

RESEARCH ARTICLE

DOI:10.25300/MISQ/2023/17316 MIS Quarterly Vol. 48 No. 1 pp. 137-166 / March 2024 137

CREATING PROACTIVE CYBER THREAT INTELLIGENCE WITH

HACKER EXPLOIT LABELS: A DEEP TRANSFER LEARNING

APPROACH1

Benjamin M. Ampel
Department of Management Information Systems, University of Arizona,

Tucson, AZ, U.S.A. {bampel@arizona.edu}

Sagar Samtani
Department of Operations and Decision Technologies, Indiana University,

Bloomington, IN, U.S.A. {ssamtani@iu.edu}

Hongyi Zhu
Department of Information Systems and Cyber Security, University of Texas at San Antonio,

San Antonio, TX, U.S.A. {hongyi.zhu@utsa.edu}

Hsinchun Chen
Department of Management Information Systems, University of Arizona,

Tucson, AZ, U.S.A. {hsinchun@arizona.edu}

 The rapid proliferation of complex information systems has been met by an ever-increasing quantity of

exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and

industry have placed a significant focus on proactively identifying and labeling exploits developed by the

international hacker community. However, prevailing approaches for labeling exploits in hacker forums

do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling

performance. In this study, we adopted the computational design science paradigm to develop a novel

information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL

incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention

mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-

EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep

learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based

on accuracy, precision, recall, and F1-score. Our proposed DTL-EL framework provides important

practical implications for key stakeholders such as cybersecurity managers, analysts, and educators.

Keywords: Hacker forums, cyber threat intelligence, cybersecurity analytics, deep transfer learning, deep
learning, exploit labeling, computational design science

Introduction

The rapid proliferation of new information technology (IT) in
recent years has created significant benefits for modern
society. Despite its usefulness, IT often possesses numerous
vulnerabilities that can allow unauthorized users unfettered

1 Gediminas Adomavicius was the accepting senior editor for this paper.
Nachiketa Sahoo served as the associate editor.

access to an organization’s networks, systems, private data,
and other critical assets. Sophisticated hackers often develop
exploits (e.g., SQL injections, cross-site scripting, etc.) in
plain-text source code to execute cyber breaches (Samtani et
al., 2017). Each cyber breach is estimated to cost an average
of $7,910,000 to an organization (Sun et al., 2020). This cost

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

138 MIS Quarterly Vol. 48 No. 1 / March 2024

underscores the importance for organizations to proactively

identify exploits. To this end, organizations are increasingly

investing in cyber threat intelligence (CTI) capabilities to

detect emerging exploits (Wagner et al., 2019).

To develop proactive CTI, academia and industry are

increasingly examining openly accessible exploits in major

international hacker forums, exploit darknet markets (DNMs),

and public exploit repositories (Samtani et al., 2020). Hacker

forums are large discussion boards that provide freely

accessible exploits developed by the large and evolving

international hacker community. These forums often contain

millions of user-generated posts and span multiple geopolitical

countries and regions such as Russia, the United States, the

Middle East, and others. Exploit DNMs allow hackers to share

and sell highly specialized exploits (e.g., 0-days). While less

common than in hacker forums, the exploits found within

exploit DNMs are more sophisticated than those found in

hacker forums. Public exploit repositories are collections of

exploits manually labeled and vetted by industry professionals

and CTI experts. These repositories are more common than

exploit DNMs and provide more exploit details (e.g., attack

type, common vulnerabilities and exposures, etc.) than hacker

forums. Sample exploits from a hacker forum, an exploit DNM,

and a public exploit repository are shown in Figure 1.

Hacker forum posts with exploit source code (top left of

Figure 1) often lack a clear exploit label (i.e., category). In

contrast, exploit DNMs (top right of Figure 1) and public

exploit repositories (bottom middle of Figure 1) offer a rich

set of metadata and clear exploit labels (e.g., local, web). A

recent CTI report from the renowned SANS Institute

indicated that cyber analysts at leading CTI companies

require assistance in identifying, collecting, and analyzing

unknown exploits from hacker communities to proactively

develop knowledge about hacker capabilities (Brown & Lee,

2021; Newman, 2020). This is partly in response to the Mirai

malware that caused widespread damage across the United

States. The source code for Mirai was posted on a hacker

community platform two months before its large-scale usage

(Yue et al., 2019). These attacks show that hacker forum

posts can be a valuable source for identifying precursors to

attacks and require up-to-date monitoring. However, most of

the exploits found in hacker forums are unlabeled (Ampel et

al., 2020). Unlabeled exploits can often prevent cyber

analysts from identifying the specific tactics and strategies

of hackers and stymie the production of timely and relevant

CTI (Tounsi & Rais, 2018). Extant procedures to label

exploits are currently manual, which is a time-consuming

and nontrivial process (Wagner et al., 2019). Cyber analysts

frequently cite these manual processes and high workloads

as their primary challenges, leading to burnout and turnover

(Agyepong et al., 2020). Automating the exploit labeling

process can reduce manual processes and provide cyber

analysts with tactical, strategic, and operational CTI

capabilities. We present selected benefits that exploit

labeling can provide to each CTI type in Table 1.

Tactical CTI is the techniques, tactics, and procedures used

by threat actors (Wagner et al., 2019). Providing clear labels

to hacker forum source code allows cyber analysts to quickly

organize discovered exploits, operationalize them, and

discover the capabilities of threat actors. For example, once

a cyber analyst knows a set of exploits are SQL injections

(as opposed to other exploits), the analyst can build a secure

copy of their IT (e.g., a virtual machine with an SQL server),

conduct targeted penetration testing with the labeled

exploits, and identify suitable mitigations and cyber-

defenses against the successfully executed exploits. This

hacker emulation is known as red teaming and is essential to

modern cybersecurity practices (Alomar et al., 2020). From

an operational CTI perspective, labeled exploits can help

cyber analysts monitor new exploits posted on hacker

forums and choose relevant exploits to investigate further in

a targeted fashion (Tounsi & Rais, 2018). This operational

CTI can be combined with tactical CTI and external

resources (e.g., SANS CTI reports) to strengthen cyber-

systems against specific attacks (e.g., Mirai malware). For

example, SANS CTI reports may link web application

exploits to a specific advanced persistent threat group. An

analyst can use the combined information of newly labeled

exploits and known strategies employed by that APT group

to select the appropriate system-hardening strategies. From

a strategic perspective, exploit labels allow senior officials

to identify attack trends (e.g., how exploits rise or fall over

time) in a timely fashion such that they can make the

appropriate security investments (Tounsi & Rais, 2018).

Moreover, such information can be integrated into cyber-risk

assessment models to create proactive, preventive, and

dynamic insights that facilitate effective cybersecurity

investments (Shin & Lowry, 2020).

In this study, we adopted the computational design science

paradigm (Rai, 2017) to develop a novel deep transfer

learning exploit labeler (DTL-EL) framework that leverages

the rich metadata and large quantities from exploit DNMs

and public exploit repositories (source domain) to

automatically label each exploit’s source code found in
hacker forums (target domain). The proposed framework is

based on deep transfer learning (DTL), a prevailing

approach in cybersecurity analytics and CTI literature in IS.

DTL can transfer knowledge from a large and labeled source

domain to improve model performance when the target

domain is not large or rich enough to create a fit model

(Zhuang et al., 2020). DTL has particular value in CTI

applications that do not often have rich labeled datasets, such

as hacker forum analysis (Samtani et al., 2020).

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 139

Figure 1. Examples of Posts with Exploits from: (a) a Hacker Forum, (b) an Exploit DNM, and (c) a Public
Exploit Repository

Table 1. Selected Benefits of Exploit Labeling for CTI

CTI type Selected benefits of exploit labeling References

Tactical Improved profiling and operationalization of hacker capabilities to guide cyber-
defense strategies, including red-teaming exercises

Wagner et al., 2019

Operational Automated real-time statistics and threat prioritization to guide internal control
implementations

Brown & Lee, 2021

Strategic Trend analysis of emerging exploits and hackers for executives and security
managers to more effectively make security investments

Tounsi & Rais, 2018

Moreover, recent information systems (IS) cybersecurity

research has shown the applicability of deep transfer

learning (DTL) for CTI, where a model trained on a larger

labeled source domain (English darknet market postings)

provided significant benefits to three smaller target domain

models (Russian, French, and Italian darknet market

postings) (Ebrahimi et al., 2022). In addition to DTL, the

proposed DTL-EL framework also incorporates several

state-of-the-art methods in deep learning (DL) and attention

mechanisms that were carefully designed for exploit

labeling. First, DTL-EL includes a bidirectional long short-

term memory (BiLSTM) with its hidden and cell states pre-

initialized with the titles of professionally vetted exploits in

exploit DNMs and public exploit repositories. The pre-

initialization design emulates how a cybersecurity

professional reads the title of an exploit before examining its

source code. Second, DTL-EL transfers the pre-initialized

BiLSTM model’s learned representation of the source
domain dataset (i.e., exploit DNMs and public exploit

repositories) to help label exploit source code in hacker

forums (target domain). Third, the DTL-EL incorporates a

self-attention mechanism to identify and capture semantic

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

140 MIS Quarterly Vol. 48 No. 1 / March 2024

and long sequential dependencies within the exploit source

code to improve DTL-EL’s performance. Consistent with
the guidelines of the computational design science paradigm,

we rigorously evaluated the proposed DTL-EL with a series

of benchmark experiments (Rai, 2017). The DTL-EL

framework can help future IS researchers execute targeted

cybersecurity analytics on exploit labeling, trend analysis,

real-time monitoring, and other critical CTI tasks.

This paper is organized as follows. First, we review IS

cybersecurity analytics research, computational design

science guidelines, and hacker-forum exploit analysis

literature. Second, we identify research gaps from prior

literature and pose research questions. Third, we present

DTL-EL’s methodological foundation by reviewing the
BiLSTM with attention mechanism and DTL. Fourth, we

describe the proposed DTL-EL. Fifth, we present the results

of our experiments. Sixth, we summarize our proposed DTL-

EL’s practical implications and contributions to the IS

knowledge base. Finally, we conclude this research and

discuss potential future directions.

Literature Review

IS Cybersecurity Analytics Literature and
Computational Design Science Guidelines

IS scholars have made remarkable advances in cybersecurity

analytics research in recent years. We summarize selected

recent cybersecurity analytics literature published in

prevailing IS journals in Table 2. For each study, we

summarize the year of publication, author(s), cybersecurity

focus, whether the approach was multi-dataset or not,

analytical method(s), and if a system or UI was built to

present the analytical results.

Most prior cybersecurity analytics studies have examined

hacker forums to proactively identify, detect, and mitigate

cyber threats (Benjamin et al., 2019; Ebrahimi et al., 2020;

Samtani et al., 2017; Yin et al., 2019; Yue et al., 2019).

Earlier cybersecurity analytics traditionally relied on

classical machine learning (ML) or text mining methods

(Benaroch, 2018; Karhu et al., 2018; Samtani et al., 2017;

Sen et al., 2020; Yin et al., 2019), while more recent studies

have leveraged the DL-based BiLSTM to automatically

extract feature representations (i.e., embeddings) from the

inputted hacker forum post content (Ebrahimi et al., 2022;

Samtani et al., 2022). Despite providing timely contributions

to our understanding of hacker forum content, most studies

do not conduct the critical CTI task of assigning a specific

label to each exploit within hacker forums. Additionally,

researchers rarely embed their algorithm(s) into a system or

UI. Consequently, CTI researchers or practitioners may have

difficulty leveraging a cybersecurity analytics IT artifact for

their cyber-defense workflow and CTI tasks (Samtani et al.,

2017; Silic & Lowry, 2020).

Designing a novel IT artifact for a high-impact societal

application (e.g., hacker exploit labeling) requires a

principled approach. Past IS cybersecurity analytics

literature has leveraged the computational design science

paradigm (Hevner et al., 2004; Rai, 2017) to guide and

ground their work. The computational design science

paradigm provides IS scholars with three concrete

guidelines to design and evaluate novel algorithms,

computational models, and systems for advanced data

analytics applications (Rai, 2017). First, the IT artifact’s
design can be inspired by key domain requirements or data

characteristics. In a recent example within extant

cybersecurity analytics literature, the webpage structure

from DNMs guided the design of a novel transductive

support vector machine (SVM) (Ebrahimi et al., 2020).

Second, IS scholars should demonstrate the novelty of their

design by comparing the quantitative performance (e.g.,

accuracy, precision, recall, F1-score) of their proposed IT

artifact against well-established baseline methods. Finally,

the IT artifact should contribute back to the IS knowledge

base. Contributions can include a situated implementation

of the IT artifact (e.g., user interface) and/or nascent design

theory (e.g., design principles) (Rai, 2017). Executing each

guideline requires understanding the application for which

the artifact is being developed. For this study, we identify

what data characteristics have been used to analyze hacker

forum exploits.

Hacker Forum Exploit Analysis

Hackers use forums, carding shops, DNMs, and internet-

relay-chat (IRC) to share goods (e.g., credit cards) and assets

(e.g., exploits) (Benjamin et al., 2019). Hackers freely post

tens of thousands of assets in forum posts, making them a

viable and attractive data source for developing CTI

(Samtani et al., 2017; Yue et al., 2019). Moreover, assets

found within hacker forums (e.g., exploits) have been used

in recent cyberattacks (Samtani et al., 2020). As a result, a

growing body of literature aims to explore and categorize

exploits in hacker forums. We summarize selected recent

literature analyzing exploits in hacker forums in Table 3.

Each study is summarized based on the year, author(s),

objective, data source, the data type used, analytics, and

identified exploits.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 141

Table 2. Summary of Selected Recent IS Cybersecurity Analytics Literature

Year Author(s) Cybersecurity focus Multi-
dataset?

Analytical method(s) System
or UI?

2022 Samtani et al. Exploit-vulnerability linking Yes DSSM with BiLSTM No

2022 Ebrahimi et al. Detecting hacker assets in multilingual hacker forums No GAN with BiLSTMs No

2020 Ebrahimi et al. Identifying threats in DNMs No Transductive SVM No

2020 Sen et al. Quantifying the impact of cyberattacks on software
markets

No Regression No

2020 Silic & Lowry Improving organizational security No HMSAM Yes

2019 Yue et al. Correlating DDoS mentions in hacker forums and DdoS
victims

Yes LDA, dynamic panel
fixed effects

No

2019 Yin et al. De-anonymization of blockchain transactions amongst
criminals

No Gradient boosting
classifier

No

2019 Benjamin et al. Darknet predictive analytics No OLS Regression No

2018 Benaroch Proactively mitigating risk for cybersecurity investments No Real options model No

2018 Karhu et al. Opening digital platforms while protecting them from
exploitation

Yes Resource-based View No

2017 Samtani et al. Code classification in hacker forums No LDA, SVM Yes

Note: UI = user interface; BiLSTM = bidirectional long-short term memory; COC = convention on cybercrime; DdoS = distributed denial of service;
DSSM = deep structured semantic model; GAN = generative adversarial network; HMSAM = hedonic-motivation system adoption model; IRC =
internet-relay-chat; LDA = latent Dirichlet allocation; OLS = ordinary least squares; SVM = support vector machine.

