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Abstract

The concern that Artificial Intelligence (AI) and Machine
Learning (ML) are entering a “reproducibility crisis” has
spurred significant research in the past few years. Yet with
each paper, it is often unclear what someone means by “repro-
ducibility”. Our work attempts to clarify the scope of “repro-
ducibility” as displayed by the community at large. In doing
so, we propose to refine the research to eight general topic
areas. In this light, we see that each of these areas contains
many works that do not advertise themselves as being about
“reproducibility”, in part because they go back decades be-
fore the matter came to broader attention.

1 Introduction

The Artificial Intelligence (AI) and Machine Learning (ML)
communities are increasingly concerned with the “repro-
ducibility” of their fields. This has come on the heels of a
reproducibility crisis noted in many others. We will refer to
this overarching concern, that the science of research is be-
ing done with some error rate, as a generic scientific rigor
concern. This concern is justified, and it is increasingly chal-
lenging to evaluate the state of research around scientific
rigor due to confused and incompatible usage of the same
few terms like “reproducibility” (Plesser 2018).

Due to confusing and often inconsistently used terminol-
ogy in the literature, it is challenging to understand precisely
what issues of scientific rigor the community is tackling. In
light of these issues, we propose a new formulation of cur-
rent scientific rigor research by surveying the current arti-
cles by the topics they cover. In doing so, we observe that
many historical works tackled these very issues – with dif-
ferent motivations and no particular thematic name like “re-
producibility” as it was not an urgent concern at the time.

In this article, we will expand the ACM’s proposed termi-
nology of Repeatability, Reproducibility, and Replicability
which we find useful, although still insufficient to capture
the breadth of work done to date. Our contribution classi-
fied current AI / ML research in scientific rigor into eight
aspects we label as repeatability, reproducibility, replicabil-
ity, adaptability, model selection, label/data quality, meta &
incentive, and maintainability. These eight aspects are de-
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fined in Table 1. We propose these aspects based on our re-
view of 101 papers published since 2017 and reflect the fo-
cus of the community at large. Table 1 also shows for each
aspect the proportion of papers focused primarily on that as-
pect (though many papers touch on multiple aspects).

The rest of this article is organized as follows. We will
summarize the eight main topic areas of scientific rigor in
Section 2, with sub-areas included based on our literature
review. Based on this survey of the literature, we propose re-
lationships for how these rigors interact in Section 3, which
we find informative as a macro-level picture of the scope of
scientific rigor. Finally, we conclude in Section 4.

2 The Current Scope of Work

Our literature survey identifies at least eight primary aspects
of scientific rigor studied in the AI/ML literature. Each ma-
jor sub-section will repeat one of the eight rigors defined
in Table 1, and include further delineation for nuanced sub-
categories that are present or noteworthy in the literature. A
key criterion for being included in Table 1 is that the pa-
per must self-identify itself as being about “repeatability, re-
producibility, or replicability” since those are the three pre-
existing terminologies used (interchangeably) in the prior
literature. These delimitations reflect the current scope of
what researchers actively consider “reproducibility” con-
sider worthy of study and effort. As our bibliography will
show though, many more papers exist in these topical areas
that were published before 2017, and thus before the AI/ML
communities started to put renewed effort into the issue of
scientific rigor. We include such articles in the discussion of
each section to establish the full scope of available work and
to connect the current reproducibility-themed motivation to
its historical precedents, as the historical literature is often
unknown to existing researchers on this topic.

Before we detail these aspects, it is worth noting that
many existing articles are best summarized as opinion pieces
with varying degrees of formalization of their arguments.
Most of these articles propose strategies or arguments on
how to obtain “reproducibility”, without evidence of effect
(Gundersen and Kjensmo 2018; Matsui and Goya 2022;
Publio, Esteves, and Zafar 2018; Tatman, Vanderplas, and
Dane 2018; Sculley et al. 2018; Vollmer et al. 2020; Drum-
mond 2009, 2018; Raff and Farris 2022; Lin 2022). The con-
tents of our article are focused on works that study issues,
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Topics Main Concern % of papers

Repeatability Can the results be obtained by the original authors using their original code and data. 12.9
Reproducibility Can a different team obtain the results using the code and data provided by the original

authors
16.8

Replicability Can a different team, using different code and/or data, obtain the same results or results
congruent with the original publication.

