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Abstract—Multi-resolution methods such as Adaptive Mesh
Refinement (AMR) can enhance storage efficiency for HPC applica-
tions generating vast volumes of data. However, their applicability
is limited and cannot be universally deployed across all applications.
Furthermore, integrating lossy compression with multi-resolution
techniques to further boost storage efficiency encounters significant
barriers. To this end, we introduce an innovative workflow that
facilitates high-quality multi-resolution data compression for both
uniform and AMR simulations. Initially, to extend the usability of
multi-resolution techniques, our workflow employs a compression-
oriented Region of Interest (ROI) extraction method, transforming
uniform data into a multi-resolution format. Subsequently, to
bridge the gap between multi-resolution techniques and lossy
compressors, we optimize three distinct compressors, ensuring their
optimal performance on multi-resolution data. These optimizations
can improve the compression ratio of SOTA approaches by up to
3.3x under the same data quality loss. Lastly, we incorporate an
advanced uncertainty visualization method into our workflow to
understand the potential impacts of lossy compression. Experimen-
tal evaluation demonstrates that our workflow achieves significant
compression quality improvements.

I. INTRODUCTION

In recent years, the complexity and costs associated with sci-
entific simulations have significantly increased. To address these
challenges, numerous HPC simulation tools have adopted multi-
resolution methods, such as the Adaptive Mesh Refinement
(AMR) technique [1-3]. AMR aims to reduce computational
expenses while preserving the accuracy of simulation outcomes.
Unlike traditional uniform mesh techniques that apply consistent
resolution throughout the simulation space, AMR employs a
dynamic approach. It selectively increases resolution in regions
of interest, thereby optimizing computational resource usage
and minimizing storage requirements.

While AMR offers significant benefits in terms of computa-
tional, storage, and memory efficiency, its implementation in
some scientific simulations is hindered by several challenges.
First, integrating AMR can be technically demanding, requiring
substantial modifications to existing numerical algorithms and
simulation codes, which may not be feasible for all projects.
In some instances, simulation algorithms might not accommo-
date specific geometries or the dynamic adjustments of the
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grid throughout the simulation’s evolution. Additionally, AMR
algorithms introduce complexity in grid management and error
control, posing optimization challenges for certain simulations,
especially those involving highly complex phenomena like
convex plasma shapes. For example, in WarpX electromagnetic
simulation [4], mesh refinement is currently restricted to disjoint
cuboids, which limits the full flexibility offered by AMR [5, 6].

In order to enable uniform-grid simulations to benefit from
multi-resolution storage, thereby reducing disk usage, I/O (in-
put/output) time, and memory footprint in visualization without
complicating the simulation process, previous work [7—10] has
adapted the multi-resolution storage approach for uniform grids.
These methods can, for example, store regions of interest at
full resolution while representing less critical areas at a lower
resolution for visualization or analysis. However, the space
saved from using multi-resolution alone is often not enough.
For instance, a multi-resolution dataset with 0.5 x 10243 mesh
points at the coarse level and 0.5 x 20483 at the fine level could
yield about 1 TB of data per snapshot. Consequently, conducting
five simulations with 200 snapshots would require a total disk
storage of 1 PB. Simulations used in Exascale scenarios can
be even larger than that, using many thousands of points per
axis [4], making data size reduction a timely need.

To this end, data compression can be utilized alongside multi-
resolution techniques to further reduce I/O and storage costs.
However, traditional lossless compression methods provide
limited data volume reduction for scientific simulations, typ-
ically achieving compression ratios of only up to 2x. As a
solution, a new generation of error-bounded lossy compression
techniques, such as SZ [11-13], ZFP [14], MGARD [15] and
their GPU versions [16—18], have been widely used in the
scientific community [13, 14, 19-29] due to their ability to
offer high compression ratios while maintaining controllable
accuracy impacts on various scientific applications.

While lossy compression has the potential to significantly
reduce I/O and storage costs for multi-resolution data, its
effective application in this context remains under-explored.
Three recent studies have targeted the development of efficient
lossy compression methods for multi-resolution data including
AMR data. zMesh [30] was proposed to reorder AMR data
using z-order across different refinement levels into a 1D array,



leveraging data redundancy. However, zMesh cannot leverage
higher-dimension compression by compressing data in a 1D,
leading to a loss of spatial information in higher-dimension data.
On the other hand, TAC [31, 32] improved zMesh’s compression
quality through adaptive 3D compression. While zMesh and
TAC offer offline compression solutions for AMR data, they did
not delve into in-situ compression, which could notably reduce
the I/0 cost. AMRIC [33] addressed this by introducing an in-
situ AMR compression framework designed to lower I/O costs
while improving compression quality for AMR applications.

These efforts have primarily focused on optimizing multi-
resolution data compression for block-wise compressors like
SZ2 and ZFP. The block-wise nature of these compressors
enables higher speed but also renders them susceptible to
compression artifacts due to the loss of spatial information be-
tween blocks. In contrast, non-block-wise (global) compressors
like SZ3, despite their lower throughput, often achieve better
compression quality in most cases by leveraging prediction
across the entire input data. However, SZ3’s compression
approach presents significant challenges when applied to multi-
resolution data, a topic that will be further discussed in §III-A.

To this end, this paper proposes a comprehensive workflow
for compressing multi-resolution data, suitable for both adaptive
data derived from uniform-resolution simulations and AMR
data. Our strategy not only addresses SZ3’s performance issues
with multi-resolution data but also introduces a novel post-
processing technique to enhance data quality from block-wise
compressors like SZ2 and ZFP. Moreover, compression may
result in compression artifacts, and there has been no study on
identifying potential compression artifacts. Thus, we explore the
ramifications of compression-induced uncertainty, aiding users
in understanding how compression affects their data.

Our primary contributions are as follows:

« We employ a compression-oriented, adaptive region-of-
interest (ROI) method to convert uniform data into multi-
resolution data, thereby enhancing storage efficiency while
maintaining the quality of visualization and post-analysis.

« We propose SZ3MR, an optimization of the state-of-the-
art global lossy compressor SZ3 for multi-resolution data,
incorporating dynamic padding and adaptive error bounds
within the SZ3 compressor to improve prediction accuracy
and compression quality.

« We develop an efficient and effective error-bounded post-
processing solution that leverages spatial information across
each compressed block to significantly enhance the quality of
block-wise compressors (e.g., SZ2/ZFP). This solution is also
adaptable to improving multi-resolution data compression
with global compressors like SZ3.

« We investigate the uncertainty introduced by lossy compres-
sion, an under-explored topic, by integrating a cutting-edge
uncertainty visualization technique. This enables a clearer
understanding of how compression affects the data through
visual representation (will be detailed in §11I-C).

o Our experiments show significant compression performance
improvements with low overhead for five scientific applica-

tions. Our workflow is also integrated into real-world scien-
tific applications, WarpX and Nyx, for in-situ processing.

II. BACKGROUND
A. Lossy Compression for Scientific Data

Recent research has introduced high-precision lossy com-
pression algorithms for scientific data, notably SZ [13, 34, 35],
ZFP [14], MGARD [36], and TTHRESH [37], which differ from
traditional compressors like JPEG by targeting floating-point
data with strict error control based on user requirements. This
work focuses on three compression algorithms: SZ2, ZFP, and
SZ3. The key difference between them is that SZ2 and ZFP are
block-wise, while SZ3 is global (non-block-wise). SZ2 and ZFP
partition the input data into smaller blocks (e.g., 4 x4 x4 for ZFP)
and process them separately to leverage the spatial information.
Specifically, SZ2 uses the Lorenzo predictor or linear regression
for each block, and ZFP applies a DCT-like transform. In
contrast, SZ3 employs global interpolation prediction across
the entire input data without partitioning it. SZ2 and ZFP offer
fast compression speeds, but the global interpolation of SZ3
enables it to capture more spatial information across the dataset,
thus producing a higher compression quality/ratio than the block-
wise SZ2/ZFP. We refer readers to [13, 14, 35] for more details.

B. AMR Method and Multi-resolution Data

By using a non-uniform grid, AMR can significantly enhance
computational efficiency and lower storage requirements while
still achieving the desired accuracy level. In AMR applications,
the mesh or spatial resolution is dynamically adjusted according
to the simulation’s demands, implementing a finer mesh in areas
of greater significance or interest and a coarser mesh in less
critical regions as depicted in Fig. 1. In AMR application, the
mesh is refined based on specific criteria, such as when the
average value of a block exceeds predefined thresholds.

(a) Fine level

(b) Mid level
Fig. 2: Vis of data distributions for different level for Fig. 1.

(c) Coarse level
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Fig. 3: Overview of our proposed workflow for multi-resolution
scientific data compression.