Table 3. Selected Recent Literature Analyzing Exploits in Hacker Forums

Year Author(s) Objective Data source Data type used Analytical
method(s)

Identified exploits

2021 Zhao et al. Attack event
prediction

Hacker forums Post content,
attachments

SNA DoS, overflow,
SQLi

2019 Schafer et al. Trend
identification

Hacker forums Titles, users, posts,
topics, keywords

SNA, LDA Leaks, botnets,
DdoS

2019 Benjamin et al. Darknet
identification,
collection

Hacker forums Post content,
attachments, code,
keywords, reputation

OLS Rootkit, XSS, SQLi,
DdoS, drive-by

2018 Williams et al. Exploit
categorization

Hacker forums Posts content,
attachments

LSTM Keyloggers, DdoS

2018 Goyal et al. Cyberattack
prediction

Hacker forums,
Twitter, blogs

Post content, tweets,
blogs

LSTM, RNN Trojan, phishing

2018 Deliu et al. Exploit
categorization

Nulled.IO leak Post content SVM, CNN Botnet, crypter,
keylogger

2017 Samtani et al. Exploit
categorization

Hacker forums Post content, authors,
source code

LDA, SVM Crypters,
keyloggers

Note: CNN = convolutional neural network; DdoS = distributed denial of service; LDA = latent Dirichlet allocation; LSTM = long-short term
memory; OLS = ordinary least squares; RNN = recurrent neural network; SNA = social network analysis; SQLi = structured query language
injection; SVM = support vector machine; XSS = cross-site scripting

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

142 MIS Quarterly Vol. 48 No. 1 / March 2024

Most hacker-forum exploit analytics studies have analyzed the

post content, which often contains significant jargon,

surrounding an exploit’s source code to categorize posts into
broad categories (e.g., botnets, keyloggers, malware). Similar to

IS cybersecurity analytics literature, earlier studies (2017-

2018) often used classical ML (e.g., SVM) based on their tasks

(Deliu et al., 2018; Samtani et al., 2017). Since classical ML

approaches rely on a manually defined set of features (which is

labor intensive and time-consuming to construct), scholars in

recent years have relied on the DL-based LSTM or BiLSTM for

their tasks (Goyal et al., 2018; Williams et al., 2018).

Irrespective of the analytical method, past studies have not

examined how to assign a specific label to each exploit in

hacker forums based on its source code or the metadata (e.g.,

exploit titles) in exploit DNMs or public exploit repositories.

Research Gaps and Questions

We identified several research gaps from prior literature. First,

past studies analyzing exploits in hacker forums primarily

analyze post content and often omit source code. However,

source code contains significant, often precise, syntax and

information (e.g., function names, exploit actions, etc.) that is

not in natural language (Nuñez-Varela et al., 2017). Second,

hacker-forum exploit source code is nontrivial to categorize, as

it often lacks clear exploit labels and metadata (e.g., informative

titles). Additionally, prevailing DL-based methods (e.g.,

LSTM, BiLSTM) used for hacker forum analysis were

designed for natural language and often struggle to capture long

semantic relationships (e.g., dependencies) within exploit code.

Finally, despite containing professionally vetted exploits, rich

metadata, and overlapping hacker content, exploit DNMs and

public exploit repositories have not been leveraged in a multi-

dataset model to help label hacker forum exploits. Based on

these research gaps, we pose the following research questions:

How can we extend a BiLSTM model to capture the long

semantic dependencies found within exploit source code?

How can we transfer the knowledge from metadata-rich exploit

DNMs and public exploit repositories to help label exploits in

hacker forums based on their source code?

Methodological Foundation

To set the methodological foundation for this work, we first

review the BiLSTM with attention model. BiLSTM is the

prevailing algorithm for DL-based hacker community text

analytics (Ebrahimi et al., 2022, 2018) and other text

classification tasks (Thangaraj & Sivakami, 2018). In the

following subsections, we review DTL as the prevailing

approach for transferring knowledge from an information-rich

source domain (e.g., exploit DNMs and public exploit

repositories) to a target domain (e.g., hacker forums).

Bidirectional LSTM (BiLSTM) with Attention
Model

The BiLSTM improves upon other popular DL-based text

classification models (e.g., LSTM, GRU, RNN) by using

hidden states (working memory) with past and future contexts

of the input tokens to make a prediction (Yenter & Verma,

2017). The state-of-the-art BiLSTM for text classification

incorporates a convolutional layer and an attention

mechanism to capture local correlations of temporal structures

and long-range phrases with sequential dependencies (Liu &

Guo, 2019). A single LSTM cell within the BiLSTM with

attention model is presented in further detail on the bottom left

and bottom right, respectively, of Figure 2.

The BiLSTM with attention model first converts a textual

input into word embeddings for input into a convolutional

layer. The convolutional layer extracts contextual and

sequential features from the embeddings to learn local and

latent representations of the input. The BiLSTM layer

processes the features and concatenates the results of the

forward (/�⃗⃗ ⃗) and backward (/�⃖⃗ ⃗⃗) hidden states to output a

single hidden state, /� = [/�⃖⃗ ⃗⃗ /�⃗⃗ ⃗]Ā at each time step (ā). The

same process also occurs with the BiLSTM cell states to

output a single matrix, ÿ� (long-term memory). In an untrained

model, the forward and backward LSTM cell and hidden

memories are initialized to zero (ÿ�=0 = 0 and /�=0 = 0) and

updated over time (ā). However, using the final /�⃗⃗ ⃗, /�⃖⃗⃗⃗ , ÿ�⃗⃗ ⃗, and ÿ�⃖⃗⃗⃗ of a BiLSTM model to pre-initialize the starting hidden and

cell state weights of a subsequent BiLSTM model can reduce

error to improve model performance (Elsheikh et al., 2019).

In a BiLSTM with attention, the attention weight matrix takes

the hidden states H = (/1, /2, & /Ā) as input and calculates a

weighted sum for each hidden state. The weighted sum

extracts the most informative hidden states to represent the

input sequence, which can be used as input into another layer

for subsequent tasks (e.g., classification). Attention

mechanisms operate with a query and a set of key-value pairs.

The query determines which aspects of the input embedding

the attention mechanism will attend according to the weighted

sum of the values and their corresponding key-value pairs.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 143

Figure 2. BiLSTM with Attention Mechanism (Adapted from Liu & Guo, 2019)

Currently, three categories of attention mechanisms can be

incorporated into a BiLSTM: (1) hard attention, (2) soft

attention, and (3) self-attention. Hard attention focuses on part

of the input (Luong et al., 2015), while soft attention focuses on

the entire input space and learns weights for all input features

(Bahdanau et al., 2014). Hard attention and soft attention are

often used when a parallel corpus is available (e.g., machine

translation). Self-attention mechanisms relate to various

positions of the same input sequence, finding the context vector

between each value of an input, and applying a weight. When

the dataset has one long-sequence input, the hidden state matrix � from the prior layer is linearly projected into a query (Ā), key

(ÿ), and value (ý) (Vaswani et al., 2017). Dot-product

multiplication operations are applied to each to create learned

parameters. Formally, self-attention is calculated as:

ĂÿýĀ�āāÿ(�) = ĀĀĀāþ�ý (�þ�(�þ�)Ā√þ�)�þ� ,
where þ� is the dimension of ÿ (i.e., �þ�) and þ�, þ� , and þ� are learned parameters. Self-attention-based models

consistently outperform models without attention mechanisms

in various natural language processing (NLP) tasks (Shen et al.,

2018). Past studies have indicated that the self-attention

mechanism’s weighting approach can improve the performance
of predictive models by capturing short- and long-range

contextual information within the input text (Adadi & Berrada,

2018). Additionally, researchers can implement and evaluate

adversarial perturbations to identify if the feature weights

learned from the self-attention mechanism explain how the

model reached its end decision (Wiegreffe & Pinter, 2019).

However, a BiLSTM with self-attention cannot address the

issue of missing metadata (e.g., descriptive titles, labels) in

hacker forum exploits. DTL is an emerging DL-based method

that can leverage the learned knowledge from the rich metadata

in public exploit repositories and exploit DNMs to help label

exploits in hacker forums.

Deep Transfer Learning (DTL)

DTL aims to improve the performance of a task � (e.g.,

classification) in a target domain �Ā by transferring

knowledge from a source domain �ÿ (Zhuang et al., 2020).

Generally, each domain � is represented by � = {ÿ, ÿ(ÿ)},
where ÿ is the feature space and ÿ(ÿ) is the marginal

distribution of data instances ÿ = {ý1, ý2, & , ýĀ}. For each �, � is represented by � = {þ, Ā(∙)}, defined by a label space Ā

and a function Ā(∙), which is a conditional probability

function ÿ(Ā| ∙). DTL transfers the latent knowledge from �ÿ

and �ÿ to improve the predictive function ĀĀ(∙) for �Ā. DTL is

commonly used when a �Ā conducted in �Ā achieves low

performance due to insufficient training data (ý), and ýÿ > ýĀ (Pan & Yang, 2010).

Four general types of DTL approaches exist: (1) instance

transfer, (2) mapping transfer, (3) adversarial transfer, and

(4) network transfer (Tan et al., 2018). Instance-transfer

selects instances from the source domain dataset ÿÿ based on

a similarity distance formula to supplement the target

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

144 MIS Quarterly Vol. 48 No. 1 / March 2024

domain dataset ÿĀ. However, this approach cannot account

for different features in the source and target domains (e.g.,

exploit titles in one domain but not another). Mapping

transfer merges instances from the source and target dataset

to one data space for tasks such as multi-task domain

adaptation learning for sequence tagging (Peng & Dredze,

2017) and multilingual text classification (Ebrahimi et al.,

2018). Mapping transfer is best suited for semi-supervised

domain adaptation where the target domain is unlabeled

(Peng & Dredze, 2017). Adversarial transfer uses adversarial

learning techniques to capture the shared features of

different tasks independently (Liu et al., 2017). Like

mapping transfer, adversarial transfer works best for

unsupervised or self-supervised domain adaptation tasks

(Liu et al., 2017). Network transfer reuses parts of a neural

network trained on a source domain dataset to approximate

the predictive function ĀĀ(∙) for a task in the target domain.

Network transfer is powerful when the source and target

domains contain labeled data. Past IS studies employing

DTL approaches have used multi-layer transfer learning

(MLTL) when the model in the source domain was

initialized with specific features and had multiple layer types

(Zhu et al., 2020). Pretraining tasks (e.g., pre-initialization)

often improve MLTL performance (Liu et al., 2019). Other

DTL methods include updating existing model weights with

an ensemble method or using pretrained language models

(Ruder et al., 2019). Prevailing approaches to evaluate DTL

are comparisons against non-DTL models and/or different

DTL types and ablation analyses on layer and parameter

transfer (Houlsby et al., 2019).

Research Testbed and Design

We developed a novel research design based on our

methodological foundation to help address the posed research

questions. The proposed research design has four major

components (Figure 3): (1) data collection, (2) preprocessing

and dataset construction, (3) DTL-EL model, and (4)

experiments and evaluations. We describe each component in

the following subsections.

Data Collection

We collected three sources of exploits for our research: hacker

forums, exploit DNMs, and public exploit repositories. The

three sources contain varying metadata, which can fall into one

of four categories. First, description metadata provides high-

level information about the exploit, including title, exploit

source, and date. Second, author metadata provides details

about a user, including name and reputation score. Third,

content metadata provides the exploit source code and the post

and discussion describing the exploit. Finally, operation

metadata pertains to how the exploit operates, including attack

type and targeted platform. These categories are detailed in

Table 4, along with features of each category, their descriptions,

an example, and whether a feature is present in the three exploit

collections (✓means the feature is present, X means it is not).

Exploit DNMs and public exploit repositories contain key

operation metadata not found in hacker forums, such as attack

type and platform. Source code and post content can be

collected from all three platforms and can therefore serve as the

basis for a DTL model. We collected nine hacker forums, one

exploit DNM, and six public exploit repositories. Each platform

was identified based on the input of cybersecurity domain

experts, the popularity of the platform in the hacker community,

and link-following techniques (Samtani et al., 2022). We

summarize each collected platform’s type, name, language,
dates, posts, source code snippets, and authors in Table 5.

Our collection included 16 platforms across three languages,

258,739 source code snippets, and 999,012 unique authors. The

hacker forum testbed contained 79,437 unlabeled source code

snippets posted between 2002 and 2020. Hacker-forum source

code snippets were identified through special code blocks used

on each forum (Samtani et al., 2017). One significant exploit

DNM containing 33,766 exploits made by 6,052 authors was

collected. Six public exploit repositories with 145,536

professionally vetted exploits were collected. Taken together,

our research testbeds far exceed the quantity presented in

prevailing IS cybersecurity analytics literature (Benjamin et al.,

2019; Samtani et al., 2022; Samtani et al., 2017).

Preprocessing and Dataset Construction

For exploit DNMs and public exploit repositories, the eight

most popular exploit labels based on attack type were retained.

These included web applications (43,475 exploits), denial of

service (DoS) (12,121 exploits), remote (11,787 exploits),

local (7,993 exploits), SQL injection (7,187 exploits), cross-

site scripting (XSS) (7,025 exploits), file inclusion (3,412

exploits), and overflow (3,333 exploits). Source code was

stripped of non-alphanumeric, lower-cased, lemmatized, and

tokenized characters. Consistent with best practices in DL-

based text analytics, the input sequence for DL models was

padded with a special token to ensure proper lengths for all

inputs (Yenter & Verma, 2017). For ML models, a fixed

corpus was built from the training data vocabulary. Fixed-

length vectors were created for each input via count

vectorization and term frequency-inverse document

frequency weighting.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 145

Figure 3. Proposed Research Design

Table 4. Summary of Key Metadata Available in Exploit-Specific Platforms

Category Feature Description Example Hacker
Forum

Exploit
DNM

Public

repository

Description ID A unique post identifier EDB-ID: 812 ✓ ✓ ✓

Title Exploit header inoERP 4.15 SQL injection ✓ ✓ ✓

Exploit
source

Where the exploit was
collected from

exploitDB X X ✓

Date Postdate of exploit 26-Sep-19 ✓ ✓ ✓

Author Author The person who posted the
exploit

Alexandrovich Lyhin ✓ ✓ ✓

Reputation
score

Respect for the author in the
community

3/5 stars ✓ ✓ X

Content Post A short paragraph explaining
what the code does

inoERP version 4.15 suffers
from a remote SQL injection
vulnerability.

