THE ASTROPHYSICAL JOURNAL, 974:285 (12pp), 2024 October 20
© 2024. The Author(s). Published by the American Astronomical Society.

OPEN ACCESS

https: //doi.org/10.3847/1538-4357 /ad737¢

CrossMark

Toward Accelerated Nuclear-physics Parameter Estimation from Binary Neutron Star

Mergers: Emulators for the Tolman—Oppenheimer-Volkoff Equations

Brendan T. Reed' , Rahul Somasundaram'? , Soumi De' , Cassandra L. Armstrong3 , Pablo Giuliani® s

1 Collin Capanoq’5 Duncan A. Brown”®, and Ingo Tews'
Theorencal Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Depanment of Physics, Syracuse University, Syracuse, NY 13244, USA
Intelhgence and Space Research Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Famhty for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824, USA
5 Physics Department, University of Massachusetts Dartmouth, North Dartmouth, MA 02747, USA
Received 2024 June 11; revised 2024 August 5; accepted 2024 August 22; published 2024 October 17

Abstract

Gravitational-wave observations of binary neutron-star (BNS) mergers have the potential to revolutionize our
understanding of the nuclear equation of state (EOS) and the fundamental interactions that determine its properties.
However, Bayesian parameter estimation frameworks do not typically sample over microscopic nuclear-physics
parameters that determine the EOS. One of the major hurdles in doing so is the computational cost involved in
solving the neutron-star structure equations, known as the Tolman—Oppenheimer—Volkoff (TOV) equations. In this
paper, we explore approaches to emulating solutions for the TOV equations: multilayer perceptrons (MLPs),
Gaussian processes, and a data-driven variant of the reduced basis method (RBM). We implement these emulators
for three different parameterizations of the nuclear EOS, each with a different degree of complexity represented by
the number of model parameters. We find that our MLP-based emulators are generally more accurate than the other
two algorithms, whereas the RBM results in the largest speedup with respect to the full high-fidelity TOV solver.
We employ these emulators for a simple parameter inference using a potentially loud BNS observation and show
that the posteriors predicted by our emulators are in excellent agreement with those obtained from the full TOV
solver.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Nuclear astrophysics (1129); Nuclear physics

(2077); Gravitational waves (678); Computational methods (1965)

1. Introduction

Multimessenger observations of neutron stars (NSs), such as
the detection of the binary neutron-star (BNS) merger
GWI170817 (B. P. Abbott et al. 2017a, 2017b), NS mass
observations (P. Demorest et al. 2010; J. Antoniadis et al. 2013;
H. T. Cromartie et al. 2019; E. Fonseca et al. 2021), and
observations of NSs by NASA’s Neutron Star Interior
Composition Explorer (M. C. Miller et al. 2019, 2021;
T. E. Riley et al. 2019, 2021), have given us fascinating new
insights into the equation of state (EOS) of the densest matter in
the Universe (E. Annala et al. 2018; T. Malik et al. 2018; I. Tews
et al. 2018b; G. Raaijmakers et al. 2019; C. D. Capano et al.
2020; T. Dietrich et al. 2020; R. Essick et al. 2020; H. Giiven
et al. 2020; P. Landry et al. 2020; M. Al-Mamun et al. 2021;
S. Huth et al. 2022; M. Breschi et al. 2024; H. Koehn et al.
2024). Nevertheless, several questions regarding the properties
of dense matter (J. M. Lattimer & M. Prakash 2004), such as the
possibility of a QCD phase transition in the inner core of NSs
(E. Annala et al. 2020; R. Somasundaram et al. 2023), remain
unanswered. The advent of the next-generation of gravitational-
wave (GW) detectors, such as Cosmic Explorer (D. Reitze et al.
2019; M. Evans et al. 2021) and the Einstein Telescope
(M. Punturo et al. 2010; M. Branchesi et al. 2023), is expected to
dramatically improve our constraints on the EOS, thereby
providing us with key information to answer these open
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questions in nuclear astrophysics (D. Finstad et al. 2023;
H. Rose et al. 2023; A. Bandopadhyay et al. 2024).

