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 The rapid proliferation of complex information systems has been met by an ever-increasing quantity of 

exploits that can cause irreparable cyber breaches. To mitigate these cyber threats, academia and 

industry have placed a significant focus on proactively identifying and labeling exploits developed by the 

international hacker community. However, prevailing approaches for labeling exploits in hacker forums 

do not leverage metadata from exploit darknet markets or public exploit repositories to enhance labeling 

performance. In this study, we adopted the computational design science paradigm to develop a novel 

information technology artifact, the deep transfer learning exploit labeler (DTL-EL). DTL-EL 

incorporates a pre-initialization design, multi-layer deep transfer learning (DTL), and a self-attention 

mechanism to automatically label exploits in hacker forums. We rigorously evaluated the proposed DTL-

EL against state-of-the-art non-DTL benchmark methods based in classical machine learning and deep 

learning. Results suggest that the proposed DTL-EL significantly outperforms benchmark methods based 

on accuracy, precision, recall, and F1-score. Our proposed DTL-EL framework provides important 

practical implications for key stakeholders such as cybersecurity managers, analysts, and educators. 

Keywords: Hacker forums, cyber threat intelligence, cybersecurity analytics, deep transfer learning, deep 
learning, exploit labeling, computational design science 

 

Introduction 

The rapid proliferation of new information technology (IT) in 
recent years has created significant benefits for modern 
society. Despite its usefulness, IT often possesses numerous 
vulnerabilities that can allow unauthorized users unfettered 

 
1 Gediminas Adomavicius was the accepting senior editor for this paper. 
Nachiketa Sahoo served as the associate editor.  

access to an organization’s networks, systems, private data, 
and other critical assets. Sophisticated hackers often develop 
exploits (e.g., SQL injections, cross-site scripting, etc.) in 
plain-text source code to execute cyber breaches (Samtani et 
al., 2017). Each cyber breach is estimated to cost an average 
of $7,910,000 to an organization (Sun et al., 2020). This cost 
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underscores the importance for organizations to proactively 

identify exploits. To this end, organizations are increasingly 

investing in cyber threat intelligence (CTI) capabilities to 

detect emerging exploits (Wagner et al., 2019). 

To develop proactive CTI, academia and industry are 

increasingly examining openly accessible exploits in major 

international hacker forums, exploit darknet markets (DNMs), 

and public exploit repositories (Samtani et al., 2020). Hacker 

forums are large discussion boards that provide freely 

accessible exploits developed by the large and evolving 

international hacker community. These forums often contain 

millions of user-generated posts and span multiple geopolitical 

countries and regions such as Russia, the United States, the 

Middle East, and others. Exploit DNMs allow hackers to share 

and sell highly specialized exploits (e.g., 0-days). While less 

common than in hacker forums, the exploits found within 

exploit DNMs are more sophisticated than those found in 

hacker forums. Public exploit repositories are collections of 

exploits manually labeled and vetted by industry professionals 

and CTI experts. These repositories are more common than 

exploit DNMs and provide more exploit details (e.g., attack 

type, common vulnerabilities and exposures, etc.) than hacker 

forums. Sample exploits from a hacker forum, an exploit DNM, 

and a public exploit repository are shown in Figure 1.  

Hacker forum posts with exploit source code (top left of 

Figure 1) often lack a clear exploit label (i.e., category). In 

contrast, exploit DNMs (top right of Figure 1) and public 

exploit repositories (bottom middle of Figure 1) offer a rich 

set of metadata and clear exploit labels (e.g., local, web). A 

recent CTI report from the renowned SANS Institute 

indicated that cyber analysts at leading CTI companies 

require assistance in identifying, collecting, and analyzing 

unknown exploits from hacker communities to proactively 

develop knowledge about hacker capabilities (Brown & Lee, 

2021; Newman, 2020). This is partly in response to the Mirai 

malware that caused widespread damage across the United 

States. The source code for Mirai was posted on a hacker 

community platform two months before its large-scale usage 

(Yue et al., 2019). These attacks show that hacker forum 

posts can be a valuable source for identifying precursors to 

attacks and require up-to-date monitoring. However, most of 

the exploits found in hacker forums are unlabeled (Ampel et 

al., 2020). Unlabeled exploits can often prevent cyber 

analysts from identifying the specific tactics and strategies 

of hackers and stymie the production of timely and relevant 

CTI (Tounsi & Rais, 2018). Extant procedures to label 

exploits are currently manual, which is a time-consuming 

and nontrivial process (Wagner et al., 2019). Cyber analysts 

frequently cite these manual processes and high workloads 

as their primary challenges, leading to burnout and turnover 

(Agyepong et al., 2020). Automating the exploit labeling 

process can reduce manual processes and provide cyber 

analysts with tactical, strategic, and operational CTI 

capabilities. We present selected benefits that exploit 

labeling can provide to each CTI type in Table 1.  

Tactical CTI is the techniques, tactics, and procedures used 

by threat actors (Wagner et al., 2019). Providing clear labels 

to hacker forum source code allows cyber analysts to quickly 

organize discovered exploits, operationalize them, and 

discover the capabilities of threat actors. For example, once 

a cyber analyst knows a set of exploits are SQL injections 

(as opposed to other exploits), the analyst can build a secure 

copy of their IT (e.g., a virtual machine with an SQL server), 

conduct targeted penetration testing with the labeled 

exploits, and identify suitable mitigations and cyber-

defenses against the successfully executed exploits. This 

hacker emulation is known as red teaming and is essential to 

modern cybersecurity practices (Alomar et al., 2020). From 

an operational CTI perspective, labeled exploits can help 

cyber analysts monitor new exploits posted on hacker 

forums and choose relevant exploits to investigate further in 

a targeted fashion (Tounsi & Rais, 2018). This operational 

CTI can be combined with tactical CTI and external 

resources (e.g., SANS CTI reports) to strengthen cyber-

systems against specific attacks (e.g., Mirai malware). For 

example, SANS CTI reports may link web application 

exploits to a specific advanced persistent threat group. An 

analyst can use the combined information of newly labeled 

exploits and known strategies employed by that APT group 

to select the appropriate system-hardening strategies. From 

a strategic perspective, exploit labels allow senior officials 

to identify attack trends (e.g., how exploits rise or fall over 

time) in a timely fashion such that they can make the 

appropriate security investments (Tounsi & Rais, 2018). 

Moreover, such information can be integrated into cyber-risk 

assessment models to create proactive, preventive, and 

dynamic insights that facilitate effective cybersecurity 

investments (Shin & Lowry, 2020).  

In this study, we adopted the computational design science 

paradigm (Rai, 2017) to develop a novel deep transfer 

learning exploit labeler (DTL-EL) framework that leverages 

the rich metadata and large quantities from exploit DNMs 

and public exploit repositories (source domain) to 

automatically label each exploit’s source code found in 
hacker forums (target domain). The proposed framework is 

based on deep transfer learning (DTL), a prevailing 

approach in cybersecurity analytics and CTI literature in IS. 

DTL can transfer knowledge from a large and labeled source 

domain to improve model performance when the target 

domain is not large or rich enough to create a fit model 

(Zhuang et al., 2020). DTL has particular value in CTI 

applications that do not often have rich labeled datasets, such 

as hacker forum analysis (Samtani et al., 2020). 
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Figure 1. Examples of Posts with Exploits from: (a) a Hacker Forum, (b) an Exploit DNM, and (c) a Public 
Exploit Repository 

 

Table 1. Selected Benefits of Exploit Labeling for CTI  

CTI type Selected benefits of exploit labeling References 

Tactical Improved profiling and operationalization of hacker capabilities to guide cyber-
defense strategies, including red-teaming exercises 

Wagner et al., 2019 
 

Operational Automated real-time statistics and threat prioritization to guide internal control 
implementations 

Brown & Lee, 2021 

 

Strategic Trend analysis of emerging exploits and hackers for executives and security 
managers to more effectively make security investments 

Tounsi & Rais, 2018 
 

 

Moreover, recent information systems (IS) cybersecurity 

research has shown the applicability of deep transfer 

learning (DTL) for CTI, where a model trained on a larger 

labeled source domain (English darknet market postings) 

provided significant benefits to three smaller target domain 

models (Russian, French, and Italian darknet market 

postings) (Ebrahimi et al., 2022). In addition to DTL, the 

proposed DTL-EL framework also incorporates several 

state-of-the-art methods in deep learning (DL) and attention 

mechanisms that were carefully designed for exploit 

labeling. First, DTL-EL includes a bidirectional long short-

term memory (BiLSTM) with its hidden and cell states pre-

initialized with the titles of professionally vetted exploits in 

exploit DNMs and public exploit repositories. The pre-

initialization design emulates how a cybersecurity 

professional reads the title of an exploit before examining its 

source code. Second, DTL-EL transfers the pre-initialized 

BiLSTM model’s learned representation of the source 
domain dataset (i.e., exploit DNMs and public exploit 

repositories) to help label exploit source code in hacker 

forums (target domain). Third, the DTL-EL incorporates a 

self-attention mechanism to identify and capture semantic 
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and long sequential dependencies within the exploit source 

code to improve DTL-EL’s performance. Consistent with 
the guidelines of the computational design science paradigm, 

we rigorously evaluated the proposed DTL-EL with a series 

of benchmark experiments (Rai, 2017). The DTL-EL 

framework can help future IS researchers execute targeted 

cybersecurity analytics on exploit labeling, trend analysis, 

real-time monitoring, and other critical CTI tasks.  

This paper is organized as follows. First, we review IS 

cybersecurity analytics research, computational design 

science guidelines, and hacker-forum exploit analysis 

literature. Second, we identify research gaps from prior 

literature and pose research questions. Third, we present 

DTL-EL’s methodological foundation by reviewing the 
BiLSTM with attention mechanism and DTL. Fourth, we 

describe the proposed DTL-EL. Fifth, we present the results 

of our experiments. Sixth, we summarize our proposed DTL-

EL’s practical implications and contributions to the IS 

knowledge base. Finally, we conclude this research and 

discuss potential future directions.  

Literature Review  

IS Cybersecurity Analytics Literature and 
Computational Design Science Guidelines 

IS scholars have made remarkable advances in cybersecurity 

analytics research in recent years. We summarize selected 

recent cybersecurity analytics literature published in 

prevailing IS journals in Table 2. For each study, we 

summarize the year of publication, author(s), cybersecurity 

focus, whether the approach was multi-dataset or not, 

analytical method(s), and if a system or UI was built to 

present the analytical results. 

Most prior cybersecurity analytics studies have examined 

hacker forums to proactively identify, detect, and mitigate 

cyber threats (Benjamin et al., 2019; Ebrahimi et al., 2020; 

Samtani et al., 2017; Yin et al., 2019; Yue et al., 2019). 

Earlier cybersecurity analytics traditionally relied on 

classical machine learning (ML) or text mining methods 

(Benaroch, 2018; Karhu et al., 2018; Samtani et al., 2017; 

Sen et al., 2020; Yin et al., 2019), while more recent studies 

have leveraged the DL-based BiLSTM to automatically 

extract feature representations (i.e., embeddings) from the 

inputted hacker forum post content (Ebrahimi et al., 2022; 

Samtani et al., 2022). Despite providing timely contributions 

to our understanding of hacker forum content, most studies 

do not conduct the critical CTI task of assigning a specific 

label to each exploit within hacker forums. Additionally, 

researchers rarely embed their algorithm(s) into a system or 

UI. Consequently, CTI researchers or practitioners may have 

difficulty leveraging a cybersecurity analytics IT artifact for 

their cyber-defense workflow and CTI tasks (Samtani et al., 

2017; Silic & Lowry, 2020). 

Designing a novel IT artifact for a high-impact societal 

application (e.g., hacker exploit labeling) requires a 

principled approach. Past IS cybersecurity analytics 

literature has leveraged the computational design science 

paradigm (Hevner et al., 2004; Rai, 2017) to guide and 

ground their work. The computational design science 

paradigm provides IS scholars with three concrete 

guidelines to design and evaluate novel algorithms, 

computational models, and systems for advanced data 

analytics applications (Rai, 2017). First, the IT artifact’s 
design can be inspired by key domain requirements or data 

characteristics. In a recent example within extant 

cybersecurity analytics literature, the webpage structure 

from DNMs guided the design of a novel transductive 

support vector machine (SVM) (Ebrahimi et al., 2020). 