✓ ✓ ✓

Discussion Comments that follow the
posting of the code

This still worked for me on
Adobe 13.03

✓ ✓ X

Source
code

The code of the exploit itself def generatePayload(query):
b64_query

✓ ✓ ✓

Operation Attack type Categorizes the code based
on its operations

Local, remote, SQL injection X ✓ ✓

Platform System exploit targets Windows, Apple, Linux X ✓ ✓

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

146 MIS Quarterly Vol. 48 No. 1 / March 2024

Table 5. Summary of Research Testbeds

Platform type Platform name Language Start date End date # of code
snippets

of unique
authors

Hacker
forums

0x00sec English 4/13/2017 7/15/2020 397 1,004

Altenens English 3/22/2010 4/1/2020 1,403 580,220

AntiChat Russian 4/1/2004 7/15/2020 64,890 84,143

AntiOnline English 4/10/2002 7/15/2020 2,063 13,017

Cipher English 5/1/2015 7/15/2020 2,207 3,551

Go4expert English 12/25/2004 7/15/2020 5,800 15,213

PersianTools Persian 8/18/2015 4/1/2020 528 19,360

WWHClub Russian 2/6/2014 7/15/2020 53 133,598

WildersSecurity English 2/8/2002 7/15/2020 2,096 127,103

Summary 9 Forums 3 Languages 2/8/2002 – 7/1/2020 79,437 977,209

Exploit DNM 0day.today English 1/1/1996 4/1/2020 33,766 6,052

Public exploit
repository

Seebug English 12/12/2001 4/1/2020 56,657 291

ExploitDB English 8/1/1988 4/1/2020 43,120 7,814

PacketStorm English 8/17/1999 4/1/2020 39,433 7,102

Metasploit English 10/12/2005 4/1/2020 4,040 1

Vulnerlab English 7/14/2009 4/1/2020 1,635 525

Zeroscience English 7/8/2008 4/1/2020 651 18

Summary: 6 Repositories English 1/1/1988 - 7/1/2020 145,536 15,751

Total: 16 Sources 3 Languages 1/1/1988 - 7/1/2020 258,739 999,012

Training and evaluating a supervised DTL model requires a

source and target domain dataset (Zhu et al., 2020). In this study,

the source domain dataset was created from collected exploits in

exploit DNMs and public exploit repositories that contained an

exploit label. These data sources were chosen for the source

domain, as they were carefully curated and reviewed by

cybersecurity domain experts and contain rich metadata such as

descriptive titles and exploit labels (Samtani et al., 2020). The

target domain consists of hacker-forum exploit source code posts.

The ground-truth target domain dataset was constructed in

three steps. First, we carefully defined keywords for each

exploit label in the source domain to retrieve relevant exploits

from hacker forums based on each post’s thread title and
content2. Second, exploit source code snippets of fewer than

100 characters in length were omitted, as these often contain

irrelevant information (e.g., IPs for proxies). Third, we

manually verified the remaining data and discarded irrelevant

content. The source and target domain datasets are summarized

by the exploit label in Table 6.

2 We conducted preliminary analysis to assess keyword matching as a viable

exploit labeling strategy. In this analysis, 100 exploits were separately

labeled by two experts with over half a decade of experience in CTI, dark

web analytics, and exploit analysis. Keywords were generated based on

common tags provided to exploits by cybersecurity domain experts. The

initial Cohen’s kappa between the ratings was 0.88. The raters met after the

The source domain dataset contained 96,333 labeled exploits

in eight exploit label categories. For our target domain dataset,

the preprocessing steps reduced the 79,437 unlabeled hacker

forum source code snippets in our research testbed to 4,842

labeled exploit source code snippets. The dataset reduction is

attributable to the lack of related metadata in hacker forums

that allows targeted keyword matching (thus further

motivating our proposed approach). Keyword matching

requires a predefined lexicon which is often time-consuming

to develop and maintain. This time cost is pronounced in

hacker community research, as terminology is constantly

evolving and changing (Samtani et al., 2020). Moreover,

direct keyword matching can often fail due to small content

mismatches (e.g., term variations or misspellings) (Samtani et

al., 2022). Even with the significant reduction in dataset size,

the target domain dataset exceeds the size of the testbeds used

in related IS studies (Benjamin et al., 2019; Samtani et al.,

2022; Samtani et al., 2017). The most considerable disparity

in our domains is in the web applications category, which is

the most common exploit type in the source domain but the

second least common in the target domain.

first round of labeling to resolve differences and attained 100% agreement

on exploit labels. Compared to DTL-EL, the keyword-matching approach

correctly labeled fewer exploits (37 vs. 56), incorrectly labeled more

exploits (8 vs. 2), and was unable to label most exploits (55 vs. 42). These

results indicate that a keyword-based approach alone attains suboptimal

exploit labeling performance.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 147

Table 6. Source and Target Domains in Ground-Truth Exploit Dataset

Exploit label Source domain count Target domain count

Web Applications 43,475 57

DoS 12,121 714

Remote 11,787 672

Local 7,993 1,952

SQL Injection 7,187 702

XSS 7,025 485

File Inclusion 3,412 29

Overflow 3,333 231

Total 96,333 4,842

Table 7. Source Code Metrics by Domain in the Ground-Truth Dataset

Domain ASCL HAE MACC

Source (exploit DNMs and public repository) 24.93*** 371.24*** 6.67***

Target (hacker forums) 15.48 215.79 4.14

Note: ∗ : ā < 0.05 ∗∗ : ā < 0.01 ∗∗∗ : ā < 0.001

Extant literature suggests proving a systematic difference

between source and target domain datasets to rule out other

DTL types (e.g., mapping) or learning paradigms (e.g.,

incremental learning) (Zhuang et al., 2020). Consistent with

best practices in source code analysis literature, we calculated

the average source code length (ASCL), Halstead average effort

(HAE), and McCabe average cyclomatic complexity (MACC)

for each domain (Nuñez-Varela et al., 2017). ASCL measures

the average lines of code. HAE measures the difficulty of

developing a piece of source code based on the number of

unique operands and operators in the source code. MACC

measures the source code’s average number of control flow

statements (e.g., if, else, for). These measures were chosen as

they are seminal and language-agnostic. The Radon Python

package (Lacchia, 2020) was used to calculate each metric for

each ground-truth domain. Consistent with source code analysis

literature, a one-tailed t-test was conducted to measure

statistically significant differences between domains (Kapllani

et al., 2020). The results of our analysis appear in Table 7.

Code in the source domain has a longer ASCL (24.93 vs 15.48

average lines), a higher HAE (371.24 vs 215.79), and a higher

MACC (6.67 vs 4.14 average control flow statements) than our

target domain. These results are significant at ā < 0.001 and

suggest systematic differences in the coding practices of the

source and target domain datasets. More specifically, the results

suggest that our source domain dataset is longer, more difficult

to code, and more complex on average than our target domain

dataset. Since our dataset consists of significantly distinct and

labeled source and target domains, we selected network-based

DTL for our task of exploit labeling.

Deep Transfer Learning Exploit Labeler (DTL-
EL) Model

The proposed DTL-EL is a supervised network-based DTL

model that trains and transfers the layers of a BiLSTM model

with pre-initialized hidden and cell states from

professionally vetted exploits (source domain) to a BiLSTM

with self-attention designed to label hacker-forum exploit

source code in a target domain. The proposed DTL-EL

model is presented in Figure 4.

The DTL-EL model follows a five-step procedure for

labeling source code from hacker forums. A sketch of our

proposed DTL-EL model is presented below:

Step 1 (exploit metadata training): An exploit title

BiLSTM model is trained using professionally vetted exploit

titles (metadata) from exploit DNMs and public exploit

repositories as input. At ā = 0, The hidden state /�=0 and

cell state ÿ�=0 memories start at 0 and output a concatenated /�ÿ��ÿ = [/�⃖⃗⃗⃗ /�⃗⃗ ⃗]Āand ÿ�ÿ��ÿ = [ÿ�⃖⃗⃗⃗ ÿ�⃗⃗ ⃗]Ā .

Step 2 (pre-initialization design): An exploit source code

BiLSTM model is pre-initialized at ā = 0 with the hidden

states and long-term memories obtained from the exploit title

BiLSTM: /�=0 = /�ÿ��ÿ and ÿ�=0 = ÿ�ÿ��ÿ. The hidden

states and long-term memories are not static (i.e., are

trainable) and are updated during the model training process.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

148 MIS Quarterly Vol. 48 No. 1 / March 2024

Figure 4. Illustration of the Proposed DTL-EL Model

Step 3 (source domain exploit source code training): The

pre-initialized exploit source code BiLSTM model is trained

using professionally vetted exploit DNM and public exploit

repository exploits to learn a representation for the source

domain task of labeling hacker forum exploits. Our classifier

uses the softmax function, �(�)� = ��ÿ∑ ��Ā�Ā=1 , where � is the

input vector given from the self-attention mechanism, ÿ is the ÿth class, and K is the number of classes. The output of the

model is a probability distribution where the input is labeled

with the class having the highest probability in the

distribution.

Step 4 (layer transfer): Consistent with recent IS literature,

we implemented a multi-layer transfer learning (MLTL)

design from �ÿ to �Ā (Zhu et al., 2020). MLTL is chosen due

to the heterogeneity of our layer weights: The pre-

initialization design updates the BiLSTM and self-attention

layer weights but does not directly update convolutional and

embedding layers. A new exploit source code BiLSTM model

in the target domain (�Ā) (i.e., for hacker-forum exploit

source code) is constructed by reusing ÿ layers from the

trained source-domain exploit source code BiLSTM model.

Following best practices in DTL literature, we fine-tune the

weights for all of the reused layers since �Ā contains labeled

data (Mou et al., 2016).

Step 5 (target domain exploit source code training): The

target domain model is trained using ground-truth hacker

exploit source code as input to adapt the feature representation

from �ÿ to �Ā. The training process is the same as Step 3.

The input word embeddings for each BiLSTM model were

created with GloVe, a prevailing context-free embedding

technique that can learn the global statistic information of

input sequences and is robust to long sequences compared to

other context-free models (e.g., Word2Vec) (Kowsari et al.,

2019). GloVe was chosen over contextual embedding models

(e.g., BERT) because the performance of contextual

embeddings often degrades with noisy text (e.g., text in hacker

forums) (Srivastava et al., 2020). Consistent with best

practices in text classification literature, the embedding

vectors produced by GloVe were inputted into a convolutional

layer with a kernel size of 3 and a rectified linear unit (ReLU)

activation function (Yenter & Verma, 2017). The

convolutional layer can capture and engineer local features by

focusing on word combinations in the size of the kernel (e.g.,

kernel size of 3 means the convolutional layer learns

trigrams). The hybrid convolutional-BiLSTM model has

significantly outperformed BiLSTM models on benchmark

text classification tasks (e.g., sentiment analysis) by learning

local and low-dimensional vectors for each input (Yenter &

Verma, 2017).

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 149

Since hybrid DL models are prone to overfitting and can

become unstable without proper tuning and construction (Liu

& Guo, 2019), we implemented a dropout layer to improve

generalizability and a batch normalization layer to stabilize

the model by reducing internal covariate shifts (Ioffe &

Szegedy, 2015). To help attain consistent performances, we

combined the dropout and batch normalization layers with a

nonadaptive optimizer (Chen et al., 2019). We also fine-tuned

GloVe embeddings to stabilize our input embedding layer.

Fine-tuned GloVe embeddings (learned across training) have

significant benefits in text classification tasks when combined

with convolutional, BiLSTM, and attention layers (Son et al.,

2019). The full details of our parameter settings and

embeddings are detailed in Appendix A.

The key novelty in our proposed DTL-EL is the (trainable)

pre-initialization design. The DL models developed in past

hacker forum analytics studies did not pre-initialize hidden

and cell states for their cybersecurity tasks (Ebrahimi et al.,

2022). Pre-initialization can boost classification performance

and learn representations of the input data missed by non-

initialized models (Peng & Dredze, 2017). Since

concatenating the title and the exploit source code as input

may cause the model to overfit due to overly descriptive titles,

our pre-initialization design followed a multitask learning

(MTL) approach, where the exploit source code BiLSTM

learns from the exploit title BiLSTM. MTL approaches have

been used in IS literature to improve classification

performance (Lin et al., 2017). However, in contrast to the

traditional MTL paradigm, we did not leverage the final

output of the exploit title BiLSTM. We compared a standard

LSTM cell within the BiLSTM for source code processing

and our proposed pre-initialized LSTM cell in Figure 5.

In the pre-initialized LSTM cell (the right side of Figure 5), /� = [/�⃖⃗⃗⃗ /�⃗⃗ ⃗]Ā and ÿ� = [ÿ�⃖⃗⃗⃗ ÿ�⃗⃗ ⃗]Ā represent the concatenated

forward and backward hidden and cell state vectors of the

exploit title BiLSTM model in �ÿ. Then, /� and ÿ� were used

to pre-initialize /�=0 and ÿ�=0 of a new and untrained exploit

source code BiLSTM. The pre-initialized BiLSTM was then

trained on the exploit DNM and public exploit repository

exploit source code and label (e.g., SQL injection).

In addition to including the pre-initialized BiLSTM into DTL-

EL, we incorporated a self-attention mechanism into each

BiLSTM in the DTL-EL to process sequences that appear

within exploit code data while considering the context of the

code for each timestep. To the best of our knowledge, no IS

study has implemented a self-attention mechanism that takes

pre-initialized hidden states as input. However, past IS

cybersecurity analytics literature has leveraged self-attention

mechanisms on exploit content (specifically titles) to improve

model performance (Samtani et al., 2022). A self-attention

mechanism can help improve exploit labeling performance by

capturing long-range semantic relationships (e.g., a function

called lines after it is defined) while simultaneously

differentiating between labels (Liu, 2020). Therefore, we

implemented the BiLSTM with self-attention model, where

all queries and key-value pairs are attained from the output

and hidden states in the previous BiLSTM layer, respectively

(Liu & Guo, 2019).

After source domain training, the embedding, convolutional,

BiLSTM, and/or attention layers were transferred to the target

domain model to label each hacker forum exploit. In our

design, �Ā did not contain a pre-initialization design in the

BiLSTM layer, as hacker forum thread titles were not

consistently available or indicative of an exploit’s intended
purpose (Samtani et al., 2017). However, the weights

transferred from the BiLSTM and attention layers in �ÿ were

calculated with our pre-initialization design. The exact layers

that are transferred were determined through an ablation

analysis, which is further detailed in the next subsection.

Experiments and Evaluations

Consistent with the computational design science paradigm

(Rai, 2017), we rigorously evaluated our proposed DTL-EL

artifact with a series of technical benchmark experiments. Each

experiment’s goal, model types, benchmark models, and
evaluation metrics appear in Table 8.