Prospects for measuring the EOS with GWs have been studied
in the literature, in the context of both present (B. P. Abbott et al.
2018; E. Annala et al. 2018; S. De et al. 2018; T. Malik et al.
2018; C. D. Capano et al. 2020; R. Essick et al. 2020; N. Kunert
et al. 2022) and next-generation (P. Landry & K. Chakravarti
2022; F. Iacovelli et al. 2023; H. Rose et al. 2023; A. Bandop-
adhyay et al. 2024; A. Prakash et al. 2024; K. Walker et al.
2024) GW detectors. However, these studies typically do not
sample over microphysical nuclear-physics parameters directly,
i.e., the Tolman—Oppenheimer—Volkoff (TOV) equations are not
evaluated for each sample in the Bayesian inference framework
but typically beforehand. Then, one samples over these
pregenerated EOS sets. However, an “on-the-fly” generation of
EOS from its microphysical parameters is required to compre-
hensively probe the underlying nuclear physics from astro-
physical observations and directly constrain the fundamental
interactions among the degrees of freedom. Instead, hierarchical
inference (F. Hernandez Vivanco et al. 2019; P. Landry &
R. Essick 2019; R. Essick et al. 2020; K. Walker et al. 2024) is
often used to first obtain the marginalized likelihood on the NS
component masses and tidal deformabilities, which is then
integrated over different EOS curves to ultimately yield constraints
on the EOS. Alternatively, some studies (C. D. Capano et al.
2020; T. Dietrich et al. 2020; P. T. H. Pang et al. 2023) pretabulate
large numbers of EOSs and sample over an EOS index during the
parameter inference run. Both approaches have shortcomings. The
former does not incorporate density-dependent theoretical uncer-
tainties in the EOS models when the parameter inference is
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performed. The latter approach does not suffer from this
drawback but might be unsatisfactory for calculating posterior
distributions over EOS parameters. This is because this approach
maps one sampling parameter—the EOS index—to several
nuclear-physics parameters.

To overcome these problems, it is important to sample over
the nuclear-physics parameters simultaneously with the other
binary parameters. This implies an “on-the-fly” generation
of the EOS and its resulting global NS properties. Hence,
every likelihood evaluation in such a Bayesian inference run
requires solving the TOV equations (J. R. Oppenheimer &
G. M. Volkoff 1939). The TOV equations are the NS structure
equations that relate the EOS—and hence, the nuclear-physics
parameters—to astrophysical observables such as NS radii
R and tidal deformabilities A (E. E. Flanagan & T. Hinderer
2008; T. Hinderer 2008; T. Hinderer et al. 2010; P. Landry &
E. Poisson 2014) as a function of mass M. A typical parameter
inference run for a BNS event requires ~10’ likelihood
evaluations (J. Veitch et al. 2015). Therefore, given that a
single solution to the TOV equations takes up to a few seconds
(when also solving for A), employing the full high-fidelity
TOV solver is prohibitively expensive. Furthermore, this
problem will be exacerbated in the era of third-generation
GW detectors, which are expected to detect O(1000) high-
precision BNS events per year (M. Evans et al. 2021). This large
number of observations will provide unparalleled information to
constrain nuclear-physics parameters if these can be sampled
over directly. Finally, rapid parameter estimation from GW
signals will aid efficient electromagnetic follow-up (B. Margalit
& B. D. Metzger 2019).

So far, EOS parameters were directly sampled over only for
a single event, GW170817 (B. P. Abbott et al. 2018), using a
relatively simple spectral decomposition model for the EOS
(L. Lindblom 2010). Due to the abovementioned computational
expense, sampling over EOS parameters “on-the-fly” has not
been attempted for more complicated EOS models whose
parameters are motivated by nuclear theory and experiment.
Here, we present a novel approach to this problem by
employing emulators (P. Canizares et al. 2015; R. Smith
et al. 2016; E. Bonilla et al. 2022), i.e., algorithms that mimic
solutions to the TOV equations but at a fraction of their
computational cost. Recently, such emulators have been
applied to NS structure equations (M.-Z. Han et al. 2021;
S. Soma et al. 2022; 1. Liodis et al. 2024; J. McGinn et al. 2024;
P. Tiwari & A. Pai 2024; G. Ventagli & 1. D. Saltas 2024).
However, these works have been limited to emulating NS radii
and have focused on emulators based on neural networks.
Instead, we develop three different approaches to TOV
emulators: a neural network—based emulation using multilayer
perceptrons (MLPs), Gaussian processes (GPs), and a data-
driven variant of the reduced basis method (RBM). While our
algorithms can be used to emulate any global NS property, in
this paper, we focus on emulating the NS tidal deformability A
(T. Hinderer et al. 2010) because it is directly relevant for GW
observations of binary NS mergers.

The paper is organized as follows. In Section 2, we detail the
construction of our three parametric EOS models and of both
training and validation sets for the emulators. In Section 3, we
lay out our implementation of the three emulators: MLP
(Section 3.1), GP (Section 3.2), and RBM (Section 3.3). We
also evaluate the performance of our emulators by validating
them against a large set of pregenerated EOS samples.
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Section 4 compares the three emulators, considering both their
accuracy and speed. Finally, in Section 5, we study the ability
of our emulators to obtain accurate probability density
functions (PDFs) from a typical BNS event that could be
detected by the next-generation of GW detectors. Our
conclusions are presented in Section 6.