Second, IS scholars should demonstrate the novelty of their 

design by comparing the quantitative performance (e.g., 

accuracy, precision, recall, F1-score) of their proposed IT 

artifact against well-established baseline methods. Finally, 

the IT artifact should contribute back to the IS knowledge 

base. Contributions can include a situated implementation 

of the IT artifact (e.g., user interface) and/or nascent design 

theory (e.g., design principles) (Rai, 2017). Executing each 

guideline requires understanding the application for which 

the artifact is being developed. For this study, we identify 

what data characteristics have been used to analyze hacker 

forum exploits.  

Hacker Forum Exploit Analysis 

Hackers use forums, carding shops, DNMs, and internet-

relay-chat (IRC) to share goods (e.g., credit cards) and assets 

(e.g., exploits) (Benjamin et al., 2019). Hackers freely post 

tens of thousands of assets in forum posts, making them a 

viable and attractive data source for developing CTI 

(Samtani et al., 2017; Yue et al., 2019). Moreover, assets 

found within hacker forums (e.g., exploits) have been used 

in recent cyberattacks (Samtani et al., 2020). As a result, a 

growing body of literature aims to explore and categorize 

exploits in hacker forums. We summarize selected recent 

literature analyzing exploits in hacker forums in Table 3. 

Each study is summarized based on the year, author(s), 

objective, data source, the data type used, analytics, and 

identified exploits. 
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Table 2. Summary of Selected Recent IS Cybersecurity Analytics Literature 

Year Author(s) Cybersecurity focus Multi-
dataset? 

Analytical method(s) System 
or UI? 

2022 Samtani et al.  Exploit-vulnerability linking Yes DSSM with BiLSTM  No 

2022 Ebrahimi et al. Detecting hacker assets in multilingual hacker forums No GAN with BiLSTMs No 

2020 Ebrahimi et al. Identifying threats in DNMs No Transductive SVM No 

2020 Sen et al. Quantifying the impact of cyberattacks on software 
markets 

No Regression No 

2020 Silic & Lowry Improving organizational security  No HMSAM Yes 

2019 Yue et al. Correlating DDoS mentions in hacker forums and DdoS 
victims 

Yes LDA, dynamic panel 
fixed effects  

No 

2019 Yin et al. De-anonymization of blockchain transactions amongst 
criminals 

No Gradient boosting 
classifier 

No 

2019 Benjamin et al. Darknet predictive analytics No OLS Regression No 

2018 Benaroch Proactively mitigating risk for cybersecurity investments No Real options model No 

2018 Karhu et al. Opening digital platforms while protecting them from 
exploitation 

Yes Resource-based View No 

2017 Samtani et al. Code classification in hacker forums No LDA, SVM Yes 

Note: UI = user interface; BiLSTM = bidirectional long-short term memory; COC = convention on cybercrime; DdoS = distributed denial of service; 
DSSM = deep structured semantic model; GAN = generative adversarial network; HMSAM = hedonic-motivation system adoption model; IRC = 
internet-relay-chat; LDA = latent Dirichlet allocation; OLS = ordinary least squares; SVM = support vector machine.  

 

Table 3. Selected Recent Literature Analyzing Exploits in Hacker Forums 

Year Author(s) Objective Data source Data type used Analytical 
method(s) 

Identified exploits 

2021 Zhao et al. Attack event 
prediction 

Hacker forums Post content, 
attachments 

SNA DoS, overflow, 
SQLi 

2019 Schafer et al. Trend 
identification 

Hacker forums Titles, users, posts, 
topics, keywords 

SNA, LDA Leaks, botnets, 
DdoS 

2019 Benjamin et al. Darknet 
identification, 
collection 

Hacker forums Post content, 
attachments, code, 
keywords, reputation 

OLS Rootkit, XSS, SQLi, 
DdoS, drive-by 

2018 Williams et al. Exploit 
categorization 

Hacker forums Posts content, 
attachments 

LSTM Keyloggers, DdoS 

2018 Goyal et al. Cyberattack 
prediction 

Hacker forums, 
Twitter, blogs 

Post content, tweets, 
blogs 

LSTM, RNN Trojan, phishing 

2018 Deliu et al. Exploit 
categorization 

Nulled.IO leak Post content SVM, CNN Botnet, crypter, 
keylogger 

2017 Samtani et al. Exploit 
categorization 

Hacker forums Post content, authors, 
source code 

LDA, SVM Crypters, 
keyloggers 

Note: CNN = convolutional neural network; DdoS = distributed denial of service; LDA = latent Dirichlet allocation; LSTM = long-short term 
memory; OLS = ordinary least squares; RNN = recurrent neural network; SNA = social network analysis; SQLi = structured query language 
injection; SVM = support vector machine; XSS = cross-site scripting 
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Most hacker-forum exploit analytics studies have analyzed the 

post content, which often contains significant jargon, 

surrounding an exploit’s source code to categorize posts into 
broad categories (e.g., botnets, keyloggers, malware). Similar to 

IS cybersecurity analytics literature, earlier studies (2017- 

2018) often used classical ML (e.g., SVM) based on their tasks 

(Deliu et al., 2018; Samtani et al., 2017). Since classical ML 

approaches rely on a manually defined set of features (which is 

labor intensive and time-consuming to construct), scholars in 

recent years have relied on the DL-based LSTM or BiLSTM for 

their tasks (Goyal et al., 2018; Williams et al., 2018). 

Irrespective of the analytical method, past studies have not 

examined how to assign a specific label to each exploit in 

hacker forums based on its source code or the metadata (e.g., 

exploit titles) in exploit DNMs or public exploit repositories.  

Research Gaps and Questions 

We identified several research gaps from prior literature. First, 

past studies analyzing exploits in hacker forums primarily 

analyze post content and often omit source code. However, 

source code contains significant, often precise, syntax and 

information (e.g., function names, exploit actions, etc.) that is 

not in natural language (Nuñez-Varela et al., 2017). Second, 

hacker-forum exploit source code is nontrivial to categorize, as 

it often lacks clear exploit labels and metadata (e.g., informative 

titles). Additionally, prevailing DL-based methods (e.g., 

LSTM, BiLSTM) used for hacker forum analysis were 

designed for natural language and often struggle to capture long 

semantic relationships (e.g., dependencies) within exploit code. 

Finally, despite containing professionally vetted exploits, rich 

metadata, and overlapping hacker content, exploit DNMs and 

public exploit repositories have not been leveraged in a multi-

dataset model to help label hacker forum exploits. Based on 

these research gaps, we pose the following research questions: 

How can we extend a BiLSTM model to capture the long 

semantic dependencies found within exploit source code? 

How can we transfer the knowledge from metadata-rich exploit 

DNMs and public exploit repositories to help label exploits in 

hacker forums based on their source code? 

Methodological Foundation 

To set the methodological foundation for this work, we first 

review the BiLSTM with attention model. BiLSTM is the 

prevailing algorithm for DL-based hacker community text 

analytics (Ebrahimi et al., 2022, 2018) and other text 

classification tasks (Thangaraj & Sivakami, 2018). In the 

following subsections, we review DTL as the prevailing 

approach for transferring knowledge from an information-rich 

source domain (e.g., exploit DNMs and public exploit 

repositories) to a target domain (e.g., hacker forums).  

Bidirectional LSTM (BiLSTM) with Attention 
Model 

The BiLSTM improves upon other popular DL-based text 

classification models (e.g., LSTM, GRU, RNN) by using 

hidden states (working memory) with past and future contexts 

of the input tokens to make a prediction (Yenter & Verma, 

2017). The state-of-the-art BiLSTM for text classification 

incorporates a convolutional layer and an attention 

mechanism to capture local correlations of temporal structures 

and long-range phrases with sequential dependencies (Liu & 

Guo, 2019). A single LSTM cell within the BiLSTM with 

attention model is presented in further detail on the bottom left 

and bottom right, respectively, of Figure 2.  

The BiLSTM with attention model first converts a textual 

input into word embeddings for input into a convolutional 

layer. The convolutional layer extracts contextual and 

sequential features from the embeddings to learn local and 

latent representations of the input. The BiLSTM layer 

processes the features and concatenates the results of the 

forward (/�⃗⃗  ⃗) and backward (/�⃖⃗ ⃗⃗ ) hidden states to output a 

single hidden state, /� = [/�⃖⃗ ⃗⃗  /�⃗⃗  ⃗]Ā at each time step (ā). The 

same process also occurs with the BiLSTM cell states to 

output a single matrix, ÿ� (long-term memory). In an untrained 

model, the forward and backward LSTM cell and hidden 

memories are initialized to zero (ÿ�=0 = 0 and /�=0 = 0) and 

updated over time (ā). However, using the final /�⃗⃗  ⃗, /�⃖⃗⃗⃗ , ÿ�⃗⃗  ⃗, and ÿ�⃖⃗⃗⃗  of a BiLSTM model to pre-initialize the starting hidden and 

cell state weights of a subsequent BiLSTM model can reduce 

error to improve model performance (Elsheikh et al., 2019).  

In a BiLSTM with attention, the attention weight matrix takes 

the hidden states H = (/1, /2, & /Ā) as input and calculates a 

weighted sum for each hidden state. The weighted sum 

extracts the most informative hidden states to represent the 

input sequence, which can be used as input into another layer 

for subsequent tasks (e.g., classification). Attention 

mechanisms operate with a query and a set of key-value pairs. 

The query determines which aspects of the input embedding 

the attention mechanism will attend according to the weighted 

sum of the values and their corresponding key-value pairs. 
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Figure 2. BiLSTM with Attention Mechanism (Adapted from Liu & Guo, 2019) 

 

Currently, three categories of attention mechanisms can be 

incorporated into a BiLSTM: (1) hard attention, (2) soft 

attention, and (3) self-attention. Hard attention focuses on part 

of the input (Luong et al., 2015), while soft attention focuses on 

the entire input space and learns weights for all input features 

(Bahdanau et al., 2014). Hard attention and soft attention are 

often used when a parallel corpus is available (e.g., machine 

translation). Self-attention mechanisms relate to various 

positions of the same input sequence, finding the context vector 

between each value of an input, and applying a weight. When 

the dataset has one long-sequence input, the hidden state matrix � from the prior layer is linearly projected into a query (Ā), key 

(ÿ), and value (ý) (Vaswani et al., 2017). Dot-product 

multiplication operations are applied to each to create learned 

parameters. Formally, self-attention is calculated as: 

ĂÿýĀ�āāÿ(�) =  ĀĀĀāþ�ý (�þ�(�þ�)Ā√þ� )�þ� , 
where þ� is the dimension of ÿ (i.e., �þ�) and þ�, þ� , and þ� are learned parameters. Self-attention-based models 

consistently outperform models without attention mechanisms 

in various natural language processing (NLP) tasks (Shen et al., 

2018). Past studies have indicated that the self-attention 

mechanism’s weighting approach can improve the performance 
of predictive models by capturing short- and long-range 

contextual information within the input text (Adadi & Berrada, 

2018). Additionally, researchers can implement and evaluate 

adversarial perturbations to identify if the feature weights 

learned from the self-attention mechanism explain how the 

model reached its end decision (Wiegreffe & Pinter, 2019). 

However, a BiLSTM with self-attention cannot address the 

issue of missing metadata (e.g., descriptive titles, labels) in 

hacker forum exploits. DTL is an emerging DL-based method 

that can leverage the learned knowledge from the rich metadata 

in public exploit repositories and exploit DNMs to help label 

exploits in hacker forums. 

Deep Transfer Learning (DTL) 

DTL aims to improve the performance of a task � (e.g., 

classification) in a target domain �Ā by transferring 

knowledge from a source domain �ÿ (Zhuang et al., 2020). 

Generally, each domain � is represented by � = {ÿ, ÿ(ÿ)}, 
where ÿ is the feature space and ÿ(ÿ) is the marginal 

distribution of data instances ÿ = {ý1, ý2, & , ýĀ}. For each �, � is represented by � = {þ, Ā(∙)}, defined by a label space Ā 

and a function Ā(∙), which is a conditional probability 

function ÿ(Ā| ∙). DTL transfers the latent knowledge from �ÿ 

and �ÿ to improve the predictive function ĀĀ(∙) for �Ā. DTL is 

commonly used when a �Ā conducted in �Ā achieves low 

performance due to insufficient training data (ý), and ýÿ > ýĀ  (Pan & Yang, 2010).  