15.8

Adaptability Can the original authors using the original code obtain qualitatively similar results on
new/different data.

4.0

Model Selection Given a set of two or more models, what process can be used to meaningfully and
reliably determine which model to select for use.

19.8

Label/Data Quality Given a process for labeling data, how can we ensure that the process results in mean-
ingfully same labels over time and that the process of labeling has minimal errors.

4.0

Meta & Incentive What are the motivators, or lack thereof, for scientific rigor. 13.9
Maintainability What are the issues and remediations in running the same AI/ML solution as the people,

code, and data are all altered in their nature over time.
12.9

Table 1: Eight primary topics that have been collectively described as “reproducibility” in the literature, determined by our
manual review. The first three are based on the ACM’s guidelines, and the rest are informed by surveying and categorizing the
themes of existing literature.

incentives, or interventions to rigor issues in AI/ML — and
thus go beyond opinion or thought pieces on the topic, of
which there are many. These thought pieces are valuable in
spring motivation and growth in the field, but most are dis-
connected from the long literature on the topic, so we prefer
not to focus on their opinions which may well change with
new literature1.

Since there is no canonically accepted “home” for AI/ML
papers on reproducibility, we find that such published lit-
erature is scattered across various subfields and specialized
conferences. In many cases, we find common themes in the
nature of issues that occur across fields and domains, and
in some aspects, the literature on issues impacting scientific
rigor directly goes back to the 1990s. Our categorization is
based on a review of all literature we are aware of that tack-
les scientific rigor issues, even if they did not use terms like
“reproducible” as they often pre-date the larger academic
concern itself. One recommendation that we would put forth
for all major AI/ML conferences is to create a track for sci-
entific rigor studying all eight proposed rigor topics to fur-
ther incentivize and organize this important work.

2.1 Repeatability

Repeatability concerns the authors who obtain the same re-
sults using the original source code and data. Interesting
questions in repeatability include how to develop code and
systems that make it easy for the developer to keep track
of how they came to their experimental results from an ex-
perimental design perspective (Gardner, Brooks, and Baker
2018; Paganini and Forde 2020). In Human-Computer In-
teraction (HCI) research, there has been significant study
on the iterative development nature of computational note-
books (e.g., Jupyter) that are widely used in AI/ML devel-
opment processes. These notebooks can be prone to many

1Indeed, our own understanding have evolved in the discovery
of the wide and deep literature on scientific rigor.

subtle code errors/issues due to their fluidity and out-of-
order execution. Enhanced tools can ensure the exact exe-
cution sequence to generate a result (Head et al. 2019; Kery
and Myers 2018; Courtès et al. 2024). Many simple factors,
like using a random-number seed (i.e., for a pseudo-random-
number generator (PRNG)), are important for obtaining in-
stantaneous repeatability. Furthermore, many mathematical
operations are not guaranteed to produce identical numer-
ical results due to floating point errors and differences in
numerical stability of different implementations and hard-
ware (Arteaga, Fuhrer, and Hoefler 2014; Schlögl, Hofer,
and Böhme 2023).

Other factors, such as software version conflicts, are often
thought to be factors of repeatability but often lead to con-
flation. For example, does capturing software versions via
a container system lead to repeatability or reproducibility?
We argue that it would be reproducibility as a higher-level
concept in our categorization, which we will detail further
in Section 3. A second distinction we make is that of in-
stantaneous repeatability vs. repeatability over time. In this
immediate section, we consider instantaneous repeatability,
where the question is how to ensure repeatable results as
the software/algorithm is being developed, and we find that
there is surprisingly little beyond the work noted in the prior
paragraph. When time is added as a factor, we consider this
to be distinguishable as the maintainability rigor that we will
detail in Section 2.8.