For non-AMR (uniform) simulation, one can also achieve
storage efficiency by storing important regions at full resolution
and nonessential regions at lower resolution. For example,
Previous work [7] proposes using range thresholding to identify
ROIs and reduce non-ROI resolution and then using HZ ordering
to traverse all the resolution levels to benefit the I/O. However,
HZ-ordering prevents us from achieving optimal compression
performance because it flattens high-dimensional data into 1D,
resulting in the loss of spatial information. At the same time,
many previous studies [31, 34, 38] proved that leveraging
more spatial information can significantly improve compres-
sion performance. To compress the data in 3D, we propose
compression-oriented importance-driven storage of uniform data
by processing different resolution levels separately (see §$III).

The multi-resolution data, including AMR data and the
adaptive data generated from uniform data, are hierarchical
with different resolutions, with each resolution level holding
a different part of the domain, as illustrated in Fig. 2.

C. Uncertain Data and Visualization

Significant research has been conducted on effective methods
for visualizing uncertain scientific data [39-44], as not knowing
uncertainty in data can lead to incorrect scientific conclusions.
Uncertainty in data often arises from inaccuracies in data acqui-
sition or due to the limitations and incompleteness of measure-
ments available for computational simulations [45]. Similarly,
uncertainties in model parameters during scientific simulations
introduce variability into the computed solutions [46]. Uncertain
data is typically represented by probability distributions at each
data point [47-49], in contrast to deterministic data, which
assigns a specific value to each point.

The compression techniques, when applied to the original
data, can result in a loss of information and introduce er-
ror/uncertainty in decompressed data. However, there has been a
gap in research regarding treating decompressed data as a form
of uncertain data and using uncertainty visualization techniques
to explore the effects of compression on scientific datasets. In our
work, we apply cutting-edge uncertainty visualization techniques
to decompressed data, aiming to provide a clearer understanding
of the potential impacts of the compression (see §1II-C).

III. OUR PROPOSED DESIGN

This section outlines our proposed workflow for multi-
resolution data compression, as shown in Fig. 3. In §$III-A,

(b) ROI

Fig. 4: Visualization of the original Nyx cosmology dataset (left) and
the ROI (right, 15% of the dataset) extracted using our approach, the
SSIM of the two pictures is 0.99995.

(a) Original data

We detail our optimization of the SZ3 compressor for multi-
resolution data compression (SZ3MR). By employing dynamic
padding and an adaptive error-bound approach considering the
features of multi-resolution data, we significantly improve SZ3’s
compression performance on multi-resolution data.

In §III-B, we improve the decompressed data quality from
block-wise compressors (e.g., SZ2 and ZFP). We introduce a dy-
namic, error-bounded post-processing technique that optimally
utilizes the spatial information within the dataset. This versatile
post-processing method can also improve multi-resolution data
compression when using global compressors like SZ3.

In §III-C, we explore the uncertainties introduced by the com-
pression. By integrating a cutting-edge uncertainty visualization
solution, we provide users with insights into how compression
may impact the data. This exploration aids in understanding and
mitigating the effects of compression error.

ROI selection and preprocessing of multi-resolution data.
We will first introduce how we convert uniform data into multi-
resolution data (referred to as adaptive data) and then detail the
preparation of the multi-resolution data (including adaptive data
and AMR data) for 3D compression.

We begin by partitioning the original dataset into blocks of
size b x b x b, where b is 2", (n > 2). Then, following the
method of [7], we utilize range thresholding to identify ROIs
due to its lightweight and effective characteristics. Specifically,
we calculate each block’s value range and select the top = percent
of the blocks as the ROIs (x = 50% by default, adjustable for
specific applications). Non-ROI blocks are stored at a lower
resolution to enhance storage efficiency. For example, as shown
in Fig. 4, our range-based ROI selection method effectively
extracts the over-density halos from the Nyx cosmology dataset.
By selecting just 15% of the dataset, we can capture almost all
the halos for the Halo-finder analysis of Nyx [50].

After processing, the adaptive data acquires a data structure
similar to AMR data. To compress them in 3D, we diverge from
the HZ-ordering method used in [7], which flattens the data
to 1D. Instead, we propose compressing each resolution level
separately in 3D. However, as illustrated in Fig. 2, each level
exhibits many empty regions and an irregular data distribution.
To address this, we employ a uniform partitions method, which
divides the data into a collection of 3D “unit blocks”, as shown
in the left part of Fig. 6, for later process and compression.



(a) Original data

(c) AMRIC, SSIM=.57, PSNR=115.0 (d) Ours, SSIM=.91, PSNR=123.4

Fig. 5: Vis comparison (one 1.5x zoom in 2D slice) of original data and decompressed data produced by TAC’s SZ3, AMRIC’s SZ3 and our
SZ3MR on Nyx’s “baryon density” field (fine level). Warmer colors indicate higher values. The CR of TAC, AMRIC, and ours is the same, 163.
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Fig. 6: 2D Example of uniform partition (left, part 1) and different
arrangements (the linear merge baseline, stack merge, and TAC) of
the unit block (right, part 2). The bold red line indicates unsmooth
boundaries because of the merge of non-neighboring blocks.

A. Improved SZ3 for multi-resolution data (SZ3MR)

The processed multi-resolution data, however, faces a sig-
nificant challenge that prevents it from achieving optimized
compression quality with the original SZ3 compressor. To over-
come these challenges and enhance compression performance,
we propose optimizing SZ3. As shown in Fig. 5, our approach
achieves much better data quality than SOTA AMRIC [33] and
TAC [31] using SZ3. We will now detail the challenge, the
limitations of the current approach, and describe our solution.

Challenge: limit compression performance for SZ3 on multi-
resolution data. Previous studies have successfully adapted
block-wise compressor SZ2/ZFP to handle AMR data. However,
optimizing SZ3 for multi-resolution data introduces considerable
challenges. A primary concern with SZ3 is the data needs to be
partitioned into small unit blocks to leverage 3D compression as
mentioned. This disrupts the spatial information’s integrity and
diminishes data smoothness. When SZ3 confronts partitioned
unit blocks from multi-resolution data, the disrupted spatial
information can significantly undermine the effectiveness of the
interpolation prediction without suitable preprocessing steps.

Limitations of the current solutions. Segmented unit blocks
of multi-resolution data can be intuitively linearized (e.g., along
z-axis) into a large 3D array before the compression as shown
in Fig. 6-2a. However, this method can significantly affect
the effectiveness of SZ3’s interpolation, since the other two
dimensions of the merged array (e.g., x and y) are small,
compromising prediction accuracy (will be detailed later).

A previous study AMRIC [33] presented an alternative
approach by arranging unit blocks into a cubic, instead of linear

merging. This method aims to enable more balanced prediction
for each dimension. However, stacking unit blocks into cubic
forms aggregates blocks that are not adjacent in the original
dataset. This leads to rapid changes in data values between these
non-neighboring blocks, resulting in misprediction and adversely
affecting the precision of SZ3’s prediction. As depicted in the
bottom mid part of Fig. 6-2b, the stacking process introduces
more unsmoothness to the data than linear merging does
(indicated by the bold red line).

Another work TAC [31] adopts a dynamic strategy, such as
using a kD tree, to merge more adjacent unit blocks from the
original dataset, aiming to enhance data smoothness and locality.
This approach is depicted in the bottom right part of Fig. 6-
2¢. However, TAC does not have an in-situ solution because
TAC’s preprocessing requires reconstructing the entire physical
domain’s hierarchy, a complex task that incurs high overhead
for in-situ data compression. Also, the challenge of small blocks
persists (e.g., block 2 remains small) due to the inherent sparsity
of multi-resolution data. Moreover, because the merged blocks
vary in shape, TAC must compress the merged blocks with
different shapes separately, which brings encoding overhead.

Improvement 1: Better prediction via Padding. We propose
to still linearize unit blocks like baseline to avoid the issue
of AMRIC and TAC. However, compared to the baseline,
we introduce a padding strategy aimed at enhancing SZ3’s
prediction accuracy and compression performance for small
unit blocks. This strategy is specifically designed to improve
prediction performance for the two smaller dimensions of
the large linearized array. To demonstrate the process and
limitations of SZ3 interpolation for small blocks, we present
an example using 1D linear interpolation. Although simplified,
this example embodies the core principles applicable to more
complex scenarios like cubic and 3D interpolation.

Consider a dataset in one dimension containing N elements.
SZ3’s interpolation approach happened level by level and begins
by predicting the first data point (d;) using an initial value of 0
for level 0. Then, for level 1, d; is used to predict the final data
point (d ). The interpolation process then proceeds in steps size
S of 27, satisfying the condition:

2"<N—-1, neN
with n decreasing each level. Each S** point, not yet predicted,
is interpolated from adjacent steps (e.g., predict ds41 using dy



and das41). Points outside the interpolation range are handled
through extrapolation.

Q Inner points predict by extrapolation O Points to be predicted
. Inner points predict by interpolation or Outer points
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Fig. 7: Interpolation example of 8 data points.
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Fig. 8: Interpolation example of 9 data points with one padded point.