2. EOS Models and Data Generation

Models for EOS that are employed in GW inference analyses
need to be versatile enough to provide sufficiently broad priors
on astrophysical NS observables and sufficiently flexible so
that they can be connected in a straightforward manner to
experimental and theoretical nuclear-physics inputs. Common
examples of such EOS models are the piecewise polytrope
model (J. S. Read et al. 2009; K. Hebeler et al. 2013), the
spectral decomposition approach (L. Lindblom 2010), GP
(R. Essick et al. 2020; P. Landry et al. 2020), and the speed-of-
sound model (I. Tews et al. 2018a; S. K. Greif et al. 2019).
Here, we employ the EOS modeling approach recently used in
H. Koehn et al. (2024) and O. Komoltsev et al. (2023).

In this approach, the outer core of NSs is assumed to be
composed of only nucleonic degrees of freedom. The EOS in
this part is described by the metamodel developed in J. Marg-
ueron et al. (2018). The metamodel is an extremely flexible
density-functional approach whose model parameters are the
so-called nuclear empirical parameters (NEPs; J. Margueron
et al. 2018) that govern the behavior of the EOS of pure
neutron matter and symmetric nuclear matter. The NEPs are
given by taking the usual expansion of the nuclear matter EOS
in powers of the proton—neutron asymmetry,

E(n, a) = &n) + o2S,(n) + O(d?), (1

where E(n, «) is the total energy per particle, £(n) is the energy
of symmetric matter, S,(n) is the quadratic approximation to the
symmetry energy (R. Somasundaram et al. 2021), and

= % is the proton—neutron asymmetry parameter.
Furthermore, the symmetry energy S(n) is defined as the
difference between the energy of pure neutron matter and
symmetric nuclear matter, i.e., S(n) = E(n, o = 1) — &E(n).
The energy of symmetric matter and the symmetry energy are
then expanded around nuclear saturation density 7,

1 1 1
E(n) = Eg + El(sanx2 + ngatx3 + aZsale‘ + .. )

1 1
S(n) = Esym + Lsymx + El(symx2 + ngymx3

1
+ S Lot 3)

n — Nsat

where x = . It has been shown that the metamodel is

IMNgag

capable of reproducing the EOS of a large number of nucleonic
models via a suitable adjustment of the NEPs. Constraints from
microscopic ab initio nuclear theory, e.g., from chiral effective
field theory (K. Hebeler et al. 2013; I. Tews et al. 2018a;
C. Drischler et al. 2019; J. Keller et al. 2023) and nuclear
experiment, such as PREX (B. T. Reed et al. 2021), can be
incorporated in the form of suitable priors on the NEPs
(H. Koehn et al. 2024).

The description in terms of nucleons might break down at
higher densities. Hence, as in H. Koehn et al. (2024), we
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employ the speed-of-sound model of I. Tews et al. (2018a) to
describe the EOS above a breakdown density of the metamodel
that we chose to be 2ng,. For the speed-of-sound model, the
parameters are the squared sound speeds at discrete density
points. Unlike in H. Koehn et al. (2024), we fix these density
points at 3ng,, 4ng, and so on. The values of the squared
sound speed at these density points are bounded by 10~ from
below to avoid the need for special treatments when solving for
the tidal deformabilities (S. Postnikov et al. 2010) and by 1
from above due to causality. The resulting density-dependent
speed of sound can be integrated to obtain the pressure, energy
density, and chemical potential. This can, in turn, be used as
input for the TOV equations, which yields the NS mass, radius,
and tidal deformability; see I. Tews et al. (2018a) and
R. Somasundaram et al. (2023) for more details.

We employ our full EOS model in various degrees of
complexity to train our emulators. For our one-parameter
model, we fix all the NEPs; E, = —16 MeV, ng =0.16 fm ™,
Ko =230MeV, Qg = Zso = 0MeV, Egp =32MeV, Lym =
50MeV, and Kgm = Qsym = Zsym = 0 MeV. Hence, the EOS
up to 2ng, remains unchanged. Then, we assume the speed of
sound above 3ng, to be constant and use its value as the one
free parameter in the model; see left panel of Figure 1. For our
five-parameter model, we vary the NEPs Lgyy,, Kiym and Ky,
with the other NEPs fixed at the same values as for the one-
parameter model. Additionally, the speed of sound at 3n, and
Sng, are free parameters. In this model, the speed of sound is
chosen to be constant between 3n,,, and 4ng,, and above S5n,.
Finally, we construct a ten-parameter model, which has the
same level of flexibility for the EOS below 2ny,, but varies the
seven sound speeds at 3ng,, 41y, ..., For all models, all
grid points are connected using linear segments. The left panel
of Figure 1 illustrates the construction of our EOS models by
showing the sound-speed profile for two samples per model.