Four general types of DTL approaches exist: (1) instance 

transfer, (2) mapping transfer, (3) adversarial transfer, and 

(4) network transfer (Tan et al., 2018). Instance-transfer 

selects instances from the source domain dataset ÿÿ based on 

a similarity distance formula to supplement the target 



Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels 

144 MIS Quarterly Vol. 48 No. 1 / March 2024 

 

domain dataset ÿĀ. However, this approach cannot account 

for different features in the source and target domains (e.g., 

exploit titles in one domain but not another). Mapping 

transfer merges instances from the source and target dataset 

to one data space for tasks such as multi-task domain 

adaptation learning for sequence tagging (Peng & Dredze, 

2017) and multilingual text classification (Ebrahimi et al., 

2018). Mapping transfer is best suited for semi-supervised 

domain adaptation where the target domain is unlabeled 

(Peng & Dredze, 2017). Adversarial transfer uses adversarial 

learning techniques to capture the shared features of 

different tasks independently (Liu et al., 2017). Like 

mapping transfer, adversarial transfer works best for 

unsupervised or self-supervised domain adaptation tasks 

(Liu et al., 2017). Network transfer reuses parts of a neural 

network trained on a source domain dataset to approximate 

the predictive function ĀĀ(∙) for a task in the target domain. 

Network transfer is powerful when the source and target 

domains contain labeled data. Past IS studies employing 

DTL approaches have used multi-layer transfer learning 

(MLTL) when the model in the source domain was 

initialized with specific features and had multiple layer types 

(Zhu et al., 2020). Pretraining tasks (e.g., pre-initialization) 

often improve MLTL performance (Liu et al., 2019). Other 

DTL methods include updating existing model weights with 

an ensemble method or using pretrained language models 

(Ruder et al., 2019). Prevailing approaches to evaluate DTL 

are comparisons against non-DTL models and/or different 

DTL types and ablation analyses on layer and parameter 

transfer (Houlsby et al., 2019).  

Research Testbed and Design 

We developed a novel research design based on our 

methodological foundation to help address the posed research 

questions. The proposed research design has four major 

components (Figure 3): (1) data collection, (2) preprocessing 

and dataset construction, (3) DTL-EL model, and (4) 

experiments and evaluations. We describe each component in 

the following subsections.  

Data Collection 

We collected three sources of exploits for our research: hacker 

forums, exploit DNMs, and public exploit repositories. The 

three sources contain varying metadata, which can fall into one 

of four categories. First, description metadata provides high-

level information about the exploit, including title, exploit 

source, and date. Second, author metadata provides details 

about a user, including name and reputation score. Third, 

content metadata provides the exploit source code and the post 

and discussion describing the exploit. Finally, operation 

metadata pertains to how the exploit operates, including attack 

type and targeted platform. These categories are detailed in 

Table 4, along with features of each category, their descriptions, 

an example, and whether a feature is present in the three exploit 

collections (✓means the feature is present, X means it is not).  

Exploit DNMs and public exploit repositories contain key 

operation metadata not found in hacker forums, such as attack 

type and platform. Source code and post content can be 

collected from all three platforms and can therefore serve as the 

basis for a DTL model. We collected nine hacker forums, one 

exploit DNM, and six public exploit repositories. Each platform 

was identified based on the input of cybersecurity domain 

experts, the popularity of the platform in the hacker community, 

and link-following techniques (Samtani et al., 2022). We 

summarize each collected platform’s type, name, language, 
dates, posts, source code snippets, and authors in Table 5.  

Our collection included 16 platforms across three languages, 

258,739 source code snippets, and 999,012 unique authors. The 

hacker forum testbed contained 79,437 unlabeled source code 

snippets posted between 2002 and 2020. Hacker-forum source 

code snippets were identified through special code blocks used 

on each forum (Samtani et al., 2017). One significant exploit 

DNM containing 33,766 exploits made by 6,052 authors was 

collected. Six public exploit repositories with 145,536 

professionally vetted exploits were collected. Taken together, 

our research testbeds far exceed the quantity presented in 

prevailing IS cybersecurity analytics literature (Benjamin et al., 

2019; Samtani et al., 2022; Samtani et al., 2017).  

Preprocessing and Dataset Construction 

For exploit DNMs and public exploit repositories, the eight 

most popular exploit labels based on attack type were retained. 

These included web applications (43,475 exploits), denial of 

service (DoS) (12,121 exploits), remote (11,787 exploits), 

local (7,993 exploits), SQL injection (7,187 exploits), cross-

site scripting (XSS) (7,025 exploits), file inclusion (3,412 

exploits), and overflow (3,333 exploits). Source code was 

stripped of non-alphanumeric, lower-cased, lemmatized, and 

tokenized characters. Consistent with best practices in DL-

based text analytics, the input sequence for DL models was 

padded with a special token to ensure proper lengths for all 

inputs (Yenter & Verma, 2017). For ML models, a fixed 

corpus was built from the training data vocabulary. Fixed-

length vectors were created for each input via count 

vectorization and term frequency-inverse document 

frequency weighting. 
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Figure 3. Proposed Research Design 

 

Table 4. Summary of Key Metadata Available in Exploit-Specific Platforms 

Category Feature Description Example Hacker 
Forum 

Exploit 
DNM 

Public 

repository 

Description ID A unique post identifier  EDB-ID: 812 ✓ ✓ ✓ 

Title Exploit header inoERP 4.15 SQL injection ✓ ✓ ✓ 

Exploit 
source 

Where the exploit was 
collected from 

exploitDB X X ✓ 

Date Postdate of exploit  26-Sep-19 ✓ ✓ ✓ 

Author Author The person who posted the 
exploit  

Alexandrovich Lyhin ✓ ✓ ✓ 

Reputation 
score 

Respect for the author in the 
community 

3/5 stars ✓ ✓ X 

Content Post A short paragraph explaining 
what the code does  

inoERP version 4.15 suffers 
from a remote SQL injection 
vulnerability. 

✓ ✓ ✓ 

Discussion Comments that follow the 
posting of the code 

This still worked for me on 
Adobe 13.03 

✓ ✓ X 

Source 
code 

The code of the exploit itself def generatePayload(query): 
b64_query 

✓ ✓ ✓ 

Operation Attack type Categorizes the code based 
on its operations 

Local, remote, SQL injection X ✓ ✓ 

Platform System exploit targets Windows, Apple, Linux X ✓ ✓ 
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Table 5. Summary of Research Testbeds 

Platform type Platform name Language Start date End date # of code 
snippets 

# of unique 
authors 

Hacker 
forums 

0x00sec English 4/13/2017 7/15/2020 397 1,004 

Altenens English 3/22/2010 4/1/2020 1,403 580,220 

AntiChat Russian 4/1/2004 7/15/2020 64,890 84,143 

AntiOnline English 4/10/2002 7/15/2020 2,063 13,017 

Cipher English 5/1/2015 7/15/2020 2,207 3,551 

Go4expert English 12/25/2004 7/15/2020 5,800 15,213 

PersianTools Persian 8/18/2015 4/1/2020 528 19,360 

WWHClub Russian 2/6/2014 7/15/2020 53 133,598 

WildersSecurity English 2/8/2002 7/15/2020 2,096 127,103 

Summary 9 Forums 3 Languages 2/8/2002 – 7/1/2020 79,437 977,209 

Exploit DNM 0day.today English 1/1/1996 4/1/2020 33,766 6,052 

Public exploit 
repository 

Seebug English 12/12/2001 4/1/2020 56,657 291 

ExploitDB English 8/1/1988 4/1/2020 43,120 7,814 

PacketStorm English 8/17/1999 4/1/2020 39,433 7,102 

Metasploit English 10/12/2005 4/1/2020 4,040 1 

Vulnerlab English 7/14/2009 4/1/2020 1,635 525 

Zeroscience English 7/8/2008 4/1/2020 651 18 

Summary: 6 Repositories English 1/1/1988 - 7/1/2020 145,536 15,751 

Total: 16 Sources 3 Languages 1/1/1988 - 7/1/2020 258,739 999,012 

 
Training and evaluating a supervised DTL model requires a 

source and target domain dataset (Zhu et al., 2020). In this study, 

the source domain dataset was created from collected exploits in 

exploit DNMs and public exploit repositories that contained an 

exploit label. These data sources were chosen for the source 

domain, as they were carefully curated and reviewed by 

cybersecurity domain experts and contain rich metadata such as 

descriptive titles and exploit labels (Samtani et al., 2020). The 

target domain consists of hacker-forum exploit source code posts.  

The ground-truth target domain dataset was constructed in 

three steps. First, we carefully defined keywords for each 

exploit label in the source domain to retrieve relevant exploits 

from hacker forums based on each post’s thread title and 
content2. Second, exploit source code snippets of fewer than 

100 characters in length were omitted, as these often contain 

irrelevant information (e.g., IPs for proxies). Third, we 

manually verified the remaining data and discarded irrelevant 

content. The source and target domain datasets are summarized 

by the exploit label in Table 6. 

 
2 We conducted preliminary analysis to assess keyword matching as a viable 

exploit labeling strategy. In this analysis, 100 exploits were separately 

labeled by two experts with over half a decade of experience in CTI, dark 

web analytics, and exploit analysis. Keywords were generated based on 

common tags provided to exploits by cybersecurity domain experts. The 

initial Cohen’s kappa between the ratings was 0.88. The raters met after the 

The source domain dataset contained 96,333 labeled exploits 

in eight exploit label categories. For our target domain dataset, 

the preprocessing steps reduced the 79,437 unlabeled hacker 

forum source code snippets in our research testbed to 4,842 

labeled exploit source code snippets. The dataset reduction is 

attributable to the lack of related metadata in hacker forums 

that allows targeted keyword matching (thus further 

motivating our proposed approach). Keyword matching 

requires a predefined lexicon which is often time-consuming 

to develop and maintain. This time cost is pronounced in 

hacker community research, as terminology is constantly 

evolving and changing (Samtani et al., 2020). Moreover, 

direct keyword matching can often fail due to small content 

mismatches (e.g., term variations or misspellings) (Samtani et 

al., 2022). Even with the significant reduction in dataset size, 

the target domain dataset exceeds the size of the testbeds used 

in related IS studies (Benjamin et al., 2019; Samtani et al., 

2022; Samtani et al., 2017). The most considerable disparity 

in our domains is in the web applications category, which is 

the most common exploit type in the source domain but the 

second least common in the target domain. 

first round of labeling to resolve differences and attained 100% agreement 

on exploit labels. Compared to DTL-EL, the keyword-matching approach 

correctly labeled fewer exploits (37 vs. 56), incorrectly labeled more 

exploits (8 vs. 2), and was unable to label most exploits (55 vs. 42). These 

results indicate that a keyword-based approach alone attains suboptimal 

exploit labeling performance.  
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Table 6. Source and Target Domains in Ground-Truth Exploit Dataset 

Exploit label Source domain count Target domain count 

Web Applications 43,475 57 

DoS 12,121 714 

Remote 11,787 672 

Local 7,993 1,952 

SQL Injection 7,187 702 

XSS 7,025 485 

File Inclusion 3,412 29 

Overflow 3,333 231 

Total 96,333 4,842 

 

Table 7. Source Code Metrics by Domain in the Ground-Truth Dataset 

Domain ASCL HAE MACC 

Source (exploit DNMs and public repository) 24.93*** 371.24*** 6.67*** 

Target (hacker forums) 15.48 215.79 4.14 

Note: ∗ : ā < 0.05 ∗∗ : ā < 0.01 ∗∗∗ : ā < 0.001 

 
Extant literature suggests proving a systematic difference 

between source and target domain datasets to rule out other 

DTL types (e.g., mapping) or learning paradigms (e.g., 

incremental learning) (Zhuang et al., 2020). Consistent with 

best practices in source code analysis literature, we calculated 

the average source code length (ASCL), Halstead average effort 

(HAE), and McCabe average cyclomatic complexity (MACC) 

for each domain (Nuñez-Varela et al., 2017). ASCL measures 

the average lines of code. HAE measures the difficulty of 

developing a piece of source code based on the number of 

unique operands and operators in the source code. MACC 

measures the source code’s average number of control flow 

statements (e.g., if, else, for). These measures were chosen as 

they are seminal and language-agnostic. The Radon Python 

package (Lacchia, 2020) was used to calculate each metric for 

each ground-truth domain. Consistent with source code analysis 

literature, a one-tailed t-test was conducted to measure 

statistically significant differences between domains (Kapllani 

et al., 2020). The results of our analysis appear in Table 7.  