For small unit blocks partitioned from multi-resolution data,
typically of size 2", we examine a scenario with a block size
of 8, as shown in Fig. 7. Initially, O is used to predict d;, and
d; is used to predict dg for levels O and 1. At level 2, with
an interpolation step size of 4, we aim to use d; and dg to
interpolate ds. However, dy does not exist, forcing us to depend
solely on d; to extrapolate ds, resulting in limited accuracy.
Similarly, at level 3, only d5 is available for extrapolating d;.
After completing the interpolation, it is clear that except for the
outer values d; and dg, 2 out of 6 inner points undergo undesired
extrapolation (highlighted in orange). If the block size is 16, this
sub-optimal prediction affects 3 out of 14 inner points. Since
points predicted at earlier levels are used to predict other points
at subsequent levels, the inaccuracies significantly compromise
overall compression performance.

To address this issue, we propose the application of padding
to the two smaller dimensions of the merged array to enhance
prediction performance and eliminate sub-optimal predictions.
Given that the multi-resolution data typically adhere to a block
size of 2", padding merely requires a single layer of data points
to each of the two smaller dimensions (i.e., padding one point
for the 1D array), thus introducing acceptable data size overhead.
As demonstrated in Fig. 8, for a block size of 8, padding
an additional point dgy effectively eliminates all sub-optimal
predictions for inner data points. It is also important to determine
the pad value, we test using constant, linear, and quadratic
extrapolation. After many experiments, we find that the linear
extrapolation overall produce the best prediction performance,
especially for the relatively smooth dataset.

On the other hand, while padding can enhance prediction
accuracy, it also incurs a size overhead to the data. This overhead

is quantified by (u + 1)2/u?, where u denotes the unit block
size. With u = 4, the overhead amounts to 56%. In this scenario,
padding improves the prediction for 2 out of 3 inner points, but
the overall performance gain remains constrained. Moreover, the
increased dataset size introduces additional time overhead for
compression. Consequently, we opt to implement the padding
approach only when u > 4.

As illustrated in Fig. 18 in §IV-C, our padding strategy,
denoted by the curve labeled “Ours (pad)”, significantly en-
hances the rate-distortion trade-off (PSNR vs. compression ratio)
relative to both the AMRIC and baseline. Moreover, our method
outperforms the offline-only solution TAC, especially at higher
compression ratios.

Improvement 2: Use of adaptive error-bound. We further
improve SZ3’s performance on multi-resolution data by employ-
ing an adaptive error-bound for each interpolation level. This
method accounts for the fact that data points predicted at earlier
levels influence subsequent-level predictions. For example, as
illustrated in Fig. 8, point dy is used for predicting ds, d7,
and dg, highlighting the need for smaller error bounds at early
interpolation levels to boost compression efficiency.

Although the original SZ3 offers an adaptive error-bound
strategy, its coarse granularity limits optimization. Inspired by
the QoZ approach [51], we implemented a more refined adaptive
error-bound strategy for each interpolation level:

eb; = eb- (min(amamlevel—l’ﬁ))_l i

Unlike QoZ, which uses sampling and trial-and-error to select
« and f—a process that introduces overhead—we leverage
the characteristics of multiresolution data for a more assertive
strategy, setting « to 2.25 and ( to 8. These parameters are
larger than those used by QoZ. This method accelerates the
reduction of error bounds for early interpolation levels, particu-
larly for data shapes resulting from linear merges and padding,
typically featuring two smaller and one larger dimension (e.g.,
17x17x8192). The total interpolation level is low for the two
small dimensions, necessitating higher «v and § to attain small
enough error bounds for the initial interpolation levels. Extensive
offline experiment shows that o« = 2.25 and 5 = 8 deliver the
best compression performance in most scenarios.

As illustrated in Fig. 18 in §IV-C, our approach with
padding and adaptive error bound (denoted by the curve “Ours
(pad+eb)”) can further improve the compression performance.
And, as shown in Fig. 5, after the two-step optimization,
our approach notably improves the overall compression and
visualization quality in comparison to the AMRIC and TAC.

B. Error bounded Adaptive post processing

For block-wise scientific compressors like SZ2 and ZFP,
previous studies have made significant strides in optimization
for multi-resolution data. However, there remains scope for
enhancement. Block-wise compressors often produce limited
compression quality and are prone to compression artifacts [52],
as shown in Fig. 9b. To address these issues, we introduce a
fast and effective post-processing solution that enhances the data
quality of block-wise compressors. As shown in Fig. 9c, our post-



(d) Original data, Nyx

(e) SZ2, SSIM=.76, PSNR=116.0

FTIL "L > r

(f) Processed SZ2, SSIM=.85, PSNR=118.1

Fig. 9: Visual comparison (iso-surface and 2D slice) of original data, decompressed data produced by ZFP and SZ2, and after our post-process on
WarpX’s “Ez” field and Nyx’s “density” field. The CR is 139 and 143, respectively.

TABLE I: Comparison of data quality (in PSNR) of original de-
compressed data from ZFP, decompressed data processed by image
smooth/denoise filters, and our solution.

Median
Filter

67.2

Gaussian
Blur

71.6

Decomp.
data

80.5

Anisotropic
Diffusion

74.4

Ours

PSNR 82.9

processing solution significantly reduces compression artifacts
and errors. We will now discuss the challenges posed by block-
wise compressors and detail our post-processing approach.

Challenge: low quality of block-wise compression. The low-
quality issue of block-wise compressors is mainly attributed
to their block-wise nature of dividing the dataset into small
blocks (e.g., 4 x 4 x 4) before the compression. Specifically,
the partition can cause each block to lose spatial information
of its neighboring blocks, losing the opportunity for better
compression quality. Furthermore, the separate processing of
blocks disrupts the coherence of features that span across the
block boundaries, leading to a degradation in data visualization
and quality. It is important to note that, for SZ2, the issue with
blocking artifacts will be more severe for multi-resolution data
than for uniform-resolution data. This is because, for multi-
resolution data, SZ2 needs to reduce its compression block size
from 6 X 6 X 6 to 4 x 4 x 4 to achieve optimal performance [33],
thus leading to more artifacts due to the smaller block size.

Limitation of the image processing filters. Numerous image
smoothing and denoising techniques, such as Anisotropic Diffu-
sion, Gaussian Blur, and Median Filter, are widely used for post-
processing. However, their effectiveness often diminishes when
applied to decompressed data from error-bounded scientific
compressors. This shortfall arises because these filters are
designed for lossy image compressors like JPEG. When used
on scientific data, they can over-smooth the data, leading to
significant detail loss and a marked reduction in PSNR, as
illustrated in TABLE I. This issue stems from the filters’ lack of

- 1
_|| Finelevel di | e Fine level | |
ZFP-block 1 ZFP-block 2
| 3 da ds |
dg |Coarse level
6 ZFP-block 3
[
I

Fig. 10: Example of the multi-resolution data gird when using ZFP
compressor, the gray grid indicates data points and the bold blue box
indicates 4 x 4 blocks partitioned by ZFP.

consideration for the error-bounded nature of the decompressed
data, resulting in a notable deviation from the original dataset.

Improvement: Use post-process to improve the compression
quality. To tackle this challenge, we introduce an adaptive post-
processing technique specifically designed for error-bounded
scientific lossy compressors. This method starts by applying
Bézier curves to exchange spatial information overlooked during
compression among data blocks. It then utilizes the error-bound
properties of the decompressed data and dynamically adjusts
the processing intensity. This strategy markedly improves both
visualization quality (e.g., Structural Similarity Index Measure
(SSIM)) and data quality (e.g., PSNR) of the decompressed
output. Particularly, it excels at mitigating blocking artifacts, a
common drawback of block-wise compression.

We opt for Bézier curves due to their ability to smooth
transitions between points, effectively mitigating discontinuities
or artifacts introduced during compression. Additionally, Bézier
curves are computationally efficient and highly parallelizable,
making them suitable for post-processing needs where computa-
tional speed is important.

A 2D example is illustrated in Fig. 10 using ZFP. Data points
are partitioned into 4 x 4 blocks for compression, isolating them
from points in other blocks. We aim to utilize Bézier curves
to exchange spatial information between adjacent data blocks,



ds
Fig. 11: Example of the Bézier curves for t = 0.5, Qo and Q1 are the
midpoints of dsd4 and dyds. dj is obtained by B(0.5), mid of Qo Q1.

