Proceedings of the 58th Hawaii International Conference on System Sciences | 2025

Collecting, Linking, and Assessing Machine Learning Open-Source
Software: A Large Scale Collection and Vulnerability Assessment Pipeline

Ben Lazarine Srikar Pulipaka
Indiana University Indiana University
belazar@iu.edu spulipa@iu.edu

Abstract

In recent years, Artificial Intelligence (Al) has
seen rapid advances in performance and impact,
disrupting major industries, including finance and
healthcare. Machine learning open-source software
(MLOSS) platforms such as GitHub and Hugging Face
have contributed significantly to this advancement,
enabling Al developers to share, reuse, and collaborate
on Al development. While these platforms accelerate
Al development, the MLOSS assets they host also
contain vulnerabilities that can impact applications
that leverage them. To map the MLOSS landscape
and understand the vulnerabilities contained within
MLOSS on platforms such as GitHub and Hugging Face,
we have developed an MLOSS Collection Pipeline.
Our pipeline has collected 373,634 models from
Hugging Face and 39,115 repositories from GitHub and
identified 6,751,739 vulnerabilities. The results of our
pipeline offer several promising directions for future
research, including vulnerability linking analysis and
cross-platform vulnerability propagation identification.

Keywords: Artificial Intelligence, = Open-source
Software, Cybersecurity, Al Risk Management.

1. Introduction

Artificial Intelligence (AI) has staked its ground as a
critical and disruptive technology over the last decade.
Significant quanities of Al development has moved to
open-source platforms such as GitHub and Hugging
Face (Gonzalez et al. 2020, Kathikar et al. 2023). These
platforms host a range of machine learning open-source
software (MLOSS) assets that support Al applications
in each stage of their development. GitHub repositories
host documentation, data, conventional source code, and

URI: https://hdl.handle.net/10125/108884
978-0-9981331-8-8
(CC BY-NC-ND 4.0)

H{CSS

Ramesh Venkataraman
Indiana University
venkat@iu.edu

Sagar Samtani
Indiana University
ssamtani @iu.edu

Al-specific source code that support the construction
of training datasets, model architectures, model source
code, and model training and evaluation processes.
Hugging Face hosts data, pre-trained model parameters,
and model inference endpoints that support the use of
powerful pre-trained models (e.g., Llama 3), facilitate
the integration of pre-trained models into applications,
and allow for such models to be fine-tuned for new uses.

While MLOSS assets significantly accelerate the
development of Al, they also bring a unique set of
security risks and challenges. Firstly, MLOSS assets
are faced with security risks that affect traditional OSS,
such as susceptibility to software supply chain attacks
(Ladisa et al. 2023), exposing vulnerabilities for public
discovery (Go et al. 2023), and malicious contributions
directly to repositories and libraries (Goodin 2024).
In the context of Al, the potential impact of these
security risks is amplified as Al is often deployed in
high-impact applications (Bengio et al., 2023). In
addition to traditional OSS vulnerabilities, MLOSS
faces Al-specific vulnerabilities such as insecure
deserialization, insecure model training, and insecure
inference endpoints. These vulnerabilities introduce a
new set of attack vectors that hackers can exploit to
steal sensitive data and manipulate model performance
(MITRE 2023). Indeed, the AI Risk Management
Framework (RMF) produced by the National Institutes
of Standards and Technology (NIST) has clearly
indicated the need to effectively govern, map, measure,
and manage the security risks associated with Al source
code and models. Thus, an infrastructure to collect
Al model source code and assess their vulnerabilities
is critically needed to facilitate important research that
aligns with the principles of NIST’s Al RMF.

In this paper, we present our MLOSS Collection
Pipeline developed to systematically collect, link,

Page 403

and assess prevailing MLOSS assets to build a
comprehensive view of the MLOSS landscape and
its associated security risks. Our pipeline has
resulted in a collection of 373,634 Hugging Face
models, 39,115 associated GitHub repositories, and
6,751,739 vulnerabilities. The pipeline opens promising
opportunities for research and practice, providing
researchers with the data required for Al security
studies, such as linking static vulnerabilities to
dynamic vulnerabilities and cross-platform vulnerability
propagation. In addition, the results produced from
the pipeline offer a significant practical contribution to
security teams at organizations looking to integrate Al
into their GitHub or Hugging Face by helping them map
the risks they may be introducing.

The remainder of this paper is as follows.
First, we review MLOSS platforms, prevailing Al
vulnerability scanners, and existing MLOSS data
collection approached and challenges. Second, we
present our MLOSS Collection Pipeline. Third, we
present the results of our data collection. Fourth, we
discuss several research and practice opportunities that
our collection enables, and lastly, we conclude the paper.