Code in the source domain has a longer ASCL (24.93 vs 15.48 

average lines), a higher HAE (371.24 vs 215.79), and a higher 

MACC (6.67 vs 4.14 average control flow statements) than our 

target domain. These results are significant at ā < 0.001 and 

suggest systematic differences in the coding practices of the 

source and target domain datasets. More specifically, the results 

suggest that our source domain dataset is longer, more difficult 

to code, and more complex on average than our target domain 

dataset. Since our dataset consists of significantly distinct and 

labeled source and target domains, we selected network-based 

DTL for our task of exploit labeling. 

Deep Transfer Learning Exploit Labeler (DTL-
EL) Model 

The proposed DTL-EL is a supervised network-based DTL 

model that trains and transfers the layers of a BiLSTM model 

with pre-initialized hidden and cell states from 

professionally vetted exploits (source domain) to a BiLSTM 

with self-attention designed to label hacker-forum exploit 

source code in a target domain. The proposed DTL-EL 

model is presented in Figure 4.  

The DTL-EL model follows a five-step procedure for 

labeling source code from hacker forums. A sketch of our 

proposed DTL-EL model is presented below:  

Step 1 (exploit metadata training): An exploit title 

BiLSTM model is trained using professionally vetted exploit 

titles (metadata) from exploit DNMs and public exploit 

repositories as input. At ā = 0, The hidden state /�=0 and 

cell state ÿ�=0 memories start at 0 and output a concatenated /�ÿ��ÿ = [/�⃖⃗⃗⃗  /�⃗⃗  ⃗]Āand ÿ�ÿ��ÿ = [ÿ�⃖⃗⃗⃗  ÿ�⃗⃗  ⃗]Ā . 

Step 2 (pre-initialization design): An exploit source code 

BiLSTM model is pre-initialized at ā = 0 with the hidden 

states and long-term memories obtained from the exploit title 

BiLSTM: /�=0 = /�ÿ��ÿ and ÿ�=0 = ÿ�ÿ��ÿ. The hidden 

states and long-term memories are not static (i.e., are 

trainable) and are updated during the model training process.
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Figure 4. Illustration of the Proposed DTL-EL Model 

Step 3 (source domain exploit source code training): The 

pre-initialized exploit source code BiLSTM model is trained 

using professionally vetted exploit DNM and public exploit 

repository exploits to learn a representation for the source 

domain task of labeling hacker forum exploits. Our classifier 

uses the softmax function, �(� )� = ��ÿ∑ ��Ā�Ā=1 , where �  is the 

input vector given from the self-attention mechanism, ÿ is the ÿth class, and K is the number of classes. The output of the 

model is a probability distribution where the input is labeled 

with the class having the highest probability in the 

distribution.  

Step 4 (layer transfer): Consistent with recent IS literature, 

we implemented a multi-layer transfer learning (MLTL) 

design from �ÿ to �Ā (Zhu et al., 2020). MLTL is chosen due 

to the heterogeneity of our layer weights: The pre-

initialization design updates the BiLSTM and self-attention 

layer weights but does not directly update convolutional and 

embedding layers. A new exploit source code BiLSTM model 

in the target domain (�Ā) (i.e., for hacker-forum exploit 

source code) is constructed by reusing ÿ layers from the 

trained source-domain exploit source code BiLSTM model. 

Following best practices in DTL literature, we fine-tune the 

weights for all of the reused layers since �Ā contains labeled 

data (Mou et al., 2016).  

Step 5 (target domain exploit source code training): The 

target domain model is trained using ground-truth hacker 

exploit source code as input to adapt the feature representation 

from �ÿ to �Ā. The training process is the same as Step 3. 

The input word embeddings for each BiLSTM model were 

created with GloVe, a prevailing context-free embedding 

technique that can learn the global statistic information of 

input sequences and is robust to long sequences compared to 

other context-free models (e.g., Word2Vec) (Kowsari et al., 

2019). GloVe was chosen over contextual embedding models 

(e.g., BERT) because the performance of contextual 

embeddings often degrades with noisy text (e.g., text in hacker 

forums) (Srivastava et al., 2020). Consistent with best 

practices in text classification literature, the embedding 

vectors produced by GloVe were inputted into a convolutional 

layer with a kernel size of 3 and a rectified linear unit (ReLU) 

activation function (Yenter & Verma, 2017). The 

convolutional layer can capture and engineer local features by 

focusing on word combinations in the size of the kernel (e.g., 

kernel size of 3 means the convolutional layer learns 

trigrams). The hybrid convolutional-BiLSTM model has 

significantly outperformed BiLSTM models on benchmark 

text classification tasks (e.g., sentiment analysis) by learning 

local and low-dimensional vectors for each input (Yenter & 

Verma, 2017).  
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Since hybrid DL models are prone to overfitting and can 

become unstable without proper tuning and construction (Liu 

& Guo, 2019), we implemented a dropout layer to improve 

generalizability and a batch normalization layer to stabilize 

the model by reducing internal covariate shifts (Ioffe & 

Szegedy, 2015). To help attain consistent performances, we 

combined the dropout and batch normalization layers with a 

nonadaptive optimizer (Chen et al., 2019). We also fine-tuned 

GloVe embeddings to stabilize our input embedding layer. 

Fine-tuned GloVe embeddings (learned across training) have 

significant benefits in text classification tasks when combined 

with convolutional, BiLSTM, and attention layers (Son et al., 

2019). The full details of our parameter settings and 

embeddings are detailed in Appendix A.  

The key novelty in our proposed DTL-EL is the (trainable) 

pre-initialization design. The DL models developed in past 

hacker forum analytics studies did not pre-initialize hidden 

and cell states for their cybersecurity tasks (Ebrahimi et al., 

2022). Pre-initialization can boost classification performance 

and learn representations of the input data missed by non-

initialized models (Peng & Dredze, 2017). Since 

concatenating the title and the exploit source code as input 

may cause the model to overfit due to overly descriptive titles, 

our pre-initialization design followed a multitask learning 

(MTL) approach, where the exploit source code BiLSTM 

learns from the exploit title BiLSTM. MTL approaches have 

been used in IS literature to improve classification 

performance (Lin et al., 2017). However, in contrast to the 

traditional MTL paradigm, we did not leverage the final 

output of the exploit title BiLSTM. We compared a standard 

LSTM cell within the BiLSTM for source code processing 

and our proposed pre-initialized LSTM cell in Figure 5. 

In the pre-initialized LSTM cell (the right side of Figure 5), /� = [/�⃖⃗⃗⃗  /�⃗⃗  ⃗]Ā and ÿ� = [ÿ�⃖⃗⃗⃗  ÿ�⃗⃗  ⃗]Ā represent the concatenated 

forward and backward hidden and cell state vectors of the 

exploit title BiLSTM model in �ÿ. Then, /� and ÿ� were used 

to pre-initialize /�=0 and ÿ�=0 of a new and untrained exploit 

source code BiLSTM. The pre-initialized BiLSTM was then 

trained on the exploit DNM and public exploit repository 

exploit source code and label (e.g., SQL injection).  

In addition to including the pre-initialized BiLSTM into DTL-

EL, we incorporated a self-attention mechanism into each 

BiLSTM in the DTL-EL to process sequences that appear 

within exploit code data while considering the context of the 

code for each timestep. To the best of our knowledge, no IS 

study has implemented a self-attention mechanism that takes 

pre-initialized hidden states as input. However, past IS 

cybersecurity analytics literature has leveraged self-attention 

mechanisms on exploit content (specifically titles) to improve 

model performance (Samtani et al., 2022). A self-attention 

mechanism can help improve exploit labeling performance by 

capturing long-range semantic relationships (e.g., a function 

called lines after it is defined) while simultaneously 

differentiating between labels (Liu, 2020). Therefore, we 

implemented the BiLSTM with self-attention model, where 

all queries and key-value pairs are attained from the output 

and hidden states in the previous BiLSTM layer, respectively 

(Liu & Guo, 2019).  

After source domain training, the embedding, convolutional, 

BiLSTM, and/or attention layers were transferred to the target 

domain model to label each hacker forum exploit. In our 

design, �Ā did not contain a pre-initialization design in the 

BiLSTM layer, as hacker forum thread titles were not 

consistently available or indicative of an exploit’s intended 
purpose (Samtani et al., 2017). However, the weights 

transferred from the BiLSTM and attention layers in �ÿ were 

calculated with our pre-initialization design. The exact layers 

that are transferred were determined through an ablation 

analysis, which is further detailed in the next subsection.  

Experiments and Evaluations 

Consistent with the computational design science paradigm 

(Rai, 2017), we rigorously evaluated our proposed DTL-EL 

artifact with a series of technical benchmark experiments. Each 

experiment’s goal, model types, benchmark models, and 
evaluation metrics appear in Table 8. 

Experiment 1 aimed to identify if our pre-initialization design 

and added self-attention mechanism in the source domain DTL-

EL improved exploit labeling performance over benchmark 

models. Additionally, IS literature (Zhu et al., 2020) and 

fundamental DTL principles (Zhuang et al., 2020) recommend 

evaluating a source domain model to find the best-performing 

model to transfer features to a target domain. Therefore, we 

evaluated whether transferring the knowledge learned from 

exploit DNMs and public exploit repositories (DTL-EL) 

improved exploit labeling when compared to non-DTL 

approaches in Experiment 2. Two sets of benchmark models 

were used in Experiments 1 and 2: (1) classical ML models that 

included naive Bayes, logistic regression, decision tree, SVM, 

extreme gradient boosting (XGBoost), and light gradient 

boosting machine (LightGBM) and (2) DL-based models that 

included RNN, GRU, LSTM, BiLSTM without self-attention, 

a pre-initialized BiLSTM, and BiLSTM with self-attention. 

These models are commonly used in past hacker forum 

analytics literature (Ebrahimi et al., 2018; Goyal et al., 2018; 

Samtani et al., 2017). In Experiment 2, we trained three 

variations of each model: one with the target domain dataset, 

one with the source domain dataset, and a concatenated dataset 

of the source and target domains. We kept the same target 

domain validation dataset for each variation. 
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Figure 5. Standard LSTM Cell for Text Processing (Adapted from Thangaraj & Sivakami, 2018) (left) and 
Our Proposed Pre-Initialized LSTM Cell (right) 

Table 8. Summary of Experiment Designs 

# Experiment Goal Type Benchmarks Metrics References 

1 DTL-EL against 
prevailing 
classification 
methods on the 
source domain 

An evaluation that our 
pre-initialization design 
and self-attention 
mechanism in the source 
domain. 

Classical 
machine 
learning 

Naive Bayes, logistic 
regression, decision tree, 
SVM, XGBoost, LightGBM 

Accuracy, 
precision, 
recall, F1-
score 

Ebrahimi et al., 
2018;  

Goyal et al., 2018;  

Samtani et al., 
2017; 

Tan et al., 2018;  

Zhuang et al., 
2020 

Deep 
learning 

RNN, GRU, LSTM, BiLSTM, 
BiLSTM with self-attention 

2 DTL-EL against 
non-transfer 
learning 
approaches on 
the target domain 

An evaluation to find 
differences between 
DTL, prevailing classical 
machine learning, non-
DTL approaches, and 
dataset variations. 

Classical 
machine 
learning 

Naive Bayes, logistic 
regression, decision tree, 
SVM, XGBoost, LightGBM 

Deep 
learning 

RNN, GRU, LSTM, BiLSTM, 
BiLSTM with self-attention 

3 DTL-EL against 
alternate transfer 
learning 
approaches 

An evaluation to rule out 
superior design within 
DTL literature. 