100 - T |
—0— Bezier- -  ZFP

- 90 |- -4a- a=1 —— processed ||
s i |
g 80

70 |- |

60 |- i I | ‘ =

50 100 150 200 250 CR

Fig. 12: Rate-distortion comparison of different post-process ap-
proaches on WarpX using ZFP.

thereby enhancing data quality. Specifically, for decompressed
data at the boundary (e.g., d4), we can leverage its neighboring
point d5 along the x-direction from another block to improve
its quality. This is achieved by constructing a quadratic Bézier
curve with d3, d4, and ds, where d3 and ds are the start and
end points, respectively, and d,4 serves as the control point. The
curve is defined as:

B(t) = (1 —t)%d3 +2(1 — t)tdy + t?ds for 0<t<1
with ¢ being the parameter ranging from O to 1. As ¢ progresses
from O to 1, the Bézier curve formula generates points tracing
the curve’s path from ds to ds. The adjusted d is derived at
t =0.5(dj, = B(0.5)) as shown in Fig. 11. This Bézier curve
approach is applied for each dimension separately and can be
easily extended to multi-resolution scenarios. For instance, in
the y direction, dy and dg would be used to process dy.

Leverage the error-bounded feature in decompressed data.
However, neglecting the error-bounded nature of decompressed
data can significantly reduce the quality of the process, as
illustrated in Fig. 12. Sole dependence on the Bézier curve
(represented by “Bezier”) severely impacts the quality of ZFP
decompressed data, mirroring the limitations encountered with
image filters. For an error-bounded compressor, the decom-
pressed data point d4 must stay within the error bounds eb of the
original data o4. Therefore we have: o4 € [dy — eb,dy + eb].
This condition suggests that when processing dy to d)j, d/; should
fall within [dy — eb, d4 + eb], guaranteeing:

" = max(min(B(0.5), ds + eb),ds — eb)
This formula ensures that d) remains within the error limits,
maintaining the decompressed data’s integrity.

Further improve the process quality using dynamic
limit/intensity. Nevertheless, utilizing the error-bound informa-
tion is still insufficient for achieving optimal post-processing
quality. To enhance the data quality, we must adaptively limit
the actual error bound used in the post-process, eb’ (eb’ = a - eb,
a < 1), making it smaller to control the post-process intensity.

To clarify the necessity of a smaller eb’, we’ll examine a

Blue: better value (closer to o) Red: worse value (far from o)

isituation 1 L

Fig. 13: Example of the impact of setting smaller limit/intensity of
the post-process under different situations, blue color indicates better
post-process outcome and red color indicates worse.

sample scenario. Assume the original data o is larger than
the decompressed data d. Initially, as illustrated at the top of
Fig. 13 (situation 1), there might be cases where the Bézier
curve predicts in the opposite direction (B(0.5) < d). In such
instances, a small a helps prevent d’ from deviating excessively
from original data o. Secondly, as depicted in the middle of
Fig. 13 (situation 2), when the Bézier curve accurately predicts
but overshoots beyond the original data (B(0.5) > o), a smaller
a helps ensure d’ remains closer to o. However, if the Bézier
curve correctly predicts within the bounds (o < B(0.5) < d),
overly reducing a prevents d’ from getting closer to o, as shown
in the bottom of Fig. 13 (situation 3).

We seek to maximize the gain from post-processing:
he(lel=1le') =@ =h)-(e'[—e]) 0<h<1
where h denotes the rate at the Bézier curve does not make
opposite predictions. e and e’ denote the compression errors
before and after post-processing, which can be reformulated as:

maximize h-(Jo—d|—|o—d|)— (1 —=h)-|d —d|,
a
by adjusting a, under the constraint:
d" = max(min(B(0.5),d + a - eb),d — a - eb)

However, finding the optimal @ analytically is not feasible due
to the presence of absolute values in the objective function and
the piece-wise definition of d’. Moreover, obtaining necessary
parameters before compression—Ilike the hit rate h also incurs
additional costs. Thus, we employ a sampling-based numerical
optimization approach to iteratively find the optimal a.

Now we present how the optimal a is dynamically deter-
mined through a lightweight compression sampling process.
Extensive experimentation across various datasets has enabled
us to refine our selection of the best candidate parameters for
our algorithm. Specifically, for SZ2, ay, is narrowed to the
set {0.05,0.1,0.015, ...,0.45,0.5}, and for ZFP, a,s is set to
{0.005,0.01,0.015, ...,0.05}. These values can achieve optimal
or near-optimal performance in most cases, while also being
practical for evaluation. The candidate for ZFP is smaller due to
its underestimation characteristic, which leads to a smaller max
real compression error than the given error bound.

Our methodology starts by sampling i® data blocks of size (j x
blocksize)3, where blocksize refers to the compressor’s block-
wise compression size. We aim for a sampling rate below 1.5%,
sufficient for identifying the optimal ¢ with minimal overhead.

0<a<l.



TABLE II: Rate-distortion comparison of original decompressed data
and our post-process approach on WarpX using SZ2.

CR 273 207 153 126 104 62 34
PSNR-SZ2 67.8 728 79.6 848 90.0 1019 1144
PSNR-Proc’ed  69.8 74.6 81.1 86.2 912 102.6 1149

Then, for each dimension, we utilize stochastic gradient descent
(SGD) to find the optimal a from the candidates that minimize
the overall norm2 compression error.

Fig. 12 shows that our post-processing with dynamic
limit/intensity (denoted by “Process’’) significantly enhances
ZFP decompressed data quality. The “a=1" curve represents per-
formance without the dynamic limit, showing low performance.
Fig. 9 clearly illustrates how our post-processing significantly
enhances data quality through visualization. In addition to ZFP,
TABLE II illustrates our approach’s effectiveness in improving
SZ2’s compressed data quality. Furthermore, our post-processing
can also improve the data quality for global compressors like
SZ3 in multi-resolution scenarios. Because multi-resolution data
need to be partitioned before compression, as discussed in §11I-A.
Detailed performance outcomes will be shown in §IV-B.

C. Uncertainty Visualisation for Compression

In this work, we employ uncertainty visualization to examine
the effects of compression on data. Specifically, we explore
how compression errors influence the positions of isosurfaces,
which are highly sensitive to errors and can be significantly
altered by compression-related inaccuracies. This sensitivity
provides a valuable perspective for deepening our understanding
of compression’s impact on data.

Multiple previous contributions have studied the impact of
uncertainty in data on isosurface visualization [40, 49, 53, 54]. In
this work, we leverage the probabilistic marching cubes idea [49,
53, 55] to gain insight into the effect of compression errors on
isosurface positions. The probabilistic marching cubes algorithm
models per-voxel error as a probability distribution to derive
the spatial probability distribution of isosurfaces. Our primary
objective is to utilize the error distribution of decompressed
data to analyze isosurface uncertainty. In both ZFP and SZ
compressed data, errors follow a normal distribution [56],
especially when the error bound is large [57].

Thus, we focus on the normal distribution in this work, given
our focus on cases with larger error bounds. Modeling uncer-
tainty per voxel as a normal distribution involves determining
the mean and variance of the uncertainty (compression error)
per voxel, which is challenging because the error information
is lost after compression. However, as illustrated in Fig. 3, we
sample the compression error during the compression process
for post-processing needs. This sampled compression error can
also be used to obtain the mean and variance of the error with
minimal overhead by reusing the information.

Isovalue related variance. Given the fact that the data points
close to the isovalue are more likely to be considered for the
isosurface construction. When computing the variance, we focus
on data points with values near the isovalue instead of using all
the sampled points. This approach allows for a more accurate

(a) Original

(b) Decompressed (c) W/ Uncertainty

Fig. 14: Vis of original data, decompressed data (generated by our work-
flow using ZFP, CR = 240), and decompressed data with uncertainty,
cyan/green box highlights the missing/cracking isosurface.

variance calculation for the given isovalue, as the compression
error could depend on the data value.

Having characterized uncertainty with error distribution near
isovalue in decompressed data, we apply the probabilistic
marching cubes techniques [49, 53] to gain insight into spatial
uncertainty in isosurface arising from compression. Fig. 14 illus-
trates how uncertainty visualization helps in understanding the
error in decompressed data. Specifically, Fig. 14a and Fig. 14b
visualize the isosurfaces for the Hurricane dataset [58] extracted
from the original data and decompressed data, respectively.
Fig. 14c visualizes uncertainty in red using our approach for
the decompressed data. The boxes in Fig. 14 highlight the
topological features that are missed/broken in visualization
without uncertainty (Fig. 14b) but are successfully recovered by
the one with uncertainty visualization (Fig. 14c). For example,
the cyan boxes illustrate features that disappear from the original
data in Fig. 14a because of the compression errors, but whose
potential presence is denoted by the red regions in Fig. 14c.
Thus, the visualization of spatial uncertainty mitigates data
misrepresentation arising from compression errors.

This phenomenon occurs because the isosurface is prone to
being pruned due to compression errors, attributed to its binary
nature. A moderate compression error can cause the isosurface
to disappear completely; for example, if all the corresponding
data values fall below the isovalue after compression. On
the other hand, the isosurface uncertainty visualization, as
described in [49, 53], employs a more informative approach.
It enhances visualization by incorporating the uncertainty (i.e.,
error distribution) of the decompressed data, rather than solely
considering the decompressed data itself.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup.