To train our emulators, we generate a set of 100,000 samples
for each EOS model and a separate set of 100,000 samples per
model for validation. The EOS samples are obtained by varying
the model parameters in a uniform range. All the (squared)
sound-speed parameters are sampled uniformly between 0 and
1 in units of the speed of light, whereas we use the following
ranges for the NEPs: Ly, =[20, 150] MeV, Ky =[-300,
100] MeV, and K, = [200, 300] MeV. For each EOS sample,
we solve the TOV equations to obtain masses, radii, and tidal
deformabilities. To solve the set of TOV (and deformability)
differential equations, we use the LSODA adaptive integration
algorithm (L. Petzold 1983) in enthalpy space as in L. Lindblom
(1992). The set of equations to solve for the deformability
similarly uses the enthalpy, taking the form from L. Lindblom
& N. M. Indik (2014), which is adapted from T. Hinderer
(2008). On an average, solving the TOV for the full mass—
radius curve that includes approximately 100 NSs takes around
1 s. Including the tidal deformability increases this time to
~3.5s, but it can be as large as ~5s for very soft EOSs.
We show 100 resulting mass—radius curves for each EOS
model in the right panel of Figure 1. Finally, for both the
training and validation sets, we discard the samples that do
not reach 2 M., (P. Demorest et al. 2010; J. Antoniadis et al.
2013; H. T. Cromartie et al. 2019; E. Fonseca et al. 2021),
approximately 30% of each set.
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3. Emulation Strategy

Since our goal is to perform Bayesian parameter inference
for BNS mergers by explicitly sampling over EOS model
parameters, we train our emulators to take as input the EOS
model parameters and output the tidal deformabilities A for a
sequence of NS masses. Here, we focus on emulating A, but
our framework can be easily extended to other astrophysical
observables such as the NS radius. In the following, we
separately discuss the construction of our three different
emulators and their performance as characterized by their
validation accuracies. In Section 4, we will compare the
emulators in detail regarding their accuracy and speed.

3.1. Multilayer Perceptron

The MLP is considered to be the simplest feed-forward
neural network, consisting of fully connected neurons
(M. A. Nielsen 2015). The number of neurons in the input
layer is determined by the number of input EOS model
parameters, i.e., either 1, 5, or 10, depending on the EOS
model. For the one-parameter model, our MLP consists of 15
neurons in the output layer, with the activation of each neuron
in the output layer corresponding to log,,(A) of an NS with a
certain mass. Therefore, the MLP effectively predicts the A—M
curve on a fixed mass grid, which we take to be uniformly
spaced with 15 points. For the one-parameter model, the upper
bound of the grid is 2 M, whereas the lower bound is set to be
1.4 M., This is because, below 1.4 M, there is no significant
variation in A with respect to the EOS parameters since the
EOS below 2ng, remains unchanged; see Figure 1. Similarly,
for the five- and ten-parameter models, the output mass grid
consists of 30 points uniformly spaced between 1 M. and
2 M.. We have chosen this mass range because we do not
expect to detect gravitational waves from a BNS merger event
outside this range.

For the one-parameter model, we use two hidden layers,
each with 64 neurons. For the five- and ten-parameter models,
we use five hidden layers, each containing 64 neurons. These
hyperparameters of the MLP architecture were chosen in order
to optimize the performance of the MLP. We found that the
MLP’s performance accuracy increases as a function of the
number of hidden layers but saturates roughly at the chosen
values. On the other hand, the number of neurons per hidden
layer did not significantly impact the behavior of the MLP, and
the value 64 was found to be a good choice. The activation
function of all hidden neurons in our MLPs is taken to be the
rectified linear unit, whereas we use the identity function for the
output neurons.