Experiment 1 aimed to identify if our pre-initialization design

and added self-attention mechanism in the source domain DTL-

EL improved exploit labeling performance over benchmark

models. Additionally, IS literature (Zhu et al., 2020) and

fundamental DTL principles (Zhuang et al., 2020) recommend

evaluating a source domain model to find the best-performing

model to transfer features to a target domain. Therefore, we

evaluated whether transferring the knowledge learned from

exploit DNMs and public exploit repositories (DTL-EL)

improved exploit labeling when compared to non-DTL

approaches in Experiment 2. Two sets of benchmark models

were used in Experiments 1 and 2: (1) classical ML models that

included naive Bayes, logistic regression, decision tree, SVM,

extreme gradient boosting (XGBoost), and light gradient

boosting machine (LightGBM) and (2) DL-based models that

included RNN, GRU, LSTM, BiLSTM without self-attention,

a pre-initialized BiLSTM, and BiLSTM with self-attention.

These models are commonly used in past hacker forum

analytics literature (Ebrahimi et al., 2018; Goyal et al., 2018;

Samtani et al., 2017). In Experiment 2, we trained three

variations of each model: one with the target domain dataset,

one with the source domain dataset, and a concatenated dataset

of the source and target domains. We kept the same target

domain validation dataset for each variation.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

150 MIS Quarterly Vol. 48 No. 1 / March 2024

Figure 5. Standard LSTM Cell for Text Processing (Adapted from Thangaraj & Sivakami, 2018) (left) and
Our Proposed Pre-Initialized LSTM Cell (right)

Table 8. Summary of Experiment Designs

Experiment Goal Type Benchmarks Metrics References

1 DTL-EL against
prevailing
classification
methods on the
source domain

An evaluation that our
pre-initialization design
and self-attention
mechanism in the source
domain.

Classical
machine
learning

Naive Bayes, logistic
regression, decision tree,
SVM, XGBoost, LightGBM

Accuracy,
precision,
recall, F1-
score

Ebrahimi et al.,
2018;

Goyal et al., 2018;

Samtani et al.,
2017;

Tan et al., 2018;

Zhuang et al.,
2020

Deep
learning

RNN, GRU, LSTM, BiLSTM,
BiLSTM with self-attention

2 DTL-EL against
non-transfer
learning
approaches on
the target domain

An evaluation to find
differences between
DTL, prevailing classical
machine learning, non-
DTL approaches, and
dataset variations.

Classical
machine
learning

Naive Bayes, logistic
regression, decision tree,
SVM, XGBoost, LightGBM

Deep
learning

RNN, GRU, LSTM, BiLSTM,
BiLSTM with self-attention

3 DTL-EL against
alternate transfer
learning
approaches

An evaluation to rule out
superior design within
DTL literature.

Transfer
learning

Adaptive SVM, parameter
sharing, adversarial, BERT

Houlsby et al.,
2019

Liu et al., 2017;

Peng & Dredze
2017;

Peng et al., 2008

4 DTL-EL against
transfer learning
layer selection on
the target domain

Ablation analysis to
identify the value of
transferring different
layers for DTL-EL with
and without pre-
initialization.

Layer
selection

DTL-EL: Embedding, CNN,
LSTM, attention layers

Note: BiLSTM = bidirectional long-short term memory; CNN = convolutional neural network; DTL-EL = deep transfer learning exploit labeler;
GRU = gated recurrent unit; LightGBM = light gradient boosting machine; LSTM = long-short term memory RNN = recurrent neural network;
SVM = support vector machine; XGBoost = eXtreme gradient boosting.

Our proposed DTL-EL model incorporates a BiLSTM with

self-attention mechanism in the target domain. Consequently,

the weights assigned to the input features from the self-

attention during the labeling process can be visualized to

explain how the model reached its output prediction.

Explainability in our task of exploit labeling is defined as how

well our model identifies tokens that consistently make up

each exploit label (Wiegreffe & Pinter, 2019). However, there

is debate on whether self-attention mechanisms truly provide

explainability in NLP tasks (Jain & Wallace, 2019).

Therefore, we performed an adversarial test on the DTL-EL

for both Experiments 1 and 2 to find out whether the self-

attention mechanism found meaningful tokens in our inputs

for each output. To perform this task, we implemented an

adversarial experiment where we compared the self-attention

weights of DTL-EL with weights learned from an adversarial

model (adversarial DTL-EL). The goal of the adversarial

model is to obtain similar prediction scores as DTL-EL with a

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 151

different attention weight distribution. Adversarial attention

weights were learned using the loss function proposed by

Wiegreffe and Pinter (2019):

3(3ÿ,3Ā)(�) = ăýĀ (þ̂ÿ(�), þ̂Ā(�)) 2 �ÿĀ (�ÿ(�)| |�Ā(�)),
where 3Ā is the DTL-EL base model, 3ÿ is the adversarial

model, þ̂ (�) are the predictions, and � (�) are the attention

distributions. A model with good explainability would

perform better in their specified tasks (e.g., exploit labeling)

than their adversarial variation.

Although a network-based DTL approach was ideal for our

context, we were interested in how seminal DTL approaches

compared to the proposed DTL-EL. Therefore, in

Experiments 3 and 4, we explored the boundaries of our

network-based implementation of DTL. In Experiment 3, we

evaluated transfer learning with the popular classical ML

model, SVM (Peng et al., 2008), MTL (Peng & Dredze,

2017), adversarial learning (Liu et al., 2017), and an adapted

bidirectional encoder representations from transformers

(BERT) model (Houlsby et al., 2019). In Experiment 4, we

performed an ablation analysis on the effect of layer transfer

from a pre-initialized and non-pre-initialized source domain

model. We performed this analysis from a single- and multi-

layer transfer perspective.

Since the source domain dataset is imbalanced (45.13% of the

dataset belongs to web applications), accuracy alone is not a

viable performance measure (Ebrahimi et al., 2022).

Therefore, we included precision, recall, and F1-score

(harmonic mean of precision and recall) as metrics to evaluate

each model’s exploit labeling performance in each
experiment. Each metric was computed using true positives

(TP), true negatives (TN), false positives (FP), and false

negatives (FN). The formulas for each metric are as follows:

�ýýĂÿ�ýþ = ăÿ + ăĂăÿ + ăĂ + �ÿ + �Ă , ÿÿÿýÿĀÿĀÿ = ăÿ ăÿ + �ÿ
āÿý�ýý = ăÿăÿ + �Ă , �1 2 ĀýĀÿÿ = 2 × ÿÿÿýÿĀÿĀÿ × āÿý�ýýÿÿÿýÿĀÿĀÿ + āÿý�ýý

Among the four metrics, scholars conducting IS cybersecurity

research suggest that the F1-score is the best metric for

comparing models, as it is not sensitive to data imbalance

(Ebrahimi et al., 2022). The reported metrics for each model

are a weighted average across each class label based on the

support (i.e., count) of each class. This weighted average

formula is:

þÿÿā/āÿþ �ăÿÿ�āÿ = ∑ Ă�ā�� Ă ,

where Ă� is the support for a class label, ā� is the calculated

metric for the class label (e.g., accuracy), and Ă is the total

number of samples. One-tailed paired t-tests were used to

evaluate statistically significant differences between the

proposed approach and benchmarks. Our source and target

domain datasets were split into a training and testing dataset

wherein all exploits in the testing set are newer than those in

the training datasets in both domains. Exploits posted before

2019 were placed in the training dataset, while exploits posted

in 2019 or later were placed in the testing dataset. We chose

this split to provide enough data to our testing set in both

domains and test whether the DTL-EL model could label new

and unseen exploits. In the source domain, 80,582 exploits

were used for training (83.63% of the dataset) and 15,751

exploits were used for testing (16.35% of the dataset). In the

target domain, 3,902 exploits were used for training (80.58%

of the dataset) and 940 exploits were used for testing (19.42%

of the dataset). We implemented a stratified 10-fold cross-

validation split to conduct model training.

Results and Discussion

Experiment 1: DTL-EL against Prevailing
Classification Methods on the Source Domain

Experiment 1 compared our proposed DTL-EL (a pre-

initialized BiLSTM with attention) against classical ML and

DL benchmarks on the source domain dataset. We also

compared BiLSTM models with and without a self-attention

mechanism. The accuracy, precision, recall, and F1-score for

each model are presented in Table 9.

Our proposed DTL-EL, which combines a BiLSTM, our pre-

initialization design, and a self-attention mechanism,

outperformed all classical ML and DL models in accuracy

(90.75%), precision (91.12%), recall (90.83%), and F1-score

(90.91%). The F1-score for the classical ML methods ranged

from 57.39% for naive Bayes to 78.82% for LightGBM.

However, the LightGBM and other ML models were quickly

overfit on the training data, suggesting that ML models are not

complex enough to fully capture exploit source code

representations. All DL methods reached higher F1-scores

than LightGBM. RNN outperformed LightGBM by 1.30%

(from 78.82% to 80.12%); however, the F1-score increased

when the RNN was replaced with a GRU (85.80%), LSTM

(86.20%), or BiLSTM (86.62%) layer. One possible

explanation for this improvement is that GRU, LSTM, and

BiLSTM include a gating mechanism to fix the vanishing

gradient problem that RNNs suffer from when processing

long sequences (e.g., exploit code) (Liu & Guo, 2019).

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

152 MIS Quarterly Vol. 48 No. 1 / March 2024

Table 9. Experiment 1: DTL-EL against Prevailing Classification Methods on the Source Domain

Model Type Model Initial State Accuracy Precision Recall F1-score

Classical
Machine
Learning

Naive Bayes N/A 58.12%*** 57.97%*** 56.82%*** 57.39%***

Logistic regression N/A 66.01%*** 66.23%*** 70.86%*** 68.12%***

Decision tree N/A 70.55%*** 70.05%*** 67.14%*** 68.87%***

SVM N/A 78.21%*** 79.86%*** 77.02%*** 78.43%***

XGBoost N/A 83.54%*** 78.96%*** 78.29%*** 78.53%***

LightGBM N/A 83.83%*** 78.98%*** 78.82%*** 78.82%***

Deep
Learning

RNN Zero 80.12%*** 82.01%*** 78.31%*** 80.12%***

GRU Zero 86.54%** 86.81%** 84.31%** 85.80%**

LSTM Zero 86.22%*** 86.48%*** 85.93%*** 86.20%***

BiLSTM Zero 87.14%** 86.76%** 86.37%** 86.62%**

BiLSTM with self-attention Zero 87.95%** 87.29%** 86.74%** 87.23%**

Pre-Initialized BiLSTM Pre-Initialized 88.21%** 88.98%* 87.62%** 88.29%**

Proposed DTL-EL Pre-Initialized 90.75% 91.12% 90.83% 90.91%

Note: ∗ : ā < 0.05 ∗∗ : ā < 0.01 ∗∗∗ : ā < 0.001. Top scores are highlighted in boldface.

Adding a self-attention mechanism to the BiLSTM marginally

increased the F1-score (87.23%) over the best-performing DL

algorithm without an attention mechanism, BiLSTM

(86.62%). The self-attention mechanism looks at the hidden

states of each BiLSTM cell, capturing important aspects of the

input sequence. Incorporating the proposed pre-initialization

design into the BiLSTM with no self-attention mechanism

further increased BiLSTM’s performance from 87.41% to
88.29%. The difference is statistically significant at ā < 0.05.

These results suggest that using the exploit title to pre-

initialize the BiLSTM’s hidden and cell states can improve
exploit source code categorization. The DTL-EL attained

higher F1-scores than the BiLSTM with a self-attention

mechanism (from 87.23% to 90.91%) and the pre-initialized

BiLSTM without a self-attention mechanism (from 88.29% to

90.91%). The differences in both cases were statistically

significant at ā < 0.01. These results indicate that the self-

attention mechanism can identify important exploit features

from the pre-initialized hidden states.

In addition to evaluating the performance of DTL-EL

against benchmark methods in the source domain, we

implemented the proposed adversarial test to identify if the

self-attention mechanism identified (i.e., weighed) tokens

that contributed to the model’s output (Wiegreffe & Pinter,

2019). The adversarial DTL-EL model obtained an F1-

score of 76.34%. This score is 14.62% lower than the F1-

score of the DTL-EL model (90.91%). The steep decline in

the F1-score suggests the adversarial weights lose essential

information needed to label exploit source code. These

results also indicate that our self-attention mechanism

focused on the most valuable tokens for each exploit label

and attained the best labeling performance.

Experiment 2: DTL-EL against Non-Transfer
Learning Approaches on the Target Domain

Experiment 2 evaluated whether the features extracted from

the source domain improve the classification performance of

DTL-EL in the target domain. We evaluated our proposed

DTL-EL model against state-of-the-art classical ML and DL

benchmarks on the target domain ground-truth dataset (hacker

forum exploits). We compared training models using the

source domain, the target domain, and both training datasets

concatenated (i.e., combined). All models used the same target

domain validation dataset. The accuracy, precision, recall, and

F1-score for each model are summarized in Table 10. The

performances for each model in each of the eight exploit

categories are presented in Appendix B.

For each model, the performance for all tracked metrics was

the highest on the target domain dataset, followed by source +

target and source. The performance differences may be due to

the fundamental coding differences (e.g., ASCL) between

professionally vetted exploits (source domain) and hacker

forum exploits (target domain). These coding differences in

the source domain dataset may have prevented each model

from generalizing to the target domain evaluation dataset.

Given these results, we discuss the results of the models

trained on the target domain only.

The four classical ML methods attained an F1-score between

13.45% (naive Bayes) and 46.32% (LightGBM). This F1-score

range for classical ML models is lower than the range seen in

Experiment 1 on the source domain because hacker-forum

exploit source code is often less structured than professionally

vetted exploits (shown previously in Table 7). Our proposed

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 153

DTL-EL improved on the best-performing classical ML model

(LightGBM) in the F1-score by 24.02% (from 46.32% to

70.34%), and this difference was statistically significant at ā <0.001. These results suggest that the complex DL models can

capture latent and more representative features of exploit

content better than the ML models (which were overfit in the

imbalanced classification setting).

All DL methods outperformed the classical ML methods in

the F1-score. RNN achieved the lowest F1-score at 55.12%.

Similar to the results from Experiment 1, the F1-score

increased when the RNN layer was replaced with a GRU

(60.69%), LSTM (60.02%), or BiLSTM (60.71%) layer.

Adding a self-attention mechanism to the BiLSTM marginally

increased the F1-score from 60.71% to 62.52%. However,

DTL-EL outperformed the BiLSTM with attention and no

DTL layers (from 62.52% to 70.34%, F1-score), and the

difference was statistically significant at ā < 0.001. These

results indicate that identifying and transferring layers from a

metadata-rich hacker exploit source domain to a target domain

significantly outperforms the single dataset-based model

approaches prevalent in extant literature (Ebrahimi et al.,

2018; Williams et al., 2018). Transferred pretrained layers

leading to stronger performances than random initialization in

similar tasks is consistent with the seminal literature (Yosinski

et al., 2014). The performance gain may be attributable to the

source domain model learning generalized information and

inductive bias (i.e., model assumptions when making a

prediction) that is being transferred to our DTL-EL model (Li

et al., 2018).