Applications and datasets. We conducted both in-situ and
offline experiments. For the in-situ experiments, we selected
two real-world applications: the Nyx cosmology simulation [59]
and the WarpX electromagnetic simulation [4, 60]. These were
conducted on the Bridges-2 [61, 62], where each node is
equipped with two AMD EPYC 7742 CPUs and 256 GB RAM.
Our experiments utilized 128 cores. Nyx serves as an AMR
application, fully supporting AMR features. WarpX is utilized
for experiments involving adaptive data (derived from uniform-
resolution data) as WarpX does not yet fully support AMR.



In addition to in-situ evaluation, we also evaluated our solution
using five different offline datasets from four distinct appli-
cations to demonstrate our solution’s broad applicability. The
offline evaluation included multi-resolution data with different
resolution levels and density (density refers to the proportion
of data within the entire domain) and uniform-resolution data
as specified in TABLE III. Specifically, we tested the Rayleigh-
Taylor (denoted as“RT”) dataset generated by the IAMR fluid
dynamics simulation [63], the S3D combustion simulation, the
Hurricane Isabel dataset [64], and two additional Nyx datasets
(denoted as “T2” and “T3”) from different timesteps.

TABLE III: Our tested datasets

(Size, Density) per Level  Per-Timestep

Dataset  Property Fine to Coarse Data Size

Nyx-T1 In-situ, AMR fine: (5123, 18%) 3.1GB
2 levels coarse: (256%,82%)

WarpX In-situ, Adpt ~ fine: (2562 x 2048,50%) 6.3 GB
2 levels coarse: (1282 x 1024,50%)

RT Offline, AMR finest: (5123, 15%) 2GB
3 levels medium: (2562, 31%)

coarse: (1283,54%)

Nyx-T2  Offline, AMR fine: (5122, 58%) 7.1GB
2 levels coarse: (256%,42%)

Hurri Offline, Adpt  fine: (5002 x 100, 35%) 1.1GB
2 levels coarse: (2502 x 50,65%)

Nyx-T3  Offline, Uni (5123, 100%) 10 GB

S3D Offline, Uni (512%,100%) 11 GB

Comparison baseline. We evaluate our SZ3MR on both
AMR data and adaptive data generated from uniform-resolution
data. In terms of AMR data, we benchmark our improved
approach against AMRIC’s SZ3 (referred to as “AMRIC-SZ3”
[33]) and TAC’s SZ3 (referred to as “TAC-SZ3”, only for offline
evaluation as it lacks an in-situ option [31]), and the original SZ3
(denote as “Baseline-SZ3”). For adaptive data, our improved
SZ3 is evaluated against the original SZ3 as TAC and AMRIC
do not offer SZ3 implementation for adaptive data.

Further, we first conduct offline evaluations on our adaptive
post-processing technique utilizing both SZ2 and ZFP across
multi-resolution and uniform datasets. It is important to note
that we employ AMRIC’s SZ2 for multi-resolution data due to
its superior compression capabilities compared to zMesh [30]
and TAC. Additionally, we have integrated our post-processing
technique into the AMR application Nyx for in-situ evaluation,
demonstrating that our approach significantly enhances the data
quality of AMRIC-SZ2 through post-processing.

B. In-situ Evaluation

In-situ Evaluation on AMR data compression. As illustrated
in Fig. 15, our SZ3MR (with “pad” and “eb” detailing the
performance of our two-step optimization) outperforms both
the baseline and AMRIC across both refinement levels on
Nyx, particularly at higher compression ratios. However, at the
coarse level and with smaller compression ratios, our SZ3MR’s
performance is slightly worse than the baselines. This is due to

Fine level, density=18% Coarse level, density=82%

0 100

200 300 O 50
—O— Baseline-SZ3 - ©-  AMRIC-SZ3
—=a— Qurs (pad+eb) - - - Ours (processed)

100
*- Ours (pad)

Fig. 15: Rate-distortion comparison on AMR data of our SZ3MR
approaches and baselines using Nyx AMR simulation (Nyx-T1).

the high padding overhead given the smaller unit block size at
the coarse level, as discussed in §III-A.

We also compare the overall output time of our SZ3MR with
that of AMRIC on Nyx. The overall output time consists of (1)
pre-processing (i.e., collecting data to the compression buffer)
and (2) compression and writing the compressed data to the
file system. As shown in TABLE IV, although our compression
speed is slightly lower than AMRIC because of the padding
overhead, our SZ3MR achieves a faster total output speed in
both large and small error-bound settings. The improvement is
primarily attributed to our more efficient pre-processing stage, as
AMRIC’s stacking process is more complex and computationally
intensive, requiring significant data rearrangement.

TABLE IV: Output time of AMRIC and our SZ3MR on Nyx-T1.

Time Comp. &  Total

EB_abs (Sec) Pre-process Writing Time
. AMRIC 1.22 1.62 2.85

5.48+9 (big) Ours 0.49 169 218
AMRIC 1.23 2.30 3.52

27848 (small) "o 0.47 238 285

Our post-processing solution, as shown in TABLE V, signifi-
cantly improves the quality of decompressed data for AMRIC-
SZ2 on Nyx simulation at both resolution levels, with the degree
of improvement being notably greater at higher compression
ratios. Furthermore, as outlined in §1II-A and illustrated by the
“Ours (processed)” curve in Fig. 15, our post-processing also
improves the data quality of SZ3 on multi-resolution data due
to the need for partition. However, the improvement is less
substantial than those achieved with block-wise compressors
SZ2/ZFP. This is because the partition size (unit block size)
for multi-resolution data is larger than the block sizes used by
SZ/ZFP (16 vs. 4), resulting in less room for improvement.

TABLE V: Rate-distortion comparison of decompressed data and our
post-process solution on both levels of Nyx-T1 using AMRIC-SZ2.

CR 270 165 113 73 28

Fine PSNR-AMRIC-SZ2 481 546 59.7 648 7741
PSNR-Post-SZ2 501 569 618 665 77.6

CR 128 98 63 36 24

Coarse  PSNR-AMRIC-SZ2 253 283 335 40.7 465
PSNR-Post-SZ2 278 31.0 36.0 419 46.9

In-situ evaluation on adaptive data compression. Regarding
adaptive data derived from uniform data, Fig. 17 (left) shows our



(a) Original data

(b) SZ3, CR=147, SSIM=0.662, PSNR=75.5

(c) Ours, CR=147, SSIM=0.904, PSNR=86.9

Fig. 16: Visual comparison (iso-surface) of original data and decompressed data produced by original SZ3 and our SZ3MR on WarpX (“Ez” field).

in-situ experiments with WarpX, demonstrating that our SZ3MR
outperforms the original SZ3 baseline in most cases, except at
lower compression ratios. It’s important to note that AMRIC-
SZ3 and TAC-SZ3 were not compared in this context due to
their lack of support for adaptive data. Furthermore, as shown in
Fig. 16, our SZ3MR notably enhances the compression quality
(in terms of both PSNR and SSIM) and reduces visualization
artifacts, offering a clear improvement over the baseline.

WarpX Hurricane
T T
110 110 9§ =
z
5 90 80 |- -
o
70 50— O T 1
CR | | | | l
0 100 200 300 O 100 200

’+Baseline—SZ3 - Ours (pad) —&— Ours (pad+eb) ‘

Fig. 17: Rate-distortion comparison on adaptive data of our SZ3MR
and baselines using WarpX (in-situ) and Hurricane (offline) datasets.

C. Offline Evaluation

SZ3-MR on multi-resolution data. As illustrated in Fig. 18,
our method, after the two-step optimizations, outperforms all
three baselines for both the Nyx-T2 and RT AMR datasets. It’s
observed that the AMRIC solution underperforms compared
to the baseline on the RT dataset. We attribute this to the RT
dataset having an additional refinement level compared to Nyx-
T2, resulting in sparser data and more unsmooth boundaries
due to merging non-adjacent blocks, leading to increased
mispredictions. Also, note that when the compression ratio is
low, TAC yields slightly better performance than our solution
on Nyx-T2, but its advantage is almost negligible on the RT
dataset. This is because the RT has a smaller data size for each
resolution level. Since TAC must compress the processed blocks
with different shapes separately for each level (as mentioned in
§III-A), the smaller data size will severe the encoding overhead
issue of TAC and lead to a low compression ratio.

Regarding adaptive data derived from uniform data, as
shown in Fig. 17 (right), our adaptive error-bound solution
offers limited enhancements until the high compression ratio.
However, our padding technique consistently delivers significant
improvements over the baseline across all compression ratios
in the Hurricane dataset. We attribute this performance to the
dataset’s relative sparsity (i.e., numerous zero points), which
enhances compressibility and offsets the padding overhead.