2.2 Reproducibility

Reproducibility alters repeatability by requiring that a differ-
ent individual/team be able to produce the same results us-
ing the original source code and data. This is a high focus of
the AI/ML community and incentivization of Open Source
Software (OSS) by major conferences and paper submission
questionnaires/guidelines. Current work can be divided into
those that explore surface-level issues such as unquantified
proposals or exact procedure reproductions, vs those that at-
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tempt to quantify or better understand why a reproduction
does(not) work.

Surface Reproducibility Surface-level studies of repro-
ducibility report on the scale of the reproducibility challenge
without examining whether their attempts at improving re-
producibility work. The only large-scale study we are aware
of found that 74% of the code released by the broader scien-
tific community (beyond AI/ML) ran without issue (Trisovic
et al. 2022). Toward remediating this in machine learning,
many have proposed techniques like Docker to try and cap-
ture the exact conditions to re-run the experiments (Forde
et al. 2018a,b). (Gardner et al. 2018) looked at enhancing re-
producibility by standardizing data access and execution en-
vironments for MOOCs. However, the project appears to be
abandoned and stresses the importance of repeatability/re-
producibility over time, which we note forms the aspect of
maintainability we discuss later in Section 2.8.

Reproducibility In Depth A major factor in Repro-
ducibility, and the discovery of non-reproducible work, is
errors in the original comparisons being made. There are
cases where reproducibility may be strictly achievable but
meaningless due to an error in the fundamental approach
being taken or experimental setup. In a seminal example
of metric learning, it was found that papers had multiple
changes occurring simultaneously in comparison to prior
baselines (new layers like Batch-Norm, optimizers, etc.) be-
yond just the proposed metric learning changes, which pro-
duced misleadingly large effect sizes (Musgrave, Belongie,
and Lim 2020). In general, many other works have identi-
fied similar issues nuanced to the subdomain being stud-
ied (Lu, Raff, and Holt 2023; Liu et al. 2020; Chen, Be-
louadi, and Eger 2022; Ito et al. 2023). More serious in-
stances have determined a subfield of research being con-
structed around unsound methodologies (Lin et al. 2022;
Kapoor and Narayanan 2023; Hullman et al. 2022; Raff and
Holt 2023).

Thematically similar to (Musgrave, Belongie, and Lim
2020) are the multiple realizations of insufficient baseline
evaluation that have occurred in many works since. Such
work includes studies that use similar baseline errors/lack of
adjustment (Rao et al. 2022), studies that expand the set of
baselines against an overly broad prior conclusion (Huang
et al. 2022; Wang et al. 2022), and studies that demon-
strate that decades-old methods are still competitive when
given the chance to run on larger modern datasets (Liu, Hu,
and Lin 2022). Another example is the effectiveness of lin-
ear models in natural language processing tasks, which are
orders of magnitude faster and capable of comparable re-
sults (Lin et al. 2023). A unique aspect shown by (Chen et al.
2018) is that many improvements prescribed to one family
of algorithms are actually applicable to prior approaches and
would perform just as well using an “out-of-date” method.
They showed this by applying improvements from seq2seq
modeling to Recurrent Neural Networks and found that the
improvements were still effective, allowing a Pareto im-
provement in combined approaches.

2.3 Replicability

Replicability concerns the ability of a different person/team
to produce qualitatively similar results from the original arti-
cle by writing their own code and potentially different data.
The aspect of replicability is highly understudied, likely due
to the challenges this aspect presents. Replicability can be
subdivided into empirical replicability and theoretical repli-
cability.