To increase the accuracy of the MLP emulator, we employ
the method of bagging (L. Breiman 1996). For each EOS
model, we construct not one, but 100 MLPs, all with the same
architecture and hyperparameters discussed above. The training
of the MLPs is performed using a stochastic gradient-based
optimizer, ADAM (D. P. Kingma & J. Ba 2014). Therefore, the
training is a nondeterministic process that results in a variance
among the predictions of the MLPs. The final prediction of the
full MLP ensemble is obtained by averaging over all individual
MLPs. In the following, we will refer to this emulation strategy
simply as MLP. Bagging 100 individual MLPs decreases the
speed of the full emulator by a factor 100. To investigate the
trade-off between speed and accuracy, we also investigate the
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Figure 1. (Left): the density-dependent sound-speed profiles for two samples for each of our three EOS models in units of ¢2, where c is the speed of light. (Right): the

resulting mass-radius curves for 100 samples of each EOS model.

predictions of a single MLP in this ensemble, which we take to
be the one with the lowest residual loss function. This emulator
is referred to in the following as MLP*. All MLPs in the
ensemble are trained using all available training samples for all
EOS models. The MLPs are trained until the loss function
remains constant to within 10~'% for 10 consecutive epochs.
This typically results in a total of ~100 epochs for each MLP.

Figure 2 shows the validation performance of our MLP
emulator. In this section, we show results only for the five-
parameter EOS model, but results are qualitatively similar for
the other sets. We find that for the vast majority of validation
samples, the percentage uncertainty evaluated at 1.4 M., Ay 4,
is less than 1%. The average of A4 over all EOSs is only
0.04%, indicating that the MLP is a faithful emulator of the full

TOV solver. The most significant outlier EOS has an
uncertainty A 4= 15%, but such samples are rare, with only
~10 out of /70,000 samples exhibiting such large uncertain-
ties. From the cross-validation plot we see that samples with
larger A 4 are softer EOSs. This is because both the training
and validation data are generated by uniform sampling over the
EOS model parameters. Given the nonlinear dependence of the
tidal deformability on the EOS parameters, this results in a
larger number of stiff EOSs, which consequently dominate the
training of the MLP.

3.2. Gaussian Processes

GP regression (C. E. Rasmussen & C. K. I. Williams 2005;
J. Wang 2023) offers a nonparametric, probabilistic alternative
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Figure 2. Validation results for the MLP for the five-parameter EOS model. We show the predicted tidal deformability A for each sample in the validation set as a
function of the NS mass. The color scheme corresponds to the validation percentage uncertainty of a given sample at 1.4 M., A, 4. The inset depicts the cross-

validation result, with the predicted tidal deformability at 1.4 M, A 4, plotted against the corresponding true value for every validation sample.

to the MLP. Similar to the MLP, our GP emulator is designed
to accept a set of EOS parameters as input and predict log, ,(A)
for a sequence of NSs on a uniform mass grid. As with the the
MLP, the mass grid consists of 15 points uniformly spaced
between 1.4 M. and 2 M. for the one-parameter model,
whereas we use 30 points between 1 M, and 2 M., for the five-
and ten-parameter models.

The prior GP is specified by the choice of the kernel, which
we take to be the Matérn kernel (C. E. Rasmussen &
C. K. I. Williams 2005). The Matérn kernel is a generalization
of the traditional radial basis function kernel, and we found the
former to generally perform better. The hyperparameters of the
kernel are optimized by maximizing the log marginal like-
lihood, and the posterior GP is obtained using Algorithm 2.1 of
C. E. Rasmussen & C. K. I. Williams (2005), as implemented
in the Python package scikit-learn. In contrast to MLPs,
ordinary GPs, such as those considered in this work, scale
poorly with the size of the training set, and we were unable to
train any GPs on more than 5000 training EOSs. There are a
few approaches in the literature to address this problem, such as
sparse GPs (H. Liu et al. 2020). Here, instead, we make full use
of our large data set by once again employing the bagging
method: instead of a single GP, we consider an ensemble of
GPs, each trained on a distinct set of 5000 samples drawn from
the original training set. For each GP, we use the mean of the
posterior for a given set of EOS model parameters and average
over the outputs of all GPs in the ensemble in order to obtain
the final prediction. For the one-parameter model, we employ
an ensemble of ten GPs, while for the five- and ten-parameter
models, we use 20 GPs.

Figure 3 shows the validation performance of our GP
emulator for the five-parameter EOS model. We find that,
generally, the GP provides a good emulation of the full TOV
solver, and the average A4 is ~0.09%. The most significant
outlier has an uncertainty A 4~ 25%, and around 12 samples
have such an uncertainty. Similar to the results of the MLP
emulator, we see that samples with larger uncertainties tend to

be softer EOSs. While a little worse, the GP validation
uncertainty is comparable to the MLP emulator and indicates
that the GP can be a useful tool for emulating the TOV
equations.