We also evaluated SZ3MR using application-specific power
spectrum analysis on the Nyx-T2 dataset (see [31, 65] for more

Nyx

PSNR

120

200 0 100
—O— Baseline-SZ3 - ¢~ AMRIC-SZ3 -8-- TAC-SZ3
*- Ours (pad) —&— Ours (pad+eb)

Fig. 18: Rate-distortion comparison on offline AMR data of our SZ3MR
and baselines using Nyx-T2 and RT datasets.

details on power spectrum analysis in Nyx). We compared the
power spectrum p’(k) of decompressed data with the original
p(k). Typically, a maximum relative error threshold of 1% is
considered acceptable for all £ < 10. Table VI shows that under
the same compression ratio, SZ3MR achieves a lower power
spectrum error (including both the max and average errors for all
k < 10) compared to all three baselines. Specifically, SZ3MR
reduces the max power spectrum error by 75%, 76%, and 73%,
and reduces the average error by 74%, 60%, and 62% compared
to the original SZ3, AMRIC, and TAC, respectively, at the same
compression ratio.

TABLE VI: Max and average power spectrum error comparison of our
SZ3MR and baselines on Nyx-T2 under same CR for all £ < 10.

Baseline-SZ3  AMRIC-SZ3  TAC-SZ3  Ours(pad+eb)
Avg Rel Error 8.8E-03 5.7E-03 6.0E-03 2.3E-03
Max Rel Error 2.7E-02 2.8E-02 2.5E-02 6.7E-03

Post process for multi-resolution data. As illustrated in
TABLE VII, our post-process approach enhances the data quality
in terms of PSNR for both the Hurricane and RT datasets across
all compression ratios, with both SZ2 (optimized by AMRIC for
multi-resolution data) and ZFP. Note that PSNR improvement
is relatively modest at low compression ratios (e.g., under 30)
because a lower CR indicates higher decompressed data quality,
leaving limited room for improvement. When the compression
ratio is low, our dynamic post-process approach can apply a
conservative degree of post-processing intensity to ensure the
original data quality remains uncompromised.

Post process for uniform resolution-data. Our post-
processing method, as previously mentioned, demonstrates
broad applicability, making it suitable for processing both
uniform-resolution data and multi-resolution data from block-
wise compressors. As shown in TABLE VIII, and in alignment
with our previous observations, our post-processing consistently
enhances the data quality of the original SZ2 and ZFP outputs



TABLE VII: Rate-distortion comparison of original decompressed data
and our post-process approach on multiresolution datasets Hurricane
and RT using ZFP and AMRIC-SZ2.

CR 184 143 118 72 43 27
ZFP PSNR-Ori 342 412 453 541 636 742
RT PSNR-Post 36.7 43.9 477 554 642 745
CR 257 180 122 75 40 22
Sz2 PSNR-Ori 352 405 458 533 648 782
PSNR-Post 37.2 425 476 546 656 78.6

CR 240 147 94 64 27 18

ZFP PSNR-Ori 401 437 478 526 685 80
Hur PSNR-Post 421 456 495 53.8 69.2 80.5
CR 170 121 108 73 38 23
Sz2 PSNR-Ori 419 443 453 499 624 758
PSNR-Post  43.2  45.9 47 515 633 764

for both the uniform resolution datasets Nyx-T3 and S3D.

TABLE VIII: Rate-distortion comparison of original decompressed data
and our post-process approach on uniform resolution dataset S3D and
Nyx-T3 using ZFP and SZ2.

CR 138 106 87 70 55 32
ZFP PSNR-Ori 48.4 62.7 73.4 83.7 94 115.6
s3D PSNR-Post 51 65.9 75.4 84.8 94.7 115.9
CR 229 180 135 81 59 40
Sz72 PSNR-Ori 64.9 67.7 72.8 90.8 1042 1158
PSNR-Post 67.5 70.2 74.7 91.4 1044 116.0
CR 149 116 73 56 41 22
ZFP PSNR-Ori 107.3 1121 1205 1248 129.2 1383
Nyx PSNR-Post  109.3 1142 1228 126.8 1309 139.2
CR 214 143 94 53 34 13
Sz2 PSNR-Ori 112.5 116 119.7 1248 1289 1403
PSNR-Post 1145 118.1 1217  126.7 1306 1413

Post process overhead. Our post-processing solution is effi-
cient and highly parallelizable, as mentioned in §1II-B, thereby
introducing minimal overhead to the compression workflow. We
employ OpenMP to accelerate our post-processing approach
and assess its overhead using both SZ2 and ZFP, which are
also optimized with OpenMP. It is important to note that
using OpenMP with SZ2 can lead to a lower compression
ratio due to the embarrassingly parallel. Thus, we have also
conducted evaluations using the serial SZ2. As demonstrated in
the last column of TABLE IX, our post-processing introduces
an overhead of only about 1.3% for serial SZ2 and 3.5% for
SZ2/ZFP with OpenMP acceleration, respectively, under various
compression ratios, utilizing 64 cores.

TABLE IX: Execution time of original compression workflow (columns
1 and 2) and post-processing (columns 3 and 4) on S3D.

a ~ = °

o %.§ © g ) 3
£ E Es 3 =t = £io
o Q9o @ 2 = =9 r=iri]
o = o3 n o+ o oL we [
o - =) 3 < I © oL
ZFP Small 077 1.403 0.009 0.050 2175 0.059 0.027
(OpenMP) Mid 0.79  1.081 0.010  0.051 1.876  0.061 0.033
P Large 0.80 0.948 0.012 0.049 1.749 0.061 0.035
572 Small 078  0.411 0.010 0.034 1.190 0.044 0.037
(OpenMP) Mid 0.84 0.371 0.008 0.034 1.208 0.042 0.035
P Large 079 0.283 0.007 0.033 1.072 0.039 0.037
sz2 Small 0.82 5.199  0.031 0.042 6.015 0.073 0.012
(Serial) Mid 0.81 4585 0.028 0.041 5399 0.069 0.013
Large 0.85 3.637 0.021 0.039 4485 0.061 0.013

Specifically, the original compression workflow (columns
1 and 2) includes reading the original file, compression and

decompression, and writing the decompressed file. Our post-
processing involves sampling, (de)compressing the sampled data,
modeling the optimal parameter before compression (column
3), and post-processing after decompression (column 4). The
efficiency of our approach is due to the high parallel efficiency of
the Bézier curve and our effective implementation. As detailed
in column 3 of TABLE IX, our sampling and modeling process
incurs very low overhead for SZ2/ZFP with OpenMP. For serial
SZ2, the sampling and modeling times are higher due to slower
(de)compression speed, which, further minimizes our relative
overhead. Moreover, our post-processing speed is notably fast,
as shown in column 4. Note that the post-processing speed for
ZFP is slower due to its smaller block size compared to SZ2,
which increases processing intensity.

V. CONCLUSION AND FUTURE WORK

This paper introduces a workflow for multi-resolution data
compression, applicable to both uniform and AMR simulations.
Initially, the workflow employs a compression-oriented ROI
extraction approach to enable multi-resolution methods for
uniform data. We further propose adaptive padding and dynamic
processing to improve the efficiency of three distinct compres-
sors for multi-resolution data and improve the compression ratio
of SOTA approaches by up to 3.3 x under the same data quality.
In addition, an advanced uncertainty visualization method is
integrated to evaluate the compression impacts. In the future,
we aim to investigate how to effectively apply our workflow to
sparse data, given that each individual level of multi-resolution
data essentially constitutes sparse data. We will also study how
our workflow can preserve application-specific post-analysis
quality such as Halo-finder. Additionally, we plan to explore
post-processing curves beyond the Bézier curve and incorporate
other visualization methods (e.g., volume rendering) to expand
the scope of our uncertainty visualization for compression.
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Appendix: Artifact Description

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS
A. Paper’s Main Contributions

C1  We propose SZ3MR, an optimization of the state-
of-the-art global lossy compressor SZ3 for multi-
resolution data, using dynamic padding and adaptive
error bounds within the SZ3 compressor to improve
prediction accuracy and compression quality.

C>  We develop an efficient and effective error-bounded
post-processing solution that leverages spatial infor-
mation across each compressed block to significantly
enhance the quality of block-wise compressors.

Cs  We investigate the uncertainty introduced by lossy
compression by integrating a cutting-edge uncer-
tainty visualization technique. To better understand
how compression affects the data via visualization.

B. Computational Artifacts

Aj_3 https://github.com/FabioGrosso/SC24-MRZ-image
Aj_3 https://github.com/FabioGrosso/SC24-MRZ
As  https://github.com/wangzhezhe/UCV

Artifact ID  Contributions Related
Supported Paper Elements
A C Figures 15, 17, 18
Table 4
Ay Oy Tables 6-8
As; Cs Figure 14

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Aq
Relation To Contributions
See TABLE I-B for relations among each artifact, contribu-
tion supported, and related paper elements.
Expected Results

The expected results of the experiments should be consistent
with those of the main paper. Specifically, our SZ3MR yields
better compression performance than all three baselines (Orig-
inal SZ3, TAC’s SZ3, and AMRIC’s SZ3) on multi-resolution
data, especially at high compression ratios. Additionally, our
SZ3MR should offer improved output speed over AMRIC’s
SZ3 in in-situ AMR data compression.