Empirical Replicability Empirical Replicability requires
re-implementing a target method’s code from scratch, which
is a labor-intensive process. Notable work in this direction
was done by (Raff 2019), who attempted to reimplement
255 papers, and computed features to quantify what proper-
ties correlated with a replicable paper. Smaller scale repli-
cations have also been performed (Belz et al. 2022), in-
cluding a volunteer effort by ReproducedPapers.org collect-
ing some (most are reproduction attempts) Replicability at-
tempts (Yildiz et al. 2021) based on which a thorough study
in IR has been performed (Wang et al. 2022). (Chen et al.
2022; Ganesan et al. 2021) identified issues with a specific
common baseline method XML-CNN in multi-label learn-
ing. Famously, (Henderson et al. 2018) replicated recent re-
inforcement learning results and discovered various aspects,
such as the seed and scale of rewards, that significantly al-
tered the perception of improvement.

(Johnson, Pollard, and Mark 2017) Replicate studies in
mortality prediction in a healthcare context, highlighting the
difficulty of producing comparable results when replication
also requires collecting new data of the same intrinsic nature
(that is, patient data in this context). Textual descriptions
presented in the original studies were found to be insuffi-
cient for collecting new data that would replicate. (Hegsel-
mann et al. 2018) extended this observation by showing how
to produce replicable data collection schemes for survival
analysis against medical repositories such as SEER.

We are not aware of other work within AI/ML on em-
pirical replicability. This state of affairs is common to other
(relatively) code-free disciplines such as medicine (Ioanni-
dis 2005) economics (Camerer et al. 2016) social sciences
(Camerer et al. 2018). In these disciplines, replication stud-
ies are necessary and representative because they are the
least costly way to evaluate a result. Other aspects of scien-
tific rigor have a significantly lower barrier to entry, largely
because AI/ML has a large open-source culture.

Theoretical Replicability More recent work has ad-
vanced a theoretical definition of replicability in terms of
constraints on the output distribution as a function of the in-
put distribution. (Impagliazzo et al. 2022; Kalavasis et al.
2023; Bun et al. 2023) have developed much of this founda-
tion by showing various desirable statistical properties such
as that Total Variation (TV) between outputs drawn from
the same distribution using the same algorithm (i.e., a con-
gruent definition of replicability) is equivalent to results in
approximate differential privacy and robust statistics. This
idea has since been expanded to bandits (Esfandiari et al.
2023), optimization (Zhang et al. 2023), clustering (Esfan-
diari et al. 2023), and reinforcement learning (at an expo-
nential increase in runtime) (Karbasi et al. 2023).
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Lastly, a unique approach to the question of replicabil-
ity was studied by (Ahn et al. 2022), which focuses on the
difference between the computational precision of floating
points and the underlying symbolic math. From this perspec-
tive, they are able to suggest conditions about what state-
ments can be rigorously tested and concluded about the math
based on floating-point errors that would accumulate and
cause issues otherwise.

2.4 Model Selection

Model selection deals with the common task of AI/ML pa-
pers: given two competing methods (one of which may
be the paper’s own proposal), how do we conclude which
method is better? As the AI/ML literature has advanced sig-
nificantly through the presentation of empirically “better”
algorithms, it is not surprising that most historical and cur-
rent work has focused on the question of model selection.
This includes how to pick and evaluate criteria to decide
“better”, how to build benchmarks for a problem, and the
process to determine “better” given criteria in a statistically
sound way. There are also multiple resurgences of this issue
as ML is incorporated into other fields, and comparisons that
may be invalid in a new field occur as both communities be-
gin to merge and discover what is/is not acceptable (Hoefler
2022).

Evaluation Criteria & Methodology Before selecting
the “better” of one or more methods, it is necessary first
to determine how the quality of a method is determined.
The scope of evaluation metrics and scores is larger than
that of scientific rigor, and this article is concerned with
cases where an invalid or errant procedure was identified
and remediated. The literature in this direction is old, start-
ing in the late 1990s on the various pros and cons of
metrics like Area Under the Curve (AUC) for evaluation
(Bradley 1997; Hand 2009; Lobo, Jiménez-Valverde, and
Real 2008). Likewise, work has addressed issues in scoring
from leaderboards (Blum and Hardt 2015), and subtle is-
sues in using cross-validation to produce test scores (Varma
and Simon 2006; Bergmeir, Hyndman, and Koo 2018; Varo-
quaux 2018; Bates, Hastie, and Tibshirani 2021; Mathieu
and Preux 2024). Niche examples of the evaluation concern
also exist. For example, three decades of malware detection
performed subtle train/test leakage by adjusting for a tar-
get false-positive rate incorrectly (Nguyen et al. 2021) and
time series anomaly detection scores being overly generous
to “near hits” (Kim et al. 2022).