Transfer 
learning 

Adaptive SVM, parameter 
sharing, adversarial, BERT 

Houlsby et al., 
2019 

Liu et al., 2017; 

Peng & Dredze 
2017; 

Peng et al., 2008 

 

4 DTL-EL against 
transfer learning 
layer selection on 
the target domain 

Ablation analysis to 
identify the value of 
transferring different 
layers for DTL-EL with 
and without pre-
initialization.  

Layer 
selection 

DTL-EL: Embedding, CNN, 
LSTM, attention layers 

Note: BiLSTM = bidirectional long-short term memory; CNN = convolutional neural network; DTL-EL = deep transfer learning exploit labeler; 
GRU = gated recurrent unit; LightGBM = light gradient boosting machine; LSTM = long-short term memory RNN = recurrent neural network; 
SVM = support vector machine; XGBoost = eXtreme gradient boosting. 

Our proposed DTL-EL model incorporates a BiLSTM with 

self-attention mechanism in the target domain. Consequently, 

the weights assigned to the input features from the self-

attention during the labeling process can be visualized to 

explain how the model reached its output prediction. 

Explainability in our task of exploit labeling is defined as how 

well our model identifies tokens that consistently make up 

each exploit label (Wiegreffe & Pinter, 2019). However, there 

is debate on whether self-attention mechanisms truly provide 

explainability in NLP tasks (Jain & Wallace, 2019). 

Therefore, we performed an adversarial test on the DTL-EL 

for both Experiments 1 and 2 to find out whether the self-

attention mechanism found meaningful tokens in our inputs 

for each output. To perform this task, we implemented an 

adversarial experiment where we compared the self-attention 

weights of DTL-EL with weights learned from an adversarial 

model (adversarial DTL-EL). The goal of the adversarial 

model is to obtain similar prediction scores as DTL-EL with a 
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different attention weight distribution. Adversarial attention 

weights were learned using the loss function proposed by 

Wiegreffe and Pinter (2019): 

3(3ÿ,3Ā)(�) = ăýĀ (þ̂ÿ(�), þ̂Ā(�)) 2  �ÿĀ (�ÿ(�)| |�Ā(�)), 
where 3Ā is the DTL-EL base model, 3ÿ is the adversarial 

model, þ̂ (�) are the predictions, and � (�) are the attention 

distributions. A model with good explainability would 

perform better in their specified tasks (e.g., exploit labeling) 

than their adversarial variation. 

Although a network-based DTL approach was ideal for our 

context, we were interested in how seminal DTL approaches 

compared to the proposed DTL-EL. Therefore, in 

Experiments 3 and 4, we explored the boundaries of our 

network-based implementation of DTL. In Experiment 3, we 

evaluated transfer learning with the popular classical ML 

model, SVM (Peng et al., 2008), MTL (Peng & Dredze, 

2017), adversarial learning (Liu et al., 2017), and an adapted 

bidirectional encoder representations from transformers 

(BERT) model (Houlsby et al., 2019). In Experiment 4, we 

performed an ablation analysis on the effect of layer transfer 

from a pre-initialized and non-pre-initialized source domain 

model. We performed this analysis from a single- and multi-

layer transfer perspective.  

Since the source domain dataset is imbalanced (45.13% of the 

dataset belongs to web applications), accuracy alone is not a 

viable performance measure (Ebrahimi et al., 2022). 

Therefore, we included precision, recall, and F1-score 

(harmonic mean of precision and recall) as metrics to evaluate 

each model’s exploit labeling performance in each 
experiment. Each metric was computed using true positives 

(TP), true negatives (TN), false positives (FP), and false 

negatives (FN). The formulas for each metric are as follows: 

�ýýĂÿ�ýþ = ăÿ + ăĂăÿ + ăĂ + �ÿ + �Ă , ÿÿÿýÿĀÿĀÿ = ăÿ ăÿ + �ÿ  
āÿý�ýý = ăÿăÿ + �Ă , �1 2 ĀýĀÿÿ = 2 × ÿÿÿýÿĀÿĀÿ × āÿý�ýýÿÿÿýÿĀÿĀÿ + āÿý�ýý  

Among the four metrics, scholars conducting IS cybersecurity 

research suggest that the F1-score is the best metric for 

comparing models, as it is not sensitive to data imbalance 

(Ebrahimi et al., 2022). The reported metrics for each model 

are a weighted average across each class label based on the 

support (i.e., count) of each class. This weighted average 

formula is: 

þÿÿā/āÿþ �ăÿÿ�āÿ =  ∑ Ă�ā�� Ă , 

where Ă� is the support for a class label, ā� is the calculated 

metric for the class label (e.g., accuracy), and Ă is the total 

number of samples. One-tailed paired t-tests were used to 

evaluate statistically significant differences between the 

proposed approach and benchmarks. Our source and target 

domain datasets were split into a training and testing dataset 

wherein all exploits in the testing set are newer than those in 

the training datasets in both domains. Exploits posted before 

2019 were placed in the training dataset, while exploits posted 

in 2019 or later were placed in the testing dataset. We chose 

this split to provide enough data to our testing set in both 

domains and test whether the DTL-EL model could label new 

and unseen exploits. In the source domain, 80,582 exploits 

were used for training (83.63% of the dataset) and 15,751 

exploits were used for testing (16.35% of the dataset). In the 

target domain, 3,902 exploits were used for training (80.58% 

of the dataset) and 940 exploits were used for testing (19.42% 

of the dataset). We implemented a stratified 10-fold cross-

validation split to conduct model training. 

Results and Discussion 

Experiment 1: DTL-EL against Prevailing 
Classification Methods on the Source Domain 

Experiment 1 compared our proposed DTL-EL (a pre-

initialized BiLSTM with attention) against classical ML and 

DL benchmarks on the source domain dataset. We also 

compared BiLSTM models with and without a self-attention 

mechanism. The accuracy, precision, recall, and F1-score for 

each model are presented in Table 9.  

Our proposed DTL-EL, which combines a BiLSTM, our pre-

initialization design, and a self-attention mechanism, 

outperformed all classical ML and DL models in accuracy 

(90.75%), precision (91.12%), recall (90.83%), and F1-score 

(90.91%). The F1-score for the classical ML methods ranged 

from 57.39% for naive Bayes to 78.82% for LightGBM. 

However, the LightGBM and other ML models were quickly 

overfit on the training data, suggesting that ML models are not 

complex enough to fully capture exploit source code 

representations. All DL methods reached higher F1-scores 

than LightGBM. RNN outperformed LightGBM by 1.30% 

(from 78.82% to 80.12%); however, the F1-score increased 

when the RNN was replaced with a GRU (85.80%), LSTM 

(86.20%), or BiLSTM (86.62%) layer. One possible 

explanation for this improvement is that GRU, LSTM, and 

BiLSTM include a gating mechanism to fix the vanishing 

gradient problem that RNNs suffer from when processing 

long sequences (e.g., exploit code) (Liu & Guo, 2019).
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Table 9. Experiment 1: DTL-EL against Prevailing Classification Methods on the Source Domain 

Model Type Model Initial State Accuracy Precision Recall F1-score 

Classical 
Machine 
Learning 

Naive Bayes N/A 58.12%*** 57.97%*** 56.82%*** 57.39%*** 

Logistic regression N/A 66.01%*** 66.23%*** 70.86%*** 68.12%*** 

Decision tree N/A 70.55%*** 70.05%*** 67.14%*** 68.87%*** 

SVM N/A 78.21%*** 79.86%*** 77.02%*** 78.43%*** 

XGBoost N/A  83.54%*** 78.96%*** 78.29%*** 78.53%*** 

LightGBM N/A  83.83%*** 78.98%*** 78.82%*** 78.82%*** 

Deep 
Learning 

RNN Zero 80.12%*** 82.01%*** 78.31%*** 80.12%*** 

GRU Zero 86.54%** 86.81%** 84.31%** 85.80%** 

LSTM Zero 86.22%*** 86.48%*** 85.93%*** 86.20%*** 

BiLSTM  Zero 87.14%** 86.76%** 86.37%** 86.62%**  

BiLSTM with self-attention Zero 87.95%** 87.29%** 86.74%** 87.23%** 

Pre-Initialized BiLSTM  Pre-Initialized 88.21%** 88.98%* 87.62%** 88.29%**  

Proposed DTL-EL Pre-Initialized 90.75% 91.12% 90.83% 90.91% 

Note: ∗ : ā < 0.05 ∗∗ : ā < 0.01 ∗∗∗ : ā < 0.001. Top scores are highlighted in boldface. 

 

Adding a self-attention mechanism to the BiLSTM marginally 

increased the F1-score (87.23%) over the best-performing DL 

algorithm without an attention mechanism, BiLSTM 

(86.62%). The self-attention mechanism looks at the hidden 

states of each BiLSTM cell, capturing important aspects of the 

input sequence. Incorporating the proposed pre-initialization 

design into the BiLSTM with no self-attention mechanism 

further increased BiLSTM’s performance from 87.41% to 
88.29%. The difference is statistically significant at ā < 0.05. 

These results suggest that using the exploit title to pre-

initialize the BiLSTM’s hidden and cell states can improve 
exploit source code categorization. The DTL-EL attained 

higher F1-scores than the BiLSTM with a self-attention 

mechanism (from 87.23% to 90.91%) and the pre-initialized 

BiLSTM without a self-attention mechanism (from 88.29% to 

90.91%). The differences in both cases were statistically 

significant at ā < 0.01. These results indicate that the self-

attention mechanism can identify important exploit features 

from the pre-initialized hidden states.  

In addition to evaluating the performance of DTL-EL 

against benchmark methods in the source domain, we 

implemented the proposed adversarial test to identify if the 

self-attention mechanism identified (i.e., weighed) tokens 

that contributed to the model’s output (Wiegreffe & Pinter, 

2019). The adversarial DTL-EL model obtained an F1-

score of 76.34%. This score is 14.62% lower than the F1-

score of the DTL-EL model (90.91%). The steep decline in 

the F1-score suggests the adversarial weights lose essential 

information needed to label exploit source code. These 

results also indicate that our self-attention mechanism 

focused on the most valuable tokens for each exploit label 

and attained the best labeling performance.  

Experiment 2: DTL-EL against Non-Transfer 
Learning Approaches on the Target Domain 

Experiment 2 evaluated whether the features extracted from 

the source domain improve the classification performance of 

DTL-EL in the target domain. We evaluated our proposed 

DTL-EL model against state-of-the-art classical ML and DL 

benchmarks on the target domain ground-truth dataset (hacker 

forum exploits). We compared training models using the 

source domain, the target domain, and both training datasets 

concatenated (i.e., combined). All models used the same target 

domain validation dataset. The accuracy, precision, recall, and 

F1-score for each model are summarized in Table 10. The 

performances for each model in each of the eight exploit 

categories are presented in Appendix B.  

For each model, the performance for all tracked metrics was 

the highest on the target domain dataset, followed by source + 

target and source. The performance differences may be due to 

the fundamental coding differences (e.g., ASCL) between 

professionally vetted exploits (source domain) and hacker 

forum exploits (target domain). These coding differences in 

the source domain dataset may have prevented each model 

from generalizing to the target domain evaluation dataset. 

Given these results, we discuss the results of the models 

trained on the target domain only.  

The four classical ML methods attained an F1-score between 

13.45% (naive Bayes) and 46.32% (LightGBM). This F1-score 

range for classical ML models is lower than the range seen in 

Experiment 1 on the source domain because hacker-forum 

exploit source code is often less structured than professionally 

vetted exploits (shown previously in Table 7). Our proposed 
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DTL-EL improved on the best-performing classical ML model 

(LightGBM) in the F1-score by 24.02% (from 46.32% to 

70.34%), and this difference was statistically significant at ā <0.001. These results suggest that the complex DL models can 

capture latent and more representative features of exploit 

content better than the ML models (which were overfit in the 

imbalanced classification setting).  

All DL methods outperformed the classical ML methods in 

the F1-score. RNN achieved the lowest F1-score at 55.12%. 

Similar to the results from Experiment 1, the F1-score 

increased when the RNN layer was replaced with a GRU 

(60.69%), LSTM (60.02%), or BiLSTM (60.71%) layer. 