2. Machine Learning Open-Source
Software Platform Review

2.1. Machine Learning Open-Source Software
Platform Overview

Two major OSS platforms that support MLOSS
are social coding repositories (SCRs) and model
hubs. Table 1 describes these platforms, the MLOSS
components they support, the associated portions of
Al application development pipelines they support, and
relevant examples.

Table 1. MLOSS Platform Summary

Platform Description MLOSS Assets Al Examples
Application
Social Platforms Documentation, Data GitHub,
Coding for hosting data, curation, GitLab
Repositorie§y and sharing conventional model
documentation, source code, training,
data, and code Al-specific model
source code validation
Model Platforms for Data, pre-trained Data Hugging
Hubs hosting and model curation, Face,
sharing data parameters, model PyTorch
sets and ML model inference deployment, Hub,
models endpoints monitoring TensorFlow
Hub

Across SCRs and model hubs, Al developers can
share, access, and collaborate on a comprehensive set
of MLOSS assets needed to support an end-to-end
Al application development pipeline, including data
curation, model training, model validation, model

deployment, and monitoring. SCRs host thousands
of AI repositories with MLOSS assets that can
be reused, including documentation detailing model
construction, training, and usage details, training
datasets, conventional source code, and Al-specific
source code (e.g., PyTorch (Paszke et al. 2019) and
TensorFlow (Dillon et al. 2017). Model hubs host
hundreds of thousands of pre-trained ML models that
can be used, downloaded, and fine-tuned, in addition
to offering training datasets and services to deploy and
inference ML models. Each platform is described
further in the following subsections.

2.1.1. Social Coding Repositories SCRs offer
developers a platform to collaborate and form
communities for various application areas (Dabbish et
al. 2012). For the remainder of this paper, we focus
on GitHub as our primary SCR of interest, as it is a
primary SCR leveraged by the Al community (Gonzalez
et al. 2020). GitHub offers a rich set of metadata for
repositories its hosts detailing their social engagement,
contents, descriptions, and key statistics (illustrated in
Figure 1 and Table 2).

Implementation of Graph
Convolutional Networks in
TensorFlow

train.py
README.md
) requirements.txt

setup.py

(1] README MIT license

Graph Convolutional Networks

This is a TensorFlow implementation of Graph Convolutional
Networks for the task of (semi-supervised) classification of nodes
in a graph, as described in our paper:

Thomas N. Kipf, Max Welling,
(ICLR 2017)

Figure 1. GitHub Repository Page (A. ldentifier; B.
Social Engagement; C. Content; D. Description)

All repositories on GitHub have a primary identifier
(the name of the repository owner and the repository)
and social engagement information at the top of their
page. The social engagement metadata of the repository
displays critical information about how other GitHub
users interact with a repository, including issues they
have identified, pull requests they have submitted, and
forks they have created. The contents of the repository
shown in Figure 1 (tkipf/gcn) highlight the key MLOSS

Page 404

Table 2. Selected GitHub Repository Metadata

Category Selected Description Data Type
Metadata
Identifier Full name The name of the repository and Text
owner
Issues Issues identified by GitHub users Text
Pull Contributions submitted by users Text, source
Requests code
Social
Engagement Forks How many times the repository Discrete

has been copied

Watches/Stars | Number of users following the Discrete
repository

Source code Raw source code posted in the Text, source

repository code
README/ Description of dependencies and Text
Content .
Documentation| how the code operates
Commit Log of changes to the repository Source
history code, Date
Description A brief description of the Text
repository
Homepage Link to external site with Text
documentation
Descriptive
Language The primary language present in Categorical
the repository
Contributor Who has contributed to the Categorical
repository
Size The size of the repository in bytes Discrete
Created_at The date the repository was Date
Statistics created
Updated_at The date the repository was last Date

updated

components included in Al repositories on GitHub. The
source code section shows that the repository shares the
data the model was trained on, source code, including
the model’s architecture (layers.py) and how the model
was trained (train.py), and a README that discusses
how the model operates. These assets can be used for
future Al development.

2.1.2. Model Hubs Model hubs are platforms where
Al developers can upload ML models they have trained
and use and download models created by others. For
the remainder of this paper, we focus on Hugging
Face as our primary model hub of interest, as it has
been identified as the most popular platform for hosting
pre-trained models (Jiang et al. 2023). Similar to
GitHub, Hugging Face also has a home page for each
model it hosts that displays a rich set of metadata
(illustrated in Figure 2 and Table 3).

