks-reveals-sql-injections-cost-196000
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