Expected Reproduction Time (in Minutes)

The expected computational time for this artifact is approx-
imately 17 min, including around 5 min for Artifact Setup,
10 min for Artifact Execution, and 2 min for Artifact Analysis.

Artifact Setup (incl. Inputs)

Hardware: Processor: > 96 cores; Storage: > 128 GBs;
Memory: > 192 GB RAM

Software: gcc/9.4.0 (or 9.3.0); cmake (>3.23);

OpenMPI/4.1.1; python/3.8; hdf5/1.12.2;

Our SZ3MR, baselines AMR compressors (TAC and AM-
RIC), original SZ3, Nyx and WarpX simulations (all packed):
(https://github.com/FabioGrosso/SC24-MRZ)

Datasets / Inputs: To save the user’s time on in-situ
evaluation, we have pre-run the Nyx and WarpX sim-
ulations to obtain checkpoint files from later timesteps.
These checkpoint files have been included in the artifact.
Other needed datasets for the offline evaluation can be
obtained at (https://sdrbench.github.io/) and in the artifact
(https://github.com/FabioGrosso/SC24-MRZ-image).

Installation and Deployment: To streamline the review
process, we prepared a Singularity image for the evaluation.
The user need to install Singularity, download our pre-built
Singularity image file, and then run the Singularity image file
to start the evaluation. Authors can also build from source
(or we can provide a pre-built version on Chameleon Cloud),
which requires first installing CMake, numpy, and OpenMPI.
Then, install the original SZ3 compressor, our SZ3MR, and
baselines (TAC and AMRIC). Lastly, the Nyx and WarpX
simulations need to be installed.

Artifact Execution

The workflow consists of three tasks: 17, 15, and T3, with
dependencies 77 — 1% and 77 — 7T35. Task T3 is first
performed to generate decompressed data using our SZ3MR
and the baselines. Subsequently, 75 evaluates the compression
ratio and decompressed data quality in terms of PSNR for our
SZ3MR and the baselines. Task T3, following 77, measures
the execution speed of our SZ3MR and the AMRIC baseline.
Regarding experimental parameters, we utilize the same input
data size and error bound as in the main paper, given the
use of identical input data. The detailed input parameter will
be included in scripts for ease of use. The workflow will
be executed multiple times on different applications using
different error bounds to generate the rate-distortion curve.

Artifact Analysis (incl. Outputs)

T5 will output the ratio-distortion of our SZ3MR and the
baselines, with our SZ3MR expected to demonstrate superior
performance compared to the baselines, as evidenced by the
results in Figures 15, 17, and 18. T3 will measure the execution
speed of our SZ3MR and the baseline, with our SZ3MR
achieving faster speeds, replicating the findings in Table 4.

B. Computational Artifact Ay
Expected Results

The expected results of the experiments are consistent with
the main paper. Specifically, our post-processing solution can
enhance the data quality from SZ2 and ZFP compressors under
different compression ratios. Our post-processing solution also
introduces low overhead. We will provide scripts to extract and
output the results of the experiment.
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Expected Reproduction Time (in Minutes)

The expected computational time for this artifact is approxi-
mately 8 min, including around 5 min for Artifact Setup, 2 min
for Artifact Execution, and 1 min for Artifact Analysis.

Artifact Setup (incl. Inputs)

Hardware: Same as Aj.

Software: Part of the required software is already fulfilled
by A;. The new software needed includes our post-processing
solution and the SZ2/ZFP compressors, also available at
https://github.com/FabioGrosso/SC24-MRZ.

Datasets / Inputs: Same as A;.

Installation and Deployment: Similar to Ay, As is also
included in the pre-built Singularity image. To build A,
from the source, the users need to install the SZ2 and ZFP
compressors after completing the evaluation of Aj.

Artifact Execution

The workflow consists of three tasks: 1%, 15, and 13. Such
that 77 — 7% and 177 — 7T3. Task 77 is initially performed
to generate original decompressed datasets and post-processed
datasets using our post-processing solution. Subsequently, 75
outputs the data quality of the original decompressed data and
our post-processing solution. Task 73, following 77, outputs
the execution time of our post-processing solution and the
SZ2/ZFP compressor. For experimental parameters, we utilize
the same input data size due to the identical input data. We
also apply the same error bounds as in the paper. The detailed
input parameter will be included in scripts. The workflow will
be executed multiple times on different datasets using different
error bounds.

Artifact Analysis (incl. Outputs)

T, will output the post-processed data quality, consistently
surpassing that of the original decompressed data, thus repli-
cating the results presented in Tables 6-7. T3 will assess the
efficiency of our post-processing solution, demonstrating its
minimal overhead, in alignment with Table 8. We will provide
scripts to extract and output the results of the experiment.

C. Computational Artifact A3
Expected Results

The expected results of the experiments are consistent with
the main paper. Specifically, our uncertainty visualization can
reproduce Figure 14 in the paper.

Expected Reproduction Time (in Minutes)

The expected computational time for this artifact is approxi-
mately 8 min, including around 5 min for Artifact Setup, 2 min
for Artifact Execution, and 1 min for Artifact Analysis.

Artifact Setup (incl. Inputs)

Hardware: Same as A;.

Software: Part of the required software is already
fulfilled by A;. The new software needed are
ParaView: https://github.com/Kitware/ParaView/ and UCV:
https://github.com/wangzhezhe/UCV.

Datasets / Inputs: The dataset will be fulfilled by A,
andA».

Installation and Deployment: Download and compile Par-
aView first, then download and compile the UCV using
ParaView’s library. After that, run ParaView and load the UCV
plugin to visualize the decompressed data with uncertainty.

Artifact Execution

The workflow consists of three tasks: 17 and 715, with the
sequence 17 — T5. Task T} is performed to generate decom-
pressed data and model the uncertainty of the decompressed
data. Then, 75 involves visualizing the iso-surface of both the
original and decompressed data. Subsequently, 75 outputs the
uncertainty visualization (Fig. 14c) of the decompressed data
using the modeled uncertainty. For experimental parameters,
we adhere to the same error bound (i.e., 0.0005) and iso-value
(i.e., 0.00006) as in the paper.

Artifact Analysis (incl. Outputs)

T, will visualize the original, decompressed, and decom-
pressed data with uncertainty, aiming to replicate Fig. 14 in
the paper. The visualization will be saved in PNG files under
the current directory.


https://github.com/FabioGrosso/SC24-MRZ
https://github.com/Kitware/ParaView/
https://github.com/wangzhezhe/UCV

Artifact Evaluation (AE)

Artifact DOI: 10.5281/zenodo.13272693

We provide a Singularity container image to enhance re-
producibility. While preparing the artifacts, we executed them
on a single node from the Chameleon Cloud (https://www.
chameleoncloud.org/), equipped with two Intel(R) Xeon(R)
Platinum 8380 CPUs and 256 GB RAM (specifically, the
compute_icelake_r650 instance). To ensure a clearer
and more streamlined workflow, as well as good reproducibil-
ity, we focus on reproducing the principal parts of the evalu-
ation (see artifact analysis for more details).

A. Computational Artifact Aq

Artifact Setup (incl. Inputs)

b
2)

3)

Install Singularity (https://singularity-tutorial.github.io/
O1-installation/).

Download the pre-built Singularity image via Github.

$ git clone https://github.com/FabioGrosso\
/SC24-MRZ-1image

$ cat SC24-MRZ-image/mrz.part.x > mrz.sif

Build the image file (need root privilege).

$ sudo singularity build --sandbox mrz mrz.sif

Artifact Execution

0)

1.1)

1.2)

1.3)

2.1)

2.2)

Run the ima%e file (need root privilege) and set up
environmental variables.

$ sudo singularity shell --writable mrz
export OMPI_DIR=/opt/ompi

export OMPI_VERSION=4.1.1

export PATH=$OMPI_DIR/bin:S$PATH

export LD_LIBRARY_PATH=SOMPI_DIR/1lib:\

$LD_LIBRARY_PATH

export LD_LIBRARY_PATH=/opt/zfp/build/lib:\
$LD_LIBRARY_PATH

export MANPATH=$OMPI_DIR/share/man:S$SMANPATH
export C_INCLUDE_PATH=/opt/ompi/include:\
$C_INCLUDE_PATH

export CPLUS_INCLUDE_PATH=/opt/ompi/include:\
$CPLUS_INCLUDE_PATH

export OMPI_ALLOW_RUN_AS_ROOT=1

export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM=1

export DISPLAY=:99

Run NYX with no compression, original SZ3 compres-
sion, AMRIC, and ours (2 iterations, 8 mins).