Similar to Experiment 1, we performed an adversarial

experiment for DTL-EL. The adversarial DTL-EL model

obtained an F1-score of 43.76%426.58% lower than the

DTL-EL (70.34%). These results suggest that our self-

attention mechanism finds the most valuable tokens for each

exploit label to improve classification performance. In Figure

6, we illustrate sample exploits that DTL-EL correctly

identified but the best competing approach (BiLSTM with

self-attention) missed. Specifically, we visualized the

semantic relationships between input tokens for DTL-EL and

the BiLSTM with self-attention on a remote exploit (operates

over a network without direct machine access) and local

exploit (requires machine access). These lines demonstrate a

simplified control flow of how the code operates. We present

an excerpt (for space considerations) of each exploit’s code in
each category at the top of Figure 6. Thicker lines indicate

stronger (i.e., higher weighted) semantic relationships

between two tokens in the input exploit source code.

3 CKA measures the similarities between internal feature representations

of model layers. Comparing similarities across models trained on the same

datasets can help explain differences in model performance.

As shown in Figure 6, DTL-EL developed higher-weighted

(thicker lines) semantic relationships (i.e., dependencies)

between specific tokens for remote and local exploits. In

contrast, the BiLSTM with the self-attention model weighted

most of the relationships between tokens nearly identically. In

the remote exploit, DTL-EL found long-term dependencies

between <def= and <end,= which are the beginning and end of
the exploit function, respectively. Additionally, DTL-EL

found strong dependencies on the <authenticate= token, which
is vital for accessing machines in remote exploit attacks. The

BiLSTM with the self-attention model did not find strong

dependencies between tokens, leading to it incorrectly

assigning a label of <denial of service= to the code instead of

the correct <remote= label. In the local exploit, DTL-EL found

strong semantic relationships between tokens such as

<process= and <executable,= <cmd= and <grep,= and <def= and
<config.= Using the grep Unix command in the command line
(cmd) is a common local privilege escalation technique. As

with the previous example, the BiLSTM with the self-

attention model did not find these dependencies; instead, it

classified the exploit as a <web application= instead of a
<local= exploit.

We conducted a centered kernel alignment (CKA) analysis to

further identify the internal differences between the source

and target domain model and identify the specific layers that

were affected as a result of transfer learning (Kornblith et al.,

2019)3. The results of our analysis (presented in Appendix C)

suggest that the lower-level layers of the DTL-EL model

(embedding, convolution, pooling, batch norm, and dropout)

are more similar to higher-level layers (BiLSTM, self-

attention, dropout, dense) than the non-DTL BiLSTM with

self-attention. These differences in similarities demonstrate

that the transfer and fine-tuning of source domain layers

creates a more closely linked internal feature representation

than a non-DTL approach and therefore potentially improves

performance and results in differences in attention weighting.

Experiment 3: DTL-EL against Alternate
Transfer Learning Approaches

For Experiment 3, we explored the results of four types of

transfer learning. We implemented an adaptive SVM that uses

the hinge loss function and an L2 regularization term to adapt

a classifier from a source domain for the target domain (Peng

et al., 2008). We then implemented two types of MTL: hard

and soft. In hard MTL, we merged both domain inputs after

the embedding layer and had the same model layers from the

convolutional layer through the BiLSTM layer with separate

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

154 MIS Quarterly Vol. 48 No. 1 / March 2024

output layers. In soft MTL, we implemented two separate

BiLSTM models with a custom loss function that used the

sum of categorical cross-entropy, mean-squared error, and

cosine proximity between the true exploit label and predicted

exploit label to minimize the distance between weights of the

two models. Our adversarial DTL used the same design as Liu

et al. (2017), wherein a shared-private model with domain

discriminators for each feature was defined and a custom

adversarial loss function was implemented. Our

implementation of adapter-based transfer learning followed

the fine-tuning of the BERT model in Houlsby et al. (2019).

The accuracy, precision, recall, and F1-score of each transfer

learning design are presented in Table 11.

Overall, DTL-EL had the highest performance in accuracy

(72.11%), precision (70.57%), recall (70.15%), and F1-score

(70.34%). The difference in performance was statistically

significant against all benchmark models. MTL approaches

outperformed classical ML models on all four metrics. Within

the MTL paradigm, soft parameter sharing (64.02%)

outperformed hard parameter sharing (61.09%) in terms of the

F1-score. Hard parameter sharing works well when the source

and target tasks are similar. However, our source and target

domains were dissimilar enough to cause decreases in

performance. Soft parameter sharing can alleviate this issue

through feature sharing. Adversarial DTL (62.72%)

outperformed hard parameter sharing, possibly because it

maximizes the training error with a reversed gradient.

However, the adversarial approach performed worse than the

soft parameter sharing model. Finally, BERT attained a higher

F1-score (65.31%) than MTL approaches, the adversarial

approach, and classical ML but underperformed compared to

DTL-EL on the target hacker forum dataset. This suggests that

pretrained contextual models like BERT may be too general

for our dataset, and a more targeted approach is needed

(Srivastava et al., 2020).

Experiment 4: DTL-EL against Transfer
Learning Layer Selection on the Target
Domain

In Experiment 4, we explored combinations of transferred

layers from the source domain to the target domain. The

embedding, convolutional, BiLSTM, and self-attention layers

had transferable weights and features in the source domain

DTL-EL model. We first evaluated transferring each layer

individually. This included trained embeddings from

Word2Vec, GloVe, and BERT to evaluate the best transfer

performance of unsupervised embeddings. We then evaluated

an MLTL approach, which is common in IS literature (Zhu et

al., 2020) and recommended when performing homogeneous

(e.g., source and target domain datasets share attributes)

transfer learning (Yosinski et al., 2014). Since our pre-

initialization design is a core novelty of DTL-EL, we also

compared layer transfer from the source domain BiLSTM

with the self-attention model without pre-initialized hidden

and cell states. Each model was trained on the target domain

dataset used in Experiment 2. The accuracy, precision, recall,

and F1-score are summarized in Table 12.

For each transfer type and layer, the transferred pre-initialized

layers always performed better than the non-pre-initialized

layers. Single-layer transfer with pre-initialization attained

F1-scores between 64.56% to 68.16%, with the GloVe

embedding layer performing the best. The GloVe embedding

holds global information about the word vectors of

professionally vetted exploits that Word2Vec and BERT may

have missed. These results suggest that our dataset was too

noisy for the embeddings from large contextual models to

adequately generalize (Srivastava et al., 2020). Therefore, we

only considered the GloVe embedding in our MLTL design.

Within MLTL, we found that adding additional layers to the

GloVe layer provided higher F1-scores. The GloVe layer with

a convolutional layer (68.69%) or BiLSTM layer (69.31%)

attained better scores than all single-layer models and the

model with a transferred convolutional, BiLSTM, and

attention layer (68.41%). However, using the GloVe,

convolutional, BiLSTM, and attention layers from the source

domain DTL-EL model led to the highest accuracy (72.11%),

precision (70.57%), recall (70.15%), and F1-score (70.34%).

The differences in the F1-score over the second-best layer

transfer technique (GloVe, convolutional, and attention) were

significant at ā < 0.05.

Practical Implications and Contributions
to the IS Knowledge Base

Practical Implications

Recent IS cybersecurity studies have identified three

cybersecurity stakeholders that can benefit from IT artifacts

equipped with advanced cybersecurity analytics: (1)

cybersecurity managers, (2) educators, and (3) analysts (Yue

et al., 2019). Past IS studies have frequently integrated a novel

algorithm into a system with a user interface to help

stakeholders access the algorithm and results (Samtani et al.,

2017). Although not the focus of our study, we implemented

a system with DTL-EL to illustrate an example of such an

implementation. Details about this system are presented in

Appendix D. We further elaborate on the practical

implications of the proposed DTL-EL framework for each

stakeholder below.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 155

Cybersecurity managers: Cybersecurity managers often

require automatically generated and easily digestible reports

and visualizations to determine the best course of action for

their organization’s cyber policy (Samtani et al., 2020).

Chief information security officers (CISOs) are typically

responsible for allocating security investments and

resources. However, CISOs can often be overwhelmed and

make suboptimal decisions due to the large quantities of

unstructured information available from external resources

(Alomar et al., 2020). The results produced by the proposed

DTL-EL can be carefully synthesized to create dynamic

visualizations of exploit trends and summary statistics to

reduce the strain on a CISO. For example, suppose a CISO

sees a sharp increase in web application exploits posted in

hacker communities. In that case, they can invest resources

internally (e.g., assign cyber analysts to focus on web

application exploits) and externally (purchase software and

additional protections for their web application servers).

Furthermore, cybersecurity managers can customize their

organization’s DTL-EL implementation based on their

cyber-risk profile. For example, DTL-EL can be tuned to

minimize cost instead of error using a cyber-risk cost matrix

(Kim et al., 2012). In Appendix E, we provide an illustration

of how applying a cost-sensitive classifier and a MetaCost

wrapper to our proposed DTL-EL model leads to a trade-off

between total cost, average misclassification cost, F1-score,

and mislabeled exploits.

Cyber analysts: Common tasks that many security analysts

in cybersecurity operations centers (CSOCs) often conduct

include monitoring, identifying, and ranking threats to their

cyber infrastructure (Samtani et al., 2020). However, there

are significant difficulties in collecting and sifting through

large cyber threat data sources (Agyepong et al., 2020). To

conduct common tasks, cyber analysts require a framework

that can facilitate red teaming (Alomar et al., 2020). CSOC

analysts can benefit from the automatic and incremental

collection and labeling features provided by the DTL-EL

framework through custom alerts for new exploits. The new

exploits and their visualized semantic relations could help

CSOC analysts gain insight into protections against the code

via operationalized penetration testing, professional domain

knowledge, or consultation.

Cybersecurity educators: Training cyber analysts with data

mining skills is an essential component of the National

Institute of Standards and Technology (NIST) Initiative for

Cybersecurity Education (Shoemaker et al., 2018). However,

this often means that educators typically require up-to-date

and labeled datasets to keep their curriculums current. The

large, international hacker community datasets in this study

can be leveraged in emerging cybersecurity analytics

curricula. For example, the labeled exploit datasets from our

three collected sources and auto-generated summary statistics

labeled testbed can be incorporated into massively open online

courses (MOOCs) for dissemination to domestic and

international institutions. Since the collection is updated

weekly, cybersecurity educators can provide up-to-date

content to their students.

Contributions to the IS Knowledge Base

IS scholars have stressed the importance of contributing

prescriptive knowledge to the IS knowledge base with a

novel IT artifact (Rai, 2017). Our proposed framework is

situated within the growing body of IS cybersecurity

analytics research. This stream of literature has primarily

relied on a single dataset type and rarely included an

explanation (attention visualization) for end users to interact

with (limiting the potential practical utility of the analytics).

Considering these issues, this work aims to contribute a

novel multimodal cybersecurity analytics approach to the IS

knowledge base. The large international hacker community

testbeds and DTL-EL can help future IS scholars and

cybersecurity stakeholders pursue advanced cybersecurity

analytics research on exploit labeling.

Our study also follows the guidelines of Type I ML research

and contributes a BiLSTM model IT artifact with a carefully

combined feature-based model pretraining, expert-

knowledge layer transfer, and long sequential text

classification to the IS knowledge base (Padmanabhan et al.,

2022). While our IT artifact has been built for exploit

labeling (rich textual source domain, noisy textual target

domain), DTL-EL could be adapted for other classification

tasks of interest to the IS discipline. If an IS researcher has a

source domain with two textual features, they can pre-

initialize with short textual features that are fully populated

in the dataset and have some explanatory value to warm up

the model. The source domain model should then be trained

with long-sequential textual features. The layers of the

source domain model should then be highly transferrable to

a similar but noisier domain. This transferability can be

tested via an ablation analysis and a CKA similarity

measurement to identify the specific model components that

DTL improves. Additionally, transfer learning can be

conducted at the embedding layer. The model training

results indicated that transferring pretrained embeddings

(e.g., GloVe) consistently improved performance. While the

GloVe embedding outperformed other options for our task,

contextual embeddings (e.g., BERT) could perform better

than context-free embeddings for a DTL task than with a

semantically consistent textual dataset (e.g., product

descriptions). We provided two examples of domains of

interest to the IS community that can benefit from DTL-EL

to further demonstrate its applicability and generalizability.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

156 MIS Quarterly Vol. 48 No. 1 / March 2024

Healthcare informatics: Recent IS literature has focused on

improving the quality of electronic health records (EHRs)

(Kohli & Tan, 2016). EHRs are unstructured text documents

detailing a patient’s medical history. DTL-EL could be

adapted to perform EHR classification tasks (e.g., medical

diagnosis) by constructing a ground-truth dataset of EHRs and

related diagnoses, pre-initializing the high-level summaries,

and training the model with the full EHR (containing long-

term dependencies of the patient’s medical history). This

model could be leveraged via transfer to a target domain

without high-level summaries or detailed EHRs.

Social media analytics: Online social networking platforms

contain a wealth of text that can be used for important tasks

such as product review analysis, conversation

disentanglement, and more (Chen et al., 2012). However,

discussions on social media often use long sentences with

uncommon phrases and semantic issues. Scholars can

consider adapting DTL-EL to process long social media texts.

For example, annotated Twitter datasets can be used as a

source domain where the model is pre-initialized with the

annotations and trained with the tweet content. Additionally,

embeddings trained on Twitter data (e.g., BERTweet) can be

applied to the model to boost performance. Then, a target

domain model can be trained on a similar social network (e.g.,

Reddit) with transferred features from the Twitter dataset to

improve model performance.

Conclusion And Future Directions

The rapid proliferation of complex IS systems has been met

by new exploits designed to circumvent vulnerabilities and

cause irreparable cyber breaches. Recently, practitioners and

academics have placed significant focus on proactively

identifying and labeling exploits from hacker forums to

mitigate these cyber threats. However, prevailing

approaches for labeling hacker exploits do not leverage

knowledge from exploit DNMs or public exploit repositories

to enhance hacker exploit labeling performance.

Consequently, executing critical CTI tasks that rely on labels

remains a significant challenge.

In this study, we adopted the computational design science

paradigm to develop a novel deep transfer learning exploit

labeler (DTL-EL) framework for labeling exploits from

hacker forums. DTL-EL incorporates a novel approach for

pre-initializing the BiLSTM with a self-attention mechanism

in the source domain based on the rich metadata (e.g., exploit

titles) found in exploit DNMs and public exploit repositories.

We demonstrated through a series of benchmark experiments

that DTL-EL outperformed state-of-the-art non-DTL ML and

DL techniques in labeling hacker exploit source code in

hacker forums. The results indicated that the pre-initialized

BiLSTM with an attention mechanism better identified and

weighted key features than their non-pre-initialized

counterparts. DTL-EL offers proactive CTI capabilities at the

tactical, operational, and strategic levels to help companies

improve their security posture against cyberattacks.

We identified three promising directions for future work.

First, DTL-EL can be adapted and extended for cybersecurity

tasks such as identifying, collecting, and labeling personally

identifiable information, malicious pastes, and DNM postings.