3.3. The Reduced-Basis Method

The RBM (A. Quarteroni et al. 2015) is a model-order
reduction technique (A. Quarteroni et al. 2014) that aims at
emulating a complex system by finding reduced coordinates,
usually as coefficients of a small basis expansion, and creating
a system of equations for them, usually through a Galerkin
projection formalism (E. Bonilla et al. 2022). Even though it
has been successfully applied to various problems in nuclear
physics (C. Drischler et al. 2023; P. Giuliani et al. 2023;
D. Odell et al. 2024; R. Somasundaram et al. 2024) and GW
astronomy (S. E. Field et al. 2011; R. Smith et al. 2016),
obtaining the reduced equations from a Galerkin projection is
not always a viable option due to the structure of the
differential equations involved. This is the case for the TOV
equations we address here, since they are nonaffine in the EOS
(pressure, energy density, etc.), and in the controlling EOS
parameters.

To overcome this issue, we take a data-driven approach to
estimate a set of reduced equations without explicitly
calculating the projections (D. Figueroa et al. 2024, in
preparation), as has been done in various other model-order
reduction applications; see, for example ,A. M. Burohman et al.
(2023). An alternative approach would rely on the collocation
framework (Y. Chen et al. 2021), which can still exploit
information about the operators involved to construct the
reduced equations without the disadvantages of a Galerkin
projection scheme. This avenue is in preparation and will soon
be publicly available (A. Semposki et al. 2024, in preparation).

In the following, we describe our approach for emulating the
tidal deformability A(M). The emulation strategy for the radius
follows the same procedure but is not discussed here. We first
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Figure 4. Fast decay of the singular values in the reduced basis expansion for log(A(M)) in Equation (4), which signals that a good approximation can be obtained
with just a few components (E. Bonilla et al. 2022). The inset shows the first four principal components, which represent the first four reduced bases A (M).

construct a reduced basis for the log,q (hereafter just log) of A
as a function of the NS mass and the EOS model parameters c:

log(A(M; o)) =~ log(f\(M; a)) = Z ar(@)Ar(M). 4)
k

Here, A (M) represent the reduced bases, and the coefficients a;
the n represent reduced coordinates that change as we modify
the parameters . We use log(A) in order to provide smoother
curves for each reduced basis, which will become important for
the next step. To obtain an optimal basis Ay(M), we perform a
proper orthogonal decomposition (A. Quarteroni et al. 2015)
and construct them as the first n principal components (or
singular vectors) of a matrix of snapshots of log(A(M; o)) for
j=1,...,N high-fidelity solutions of the TOV equations. The

snapshot solutions are calculated at a grid of fixed mass M
values between 1.0 M, and 2.0 M,.,. Figure 4 shows the decay
of the singular values as well as the first four reduced bases
for log(A(M)).

To obtain the coefficients @ = {a;} in Expansion (4) as
functions of the parameters o, we construct implicit equations
using an eigensystem of symmetric matrices (D. Figueroa et al.
2024, in preparation; P. Cook et al. 2024):

H(o)a = \a, (@)
H(a) = Do + Zf () H,, (6)

where the diagonal matrix Dy, as well as the symmetric matrix
H;, have yet undetermined coefficients that are eventually
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Table 1
Parameters of the RBM Tidal Deformability Emulators for Each of the Three
Parameters Set

Parameter Set n PMM dim p (PC) p (Norm)
(fm ™) (fm ™)
Set 1 2 3 (0.60, 0.75) (0.45, 0.60)
Set 2 6 2 [0.10-0.85] [0.10-0.85]
Set 3 3 2 [0.10-0.85] [0.10-0.85]

Note. The second column denotes the number of principal components n kept
in Expansion (4), and the third column denotes the dimensions of the PMM
used for emulating the norm of the coefficients a. The fourth and fifth columns
denote the density locations p where the EOS is evaluated to obtain the
pressures that is the feature fi(a) in Equation (6), with square brackets
representing equidistant points within the specified range in steps of 0.05 fm™>.

learned from data. The function f; represents features of the
controlling parameters «, such as polynomial expansions of a.
In our case, we choose these features to be the pressure for the
targeted EOS evaluated at various densities that are relevant for
the NS structure. Since solving the system in Equation (5) gives
an eigenvector a that is defined up to a normalization, we
further emulate the normalization N(«) by directly using the
parametric matrix model (PMM) described in P. Cook et al.
(2024) with an expansion on analogous features fi(a).G The
details about the RBM data-driven emulator, including the
dimensions for the normalization emulation using the PMM,
are shown in Table 1.