$ cd /home/nyx256/

$ . go.sh

Compare 1/0 performance between AMRIC and ours in
NYX.

$ cd /home/nyx256/otfile

$ . io.sh

Evaluate NYX’s data quality and compression ratio for
Baseline-SZ3, AMRIC-SZ3, and ours.

$ cd /home/nyx256/run

$ . decomp.sh

$ . qualityCR.sh

Run WarpX with no compression, original SZ3 com-
pression, and ours (2 iterations, 3 mins).

$ cd /home/wpx/

$ . go.sh

Evaluate WarpX’s data quality and compression ratio for
Baseline-SZ3, and ours.

$ cd /home/wpx/diags

$ . decomp.sh

3.1)

3.2)

b

2)

3)

4)

$ . qualityCR.sh

Compress RT data using with Baseline-SZ3, AMRIC-
S73, TAC-SZ3, and ours.

$ cd /home/rtamr/

$ . go.sh

Evaluate RT data quality and CR for Baseline-SZ3,
AMRIC-SZ3, TAC-SZ3, and ours.

$ . qualityCR.sh

Artifact Analysis (incl. Outputs)
The expected results for step 1.2 are:

Kk kkkokkxkxkkkkxx Error Bound 1 &k xkkkkkxkkkkxx
Writing Time for Ours
Ours Preprocess time = 0.29 seconds

Ours Compression+Writing time = 1.76 seconds
Ours Total time = 2.06 seconds

Writing Time for AMRIC
AMRIC Preprocess time = 0.90 seconds

AMRIC Compression+Writing time = 1.52 seconds
AMRIC Total time = 2.39 seconds

This should be consistent with Table 4 in the paper, that
our solution has lower pre-process and total time than
AMRIC.

The expected results for step 1.3 are:
kkhkkkhkkxhkhkxxkkx*x Error bound 1 *xrkxkkxxk*xxk**

Data Quality and CR for Baseline-SZ3

PSNR: 54.56 | Compression Ratio: 165.22
7777777777 Data Quality and CR for AMRIC-SZ3
PSNR: 54.83 | Compression Ratio: 200.96
7777777777 Data Quality and CR for Ours (pad+eb)
PSNR: 60.62 | Compression Ratio: 302.75

The results replicate Figure 15 (left, Fine level) for high
compression ratios (CR) in the paper, demonstrating that
our solution (pad+eb) achieves higher PSNR and CR
compared to Baseline and AMRIC-SZ3.

We focus on the fine level of AMR data, which is more
critical within the dataset. Additionally, we emphasize
high CR, as our solution is particularly efficient towards
high CR scenarios.

The expected results for step 2.2 are:

Akkkhkhkkhkhkkhkrhkrkhkxk*x Brror bound 1 *xkkkhkkkkkkhkkkk

Data Quality and CR for Baseline-SZ3

PSNR: 69.24 | Compression Ratio: 193.45
7777777777 Data Quality and CR for Ours (pad+eb)
PSNR: 81.27 | Compression Ratio: 226.75

The results replicate Figure 17 (left, WarpX) for high
CR, demonstrating that our solution (pad+eb) achieves
higher PSNR and CR compared to Baseline-SZ3.

We focus on WarpX as it enables in-situ compression
using real-world applications. We also emphasize high
CR as our solution focuses more on high CR scenarios.

The expected results for step 3.2 are:
kkhkkkhkkxhkkxkxkxx*x Error bound 1 *x**xk*xxk*kxk**

Data Quality and CR for Baseline-SZ3

PSNR: 30.48 | Compression Ratio: 121.95
7777777777 Data Quality and CR for AMRIC-SZ3 --
PSNR: 30.06 | Compression Ratio: 114.08


https://www.chameleoncloud.org/
https://www.chameleoncloud.org/
https://singularity-tutorial.github.io/01-installation/
https://singularity-tutorial.github.io/01-installation/

—————————— Data Quality and CR for TAC-SZ3 —----
PSNR: 30.80 | Compression Ratio: 148.15
—————————— Data Quality and CR for Ours (pad+eb)
PSNR: 35.56 | Compression Ratio: 176.98

These should replicate the result in Figure 18 (right, RT)
for high CR, demonstrating that our solution (pad+eb)
achieves higher PSNR and CR compared to Baseline-
SZ3, AMRIC-SZ3, and TAC-SZ3.

We focus on the RT dataset to encompass a broader
range of dataset types for artifact evaluation.

B. Computational Artifact As

Artifact Setup (incl. Inputs)

Same as Aj.

Artifact Execution

0)

1.1)

1.2)

2.1)

2.2)

2.3)

Run the image file (skip if already run for A;).
$ sudo singularity shell —--writable mrz

Compress/decompress multi-resolution dataset Hurri-
cane using SZ2/ZFP with our post-process.

$ cd /home/post-mr/

$ . go.sh

Evaluate Hurricane data quality and CR for original SZ2,
ZFP, and with our post-process.

$ . qualityCR.sh

Compress/decompress uniform-resolution dataset S3D
using SZ2/ZFP with our post-process.

$ cd /home/post-uni/
$ . go.sh

Evaluate S3D data quality and CR for original SZ2, ZFP,
and with our post-process.

$ . qualityCR.sh

Evaluate the run time of the original compression and
post-processing on S3D using ZFP and SZ2 (Serial).

$ . time.sh

Artifact Analysis (incl. Outputs)

1Y)

2)

Artifact Analysis (incl. Outputs)

The expected results for step 1.2 are:

**xxx*x%+ Data Quality and CR for ZFP xxx%*xx
————————————— Error bound 1 ———————————-
Compression Ratio: 240

PSNR-Ori: 40.11

PSNR-Post: 42.19

**xxx*x*%+ Data Quality and CR for SZ2 xxx**xx%
————————————— Error bound 1 —-————-—————-
Compression Ratio: 170

PSNR-Ori: 41.87

PSNR-Post: 43.27

This should replicate the bottom half of Table 6 (Hur)
in the paper (first two columns), showing that our post-
processing improves the PSNR of both ZFP and SZ2.

The expected results for step 2.2 are:

**xxx*x*%+ Data Quality and CR for ZFP sxx***%
————————————— Error bound 1 ———————————-
Compression Ratio: 106

PSNR-Ori: 62.74

PSNR-Post: 65.90

**xxx*x*+ Data Quality and CR for SZ2 xxx**%%

————————————— Error bound 1 -—-—————————-
Compression Ratio: 180

PSNR-Ori: 67.72

PSNR-Post: 70.16

This should replicate the upper half of Table 7 (S3D,
2nd and 3rd columns) in the paper, showing that our
post-processing improves the PSNR of ZFP and SZ2.
We chose the S3D dataset to cover a broader range of
datasets, and its output will also be used to reproduce
Table 8 in step 2.3.

3) The expected results for step 2.3 are:

Singularity> . time.sh
*hkkhkkhkkhkkrkrxkhkx*x Brror BounNd 1 **xkxkkrkkkkkkkkhkx

--Time of post-processing and ZFP (OpenMP) —-

5. Time taken by Ori is: 1.883 sec
6. Time taken by Extra is: 0.096 sec
Overhead: 0.051

—-—-Time of post-processing and SZ2(Serial)--—-

5. Time taken by Ori is: 5.790 sec

6. Time taken by Extra is: 0.094 sec
Overhead: 0.016

KKK kkkkkxkkkkxx Error Bound 2 &k xkkkkkkkokokkkx
—-Time of post-processing and ZFP (OpenMP)-—

5. Time taken by Ori is: 4.469 sec

6. Time taken by Extra is: 0.093 sec
Overhead: 0.021

—-—-Time of post-processing and SZ2(Serial)---

5. Time taken by Ori is: 8.121 sec
6. Time taken by Extra is: 0.091 sec
Overhead: 0.011

The results are consistent with Table 8, specifically for
the rows ZFP(OpenMP) and SZ2(Serial), demonstrating
that our post-processing introduces minimal overhead,
less than 5% for most cases. Note that the speed may
fluctuate due to potential system performance instability.
We focus on the Serial SZ2 because SZ2 with OpenMP
results in a lower compression ratio, owing to its em-
barrassingly parallel nature.

C. Computational Artifact A3

Artifact Setup (incl. Inputs)
Same as A;. A3z should be executed after step 2.1 of As.

Artifact Execution

Compute the uncertainty of the decompressed hurri-
cane data. And generate visualizations of original data (fig-
14a.png), decompressed data (fig-14b.png), and decompressed
data with uncertainty (fig-14c.png).

$ cd /home/vis
$ . go.sh

Artifact Analysis (incl. Outputs)

Three images will be will generated: fig-14a.png, fig-
14b.png, and fig-14c.png. These images reproduce the uncer-
tainty visualization presented in Figure 14 of the paper.
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