Second, linking our labeled exploits to prevailing

cybersecurity risk management frameworks (e.g., MITRE

ATT&CK) can allow for a more fine-grained analysis of

exploit types, risk assessments, and targeted mitigation

strategies. These new insights can provide information about

exploit types outside this project’s scope (e.g., multi-label

exploits). Third, social network analysis and named entity

resolution can be performed to link hackers, forums, and

exploits with specific target users or organizations. Each

direction can significantly improve proactive CTI collection

and dissemination efforts and ultimately contribute to a safer

cyberspace for organizations, individuals, and governments.

Acknowledgments

We are grateful to the senior editor, the associate editor, and the

three anonymous reviewers for their constructive comments

and feedback. This material is based on work supported by the

National Science Foundation under Grant DUE-1303362,

OAC-1917117, DGE-1946537, and CNS-1850362.

References

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A

survey on explainable artificial intelligence (XAI). IEEE Access, 6,

52138-52160. https://doi.org/10.1109/ACCESS.2018.2870052

Agyepong, E., Cherdantseva, Y., Reinecke, P., & Burnap, P. (2020).

Challenges and performance metrics for security operations

center analysts: A systematic review. Journal of Cyber Security

Technology, 4(3), 125-152. https://doi.org/10.1080/

23742917.2019.1698178

Alomar, N., Wijesekera, P., Qiu, E., & Egelman, S. (2020). <You’ve
got your nice list of bugs, now what?= Vulnerability discovery

and management processes in the wild. In Proceedings of the 16th

Symposium on Usable Privacy and Security (pp. 319-339).

https://www.usenix.org/conference/soups2020/presentation/alo

mar

Ampel, B. M., Samtani, S., Zhu, H., Ullman, S., & Chen, H. (2020).

Labeling hacker exploits for proactive cyber threat intelligence:

A deep transfer learning approach. In Proceedings of the IEEE

Conference on Intelligence and Security Informatics.

https://doi.org/10.1109/ISI49825.2020.9280548

https://doi.org/10.1109/‌ACCESS.‌2018.2870052
https://doi.org/‌10.1080/‌23742917.2019.1698178
https://doi.org/‌10.1080/‌23742917.2019.1698178
https://www.usenix.org/conference/soups2020/presentation/alomar
https://www.usenix.org/conference/soups2020/presentation/alomar
https://doi.org/10.1109/ISI49825.2020.9280548

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 157

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine

translation by jointly learning to align and translate. arXiv.

http://arxiv.org/abs/1409.0473

Benaroch, M. (2018). Real options models for proactive uncertainty-

reducing mitigations and applications in cybersecurity

investment decision making. Information Systems Research,

29(2), 315-340. https://doi.org/10.1287/isre.2017.0714

Benjamin, V., Valacich, J. S., & Chen, H. (2019). DICE-E: A

Framework for conducting darknet identification, collection,

evaluation with ethics. MIS Quarterly, 43(1), 1-22. https://

doi.org/10.25300/MISQ/2019/13808

Brown, R., & Lee, R. M. (2021). 2021 SANS Cyber Threat

Intelligence (CTI) Survey. SANS Institute. https://www.sans.org/

white-papers/40080/

Chen, G., Chen, P., Shi, Y., Hsieh, C.-Y., Liao, B., & Zhang, S.

(2019). Rethinking the usage of batch normalization and dropout

in the training of deep neural networks. Arxiv.

http://arxiv.org/abs/1905.05928

Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business

intelligence and analytics: From big data to big impact. MIS

Quarterly, 36(4), 1165-1188. https://doi.org/10.2307/41703503

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting

system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (pp. 785-

794). https://doi.org/10.1145/2939672.2939785

Chollet, F. (2015). Keras. GitHub. https://github.com/keras-

team/keras

Deliu, I., Leichter, C., & Franke, K. (2018). Collecting cyber threat

intelligence from hacker forums via a two-stage, hybrid process

using support vector machines and latent Dirichlet allocation. In

Proceedings of the IEEE International Conference on Big Data

(pp. 5008-5013). https://doi.org/10.1109/BigData.2018.8622469

Ebrahimi, M., Chai, Y., Samtani, S., & Chen, H. (2022). Cross-

lingual cybersecurity analytics in the international dark web with

adversarial deep representation learning. MIS Quarterly, 46(2),

1209-1226. https://doi.org/10.25300/MISQ/2022/16618

Ebrahimi, M., Nunamaker, J. F., & Chen, H. (2020). Semi-supervised

cyber threat identification in dark net markets: A transductive and

deep learning approach. Journal of Management Information

Systems, 37(3), 694-722. https://doi.org/10.1080/07421222.

2020.1790186

Ebrahimi, M., Surdeanu, M., Samtani, S., & Chen, H. (2018). Detecting

cyber threats in non-English dark net markets: A cross-lingual

transfer learning approach. In Proceedings of the IEEE

International Conference on Intelligence and Security Informatics

(pp. 85-90). https://doi.org/10.1109/ISI.2018.8587404

Elsheikh, A., Yacout, S., & Ouali, M.-S. (2019). Bidirectional

handshaking LSTM for remaining useful life prediction.

Neurocomputing, 323, 148-156. https://doi.org/10.1016/j.neucom.

2018.09.076

Goyal, P., Hossain, K. T., Deb, A., Tavabi, N., Bartley, N., Abeliuk,

A., Ferrara, E., & Lerman, K. (2018). Discovering signals from

web sources to predict cyber attacks. arXiv. http://arxiv.org/

abs/1806.03342

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design

science in information systems research. MIS Quarterly, 28(1),

75-105. https://doi.org/10.2307/25148625

Houlsby, N., Giurgiu, A., Jastrzçbski, S., Morrone, B., de

Laroussilhe, Q., Gesmundo, A., Attariyan, M., & Gelly, S.

(2019). Parameter-efficient transfer learning for NLP. In

Proceedings of the 36th International Conference on Machine

Learning (pp. 4944-4953).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

Proceedings of the 32nd International Conference on

International Conference on Machine Learning (pp. 448-456).

https://doi.org/10.5555/3045118.3045167

Jain, S., & Wallace, B. C. (2019). Attention is not explanation. In

Proceedings of the 2019 Conference of the North (pp. 3543-

3556). https://doi.org/10.18653/v1/N19-1357

Kapllani, G., Khomyakov, I., Mirgalimova, R., & Sillitti, A. (2020).

An empirical analysis of the maintainability evolution of open

source systems. Open Source Systems, 78-86. https://doi.org/

10.1007/978-3-030-47240-5_8

Karhu, K., Gustafsson, R., & Lyytinen, K. (2018). Exploiting and

defending open digital platforms with boundary resources:

Android’s five platform forks. Information Systems Research,

29(2), 479-497. https://doi.org/10.1287/isre.2018.0786

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... &

Liu, T. Y. (2017). LightGBM: A highly efficient gradient

boosting decision tree. In Proceedings of the 31st International

Conference on Neural Information Processing Systems (pp.

3149-3157). https://dl.acm.org/doi/10.5555/3294996.3295074

Kim, J., Choi, K., Kim, G., & Suh, Y. (2012). Classification cost: An

empirical comparison among traditional classifier, cost-sensitive

classifier, and MetaCost. Expert Systems with Applications,

39(4), 4013-4019. https://doi.org/10.1016/j.eswa.2011.09.071

Kohli, R., & Tan, S. S.-L. (2016). Electronic health records: How can

IS researchers contribute to transforming healthcare? MIS

Quarterly, 40(3), 553-574. https://www.jstor.org/stable/26629027

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019). Similarity

of neural network representations revisited. In Proceedings of the

36th International Conference on Machine Learning (pp. 3519-

3529).

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S.,

Barnes, L., & Brown, D. (2019). Text classification algorithms:

A survey. Information. An International Interdisciplinary

Journal, 10(4), 150. https://doi.org/10.3390/info10040150

Lacchia, M. (2020). Radon 4.1.0 documentation. https://radon.read

thedocs.io/en/latest/

Li, Q., Peng, H., Li, J., Xia, C., Yang, R., Sun, L., ... & He, L. (2022).

A survey on text classification: From traditional to deep learning.

ACM Transactions on Intelligent Systems and Technology,

13(2), 1-41. https://doi.org/10.1145/3495162

Li, X., Grandvalet, Y., & Davoine, F. (2018). Explicit inductive bias

for transfer learning with convolutional networks. In

Proceedings of the 35th International Conference on Machine

Learning (pp. 2825-2834).

Lin, Y.-K., Chen, H., Brown, R. A., Li, S.-H., & Yang, H.-J. (2017).

Healthcare predictive analytics for risk profiling in chronic care:

A Bayesian multitask learning approach. MIS Quarterly, 41(2),

473-495. https://doi.org/10.25300/MISQ/2017/41.2.07

Liu, G., & Guo, J. (2019). Bidirectional LSTM with attention

mechanism and convolutional layer for text classification.

Neurocomputing, 337, 325-338. https://doi.org/10.1016/

j.neucom.2019.01.078

http://arxiv.org/abs/1409.0473
https://doi.org/10.1287/‌isre.2017.0714
https://doi.org/‌‌10.25300/MISQ/2019/13808
https://doi.org/‌‌10.25300/MISQ/2019/13808
http://arxiv.org/abs/1905.05928
https://doi.org/10.2307/41703503
https://doi.org/‌10.1145/2939672.‌2939785
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://doi.org/10.1109/BigData.2018.8622469
https://doi.org/10.25300/MISQ/2022/16618
https://doi.org/10.1080/07421‌222.‌2020.‌1790186
https://doi.org/10.1080/07421‌222.‌2020.‌1790186
https://doi.org/10.1109/ISI.2018.8587404
https://doi.org/10.1016/‌j.neucom.‌2018.09.076
https://doi.org/10.1016/‌j.neucom.‌2018.09.076
http://arxiv.org/‌abs/1806.03342
http://arxiv.org/‌abs/1806.03342
https://doi.org/10.2307/25148625
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.18653/v1/N19-1357
https://doi.org/‌10.1007/‌978-3-030-47240-5_8
https://doi.org/‌10.1007/‌978-3-030-47240-5_8
https://doi.org/10.1287/isre.2018.0786
https://dl.acm.org/doi/10.5555/3294996.3295074
https://doi.org/10.1016/j.eswa.2011.09.071
https://www.jstor.org/stable/‌26629027
https://doi.org/10.3390/info10040150
https://doi.org/10.1145/3495162
https://doi.org/10.25300/MISQ/2017/41.2.07
https://doi.org/10.1016/‌j.neucom.‌2019.01.078
https://doi.org/10.1016/‌j.neucom.‌2019.01.078

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

158 MIS Quarterly Vol. 48 No. 1 / March 2024

Liu, N. F., Gardner, M., Belinkov, Y., Peters, M. E., & Smith, N. A.

(2019). Linguistic knowledge and transferability of contextual

representations. In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics

(pp. 1073-1094). https://doi.org/10.18653/v1/N19-1112

Liu, P., Qiu, X., & Huang, X. (2017). Adversarial multi-task learning

for text classification. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics. https://doi.org/

10.18653/v1/P17-1001

Liu, S. (2020). A unified framework to learn program semantics with

graph neural networks. In Proceedings of the 35th IEEE/ACM

International Conference on Automated Software Engineering

(pp. 1364-1366). https://doi.org/10.1145/3324884.3418924

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective

approaches to attention-based neural machine translation. In

Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing (pp. 1412-1421).

Mou, L., Meng, Z., Yan, R., Li, G., Xu, Y., Zhang, L., & Jin, Z.

(2016). How transferable are neural networks in NLP

applications? Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing (pp. 479-489).

https://doi.org/10.18653/v1/D16-1046

Newman, L. (2020). Russia’s FireEye hack is a statement4but not a

catastrophe. Wired. https://www.wired.com/story/russia-fireeye-

hack-statement-not-catastrophe/

Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martínez-Perez, F. E.,

& Soubervielle-Montalvo, C. (2017). Source code metrics: A

systematic mapping study. The Journal of Systems and Software,

128, 164-197. https://doi.org/10.1016/j.jss.2017.03.044

Padmanabhan, B., Fang, X., Sahoo, N., & Burton-Jones, A. (2022).

Editor’s comments: Machine learning in information systems

research. MIS Quarterly, 46(1), iii-xix.

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE

Transactions on Knowledge and Data Engineering, 22(10),

1345-1359. https://doi.org/10.1109/TKDE.2009.191

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine

learning in Python. The Journal of Machine Learning Research, 12,

2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html

Peng, N., & Dredze, M. (2017). Multi-task domain adaptation for

sequence tagging. In Proceedings of the 2nd Workshop on

Representation Learning for NLP (pp. 91-100).

https://doi.org/10.18653/v1/W17-2612

Peng, T., Zuo, W., & He, F. (2008). SVM based adaptive learning

method for text classification from positive and unlabeled

documents. Knowledge and Information Systems, 16(3), 281-

301. https://doi.org/10.1007/s10115-007-0107-1

Rai, A. (2017). Editor’s comments: Diversity of design science

research. MIS Quarterly, 41(1), iii-xviii.

Ruder, S., Peters, M. E., Swayamdipta, S., & Wolf, T. (2019).

Transfer learning in natural language processing. In Proceedings

of the 2019 Conference of the North American Chapter of the

Association for Computational Linguistics. https://doi.org/

10.18653/v1/N19-5004

Samtani, S., Chai, Y., & Chen, H. (2022). Linking exploits from the

dark web to known vulnerabilities for proactive cyber threat

intelligence: An attention-based deep structured semantic model.

MIS Quarterly, 46(2), 911-946. https://doi.org/10.25300/MISQ/

2022/15392

Samtani, S, Abate, M., Benjamin, V., & Li, W. (2020). Cybersecurity

as an industry: A cyber threat intelligence perspective. Springer.

https://doi.org/10.1007/978-3-319-90307-1

Samtani, S., Chinn, R., Chen, H., & Nunamaker, J. F. (2017).

Exploring emerging hacker assets and key hackers for proactive

cyber threat intelligence. Journal of Management Information

Systems, 34(4), 1023-1053. https://doi.org/10.1080/07421222.

2017.1394049

Sen, R., Verma, A., & Heim, G. R. (2020). Impact of cyberattacks by

malicious hackers on the competition in software markets.

Journal of Management Information Systems, 37(1), 191-216.

https://doi.org/10.1080/07421222.2019.1705511

Shen, T., Zhou, T., Long, G., Jiang, J., & Zhang, C. (2018). Bi-

directional block self-attention for fast and memory-efficient

sequence modeling. In Proceedings of the 6th International

Conference on Learning Representations.

Shin, B., & Lowry, P. B. (2020). A review and theoretical explanation

of the <cyberthreat-intelligence (CTI) capability= that needs to be

fostered in information security practitioners and how this can be

accomplished. Computers & Security, 92, Article 101761.

https://www.sciencedirect.com/science/article/pii/S01674048203

00456

Shoemaker, D., Kohnke, A., & Sigler, K. (2018). A guide to the

National Initiative for Cybersecurity Education (NICE)

Cybersecurity Workforce Framework (2.0). Auerbach

Publications.