To train the emulator and estimate the matrix elements of
Equation (5), we use 2000 training samples for each EOS set.
We then fit the matrix elements in Equation (6) for both the
principal component (PC) and PMM emulators using the
Levenberg—Marquardt least-squares routine (K. Levenb-
erg 1944; D. W. Marquardt 1963), performing ten fits on the
same training samples but with different initial conditions.
Specifically for the PC emulator, we take the first normalized
eigenvector corresponding to the largest eigenvalue of its
H-matrix. For the PMM, we emulate the normalization by
taking the largest eigenvalue of its H-matrix. We then validate
each fit by calculating a X2 of the resultant emulator with
respect to the samples not used in the fit and chose the emulator
that minimizes this y>.

In Figure 5, we show the validation performance of the RBM
for the five-parameter EOS model. The RBM can capture the
general behavior of the full TOV solver, with the average of A4
being 2.4%. The largest outlier has a A 4 ~ 60%, but only around
five samples have such large uncertainties. Note that at higher NS
masses, the RBM sometimes predicts an unphysical, nonmono-
tonous dependence of A on the NS mass since the RBM fails to
emulate one of the PCs for the five-parameter model.

4. Comparison of the Emulators

In the following, we compare the performance of the three
emulators in terms of both accuracy and computational
speedup. We show the computational accuracy versus time
plots in Figures 68 for the one-parameter, five-parameter and
ten-parameter models, respectively. The validation uncertainty

® In our explorations, attempting to encode the normalization in the

eigenvalue of the same equation system (Equation (5)) yielded worse results
than training a separate PMM for the normalization alone.
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is shown for stars with 1.4 M, (2 M) in the left (right) panels.
For a fair comparison, all emulators are evaluated on a single
CPU core for each validation sample.

From Figures 68, we observe that the MLP has the lowest
average validation uncertainty among all emulators for all EOS
models at both 1.4 M, and 2 M. This is followed by the MLP*
and GP emulators, which have comparable uncertainties, with
MLP* generally showing lower average uncertainties, except
for the left panel in Figure 7. In all cases, the RBM has the
largest validation uncertainties. Note that the comparison
between MLP and MLP* allows us to gauge the impact of
bagging; see Section 3.1. Additionally, we examined the
performance of the MLP emulator with respect to the number
of members in the ensemble included in the bagging algorithm.
We found that the average validation uncertainty improves with
the number of individual MLPs, before saturating at about 65
MLPs for the five and ten-parameter models. For the one-
parameter model, bagging has a negligible impact; see
Figure 6.

The RBM offers the largest computational speedup compared
to the full TOV solver, which takes ~3.5s per sample. The
MLP* emulator is similarly fast and a factor of 100 faster than
MLP, as expected. The GP emulator is the slowest among the
emulators but still achieves over an order of magnitude speedup
compared to the full solver. We conclude that for applications
requiring high accuracy, the MLP emulator is the best choice.
However, if computational speedup is the primary concern, the
MLP* or RBM emulators may be more practical, albeit with
increased emulator uncertainties. Given the typical computa-
tional resources used for BNS parameter inference runs
(G. Ashton et al. 2019; C. M. Biwer et al. 2019), emulators
that can output the A-M sequence within ~10" s are
sufficiently fast (J. Veitch et al. 2015). The required emulator
accuracy is harder to estimate since this depends on the signal-
to-noise ratio of the data and the desired precision on the EOS
parameters. However, for typical events that are expected to be
observed in the upcoming years, we expect that emulators with
A = 1% would yield sufficiently accurate posterior distributions.

As mentioned earlier, the primary factor limiting both speed
and accuracy of the GP is its inability to handle large data sets.
Although we found that bagging improves the average
uncertainty, the accuracy of the GP remains worse than both
MLP and MLP*. A possible solution might be the implementa-
tion of a sparse GP (H. Liu et al. 2020), but this is beyond the
scope of this work. In contrast, the MLP emulator scales
remarkably well with the size of the training set, and we expect
this improvement to continue for even larger training sets than
those used in this work. Increasing the size of the training set is,
therefore, a simple and effective way of improving the MLP
and MLP* emulators in the future.

Finally, we note that the validation uncertainty is generally
larger at 2 M, than 1.4 M. This is because the calculation of
the percentage uncertainty requires dividing by the true tidal
deformabilities, which are much smaller (=~10) at 2 M,
compared to their values at 1.4 M.