Identifiers of models on Hugging Face comprise
the model’s name, the owner’s name, and associated
tags (e.g., Transformers, Computer Vision, PyTorch,
etc.). GitHub repositories and Hugging Face models
have some similar content metadata such as READMEs
and model cards and commit histories. However, a
key difference is that GitHub repositories primarily host
source code, while Hugging Face models primarily
host model parameters. In An additional major

i bert-base-uncased © k A.

Fill-Mask Transformers PyTorch Tensorflow of JAX @ Rust @ CoreML ONNX & Safetensors

wodstcara - fies [[o communiy@ B [D. s oo |
BERT base model (uncased) |B. 181,295 Ml
Pretained model on Englis anguage usinga masked language
mdeling (ML) bjective It wasintroduced nthis paper and P —
frsteessedinhisaiary.This models uncasec: t oes o isze Mpaams | Tortpe 2 7

make a difference between english and English.

D. + inference API

Disclaimer: Thet g BERT did not write a model card

for this this model card has been written by the

Hugging Face team. .
The goalof fe s [MASK].
Model description

Compute

Datasets used to train google-bert /bert-base-u.

Legacy-datasets/wikipedia

ith two objectives:

Masked language modeling (MLM): taking a sentence, the B, ' Spaces using google-bert/bert-base-unca
model randomly masks 15% of the words in the input then

v ”
run the entire masked sentence through the model and has

to predict the masked words, This is different from xinyu1205

Figure 2. Hugging Face Model Page (A. ldentifiers;
B. Social Engagement; C. Content; D. Usage
Information)

Table 3. Selected GitHub Repository Metadata

Category Selected Description Data
Metadata Type
Full name The name of the model and owner Text
Identifiers Tags Denote model type, frameworks used, Text
datasets used, etc.
Community Contains discussion between users and Text
pull requests
Social - X
Downloads Model downloads in the last month Discrete
Engagement
Spaces Shows Hugging Face Apps built with Models
Using the model
Model Model description and usage Text
Card information
Files Model parameters, configuration files, Text,
and data source
code
Content Storage Download size Text
Commit Log of changes to the model Text,
history Date
Datasets Points to datasets used for training that Text
Used are hosted on Hugging Face
Train Allows for custom model optimization Hyperlink
and fine-tuning
Deploy Enables model deployment on Hugging Hyperlink
Face, Amazon, Azure, and Google
Usage Cloud
Information
Use this Shows how to import the model through Code
model Transformers
Inference Allows for direct model usage NA
APIL

differentiating feature of Hugging Face is its integrated
model usage capabilities. Through a range of options
(e.g., Train, Deploy, Use this model, and Inference API),
Hugging Face makes it easy for Al developers to use
models it hosts, fine-tune them, or deploy them in new
applications. It is important to note that while hundreds
of thousands of models are hosted on Hugging Face,
many do not have all the fields described in Table 3

Page 405

populated.

2.2. Machine Learning Open-Source Software
Vulnerability Assessment Tools

As mentioned above, while the MLOSS assets
hosted on GitHub and Hugging Face enable rapid Al
development, they also bring a host of vulnerabilities
to the Al applications that leverage them. Vulnerability
assessment tools such as vulnerability scanners
are commonly used to identify and address these
vulnerabilities. ~ There are two primary types of
Al vulnerability scanners: static and dynamic
(Kaur & Nayyar 2020). Static scanners operate by
assessing source code directly with rule sets to identify
vulnerabilities, including potential secret leakage,
insecure permissions and functions, susceptibility to
web attacks, and Al-specific vulnerabilities. Dynamic
Scanners assess an ML model during runtime, allowing
them to identify vulnerabilities that may only manifest
during performance, such as susceptibility to text
attacks.

Prevailing AI vulnerability scanners that perform
static assessments include Bandit, Flawfinder, Semgrep,
and ProtectAl. Bandit and Flawfinder scan for
traditional source code vulnerabilities in Python and
C/C++, respectively. SemGrep scans for both traditional
and Al-specific vulnerabilities in all file types, and
ProtectAl performs static and dynamic scans for
Al-specific vulnerabilities. Dynamic scans are out of the
scope of this study as prevailing dynamic scanning tools
(e.g., Microsoft Counterfit) are currently not suitable
for scanning models at a large scale. However, static
scanners typically return vulnerabilities with severity
scores that fall into several categories, including low,
medium, high, and critical. Such severity scores often
are based on CVSS standards and/or agreement from the
larger Al security community.