Silic, M., & Lowry, P. B. (2020). Using design-science based

gamification to improve organizational security training and

compliance. Journal of Management Information Systems, 37(1),

129-161. https://doi.org/10.1080/07421222.2019.1705512

Son, L. H., Kumar, A., Sangwan, S. R., Arora, A., Nayyar, A., &

Abdel-Basset, M. (2019). Sarcasm detection using soft attention-

based bidirectional long short-term memory model with

convolution network. IEEE Access, 7, 23319-23328.

https://doi.org/10.1109/ACCESS.2019.2899260

Srivastava, A., Makhija, P., & Gupta, A. (2020). Noisy text data:

Achilles’ heel of BERT. In Proceedings of the Sixth Workshop

on Noisy User-Generated Text (pp. 16-21). https://doi.org/

10.18653/v1/2020.wnut-1.3

Sun, H., Xu, M., & Zhao, P. (2020). Modeling malicious hacking data

breach risks. North American Actuarial Journal, 25(4), 484-502.

https://doi.org/10.1080/10920277.2020.1752255

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A

Survey on deep transfer learning. In Proceedings of the

International Conference on Artificial Neural Networks (pp.

270-279). https://doi.org/10.1007/978-3-030-01424-7_27

Thangaraj, M., & Sivakami, M. (2018). Text classification

techniques: A literature review. Interdisciplinary Journal of

Information, Knowledge, and Management, 13, 117-135.

https://doi.org/10.28945/4066

Tounsi, W., & Rais, H. (2018). A survey on technical threat intelligence

in the age of sophisticated cyber attacks. Computers & Security,

72, 212-233. https://doi.org/10.1016/j.cose.2017.09.001

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is

all you need. In Proceedings of the 31st Conference on Neural

Information Processing Systems (pp. 6000-6010). https://dl.acm.

org/doi/10.5555/3295222.3295349

https://doi.org/10.18653/v1/N19-1112
https://doi.org/‌10.18653/v1/P17-1001
https://doi.org/‌10.18653/v1/P17-1001
https://doi.org/10.1145/3324884.3418924
https://doi.org/10.18653/v1/D16-1046
https://www.wired.com/story/russia-fireeye-hack-statement-not-catastrophe/
https://www.wired.com/story/russia-fireeye-hack-statement-not-catastrophe/
https://doi.org/10.1016/j.jss.2017.03.044
https://doi.org/10.1109/TKDE.2009.191
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.18653/v1/W17-2612
https://doi.org/10.1007/s10115-007-0107-1
https://doi.org/‌10.18653/‌v1/N19-5004
https://doi.org/‌10.18653/‌v1/N19-5004
https://doi.org/10.25300/MISQ/‌2022/15392
https://doi.org/10.25300/MISQ/‌2022/15392
https://doi.org/10.1007/978-3-319-90307-1
https://doi.org/10.1080/07421222.‌2017.1394049
https://doi.org/10.1080/07421222.‌2017.1394049
https://doi.org/10.1080/07421222.2019.1705511
https://www.sciencedirect.com/science/article/‌pii/‌S0167‌4‌0482‌03‌00456
https://www.sciencedirect.com/science/article/‌pii/‌S0167‌4‌0482‌03‌00456
https://doi.org/10.1080/07421222.2019.1705512
https://doi.org/10.1109/ACCESS.2019.2899260
https://doi.org/‌10.18653/v1/2020.wnut-1.3
https://doi.org/‌10.18653/v1/2020.wnut-1.3
https://doi.org/10.1080/10920277.2020.1752255
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.28945/4066
https://doi.org/10.1016/j.cose.‌2017.‌09.001

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 159

Wagner, T. D., Mahbub, K., Palomar, E., & Abdallah, A. E. (2019).

Cyber threat intelligence sharing: Survey and research directions.

Computers & Security, 87(11), 1-13. https://doi.org/10.1016/

j.cose.2019.101589

Wiegreffe, S., & Pinter, Y. (2019). Attention is not not explanation.

In Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing (pp. 11-20). https://doi.org/

10.18653/v1/D19-1002

Williams, R., Samtani, S., Patton, M., & Chen, H. (2018). Incremental

hacker forum exploit collection and classification for proactive

cyber threat intelligence: An exploratory study. In Proceedings of

the IEEE International Conference on Intelligence and Security

Informatics (pp. 94-99). https://doi.org/10.1109/ISI.2018.8587336

Yenter, A., & Verma, A. (2017). Deep CNN-LSTM with combined

kernels from multiple branches for IMDb review sentiment

analysis. In Proceedings of the IEEE 8th Annual Ubiquitous

Computing, Electronics and Mobile Communication Conference

(pp. 540-546). https://doi.org/10.1109/UEMCON.2017.8249013

Yin, H. H. S., Langenheldt, K., Harlev, M., Mukkamala, R. R., &

Vatrapu, R. (2019). Regulating cryptocurrencies: A supervised

machine learning approach to de-anonymizing the Bitcoin

blockchain. Journal of Management Information Systems, 36(1),

37-73. https://doi.org/10.1080/07421222.2018.1550550

Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014). How

transferable are features in deep neural networks? In Proceedings

of the 27th International Conference on Neural Information

Processing Systems (vol. 2, pp. 3320-3328) https://dl.acm.org/

doi/10.5555/2969033.2969197

Yue, W. T., Wang, Q.-H., & Hui, K.-L. (2019). See no evil, hear no

evil? Dissecting the impact of online hacker forums. MIS

Quarterly, 43(1), 73-95. https://doi.org/10.25300/MISQ/2019/

13042

Zhu, H., Samtani, S., Chen, H., & Nunamaker, J. F. (2020). Human

identification for activities of daily living: A deep transfer learning

approach. Journal of Management Information Systems, 37(2),

457-483. https://doi.org/10.1080/07421222.2020.1759961

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., &

He, Q. (2020). A comprehensive survey on transfer learning.

Proceedings of the IEEE, 109(1) 43-76. https://doi.org/

10.1109/JPROC.2020.3004555

About the Authors

Benjamin M. Ampel is a Ph.D. student in the Department of
Management Information Systems at the Eller College of
Management, University of Arizona. Benjamin serves as a
CyberCorps Scholarship-for-Service Fellow in the UArizona
Artificial Intelligence Laboratory under the guidance of Dr.
Hsinchun Chen. His research primarily focuses on AI-enabled
Cybersecurity. Benjamin has published peer reviewed articles that
have appeared in journals such as AIS Transactions on Replication

Research and ACM Digital Threats: Research and Practice and in
conference proceedings such as IEEE ISI, AMCIS, and ICIS. He has
also contributed to a variety of projects supported by the National
Science Foundation (NSF) relating to secure and trustworthy
computing (SaTC) and cybersecurity innovation for cyber
infrastructure (CICI).

Sagar Samtani is an assistant professor and Grant Thornton Scholar
in the Department of Operations and Decision Technologies and the
Founding Director of the Data Science and Artificial Intelligence Lab
at the Kelley School of Business at Indiana University (IU). He
received his Ph.D. from the Artificial Intelligence (AI) Lab at the
University of Arizona. Dr. Samtani’s research focuses on developing
AI-enabled algorithms and systems for cybersecurity and mental
health applications. He has published over 65 journal, conference,
and workshop papers in MIS Quarterly, Information Systems

Research, Journal of MIS, IEEE Transactions on Knowledge and

Data Engineering, IEEE Transactions on Dependable and Secure

Computing, and others. His research has received funding from the
NSF and other agencies. He has won several Best Paper awards for
his research. Dr. Samtani has won the IU Outstanding Junior Faculty
Award, the IEEE Big Data Security Junior Research Award, the AIS
Early Career Award, and the IU Trustees Teaching Award. He was
inducted into the NSF/CISA CyberCorps SFS Hall of Fame and was
named by Poets and Quants as a Top 50 Undergraduate Business
School Professor in 2022. Dr. Samtani’s work has received media
attention from the Associated Press, WIRED, Forbes, Miami Herald,

Fox, Science Magazine, and AAAS.

Hongyi Zhu is an assistant professor in the Department of
Information Systems and Cyber Security at Carlos Alvarez College
of Business at The University of Texas at San Antonio (UTSA). He
received his Ph.D. in management information systems from the
University of Arizona (UA). Dr. Zhu’s research focuses on
developing advanced analytics (e.g., deep learning) for mobile and
mental health, cybersecurity, and business intelligence. He has
multidisciplinary research interests and has published in various
prestigious journals, conferences, and workshops, including MIS

Quarterly, Journal of Management Information Systems, IEEE

Transactions on Knowledge and Data Engineering, ACM

Transactions on Privacy and Security, ACM Transactions on

Management Information Systems, Journal of Biomedical

Informatics, and others. He is a member of the IEEE, ACM, AIS, and
INFORMS.

Hsinchun Chen is Regents Professor and Thomas R. Brown Chair
in Management and Technology in the Management Information
Systems Department at the Eller College of Management, University
of Arizona. He received his Ph.D. in information systems from New
York University. He is the author/editor of over 20 books, 25 book
chapters, 320 SCI journal articles, and 160 refereed conference
articles covering web computing, search engines, digital library,
intelligence analysis, biomedical informatics, data/text/web mining,
and knowledge management. He founded the AI Lab at The
University of Arizona in 1989, which has received significant
research funding ($60M+) from the NSF, NIH, DOD, DOJ, CIA,
DHS, and other agencies. He has served as editor-in-chief, senior
editor, or associate editor for major ACM/IEEE (ACM TMIS, ACM

TOIS, IEEE IS, IEEE SMC), MIS (MISQ, DSS), and Springer
(JASIST) journals and has served as conference/program chair of
major ACM/IEEE/MIS conferences in digital libraries (ACM/IEEE
JCDL, ICADL), information systems (ICIS), security informatics
(IEEE ISI), and health informatics (ICSH). Dr. Chen is the director
of the UA AZSecure Cybersecurity Program, with $10M+ funding
from NSF SFS, SaTC, and CICI programs and CAE-CD/CAE-R
cybersecurity designations from NSA/DHS. He is a fellow of ACM,
IEEE, and AAAS.

https://doi.org/10.1016/‌j.cose.2019.101589
https://doi.org/10.1016/‌j.cose.2019.101589
https://doi.org/‌10.18653/v1/D19-1002
https://doi.org/‌10.18653/v1/D19-1002
https://doi.org/10.1109/ISI.2018.8587336
https://doi.org/10.1109/UEMCON.2017.8249013
https://doi.org/10.1080/07421222.2018.1550550
https://doi.org/10.25300/MISQ/‌2019/‌13042
https://doi.org/10.25300/MISQ/‌2019/‌13042
https://doi.org/10.1080/07421‌222.2020.‌1759961
https://doi.org/‌10.1109/JPROC.2020.3004555
https://doi.org/‌10.1109/JPROC.2020.3004555

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

160 MIS Quarterly Vol. 48 No. 1 / March 2024

Appendix A

Benchmark Model Specifications

The naive Bayes, logistic regression, decision tree, and support vector machine (SVM) models were implemented using the Scikit-Learn

library (Pedregosa et al., 2011). The XGBoost model was implemented using the XGBoost Python library (Chen & Guestrin, 2016). The

LightGBM was implemented using the LightGBM Python library (Ke et al., 2017). Our input was transformed using a term frequency-

inverse document frequency (TF-IDF) calculation that was applied to turn the co-occurrence counts into vector representations. The output

of the TF-IDF transformation was then inputted into each classification model. The GridSearchCV module in Scikit-Learn was used for each

model to search for the best parameters for our exploit code labeling task. We summarize the parameters determined by grid-search for each

of the models below:

• Naive Bayes: Additive smoothing parameter (alpha in Scikit-Learn) of 1.

• Logistic Regression: L2 penalty term, the liblinear solver, and a C parameter of 0.01.

• Decision Tree: had a max depth of 5.

• SVM: Linear support vector classification (linearSVC in Scikit-Learn).

• XGBoost: Learning rate of 0.01, max tree depth of 10, minimum child weight of 6, multi-softmax objective function, sub-sample

of 0.8.

• LightGBM: Learning rate of 0.01, no max depth, minimum child weight of 0, 1,000 estimators, sub-sample of 0.85.

Each deep learning model was implemented with the Keras Python library (Chollet, 2015). Model parameters were adjusted based on best

practices in related literature (Li et al., 2020). When we evaluated the changes in performance by swapping out specific layers, such as gated

recurrent unit (GRU), long-short term memory (LSTM), or bidirectional LSTM (BiLSTM), we kept the embedding, convolutional, batch

normalization, and dropout layers constant. The convolutional layer was one-dimensional, had a kernel size of 3, and a rectified linear unit

(ReLU) activation function. Each dropout layer was set to 0.5. All subsequent benchmark models followed the same structure (unless there

was an attention layer or pre-initialization design). The self-attention mechanism uses the Keras L2 regularizer set to 1ÿ 2 4 for the kernel,

and the L1 regularizer set to 1ÿ 2 4 for the bias term. To implement our pre-initialization design, the BiLSTM layer in the exploit title model

had the return state set to true with no concatenation. We manually concatenated the returned hidden and cell states. The concatenated output

was fed into the exploit code model at the BiLSTM layer by setting the initial state equal to the concatenated output. The remainder of the

model was the same as the BiLSTM.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 161

Appendix B

Per Exploit Label Analysis for Experiments 1 and 2

In the main text, we presented the results of the proposed DTL-EL and all benchmark methods across all eight exploit labels in Experiment 1 and

Experiment 2. However, we were also interested in identifying how each approach performed at the exploit category level for each domain. In

Experiment 1, our proposed DTL-EL did not always produce the highest precision or recall score for each exploit label, but always produced the

highest F1-score. DTL-EL’s precision was lower than the pre-initialized BiLSTM without attention on cross-site scripting (XSS; 93.31% to

96.14%) and web applications (94.71% to 95.88%). Each exploit’s properties can partially explain these results. XSS attacks and web application

exploits are targeted (e.g., written for a specific website) and contain named entities that do not frequently appear in other exploits and may

adversely affect our self-attention mechanism. DTL-EL attained a lower F1-score than the pre-initialized BiLSTM for SQL injections (88.98%

to 90.04%), remote exploits (83.55% to 80.91%), and file inclusion exploits (88.45% to 86.76%), which are three of the four most infrequent

exploits in the source domain (possibly causing lower recall scores). Since Experiment 2 examined DTL-EL’s labeling performance (our core
objective), we provide the precision, recall, and F1-score for each exploit target label in Table B1. Our proposed DTL-EL outperformed all

models in each exploit label in terms of recall and F1-score in the target domain. DTL-EL performed best in precision for five exploit labels

but underperformed LSTM in SQL injection (91.27% to 91.45%) and XSS exploits (75.67% to 77.11%). DTL-EL’s precision underperformed
LightGBM for file inclusion exploits (50.77% to 58.68%). In the target domain, the code for XSS, file inclusion, and SQL injection are often

much shorter than exploits in the other five labels, possibly explaining DTL-EL’s precision scores.