5. Example Analysis of a Potential Loud BNS Observation

To test our emulators in a Bayesian parameter inference, we
now study a fictitious loud BNS observation that could be detected
by next-generation GW detectors, such as Cosmic Explorer
(M. Evans et al. 2021). We analyze the event using a simplified
hierarchical approach (P. Landry & K. Chakravarti 2022) but will
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Figure 6. Computational accuracy vs. time plot for the one-parameter model. This plot helps compare emulators’ trade-offs in a similar way to the Pareto front
(S. L. Brunton & J. N. Kutz 2019). Each dot corresponds to a validation sample, and we show a reduced set of only 5000 validation samples. The dashed lines indicate
the averages over all 5000 validation samples. The total CPU time required to evaluate the full TOV solver is indicated by the solid black vertical line. Note that in the

left panel, the lines for the MLP and MLP" overlap.

demonstrate our emulators in a full Bayesian parameter inference
in future work. We use the analysis of this mock event to showcase
the reliability of our emulators at reproducing the PDFs for EOS
parameters. Here, we focus on the PDFs of two such parameters
relevant for the nuclear symmetry energy to illustrate this point.

The posterior distribution for a set of EOS parameters c«,
given GW data d, can be written as

P(ald) < P(d|a)P(x)
~ P() [f dM.dgdR P(dM., g, NYP(M.,, ¢, A|o) ]
@)

where M, is the chirp mass, ¢ is the mass ratio, and A is the
combined dimensionless tidal deformability of the binary
system (T. Hinderer et al. 2010). The function P (M., ¢, 1~\|a)
is determined by a given EOS represented by «. Here, we fix
the chirp mass of our injected event at 1.188 M., the central
value observed in GW170817 (B. P. Abbott et al. 2017b) and
allow for a uniform distribution of ¢ between 0.6 and 1.0, U(g).
Therefore, the marginal likelihood of the BNS parameters
P(d|M,, g, A) = L(M,, ¢, A) has the form

L(M,, g, A) = (M, — 1.1883)U (q) L(A). (8)
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Figure 8. Same as Figure 6 but for the ten-parameter model.

For the factorized likelihood £(A), we assume a simple Gaussian
distribution centered at A = 500 with a standard deviation of 25,
which corresponds to a 5% uncertainty. We have checked that the
qualitative conclusions of this section do not change upon varying
the mean and standard deviation of the Gaussian distribution. We
then evaluate the posterior distribution on « using Equation (7). In
practice, this is done by drawing a large number of samples from
the prior P(«v) and assigning each a likelihood weight proportional
to the integral within the square brackets in Equation (7). For the
integral over g, we use Simpson’s method with a grid spacing of
0.01. Note that the remaining integral simplifies drastically under
the above approximations.

For the samples drawn from the prior P(a)), we employ our
set of 100K validation samples. Each validation sample

corresponds to the true A—M curve, ca}culated with the full
TOV solver, as well as the predicted A—-M curve calculated
using the emulators. Therefore, we obtain the posterior on «
calculated from both the full solver as well as the emulators.
Our results for the five-parameter model are shown in Figure 9,
where we show the marginalized 1D posterior distribution on
two NEPs, Ly, and Ky, We find that the emulated PDFs for
the GP and MLP match perfectly with the PDF of the full TOV
solver. We have checked that this is the case for all five
parameters of the EOS model. Results for the one-parameter
and ten-parameter EOS models are qualitatively similar. While
the RBM does not exactly reproduce the true PDF, the
agreement is nevertheless very good. Overall, our results
demonstrate the potential of our emulators for enhancing
Bayesian parameter inference of BNS observations.
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Figure 9. PDFs on two EOS model parameters, computed using the five-parameter model, for a fictitious high-precision measurement of the tidal deformability of a
1.4 M., NS described in the text. The PDFs for all emulators match well with that obtained using the full TOV solver (black circles).

6. Conclusion

To accelerate the inference of nuclear-physics parameters
from astrophysical NS observations, we have developed three
different algorithms for emulating solutions to the TOV
equations. We have focused on emulating the tidal deform-
ability as this is the key quantity for GW data analyses of BNS
mergers. However, our framework can easily be extended to
emulate other astrophysical NS observables such as the NS
radii, moments of inertia, baryonic masses, Kepler masses, etc.
We have developed our emulators for three different EOS
models, two of which are capable of incorporating constraints
from nuclear theory and experiment while simultaneously

10

being agnostic enough to allow for phase transitions at high
densities. Additionally, the emulation procedures outlined here
are applicable to many other EOS formalisms and are not
exclusive to the metamodel with speed-of-sound extension.
Our MLP emulator proves to be the most accurate, while the
RBM offers the best speedup. All emulators are capable of
predicting the full A—M sequence within 0.1 s. Finally, we have
shown that the PDFs on EOS model parameters predicted by
our emulators match very well with the true solution for a loud
mock BNS signal with a 5% measurement uncertainty. Given
these encouraging results, the work presented in this paper and
further developments to our emulation strategies will pave the
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way for future studies aiming to extract the nuclear EOS from
observations of BNSs and other astrophysical sources includ-
ing NSs.
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