Adding a self-attention mechanism to the BiLSTM marginally 

increased the F1-score from 60.71% to 62.52%. However, 

DTL-EL outperformed the BiLSTM with attention and no 

DTL layers (from 62.52% to 70.34%, F1-score), and the 

difference was statistically significant at ā < 0.001. These 

results indicate that identifying and transferring layers from a 

metadata-rich hacker exploit source domain to a target domain 

significantly outperforms the single dataset-based model 

approaches prevalent in extant literature (Ebrahimi et al., 

2018; Williams et al., 2018). Transferred pretrained layers 

leading to stronger performances than random initialization in 

similar tasks is consistent with the seminal literature (Yosinski 

et al., 2014). The performance gain may be attributable to the 

source domain model learning generalized information and 

inductive bias (i.e., model assumptions when making a 

prediction) that is being transferred to our DTL-EL model (Li 

et al., 2018).  

Similar to Experiment 1, we performed an adversarial 

experiment for DTL-EL. The adversarial DTL-EL model 

obtained an F1-score of 43.76%426.58% lower than the 

DTL-EL (70.34%). These results suggest that our self-

attention mechanism finds the most valuable tokens for each 

exploit label to improve classification performance. In Figure 

6, we illustrate sample exploits that DTL-EL correctly 

identified but the best competing approach (BiLSTM with 

self-attention) missed. Specifically, we visualized the 

semantic relationships between input tokens for DTL-EL and 

the BiLSTM with self-attention on a remote exploit (operates 

over a network without direct machine access) and local 

exploit (requires machine access). These lines demonstrate a 

simplified control flow of how the code operates. We present 

an excerpt (for space considerations) of each exploit’s code in 
each category at the top of Figure 6. Thicker lines indicate 

stronger (i.e., higher weighted) semantic relationships 

between two tokens in the input exploit source code.  

 
3 CKA measures the similarities between internal feature representations 

of model layers. Comparing similarities across models trained on the same 

datasets can help explain differences in model performance. 

As shown in Figure 6, DTL-EL developed higher-weighted 

(thicker lines) semantic relationships (i.e., dependencies) 

between specific tokens for remote and local exploits. In 

contrast, the BiLSTM with the self-attention model weighted 

most of the relationships between tokens nearly identically. In 

the remote exploit, DTL-EL found long-term dependencies 

between <def= and <end,= which are the beginning and end of 
the exploit function, respectively. Additionally, DTL-EL 

found strong dependencies on the <authenticate= token, which 
is vital for accessing machines in remote exploit attacks. The 

BiLSTM with the self-attention model did not find strong 

dependencies between tokens, leading to it incorrectly 

assigning a label of <denial of service= to the code instead of 

the correct <remote= label. In the local exploit, DTL-EL found 

strong semantic relationships between tokens such as 

<process= and <executable,= <cmd= and <grep,= and <def= and 
<config.= Using the grep Unix command in the command line 
(cmd) is a common local privilege escalation technique. As 

with the previous example, the BiLSTM with the self-

attention model did not find these dependencies; instead, it 

classified the exploit as a <web application= instead of a 
<local= exploit.  

We conducted a centered kernel alignment (CKA) analysis to 

further identify the internal differences between the source 

and target domain model and identify the specific layers that 

were affected as a result of transfer learning (Kornblith et al., 

2019)3. The results of our analysis (presented in Appendix C) 

suggest that the lower-level layers of the DTL-EL model 

(embedding, convolution, pooling, batch norm, and dropout) 

are more similar to higher-level layers (BiLSTM, self-

attention, dropout, dense) than the non-DTL BiLSTM with 

self-attention. These differences in similarities demonstrate 

that the transfer and fine-tuning of source domain layers 

creates a more closely linked internal feature representation 

than a non-DTL approach and therefore potentially improves 

performance and results in differences in attention weighting.  

Experiment 3: DTL-EL against Alternate 
Transfer Learning Approaches 

For Experiment 3, we explored the results of four types of 

transfer learning. We implemented an adaptive SVM that uses 

the hinge loss function and an L2 regularization term to adapt 

a classifier from a source domain for the target domain (Peng 

et al., 2008). We then implemented two types of MTL: hard 

and soft. In hard MTL, we merged both domain inputs after 

the embedding layer and had the same model layers from the 

convolutional layer through the BiLSTM layer with separate 
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output layers. In soft MTL, we implemented two separate 

BiLSTM models with a custom loss function that used the 

sum of categorical cross-entropy, mean-squared error, and 

cosine proximity between the true exploit label and predicted 

exploit label to minimize the distance between weights of the 

two models. Our adversarial DTL used the same design as Liu 

et al. (2017), wherein a shared-private model with domain 

discriminators for each feature was defined and a custom 

adversarial loss function was implemented. Our 

implementation of adapter-based transfer learning followed 

the fine-tuning of the BERT model in Houlsby et al. (2019). 

The accuracy, precision, recall, and F1-score of each transfer 

learning design are presented in Table 11.  

Overall, DTL-EL had the highest performance in accuracy 

(72.11%), precision (70.57%), recall (70.15%), and F1-score 

(70.34%). The difference in performance was statistically 

significant against all benchmark models. MTL approaches 

outperformed classical ML models on all four metrics. Within 

the MTL paradigm, soft parameter sharing (64.02%) 

outperformed hard parameter sharing (61.09%) in terms of the 

F1-score. Hard parameter sharing works well when the source 

and target tasks are similar. However, our source and target 

domains were dissimilar enough to cause decreases in 

performance. Soft parameter sharing can alleviate this issue 

through feature sharing. Adversarial DTL (62.72%) 

outperformed hard parameter sharing, possibly because it 

maximizes the training error with a reversed gradient. 

However, the adversarial approach performed worse than the 

soft parameter sharing model. Finally, BERT attained a higher 

F1-score (65.31%) than MTL approaches, the adversarial 

approach, and classical ML but underperformed compared to 

DTL-EL on the target hacker forum dataset. This suggests that 

pretrained contextual models like BERT may be too general 

for our dataset, and a more targeted approach is needed 

(Srivastava et al., 2020). 

Experiment 4: DTL-EL against Transfer 
Learning Layer Selection on the Target 
Domain 

In Experiment 4, we explored combinations of transferred 

layers from the source domain to the target domain. The 

embedding, convolutional, BiLSTM, and self-attention layers 

had transferable weights and features in the source domain 

DTL-EL model. We first evaluated transferring each layer 

individually. This included trained embeddings from 

Word2Vec, GloVe, and BERT to evaluate the best transfer 

performance of unsupervised embeddings. We then evaluated 

an MLTL approach, which is common in IS literature (Zhu et 

al., 2020) and recommended when performing homogeneous 

(e.g., source and target domain datasets share attributes) 

transfer learning (Yosinski et al., 2014). Since our pre-

initialization design is a core novelty of DTL-EL, we also 

compared layer transfer from the source domain BiLSTM 

with the self-attention model without pre-initialized hidden 

and cell states. Each model was trained on the target domain 

dataset used in Experiment 2. The accuracy, precision, recall, 

and F1-score are summarized in Table 12.  

For each transfer type and layer, the transferred pre-initialized 

layers always performed better than the non-pre-initialized 

layers. Single-layer transfer with pre-initialization attained 

F1-scores between 64.56% to 68.16%, with the GloVe 

embedding layer performing the best. The GloVe embedding 

holds global information about the word vectors of 

professionally vetted exploits that Word2Vec and BERT may 

have missed. These results suggest that our dataset was too 

noisy for the embeddings from large contextual models to 

adequately generalize (Srivastava et al., 2020). Therefore, we 

only considered the GloVe embedding in our MLTL design.  

Within MLTL, we found that adding additional layers to the 

GloVe layer provided higher F1-scores. The GloVe layer with 

a convolutional layer (68.69%) or BiLSTM layer (69.31%) 

attained better scores than all single-layer models and the 

model with a transferred convolutional, BiLSTM, and 

attention layer (68.41%). However, using the GloVe, 

convolutional, BiLSTM, and attention layers from the source 

domain DTL-EL model led to the highest accuracy (72.11%), 

precision (70.57%), recall (70.15%), and F1-score (70.34%). 

The differences in the F1-score over the second-best layer 

transfer technique (GloVe, convolutional, and attention) were 

significant at ā < 0.05.  

Practical Implications and Contributions 
to the IS Knowledge Base 

Practical Implications 

Recent IS cybersecurity studies have identified three 

cybersecurity stakeholders that can benefit from IT artifacts 

equipped with advanced cybersecurity analytics: (1) 

cybersecurity managers, (2) educators, and (3) analysts (Yue 

et al., 2019). Past IS studies have frequently integrated a novel 

algorithm into a system with a user interface to help 

stakeholders access the algorithm and results (Samtani et al., 

2017). Although not the focus of our study, we implemented 

a system with DTL-EL to illustrate an example of such an 

implementation. Details about this system are presented in 

Appendix D. We further elaborate on the practical 

implications of the proposed DTL-EL framework for each 

stakeholder below.  
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Cybersecurity managers: Cybersecurity managers often 

require automatically generated and easily digestible reports 

and visualizations to determine the best course of action for 

their organization’s cyber policy (Samtani et al., 2020). 

Chief information security officers (CISOs) are typically 

responsible for allocating security investments and 

resources. However, CISOs can often be overwhelmed and 

make suboptimal decisions due to the large quantities of 

unstructured information available from external resources 

(Alomar et al., 2020). The results produced by the proposed 

DTL-EL can be carefully synthesized to create dynamic 

visualizations of exploit trends and summary statistics to 

reduce the strain on a CISO. For example, suppose a CISO 

sees a sharp increase in web application exploits posted in 

hacker communities. In that case, they can invest resources 

internally (e.g., assign cyber analysts to focus on web 

application exploits) and externally (purchase software and 

additional protections for their web application servers). 

Furthermore, cybersecurity managers can customize their 

organization’s DTL-EL implementation based on their 

cyber-risk profile. For example, DTL-EL can be tuned to 

minimize cost instead of error using a cyber-risk cost matrix 

(Kim et al., 2012). In Appendix E, we provide an illustration 

of how applying a cost-sensitive classifier and a MetaCost 

wrapper to our proposed DTL-EL model leads to a trade-off 

between total cost, average misclassification cost, F1-score, 

and mislabeled exploits.  

Cyber analysts: Common tasks that many security analysts 

in cybersecurity operations centers (CSOCs) often conduct 

include monitoring, identifying, and ranking threats to their 

cyber infrastructure (Samtani et al., 2020). However, there 

are significant difficulties in collecting and sifting through 

large cyber threat data sources (Agyepong et al., 2020). To 

conduct common tasks, cyber analysts require a framework 

that can facilitate red teaming (Alomar et al., 2020). CSOC 

analysts can benefit from the automatic and incremental 

collection and labeling features provided by the DTL-EL 

framework through custom alerts for new exploits. The new 

exploits and their visualized semantic relations could help 

CSOC analysts gain insight into protections against the code 

via operationalized penetration testing, professional domain 

knowledge, or consultation. 

Cybersecurity educators: Training cyber analysts with data 

mining skills is an essential component of the National 

Institute of Standards and Technology (NIST) Initiative for 

Cybersecurity Education (Shoemaker et al., 2018). However, 

this often means that educators typically require up-to-date 

and labeled datasets to keep their curriculums current. The 

large, international hacker community datasets in this study 

can be leveraged in emerging cybersecurity analytics 

curricula. For example, the labeled exploit datasets from our 

three collected sources and auto-generated summary statistics 

labeled testbed can be incorporated into massively open online 

courses (MOOCs) for dissemination to domestic and 

international institutions. Since the collection is updated 

weekly, cybersecurity educators can provide up-to-date 

content to their students.  

Contributions to the IS Knowledge Base 

IS scholars have stressed the importance of contributing 

prescriptive knowledge to the IS knowledge base with a 

novel IT artifact (Rai, 2017). Our proposed framework is 

situated within the growing body of IS cybersecurity 

analytics research. This stream of literature has primarily 

relied on a single dataset type and rarely included an 

explanation (attention visualization) for end users to interact 

with (limiting the potential practical utility of the analytics). 

Considering these issues, this work aims to contribute a 

novel multimodal cybersecurity analytics approach to the IS 

knowledge base. The large international hacker community 

testbeds and DTL-EL can help future IS scholars and 

cybersecurity stakeholders pursue advanced cybersecurity 

analytics research on exploit labeling.  