2.3. Machine Learning Open-Source Software
Data Collection: Existing Approaches
and Challenges

GitHub and Hugging Face both offer generous API
access to their data, which has facilitated significant
studies on MLOSS (Kathikar et al. 2023, Lazarine
et al. 2022). However, with Hugging Face’s
exponential growth over the last year, there is a need
for more comprehensive collections of the models it
hosts. Furthermore, with the pace models are added, an
incremental crawling approach is necessary to remain
current. Beyond Hugging Face, it is also challenging
to identify all MLOSS-related repositories on GitHub.
Lastly, in addition to collecting GitHub and Hugging

Face data, it is also a challenge to assess Hugging Face
models for vulnerabilities, as the source code they were
developed with is not readily available. These issues
motivate the development of a large-scale and automated
collection pipeline.

2.4. Machine Learning Open Source Software
Vulnerability Assessment: Existing
Approaches and Challenges

In addition to past efforts to collect MLOSS assets,
recent research has aimed to assess them for potential
security issues. Studies have examined Al repositories
on GitHub for vulnerabilities, primarily focusing on
foundational frameworks (e.g., PyTorch, Tensorflow,
etc.). Research on these frameworks has examined how
software bugs affect them (Jia et al. 2021), identified
commits that may contain CWEs (Harzevili et al. 2022),
and mapped the influence of their security issues to
other repositories (Sachdeva et al. 2022). However,
as previously mentioned, prior vulnerability assessment
research has not been done on comprehensive MLOSS
datasets. Therefore, there remains a need to identify all
MLOSS assets leveraged by Al developers to properly
assess the risks posed.

Studies have examined Hugging Face from a
security perspective focusing on the platform’s
adherence to existing OSS best practices, potential
security issues with code generation models it hosts,
and vulnerabilities in repositories Hugging Face hosts
on GitHub. While naming conventions are critical
to proper open-sourcing and avoiding attacks such as
name spoofing, research has identified that there are
significant defects with Hugging Face users’ model
naming practices (Jiang et al. 2023). Moreover, with
open-source large language models (LLMs) hosted on
Hugging Face (e.g., Llama 3) being heavily used to
generate source code, there have been efforts to assess
this code for contained vulnerabilities (Cotroneo et al.
2024). Lastly, past research has examined Hugging Face
directly for security issues, performing a vulnerability
assessment on the GitHub repositories it hosts on its
verified GitHub accound and all of the repositories that
have forked them (Kathikar et al. 2023). Similar to
vulnerability assessment efforts on MLOSS on GitHub,
extant Hugging Face vulnerability assessments have
not comprehensively assessed the MLOSS assets that
support the development of Hugging Face models.

3. Machine Learning Open-Source
Software Collection Pipeline

We present our proposed MLOSS Collection
Pipeline in Figure 3. The Pipeline comprises three

Page 406

components: MLOSS Asset Identification, GitHub
Repository Collection, and Vulnerability Assessment.
MLOSS Asset Identification takes two perspectives:
an Al-Source Code Perspective and a Hugging Face
Perspective.

MLOSS Asset Identification GitHub Repository Vulnerability

Collection Assessment

GitHub Repository Link
i Semgrep

@ Flawfinder

Conventional Source Code
Vulnerability Scanners

GitHub Repository Download

and Metadata Parsing »

Semgrep A

Protect AL

Emerging Vulnerability Scanners for
Al Code and Systems

Figure 3. Proposed MLOSS Collection Pipeline

3.1. Machine Learning Open Source Software
Asset Identification

3.1.1. AI Source Code Perspective To identify
recent Al source code, the first collection perspective
of our pipeline identifies top conference venues
for foundational and applied AI, as well as
non-peer-reviewed public paper sources. The
conference venues and sources include the International
Conference on Learning Representations (ICLR),
Knowledge Discovery in Databases (KDD), Neural
Information Processing Systems (NeurIPS), Association
for the Advancement of Artificial Intelligence (AAAI),
The Conference on Computer Vision and Pattern
Recognition (CVPR), The International Conference on
Machine Learning (ICML), SIGGRAPH, and Arxiv.
This perspective aims to identify and collect the most
recent Al repositories on GitHub, as bleeding-edge Al
development is published in these conference venues,
and many encourage their contributors to share the
code associated with their paper (Nature Machine
Intelligence 2020). The collection of these papers is
automated via scripts that scrape the paper aggregation
sites. In addition to identifying Al repositories, we
also extract paper metadata, including author names,
affiliations, and countries during this collection phase.
This data offers interesting insights into key trends in
Al research.