Table B1. Per Label Results for Experiment 2: DTL-EL against Non-Transfer Learning Approaches on
the Target Domain

Exploit label Model type Model Precision Recall F1-Score

Web applications Classical
machine learning

Naive Bayes 76.92%*** 08.93%*** 16.00%***

Logistic regression 65.32%*** 08.04%*** 14.75%***

Decision tree 39.18%*** 33.93%*** 36.36%***

SVM 54.71%*** 19.64%*** 30.14%***

XGBoost 52.83%*** 25.00%*** 33.94%***

LightGBM 55.56%*** 26.79%*** 36.14%***

Deep learning RNN 56.48%*** 25.11%*** 35.87%***

GRU 59.39%*** 31.61%*** 37.93%***

LSTM 59.80%*** 40.18%* 44.22%***

BiLSTM 60.48%*** 40.46%* 45.47%***

BiLSTM with attention 62.31%*** 41.14% 47.67%***

Proposed DTL-EL 65.97% 41.43% 49.17%

Denial of service (DoS) Classical
machine learning

Naive Bayes 64.81%*** 43.54%*** 57.54%***

Logistic regression 67.14%*** 50.32%*** 60.91%***

Decision tree 67.16%*** 56.91%*** 61.61%***

SVM 64.46%*** 53.19%*** 62.05%***

XGBoost 67.89%*** 56.27%*** 65.33%***

LightGBM 75.35%*** 57.80%*** 65.42%***

Deep learning RNN 65.12%*** 52.18%*** 59.31%***

GRU 70.03%*** 59.87%*** 64.55%***

LSTM 72.48%*** 70.59%*** 71.52%***

BiLSTM 74.75%*** 67.46%*** 70.92%***

BiLSTM with attention 75.15%*** 69.42%*** 72.67%***

Proposed DTL-EL 78.48% 72.42% 75.57%

Remote Classical
machine learning

Naive Bayes 64.29%*** 09.00%*** 15.79%***

Logistic regression 68.60%*** 23.60%*** 35.12%***

Decision tree 49.88%*** 42.00%*** 45.60%***

SVM 62.55%*** 30.40%*** 40.92%***

XGBoost 67.14%*** 37.60%*** 48.21%***

LightGBM 62.17%*** 37.80%*** 47.01%***

Deep learning RNN 61.08%*** 39.15%*** 50.11%***

GRU 61.01%*** 41.20%*** 51.66%***

LSTM 63.74%*** 45.99%*** 53.16%***

BiLSTM 67.13%*** 48.41%*** 56.21%***

BiLSTM with attention 68.02%*** 48.88%*** 58.03%***

Proposed DTL-EL 75.88% 51.20% 63.41%

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

162 MIS Quarterly Vol. 48 No. 1 / March 2024

Local Classical
machine learning

Naive Bayes 59.92%*** 37.61%*** 46.21%***

Logistic regression 58.77%*** 51.16%*** 54.70%***

Decision tree 57.50%*** 53.85%*** 55.61%***

SVM 61.72%*** 53.36%*** 57.24%***

XGBoost 65.40%*** 56.78%*** 60.78%***

LightGBM 64.43%*** 58.61%*** 61.38%***

Deep learning RNN 65.87%*** 57.12%*** 61.62%***

GRU 68.14%*** 62.97%*** 65.35%***

LSTM 70.63%*** 65.20%*** 67.81%***

BiLSTM 70.08%*** 66.91%*** 68.46%***

BiLSTM with attention 71.13%*** 67.22%*** 69.71%***

Proposed DTL-EL 75.73% 71.43% 73.68%

SQL Injection Classical
machine learning

Naive Bayes 77.01%*** 82.45%*** 79.64%***

Logistic regression 83.03%*** 81.47%*** 82.24%***

Decision tree 80.38%*** 80.20%*** 80.29%***

SVM 83.22%*** 81.10%*** 82.14%***

XGBoost 84.58%*** 85.15%*** 84.86%***

LightGBM 83.60%*** 84.92%*** 84.26%***

Deep learning RNN 83.29%*** 83.75%*** 83.54%***

GRU 81.47%*** 85.45%*** 83.41%***

LSTM 91.45% 77.79%*** 84.07%***

BiLSTM 87.81%*** 84.85%*** 86.30%***

BiLSTM with attention 88.14%*** 85.06%*** 86.61%***

Proposed DTL-EL 91.27% 92.12% 91.84%

Cross-Site Scripting
(XSS)

Classical
machine learning

Naive Bayes 60.50%*** 54.05%*** 57.09%***

Logistic regression 60.46%*** 62.96%*** 61.68%***

Decision tree 58.65%*** 58.19%*** 58.42%***

SVM 60.70%*** 65.82%*** 63.16%***

XGBoost 68.39%*** 65.34%*** 66.83%***

LightGBM 68.07%*** 66.77%*** 67.42%***

Deep learning RNN 69.78%*** 67.08%*** 68.29%***

GRU 69.08%*** 66.49%*** 67.83%***

LSTM 77.11% 65.72%*** 70.96%***

BiLSTM 74.40%* 71.02%*** 72.67%***

BiLSTM with attention 75.06%* 71.69%*** 73.36%***

Proposed DTL-EL 75.67% 74.99% 75.43%

File Inclusion Classical
machine learning

Naive Bayes 55.71%*** 25.00%*** 38.71%***

Logistic regression 33.56%*** 12.50%*** 22.22%***

Decision tree 44.44%*** 33.33%*** 38.10%***

SVM 57.78% 29.17%*** 42.42%***

XGBoost 57.02% 29.83%*** 41.81%***

LightGBM 58.68% 33.15%*** 47.06%***

Deep learning RNN 43.32%*** 35.57%*** 39.88%***

GRU 45.10%*** 36.12%*** 41.87%***

LSTM 47.50%*** 39.03%*** 42.73%***

BiLSTM 43.33%*** 39.17%*** 41.11%***

BiLSTM with attention 45.46%*** 41.08%*** 43.24%***

Proposed DTL-EL 50.77% 46.67% 48.72%

Overflow Classical
machine learning

Naive Bayes 69.15%*** 25.30%*** 38.35%***

Logistic regression 65.00%*** 49.24%*** 56.03%***

Decision tree 61.07%*** 53.48%*** 57.03%***

SVM 63.19%*** 54.09%*** 58.29%***

XGBoost 69.38%*** 59.39%*** 64.00%***

LightGBM 69.23%*** 61.36%*** 65.06%***

Deep learning RNN 71.45%*** 61.92%*** 66.21%***

GRU 71.62%*** 61.85%*** 66.30%***

LSTM 69.02%*** 63.79%*** 66.30%***

BiLSTM 72.76%*** 68.79%*** 70.78%***

BiLSTM with attention 73.04%*** 69.46%*** 71.87%***

Proposed DTL-EL 75.76% 72.94% 74.52%

Note: ∗ ā < 0.05, ∗∗ ā < 0.01, ∗∗∗ ā < 0.001. Top scores appear in boldface.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 163

Appendix C

Model Similarity Analysis

As indicated in the main text, we implemented centered kernel alignment (CKA) to visualize the internal representations of our target domain

model (BiLSTM with self-attention) and DTL-EL to identify if the transfer learning process transfers layers that improve exploit labeling.

CKA outputs a heatmap of similarities (from 0-1, 1 being highest) between layers (Kornblith et al., 2019). If the internal representations of

the two models are similar, it may demonstrate that transfer learning is not providing significant model benefits, i.e., not transferring layers

that improve performance. We present the CKA analysis results in Figure C1.

The results of our CKA analysis show that the lower-level layers of the DTL-EL model (0: embedding, 1: convolution, 2: pooling, 3: batch

norm, 4: dropout) are more similar to higher-level layers (5: BiLSTM, 6: self-attention, 7: dropout, 8: dense) than the non-DTL model.

Additionally, the higher-level layers are more similar to each other in the DTL model compared to the non-DTL model. Conversely, the DTL

lower-level layers are less similar than the lower-level layers in the non-DTL model. These internal differences suggest that the transferred

layers are learning lower-level feature representations of the exploits, potentially explaining the difference in performance over the randomly

initialized weights of the target domain model. The differences also may suggest that the model is learning longer-range dependencies

(BiLSTM and attention layers) at the cost of local-range dependencies (lower-level layers).

Figure C1. Results of DTL-EL's CKA (left) and Target Domain Model’s CKA (right)

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

164 MIS Quarterly Vol. 48 No. 1 / March 2024

Appendix D

Implementation of DTL-EL Into a Web-Based User Interface

We applied DTL-EL to the unlabeled source code from our hacker forum testbed (74,605 source code snippets). DTL-EL only applied a label to the

source code if the softmax function probability was greater than 80% for a given label4. Overall, the DTL-EL labeling process yielded 27,143 exploits

from eight international hacker forums from 2002 to 2020. DoS (6,726 exploits), SQL injection (6,685 exploits), and local (4,098 exploits) were the

most common exploits among all forums, while file inclusion (118 exploits) was the least common. Past IS literature has indicated that a system with

a user interface (UI) can help CTI stakeholders effectively interact with a novel algorithm and its results (Samtani et al. 2017). However, most past IS

cybersecurity analytics studies have not incorporated their proposed IT artifact into a system or UI. Our collection of labeled hacker forum exploits was

incorporated into a UI to highlight the value of our artifact for organizational use. Our UI aims to facilitate the needs of cybersecurity stakeholders based

on a targeted analysis of relevant literature. Figure D1 illustrates how our proposed DTL-EL framework is integrated into a UI for organizational use.

The UI offers several functions that help address relevant cybersecurity stakeholders' requirements when interacting with systems with advanced

cybersecurity analytics. First, cyber analysts using the UI can explore our content, input a single exploit, or upload a comma separated value (CSV) file

or JavaScript object notation (JSON) object with multiple exploits to return a list of exploit labels (top left of Figure D1) using the proposed DTL-EL.

Second, cybersecurity managers can explore automated trends in exploits from our crawlers or their CSV at a total or per-label level (bottom left of

Figure D1). The dates and exploit labels can be adjusted to generate custom visualizations for targeted analysis. For example, we see in Figure D1 that

local exploits saw a steep increase in posted source code from October 2019 to February 2020. Third, cyber analysts and cybersecurity educators can

closely look at the labeled exploits once a particular trend has been identified for more in-depth analysis (top middle of Figure D1). These tables can be

filtered based on year, hacker name, exploit type, or forum to facilitate strategic CTI. Additionally, cyber analysts and educators can download filtered

content of interest. Finally, cyber analysts can click on any exploit to see visualized semantic dependencies of the exploit. These dependencies show

how the source code operates from a token importance standpoint. After identifying recent local exploits, a cyber analyst could compare the semantic

dependencies between many local exploits and further determine specific trends within the coding practices of each exploit for tactical CTI. In the

example, a cyber analyst using the UI could identify the increase in local attacks and investigate the most recent source code further. This will illuminate

characteristics of how the code operates that could allow an analyst to operationalize the exploits and create countermeasures against them.

Figure D1. Screenshots Showing DTL-EL Integration into a UI. Users Can: (1) Upload or Crawl New
Code, (2) Investigate Exploit Label Trends, (3) Study Recent or Relevant Exploits, and (4) Generate
Semantic Dependencies for Any Exploit

4 Within our gold-standard dataset, exploits labeled at 80% softmax achieved 94.87% accuracy and a 93.26% F1-score. Raising softmax higher than 80% did

not lead to a statistically significant increase in accuracy/F1-score.

Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels

MIS Quarterly Vol. 48 No. 1 / March 2024 165

Appendix E

Cost-Sensitive Analysis for Exploit Labeling

Error minimization is commonly the goal of classification models. However, organizations will have different goals based on their internal
cyber-risk tolerance, cyberinfrastructure, threat surfaces, etc. Therefore, DTL-EL should offer some flexibility to meet the goals of different
organizations. Cost-sensitive analysis provides organizations with the flexibility to minimize cost instead of error by prioritizing the high-
cost exploits specific to the organization (Kim et al., 2012). Therefore, we provide an example of cost-sensitive analysis using estimated costs
of successful cyberattacks from reputable sources. In our cost matrix, a misclassified denial-of-service is $1,100,000,5 local is $600,000,2
remote is $2,500,000,6 SQL injection is $196,000,7 and web applications is $1,400,000.3 Overflow is $100 as they often do not incur costs.
Information on file inclusion and XSS exploits could not be found, so they were set to the closest exploit (local, web applications,
respectively). Consistent with best practices in past literature, we compared error minimization to a cost-sensitive classifier and a MetaCost
wrapper (Kim et al., 2012). A cost-sensitive classifier estimates class probabilities and uses them to minimize the expected cost at each
prediction. MetaCost relabels training instances to estimate more accurate probabilities while predicting an exploits label. The results of each
strategy by total cost (sum of mislabeled exploits of each type multiplied by the cost of that type), average misclassification cost (AMC, total
cost divided by predictions), F1-score, and count of mislabeled exploits appear in Table E1.

The error minimization strategy had the highest F1-score (70.34%) compared to the cost-sensitive (66.14%) and MetaCost (69.16%)
strategies. However, error minimization also led to the highest total cost ($276.2 million) and AMC ($57,042.54) among the three models.
The cost-sensitive classifier strategy led to the lowest total cost ($245.8 Million) and AMC ($50,764.15) despite achieving the lowest F1-
score (66.14%) and the highest number of mislabeled exploits (329). This difference suggests that the cost-sensitive strategy classifies high-
cost exploits (e.g., remote) at the expense of misclassifying many lower-cost exploits (e.g., SQL injection). A cost-sensitive classifier
therefore may be ideal for organizations prioritizing AMC and not mislabeled exploits. MetaCost achieved a close F1-score with error
minimization (69.16%) while reducing total cost ($263.6 million) and AMC ($54,440.31). Organizations may choose MetaCost when the
underlying predictive model produces inaccurate probabilities.

Note: ∗ ā < 0.05, ∗∗ ā < 0.01, ∗∗∗ ā < 0.001

5 https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
6 https://purplesec.us/resources/cyber-security-statistics/
7 https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-billion-attacks-reveals-sql-injections-cost-196000

Table E1. Cost Comparison Between DTL-EL Model Strategies

Model strategy Total cost AMC F1-score Mislabeled exploits

Error minimization (DTL-EL) $276.2 Million $57,042.54 70.34% 262

Cost-sensitive classifier $245.8 Million $50,764.15 66.14%*** 329

MetaCost $263.6 Million $54,440.31 69.16% 276

https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
https://www.accenture.com/us-en/insights/security/invest-cyber-resilience

Copyright of MIS Quarterly is the property of MIS Quarterly and its content may not be

copied or emailed to multiple sites or posted to a listserv without the copyright holder's

express written permission. However, users may print, download, or email articles for

individual use.