Our study also follows the guidelines of Type I ML research 

and contributes a BiLSTM model IT artifact with a carefully 

combined feature-based model pretraining, expert-

knowledge layer transfer, and long sequential text 

classification to the IS knowledge base (Padmanabhan et al., 

2022). While our IT artifact has been built for exploit 

labeling (rich textual source domain, noisy textual target 

domain), DTL-EL could be adapted for other classification 

tasks of interest to the IS discipline. If an IS researcher has a 

source domain with two textual features, they can pre-

initialize with short textual features that are fully populated 

in the dataset and have some explanatory value to warm up 

the model. The source domain model should then be trained 

with long-sequential textual features. The layers of the 

source domain model should then be highly transferrable to 

a similar but noisier domain. This transferability can be 

tested via an ablation analysis and a CKA similarity 

measurement to identify the specific model components that 

DTL improves. Additionally, transfer learning can be 

conducted at the embedding layer. The model training 

results indicated that transferring pretrained embeddings 

(e.g., GloVe) consistently improved performance. While the 

GloVe embedding outperformed other options for our task, 

contextual embeddings (e.g., BERT) could perform better 

than context-free embeddings for a DTL task than with a 

semantically consistent textual dataset (e.g., product 

descriptions). We provided two examples of domains of 

interest to the IS community that can benefit from DTL-EL 

to further demonstrate its applicability and generalizability. 
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Healthcare informatics: Recent IS literature has focused on 

improving the quality of electronic health records (EHRs) 

(Kohli & Tan, 2016). EHRs are unstructured text documents 

detailing a patient’s medical history. DTL-EL could be 

adapted to perform EHR classification tasks (e.g., medical 

diagnosis) by constructing a ground-truth dataset of EHRs and 

related diagnoses, pre-initializing the high-level summaries, 

and training the model with the full EHR (containing long-

term dependencies of the patient’s medical history). This 

model could be leveraged via transfer to a target domain 

without high-level summaries or detailed EHRs.  

Social media analytics: Online social networking platforms 

contain a wealth of text that can be used for important tasks 

such as product review analysis, conversation 

disentanglement, and more (Chen et al., 2012). However, 

discussions on social media often use long sentences with 

uncommon phrases and semantic issues. Scholars can 

consider adapting DTL-EL to process long social media texts. 

For example, annotated Twitter datasets can be used as a 

source domain where the model is pre-initialized with the 

annotations and trained with the tweet content. Additionally, 

embeddings trained on Twitter data (e.g., BERTweet) can be 

applied to the model to boost performance. Then, a target 

domain model can be trained on a similar social network (e.g., 

Reddit) with transferred features from the Twitter dataset to 

improve model performance. 

Conclusion And Future Directions 

The rapid proliferation of complex IS systems has been met 

by new exploits designed to circumvent vulnerabilities and 

cause irreparable cyber breaches. Recently, practitioners and 

academics have placed significant focus on proactively 

identifying and labeling exploits from hacker forums to 

mitigate these cyber threats. However, prevailing 

approaches for labeling hacker exploits do not leverage 

knowledge from exploit DNMs or public exploit repositories 

to enhance hacker exploit labeling performance. 

Consequently, executing critical CTI tasks that rely on labels 

remains a significant challenge.  

In this study, we adopted the computational design science 

paradigm to develop a novel deep transfer learning exploit 

labeler (DTL-EL) framework for labeling exploits from 

hacker forums. DTL-EL incorporates a novel approach for 

pre-initializing the BiLSTM with a self-attention mechanism 

in the source domain based on the rich metadata (e.g., exploit 

titles) found in exploit DNMs and public exploit repositories. 

We demonstrated through a series of benchmark experiments 

that DTL-EL outperformed state-of-the-art non-DTL ML and 

DL techniques in labeling hacker exploit source code in 

hacker forums. The results indicated that the pre-initialized 

BiLSTM with an attention mechanism better identified and 

weighted key features than their non-pre-initialized 

counterparts. DTL-EL offers proactive CTI capabilities at the 

tactical, operational, and strategic levels to help companies 

improve their security posture against cyberattacks.  

We identified three promising directions for future work. 

First, DTL-EL can be adapted and extended for cybersecurity 

tasks such as identifying, collecting, and labeling personally 

identifiable information, malicious pastes, and DNM postings. 

Second, linking our labeled exploits to prevailing 

cybersecurity risk management frameworks (e.g., MITRE 

ATT&CK) can allow for a more fine-grained analysis of 

exploit types, risk assessments, and targeted mitigation 

strategies. These new insights can provide information about 

exploit types outside this project’s scope (e.g., multi-label 

exploits). Third, social network analysis and named entity 

resolution can be performed to link hackers, forums, and 

exploits with specific target users or organizations. Each 

direction can significantly improve proactive CTI collection 

and dissemination efforts and ultimately contribute to a safer 

cyberspace for organizations, individuals, and governments.  
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Appendix A 

Benchmark Model Specifications 

The naive Bayes, logistic regression, decision tree, and support vector machine (SVM) models were implemented using the Scikit-Learn 

library (Pedregosa et al., 2011). The XGBoost model was implemented using the XGBoost Python library (Chen & Guestrin, 2016). The 

LightGBM was implemented using the LightGBM Python library (Ke et al., 2017). Our input was transformed using a term frequency-

inverse document frequency (TF-IDF) calculation that was applied to turn the co-occurrence counts into vector representations. The output 

of the TF-IDF transformation was then inputted into each classification model. The GridSearchCV module in Scikit-Learn was used for each 

model to search for the best parameters for our exploit code labeling task. We summarize the parameters determined by grid-search for each 

of the models below:  

• Naive Bayes: Additive smoothing parameter (alpha in Scikit-Learn) of 1.  

• Logistic Regression: L2 penalty term, the liblinear solver, and a C parameter of 0.01.  

• Decision Tree: had a max depth of 5.  

• SVM: Linear support vector classification (linearSVC in Scikit-Learn). 

• XGBoost: Learning rate of 0.01, max tree depth of 10, minimum child weight of 6, multi-softmax objective function, sub-sample 

of 0.8. 

• LightGBM: Learning rate of 0.01, no max depth, minimum child weight of 0, 1,000 estimators, sub-sample of 0.85. 

Each deep learning model was implemented with the Keras Python library (Chollet, 2015). Model parameters were adjusted based on best 

practices in related literature (Li et al., 2020). When we evaluated the changes in performance by swapping out specific layers, such as gated 

recurrent unit (GRU), long-short term memory (LSTM), or bidirectional LSTM (BiLSTM), we kept the embedding, convolutional, batch 

normalization, and dropout layers constant. The convolutional layer was one-dimensional, had a kernel size of 3, and a rectified linear unit 

(ReLU) activation function. Each dropout layer was set to 0.5. All subsequent benchmark models followed the same structure (unless there 

was an attention layer or pre-initialization design). The self-attention mechanism uses the Keras L2 regularizer set to 1ÿ 2 4 for the kernel, 

and the L1 regularizer set to 1ÿ 2 4 for the bias term. To implement our pre-initialization design, the BiLSTM layer in the exploit title model 

had the return state set to true with no concatenation. We manually concatenated the returned hidden and cell states. The concatenated output 

was fed into the exploit code model at the BiLSTM layer by setting the initial state equal to the concatenated output. The remainder of the 

model was the same as the BiLSTM.  
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Appendix B  

Per Exploit Label Analysis for Experiments 1 and 2 

In the main text, we presented the results of the proposed DTL-EL and all benchmark methods across all eight exploit labels in Experiment 1 and 

Experiment 2. However, we were also interested in identifying how each approach performed at the exploit category level for each domain. In 

Experiment 1, our proposed DTL-EL did not always produce the highest precision or recall score for each exploit label, but always produced the 

highest F1-score. DTL-EL’s precision was lower than the pre-initialized BiLSTM without attention on cross-site scripting (XSS; 93.31% to 

96.14%) and web applications (94.71% to 95.88%). Each exploit’s properties can partially explain these results. XSS attacks and web application 

exploits are targeted (e.g., written for a specific website) and contain named entities that do not frequently appear in other exploits and may 

adversely affect our self-attention mechanism. DTL-EL attained a lower F1-score than the pre-initialized BiLSTM for SQL injections (88.98% 

to 90.04%), remote exploits (83.55% to 80.91%), and file inclusion exploits (88.45% to 86.76%), which are three of the four most infrequent 

exploits in the source domain (possibly causing lower recall scores). Since Experiment 2 examined DTL-EL’s labeling performance (our core 
objective), we provide the precision, recall, and F1-score for each exploit target label in Table B1. Our proposed DTL-EL outperformed all 

models in each exploit label in terms of recall and F1-score in the target domain. DTL-EL performed best in precision for five exploit labels 

but underperformed LSTM in SQL injection (91.27% to 91.45%) and XSS exploits (75.67% to 77.11%). DTL-EL’s precision underperformed 
LightGBM for file inclusion exploits (50.77% to 58.68%). In the target domain, the code for XSS, file inclusion, and SQL injection are often 

much shorter than exploits in the other five labels, possibly explaining DTL-EL’s precision scores.  

Table B1. Per Label Results for Experiment 2: DTL-EL against Non-Transfer Learning Approaches on 
the Target Domain 

Exploit label Model type Model Precision Recall F1-Score 

Web applications Classical 
machine learning 

Naive Bayes 76.92%*** 08.93%*** 16.00%*** 

Logistic regression 65.32%*** 08.04%*** 14.75%*** 

Decision tree 39.18%*** 33.93%*** 36.36%*** 

SVM 54.71%*** 19.64%*** 30.14%*** 

XGBoost 52.83%*** 25.00%*** 33.94%*** 

LightGBM 55.56%*** 26.79%*** 36.14%*** 

Deep learning RNN 56.48%*** 25.11%*** 35.87%*** 

GRU 59.39%*** 31.61%*** 37.93%*** 

LSTM 59.80%*** 40.18%* 44.22%*** 

BiLSTM 60.48%*** 40.46%* 45.47%*** 

BiLSTM with attention 62.31%*** 41.14% 47.67%*** 

Proposed DTL-EL 65.97% 41.43% 49.17% 

Denial of service (DoS) Classical 
machine learning 

Naive Bayes 64.81%*** 43.54%*** 57.54%*** 

Logistic regression 67.14%*** 50.32%*** 60.91%*** 

Decision tree 67.16%*** 56.91%*** 61.61%*** 

SVM 64.46%*** 53.19%*** 62.05%*** 

XGBoost 67.89%*** 56.27%*** 65.33%*** 

LightGBM 75.35%*** 57.80%*** 65.42%*** 

Deep learning RNN 65.12%*** 52.18%*** 59.31%*** 

 
 

GRU 70.03%*** 59.87%*** 64.55%*** 

LSTM 72.48%*** 70.59%*** 71.52%*** 

BiLSTM 74.75%*** 67.46%*** 70.92%*** 

BiLSTM with attention 75.15%*** 69.42%*** 72.67%*** 

Proposed DTL-EL 78.48% 72.42% 75.57%  

Remote Classical 
machine learning 

Naive Bayes 64.29%*** 09.00%*** 15.79%*** 

Logistic regression 68.60%*** 23.60%*** 35.12%*** 

Decision tree 49.88%*** 42.00%*** 45.60%*** 

SVM 62.55%*** 30.40%*** 40.92%*** 

XGBoost 67.14%*** 37.60%*** 48.21%*** 

LightGBM 62.17%*** 37.80%*** 47.01%*** 

Deep learning RNN 61.08%*** 39.15%*** 50.11%*** 

GRU 61.01%*** 41.20%*** 51.66%*** 

LSTM 63.74%*** 45.99%*** 53.16%*** 

BiLSTM 67.13%*** 48.41%*** 56.21%*** 

BiLSTM with attention 68.02%*** 48.88%*** 58.03%*** 

Proposed DTL-EL 75.88%  51.20% 63.41% 
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Local Classical 
machine learning 