Building Problem-Specific Benchmark Suites It is be-
coming increasingly popular to build benchmarks of mul-
tiple datasets, pre-prepared evaluation code, and method-
ology for specific problem domains (Blalock et al. 2020;
Eggensperger et al. 2021; Sun et al. 2020; Saul et al. 2024;
Liu et al. 2024; Ordun et al. 2021; Kebe et al. 2021). Such
a benchmark construction is popular, although it has yet
to evolve into a science of how to build benchmarks, with
limited study at a macro level (Koch et al. 2021). Some
domains may require additional thought to how methods
are compared, especially when they are measuring a non-
stationary objective like human preferences in Information

Retreival (Breuer and Maistro 2024).

Selection Determination Much of the ML literature
presents raw results and makes a nonscientifically rigorous
statement of being “better” by some metric (i.e., bold num-
bers in a table are better, and our method has more bold num-
bers in the table). There are two approaches to developing
improved comparisons.

One is to devise better statistical tests to compare two
methods when a single test set is available, first seriously
studied by Dietterich (1998) with many follow-up works
shortly after (Alpaydin 1999; Bouckaert 2003; Bouckaert
and Frank 2004). Different perspectives on this include us-
ing one test run to make a conclusion (Dror, Shlomov, and
Reichart 2019), or including sources of variation in model
performance (e.g., hyperparameter values) and comparing
the distribution of model results (Bouthillier, Laurent, and
Vincent 2019; Bouthillier et al. 2021; Cooper et al. 2021).
Others have introduced computational budget for training
and parameter tuning as a conditional factor that impacts the
conclusion of “best” (Dodge et al. 2019).

The second option is to use multiple datasets to perform
a single test of whether one algorithm is better than an-
other (Guerrero Vázquez et al. 2001; Hull 1994; Pizarro,
Guerrero, and Galindo 2002). The use of a nonparametric
Wilcoxon test has been found to be effective in multiple
studies (Demšar 2006; Benavoli, Corani, and Mangili 2016).
(Dror et al. 2017) extended this to make a conclusion about
how many datasets and which one method performs better.
Other recent work has proposed using meta-analysis meth-
ods to draw conclusions about a single method tested under
multiple conditions (Soboroff 2018). Notably, work using
multiple datasets to make decisions based on a single evalu-
ation metric implicitly contributes to the Adaptability ques-
tion, which we explore next. Interestingly, we note the field
of programming languages has also proposed quantile re-
gression as a better method of analyzing results (de Oliveira
et al. 2013).

2.5 Adaptability and its Second-Class Status

Adaptability is the study of a different person/team, using
the original code but applying it to their own and different
data. Very little work on scientific rigor in AI/ML focuses
on Adaptability. To be clear, many prior works have studied
the question of generalization in machine learning, of which
there is recent evolution due to the advance of deep learning
(Zhang et al. 2017). However, generalization assumes some
form of intrinsic relationship (usually I.I.D.) between the
training and testing distribution. Under Adaptability, there
is no direct train/test split to compare. Instead, it is a ques-
tion of the methodology’s effectiveness on an entirely differ-
ent statistical distribution at training and test time. Thus, our
concern is more focused on the practical, real-world issues
that enable or inhibit a method to generalize. Our contention
is the lack of study on adaptability is one of the most glar-
ing shortfalls in the current scientific rigor literature, with
significant room for researchers to define and develop new
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ways of studying the problem2.

The work we have found can broadly be described as in-
cluding adaptability to new datasets or specialized subsets
to better understand the overall behavior and utility of a set
of algorithms (Marchesin, Purpura, and Silvello 2020; Rah-
mani et al. 2022). The other work that tackles adaptability
is from an HCI perspective in validating a method’s utility
as population preferences evolve (Roy, Maxwell, and Hauff
2022).