Naive Bayes 59.92%*** 37.61%*** 46.21%*** 

Logistic regression 58.77%*** 51.16%*** 54.70%*** 

Decision tree 57.50%*** 53.85%*** 55.61%*** 

SVM 61.72%*** 53.36%*** 57.24%*** 

XGBoost 65.40%*** 56.78%*** 60.78%*** 

LightGBM 64.43%*** 58.61%*** 61.38%*** 

Deep learning RNN 65.87%*** 57.12%*** 61.62%*** 

GRU 68.14%*** 62.97%*** 65.35%*** 

LSTM 70.63%*** 65.20%*** 67.81%*** 

BiLSTM 70.08%*** 66.91%*** 68.46%*** 

BiLSTM with attention 71.13%*** 67.22%*** 69.71%*** 

Proposed DTL-EL 75.73% 71.43%  73.68% 

SQL Injection Classical 
machine learning 

Naive Bayes 77.01%*** 82.45%*** 79.64%*** 

Logistic regression 83.03%*** 81.47%*** 82.24%*** 

Decision tree 80.38%*** 80.20%*** 80.29%*** 

SVM 83.22%*** 81.10%*** 82.14%*** 

XGBoost 84.58%*** 85.15%*** 84.86%*** 

LightGBM 83.60%*** 84.92%*** 84.26%*** 

Deep learning RNN 83.29%*** 83.75%*** 83.54%*** 

GRU 81.47%*** 85.45%*** 83.41%*** 

LSTM 91.45% 77.79%*** 84.07%*** 

BiLSTM 87.81%*** 84.85%*** 86.30%*** 

BiLSTM with attention 88.14%*** 85.06%*** 86.61%*** 

Proposed DTL-EL 91.27% 92.12% 91.84%  

Cross-Site Scripting 
(XSS) 

Classical 
machine learning 

Naive Bayes 60.50%*** 54.05%*** 57.09%*** 

Logistic regression 60.46%*** 62.96%*** 61.68%*** 

Decision tree 58.65%*** 58.19%*** 58.42%*** 

SVM 60.70%*** 65.82%*** 63.16%*** 

XGBoost 68.39%*** 65.34%*** 66.83%*** 

LightGBM 68.07%*** 66.77%*** 67.42%*** 

Deep learning RNN 69.78%*** 67.08%*** 68.29%*** 

GRU 69.08%*** 66.49%*** 67.83%*** 

LSTM 77.11% 65.72%*** 70.96%*** 

BiLSTM 74.40%* 71.02%*** 72.67%*** 

BiLSTM with attention 75.06%* 71.69%*** 73.36%*** 

Proposed DTL-EL 75.67% 74.99% 75.43% 

File Inclusion Classical 
machine learning 

Naive Bayes 55.71%*** 25.00%*** 38.71%*** 

Logistic regression 33.56%*** 12.50%*** 22.22%*** 

Decision tree 44.44%*** 33.33%*** 38.10%*** 

SVM 57.78% 29.17%*** 42.42%*** 

XGBoost 57.02% 29.83%*** 41.81%*** 

LightGBM 58.68% 33.15%*** 47.06%*** 

Deep learning RNN 43.32%*** 35.57%*** 39.88%*** 

GRU 45.10%*** 36.12%*** 41.87%*** 

LSTM 47.50%*** 39.03%*** 42.73%*** 

BiLSTM 43.33%*** 39.17%*** 41.11%*** 

BiLSTM with attention 45.46%*** 41.08%*** 43.24%*** 

Proposed DTL-EL 50.77% 46.67% 48.72% 

Overflow Classical 
machine learning 

Naive Bayes 69.15%*** 25.30%*** 38.35%*** 

Logistic regression 65.00%*** 49.24%*** 56.03%*** 

Decision tree 61.07%*** 53.48%*** 57.03%*** 

SVM 63.19%*** 54.09%*** 58.29%*** 

XGBoost 69.38%*** 59.39%*** 64.00%*** 

LightGBM 69.23%*** 61.36%*** 65.06%*** 

Deep learning RNN 71.45%*** 61.92%*** 66.21%*** 

GRU 71.62%*** 61.85%*** 66.30%*** 

LSTM 69.02%*** 63.79%*** 66.30%*** 

BiLSTM 72.76%*** 68.79%*** 70.78%*** 

BiLSTM with attention 73.04%*** 69.46%*** 71.87%*** 

Proposed DTL-EL 75.76% 72.94% 74.52% 

Note: ∗ ā < 0.05, ∗∗ ā < 0.01, ∗∗∗ ā < 0.001. Top scores appear in boldface.   
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Appendix C  

Model Similarity Analysis 

As indicated in the main text, we implemented centered kernel alignment (CKA) to visualize the internal representations of our target domain 

model (BiLSTM with self-attention) and DTL-EL to identify if the transfer learning process transfers layers that improve exploit labeling. 

CKA outputs a heatmap of similarities (from 0-1, 1 being highest) between layers (Kornblith et al., 2019). If the internal representations of 

the two models are similar, it may demonstrate that transfer learning is not providing significant model benefits, i.e., not transferring layers 

that improve performance. We present the CKA analysis results in Figure C1.  

The results of our CKA analysis show that the lower-level layers of the DTL-EL model (0: embedding, 1: convolution, 2: pooling, 3: batch 

norm, 4: dropout) are more similar to higher-level layers (5: BiLSTM, 6: self-attention, 7: dropout, 8: dense) than the non-DTL model. 

Additionally, the higher-level layers are more similar to each other in the DTL model compared to the non-DTL model. Conversely, the DTL 

lower-level layers are less similar than the lower-level layers in the non-DTL model. These internal differences suggest that the transferred 

layers are learning lower-level feature representations of the exploits, potentially explaining the difference in performance over the randomly 

initialized weights of the target domain model. The differences also may suggest that the model is learning longer-range dependencies 

(BiLSTM and attention layers) at the cost of local-range dependencies (lower-level layers).  

Figure C1. Results of DTL-EL's CKA (left) and Target Domain Model’s CKA (right) 



Ampel et al. / Creating Proactive Cyber Threat Intelligence with Hacker Exploit Labels 

164 MIS Quarterly Vol. 48 No. 1 / March 2024 

 

Appendix D  

Implementation of DTL-EL Into a Web-Based User Interface  

We applied DTL-EL to the unlabeled source code from our hacker forum testbed (74,605 source code snippets). DTL-EL only applied a label to the 

source code if the softmax function probability was greater than 80% for a given label4. Overall, the DTL-EL labeling process yielded 27,143 exploits 

from eight international hacker forums from 2002 to 2020. DoS (6,726 exploits), SQL injection (6,685 exploits), and local (4,098 exploits) were the 

most common exploits among all forums, while file inclusion (118 exploits) was the least common. Past IS literature has indicated that a system with 

a user interface (UI) can help CTI stakeholders effectively interact with a novel algorithm and its results (Samtani et al. 2017). However, most past IS 

cybersecurity analytics studies have not incorporated their proposed IT artifact into a system or UI. Our collection of labeled hacker forum exploits was 

incorporated into a UI to highlight the value of our artifact for organizational use. Our UI aims to facilitate the needs of cybersecurity stakeholders based 

on a targeted analysis of relevant literature. Figure D1 illustrates how our proposed DTL-EL framework is integrated into a UI for organizational use. 

The UI offers several functions that help address relevant cybersecurity stakeholders' requirements when interacting with systems with advanced 

cybersecurity analytics. First, cyber analysts using the UI can explore our content, input a single exploit, or upload a comma separated value (CSV) file 

or JavaScript object notation (JSON) object with multiple exploits to return a list of exploit labels (top left of Figure D1) using the proposed DTL-EL. 

Second, cybersecurity managers can explore automated trends in exploits from our crawlers or their CSV at a total or per-label level (bottom left of 

Figure D1). The dates and exploit labels can be adjusted to generate custom visualizations for targeted analysis. For example, we see in Figure D1 that 

local exploits saw a steep increase in posted source code from October 2019 to February 2020. Third, cyber analysts and cybersecurity educators can 

closely look at the labeled exploits once a particular trend has been identified for more in-depth analysis (top middle of Figure D1). These tables can be 

filtered based on year, hacker name, exploit type, or forum to facilitate strategic CTI. Additionally, cyber analysts and educators can download filtered 

content of interest. Finally, cyber analysts can click on any exploit to see visualized semantic dependencies of the exploit. These dependencies show 

how the source code operates from a token importance standpoint. After identifying recent local exploits, a cyber analyst could compare the semantic 

dependencies between many local exploits and further determine specific trends within the coding practices of each exploit for tactical CTI. In the 

example, a cyber analyst using the UI could identify the increase in local attacks and investigate the most recent source code further. This will illuminate 

characteristics of how the code operates that could allow an analyst to operationalize the exploits and create countermeasures against them.  

Figure D1. Screenshots Showing DTL-EL Integration into a UI. Users Can: (1) Upload or Crawl New 
Code, (2) Investigate Exploit Label Trends, (3) Study Recent or Relevant Exploits, and (4) Generate 
Semantic Dependencies for Any Exploit 

 
4 Within our gold-standard dataset, exploits labeled at 80% softmax achieved 94.87% accuracy and a 93.26% F1-score. Raising softmax higher than 80% did 

not lead to a statistically significant increase in accuracy/F1-score. 
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Appendix E  

Cost-Sensitive Analysis for Exploit Labeling 

Error minimization is commonly the goal of classification models. However, organizations will have different goals based on their internal 
cyber-risk tolerance, cyberinfrastructure, threat surfaces, etc. Therefore, DTL-EL should offer some flexibility to meet the goals of different 
organizations. Cost-sensitive analysis provides organizations with the flexibility to minimize cost instead of error by prioritizing the high-
cost exploits specific to the organization (Kim et al., 2012). Therefore, we provide an example of cost-sensitive analysis using estimated costs 
of successful cyberattacks from reputable sources. In our cost matrix, a misclassified denial-of-service is $1,100,000,5 local is $600,000,2 
remote is $2,500,000,6 SQL injection is $196,000,7 and web applications is $1,400,000.3 Overflow is $100 as they often do not incur costs. 
Information on file inclusion and XSS exploits could not be found, so they were set to the closest exploit (local, web applications, 
respectively). Consistent with best practices in past literature, we compared error minimization to a cost-sensitive classifier and a MetaCost 
wrapper (Kim et al., 2012). A cost-sensitive classifier estimates class probabilities and uses them to minimize the expected cost at each 
prediction. MetaCost relabels training instances to estimate more accurate probabilities while predicting an exploits label. The results of each 
strategy by total cost (sum of mislabeled exploits of each type multiplied by the cost of that type), average misclassification cost (AMC, total 
cost divided by predictions), F1-score, and count of mislabeled exploits appear in Table E1.  

The error minimization strategy had the highest F1-score (70.34%) compared to the cost-sensitive (66.14%) and MetaCost (69.16%) 
strategies. However, error minimization also led to the highest total cost ($276.2 million) and AMC ($57,042.54) among the three models. 
The cost-sensitive classifier strategy led to the lowest total cost ($245.8 Million) and AMC ($50,764.15) despite achieving the lowest F1-
score (66.14%) and the highest number of mislabeled exploits (329). This difference suggests that the cost-sensitive strategy classifies high-
cost exploits (e.g., remote) at the expense of misclassifying many lower-cost exploits (e.g., SQL injection). A cost-sensitive classifier 
therefore may be ideal for organizations prioritizing AMC and not mislabeled exploits. MetaCost achieved a close F1-score with error 
minimization (69.16%) while reducing total cost ($263.6 million) and AMC ($54,440.31). Organizations may choose MetaCost when the 
underlying predictive model produces inaccurate probabilities. 

Note: ∗ ā < 0.05, ∗∗ ā < 0.01, ∗∗∗ ā < 0.001 

 
5 https://www.accenture.com/us-en/insights/security/invest-cyber-resilience 
6 https://purplesec.us/resources/cyber-security-statistics/ 
7 https://www.helpnetsecurity.com/2014/03/28/analysis-of-three-billion-attacks-reveals-sql-injections-cost-196000 

Table E1. Cost Comparison Between DTL-EL Model Strategies 

Model strategy Total cost AMC F1-score Mislabeled exploits 

Error minimization (DTL-EL) $276.2 Million $57,042.54 70.34% 262 

Cost-sensitive classifier $245.8 Million $50,764.15 66.14%*** 329 

MetaCost $263.6 Million $54,440.31 69.16% 276 

https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
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