Though it has not been presented as a part of the litera-
ture on scientific rigor, considerable effort in the Adaptabil-
ity question has been advanced by Decision Tree-based lit-
erature. In particular, the long-standing effectiveness of tree
ensembles has led to numerous studies investigating the per-
sistent efficacy of tree ensembles (Grinsztajn, Oyallon, and
Varoquaux 2022; Wainberg, Alipanahi, and Frey 2016; Bag-
nall et al. 2020). Despite little work on the adaptability ques-
tion, we note that many works in Model Selection make use
of the adaptability argument as a component of their study
or an otherwise latent concern.

One way that others could seek to understand adaptability
is to see if they adapt to crossing a small “chasm” of change
in the problem. This can be done by taking methods devel-
oped in one context and applying them to a highly related
problem (ideally with a minor to no modification necessary).
Two prior works that we are aware of have demonstrated
surprising failures of methods that fail to cross these small
chasms. (Riquelme, Tucker, and Snoek 2018) studied exten-
sions of Thompson Sampling for reinforcement learning that
work well in supervised settings, but a modest adaption to
sequential decision making causes simple Thompson Sam-
pling to outperform the various previous improvements. (Liu
et al. 2021) found that the original hyperparameters for a
multi-label prediction algorithm were kept when the method
was adapted to a new task. Subsequent works compared to
this original parameterized version rather than re-tuning to
the new task. When properly accounted for, all subsequent
methods failed to improve on the original method.

2.6 Label & Data Quality

Label & Data Quality is focused on the reliability of data
and label acquisition, error rates, and working to understand
how they occur, detect them, or work around them. The dis-
tinction we make from research in inferring a single label
from labelers is that scientific rigor is concerned with the
process of how labels are collected, defined, and have im-
pacted research conclusions (e.g., inferring a 99% accurate
model when labels have a 5% noise level would imply a fail-
ure in process). Many works today identify these issues long
after dataset construction, in part due to the high accuracies
now being achieved, making the errors more pronounced.
For example, the process for deriving labels of ImageNet
had rules incongruent with the nature of the data (e.g. as-
suming that only one class is present) and error-prone steps

2Anecdotally, we have had significant trouble publishing work
attempting to tackle adaptability problems in other sub-domains
when we were trying to use it for real-world needs (Raff, McLean,
and Holt 2023).

in the labeling pipeline (Beyer et al. 2020). Label quality is-
sues also include leakage from the train / test set (Barz and
Denzler 2020).

Some of the most insightful research results have come
from replicating dataset construction and labeling processes
for prior datasets and then characterizing and discovering
why differences in results occur. This includes detection
cases where recreation is implicitly made more challenging
than the original dataset (Engstrom et al. 2020). Although
there is a long history of research inferring a single cor-
rect label from multiple labelers (Whitehill et al. 2009; Lin,
Mausam, and Weld 2014; Ratner et al. 2016; Yoshimura,
Baba, and Kashima 2017; Ratner et al. 2020), this litera-
ture is generally not framed as a scientific rigor issue. While
these methods have been utilized in work from a rigor per-
spective (Beyer et al. 2020), we are not aware of work that
bridges a longitudinal study of the replicability of these var-
ious label inference procedures.

2.7 Meta and Incentives

Very few papers have studied incentives for scientific rigor.
The study of the scientific process itself is often termed
metascience and, when applied to AI/ML research, would
fall into this category. Such research could include basic
studies of incentives, drivers of scientific rigor, and surveys
across various AI/ML research domains. Sample studies fo-
cused on drivers such as the rate of data and code shar-
ing in computational linguistics (Wieling, Rawee, and van
Noord 2018) and the use of statistical testing (Dror et al.
2018). Related work has found that code sharing and replica
research are correlated with higher citations (Raff 2022;
Obadage, Rajtmajer, and Wu 2024), although most meta-
studies have looked at the rate of code sharing in their sub-
disciplines (McDermott et al. 2021; Olszewski et al. 2023;
Arvan, Pina, and Parde 2022; Arvan, Doğruöz, and Parde
2023; Cavenaghi et al. 2023). A unique aspect of code avail-
ability is studied by (Storks et al. 2023), who perform a
user study with students on the time and difficulty factors for
students to reproduce the results of three NLP papers. An-
other study focuses on how evaluation and comparison prac-
tices evolve throughout the Machine Translation commu-
nity (Marie, Fujita, and Rubino 2021). The last work we are
aware of challenged the treatment of replicability as a binary
“yes/no” question and instead suggested a survival model,
where replicability is a function of time/effort (Raff 2021)
and quantifying a reproducibility score (Belz, Popovic, and
Mille 2022).

2.8 Maintainability

Maintainability is similar to Repeatability, in that we are
concerned with producing the same results with the origi-
nal authors (though new users could also occur) using the
original code and data. The key difference that distinguishes
maintainability is that time is a factor, as the ability to repeat
results degrades over time as nuances of labels (Inel, Draws,
and Aroyo 2023) or dependency versions change (Connolly
et al. 2023)3. Maintainability can also deal with the code

3In software development, this notion is often termed “bit rot”.
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itself changing over time. The focus on the aspect of main-
tainability within AI/ML was started by the seminal work
of (Sculley et al. 2015). A key area of maintainability deals
with adapting known “code smells” while considering ML-
specific concerns and factors that practitioner surveys con-
sider most important (Gesi et al. 2022). Another key area of
maintainability is the quality of the results as the code it-
self changes. It is well known that scientific algorithms may
produce different results by different (but supposedly equiv-
alent) implementations (Hatton 1993). Multiple studies have
found that AI/ML is no exception to this history, with large
and statistically significant changes in accuracy when us-
ing allegedly equivalent algorithms and changing just the
implementation or the runtime platform (e.g. GPU hard-
ware) (Coakley, Kirkpatrick, and Gundersen 2022; Gunder-
sen, Shamsaliei, and Isdahl 2022; Pham et al. 2020; Zhuang
et al. 2021). (Zhou, Chen, and Lipton 2023) found that in
many medical time series tasks, it may be beneficial to train
on all historical data in some cases vs. training a sliding win-
dow of recent data. They also looked at models that experi-
enced “shocks” of sudden degradation in time.

The study of maintainability is surprisingly minimal in
our community despite the rapid adoption, abandonment,
and evolution of frameworks used within the field. Torch,
Tensorflow, JAX, Theano, and many more frameworks have
come and gone through major revisions over time. These
changes and re-implementation of algorithms are fertile
ground for maintenance issues and, thus, their study, which
directly impacts researchers and the developers of these
frameworks. Studying how to build maintinable code in
AI/ML is still nascent (Gilbertson et al. 2024; Papi et al.
2024)

3 Connections between Rigor Types
Having defined a set of eight rigor types that are being
worked on, we further elaborate on our perception of con-
nections between these rigors. In particular, there are direct
and indirect relationships, which are summarized in Figure
1 with solid and dashed lines, respectively.

3.1 Direct Relationships

The most obvious, and intuitive connections are from re-
peatability to reproducibility to repeatability, as each re-
quires a progressive step of difficulty from the prior. If a sin-
gle person/team cannot repeat their own experiments, there
is no reason to believe that a different person with the same
code would be able to reproduce those results. Extended fur-
ther, if they cannot reproduce the results with the original
code, there is no special reason to believe that by writing
their own code or using different data, they would be able to
replicate the results.

Less obvious are the interactions between maintainabil-
ity, repeatability, and replicability. The first is the two-way
relationship between repeatability and maintainability. If an
AI/ML system is not repeatable, it cannot be maintainable,
as repeatability is the property that we want to maintain.
Similarly, if it cannot be maintained, it may not be repeatable
over time. A simple case is the use of Docker to gain repeata-
bility, which is predicated on the repeatability of Docker

Repeatability Reproducibility Replicability

Adaptability

Model Selection

Data Quality

Meta/Incentives: influence all other parts.

Maintainability

Interact With
Eachother

Is a precodition for
the target

Strongly
Influences

Figure 1: Connections on how rigor types influence each
other. Solid lines indicate hard dependencies, while dashed
lines show influencing effects.

containers. This assumption is true on short time horizons,
but changes in software, hardware, and eventually depreca-
tion of tools like Docker itself do not make it true in perpe-
tuity. The time-based evolution that maintainability requires
then directly implies the replicability of a method. If a sys-
tem is replicable, meaning that the code or data can change
as well as the people, it satisfies the requirement of main-
tainability over a single point in time. Thus, maintainability
involves iterated replicability over time and instantaneous
repeatability at any point in time.

3.2 Indirect Relationships

Beyond the general influence of meta- and incentives-based
rigor having a relationship to all parts of scientific rigor,
we can further draw other connections that are of particu-
lar note. The most straightforward of these is that of model
selection on repeatability, reproducibility, and replicability,
each of which will often incorporate the model selection
task as part of the motivation for why the proposed work
should be used (i.e., it was demonstrated to “be better” than
something prior). Thus, by its nature, different approaches to
model selection will influence each. For example, the use of
random search as a hyperparameter tuning method (Bergstra
and Bengio 2012) is potentially a hindrance to replicability
due to higher variance, even if it is easily repeatable and re-
producible given the original code with initial seed values
for the pseudorandom number generator.

Upstream from this concern is then label and data qual-
ity, which will influence what features are selected. This is
particularly notable as many datasets reach high accuracies
where “errors” in the model’s predictions are discovered to
be either 1) correct and that the test data were mislabeled or
2) that the test instance was inherently ambiguous (Barz and
Denzler 2020). This creates a new kind of noise in the se-
lection process, and can thus alter conclusions on the merits
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of what is considered. This is particularly true for the even-
tual selection of the downstream model under replicability,
where the data in use may be different.

Finally, we note that a method that is adaptable is more
likely to be maintainable. The nature of one method be-
ing effective in many others is the observation that many
small details on the implementation can vary, while still pro-
ducing quantitatively similar results, an often observed phe-
nomenon in decision tree literature (Quinlan 1993; Breiman
et al. 1984; Quinlan 2006; Raff 2017). This provides some
inherent “robustness” to issues that often cause maintain-
ability problems, such as changes in low-level libraries like
BLAS/LAPACK or new hardware.

4 Conclusions

We have synthesized eight current directions in the literature
of scientific rigor for machine learning, disentangling them
from the commonly repeated moniker of “reproducibility”
and thus quantified the proportion of each type as studied
today. These rigor types have been further characterized by
their interactions/dependencies with each other.
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The 2022 ReproGen Shared Task on Reproducibility of
Evaluations in NLG: Overview and Results. In Shaikh, S.;
Ferreira, T.; and Stent, A., eds., Proceedings of the 15th In-
ternational Conference on Natural Language Generation:
Generation Challenges, 43–51. Waterville, Maine, USA and
virtual meeting: Association for Computational Linguistics.

Benavoli, A.; Corani, G.; and Mangili, F. 2016. Should We
Really Use Post-Hoc Tests Based on Mean-Ranks? Journal
of Machine Learning Research, 17(5): 1–10.

Bergmeir, C.; Hyndman, R. J.; and Koo, B. 2018. A Note
on the Validity of Cross-validation for Evaluating Autore-
gressive Time Series Prediction. Computational Statistics &
Data Analysis, 120(C): 70–83. Publisher: Elsevier Science
Publishers B. V. Place: Amsterdam, The Netherlands, The
Netherlands.

Bergstra, J.; and Bengio, Y. 2012. Random Search for
Hyper-Parameter Optimization. Journal of Machine Learn-
ing Research, 13: 281–305. ISBN: 1532-4435.
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