3.1.2. Hugging Face Perspective The second
perspective of our proposed pipeline uses Hugging
Face as a starting point instead of academic Al venues.
Hugging Face is another highly active area for Al
development, with the platform adding hundreds of
thousands of models in the last year. This perspective
aims to download the model card of every Hugging

Face model and parse the model’s associated metadata
(Table 3). This collection process is automated via the
Hugging Face API and runs incrementally every month
to collect new models as they are posted. Similarly to
Perspective 1, GitHub repositories are also identified
in this process, as many models link to an associated
repository in their model card.

3.2. GitHub Repository Collection

Following the identification of MLOSS assets in the
first stage of the pipeline, GitHub repository links are
extracted from all the papers collected from Perspective
1 and the models collected from Perspective 2. In
extracting GitHub links from Hugging Face models,
the linkage between the model and the repository is
identified. This allows for source code vulnerabilities
identified on GitHub to be associated with models on
Hugging Face they may impact. Once the GitHub
links have been extracted from each set of assets, the
associated repositories are cloned, and their metadata
are parsed into a database. Cloning each repository is
necessary to perform a vulnerability assessment as the
vulnerability scanners used in our pipeline operate on
local files.

3.3. Vulnerability Assessment

The final phase of our MLOSS Collection Pipeline
is a vulnerability assessment of every identified GitHub
repository. The vulnerability assessment is conducted
with Bandit, Flawfinder, and Semgrep. The three
scanners combine to comprise a total of 277 security
checks, which can identify 15 vulnerability types across
four categories: potential secret leakage, insecure
permissions and functions, susceptibility to web attacks,
and Al-specific. We summarize the vulnerabilities
identified by each scanner in Table 4.

Within each vulnerability category, each scanner
also denotes a severity score for each vulnerability,
indicating its potential for harm. Further, Bandit
returns Common Vulnerabilities and Enumeration
(CVE) numbers associated with each vulnerability,
Flawfinder returns Common Weakness Enumeration
(CWE) numbers, and Semgrep returns both.

4. Data Collection Overview
4.1. Hugging Face

Our MLOSS Collection Pipeline was run iteratively
between February 2023 and January 2024. During this

time, 373,634 models were collected (over half of the
models currently on Hugging Face). Significant model

Page 407

Table 4. Summary of Vulnerabilities Returned from

Table 5. Hugging Face Collection Summary

Scanners M Description Number of Percent of
Category Vuln. Description| Example Bandif Flaw-| Sem- Models Models
finder| grep Full Name of the model 373,634 100%
Secret A 739bbafec22ff801| Yes No Yes name
E:iir\:v[:;i]/ Content Any content metadata 285,645 76%
key Language | Language on which the models 15,163 4%
Password Password irods://user:pass No No Yes are trained on
Secret found Datasets Dataset on which the model is 18,913 5%
Weak Insufficient | iv_size = Yes Yes Yes trained on
crypto- Crypto. crypt.keysize(); Libraries Examples: TensorFlow, PyTorch, 211,078 56%
graphy Method Transformers
Filetype | File may Django No No Yes
contain configuration
secrets file
File Dangerous int err_code Yes Yes Yes 4.2. GitHub
per- file = chmod(
mission permissions | filePath, 0664);
Insecure | Function Use of insecure Yes Yes Yes FrOm Perspectlve 1’ 9’422 papers puthhed between
function | can be | function 2021 and 2022 were collected, and 3,393 GitHub
vulnerable (mktemp) ’ ?
— repositories were identified and collected. The collected
Insecure | Module Deserialize Yes No Yes K K X
Insecure | module | can be | unusted data repositories have been forked 415,497 times and have
ermission vulnerable witl 1CKle
and _ 64,930 open issues, indicating that while less than 4,000
Functions Depre- Library pyCrypto Yes No Yes . N . . .
cated | no longer | library repositories were identified from this approach, the
library supported no longer Iti 11 . . .
maintained resulting collection supports a very active community.
Insecure | Dangerous | Call wih | Yes | No | Yes The conferences with the most publications were
conneet. lc]:;:zluons Ziesl;g;l;alseSSL NeurIPs, AAAI, and CVPR, with 3,325, 1,710, and
certificate 1,462 papers, respectively. However, the conference
9 9 . b
checks.
papers with the most GitHub repositories linked were
Insecure | Dangerous Unsafe yaml Yes Yes Yes .
input handling load allows Neul‘IPS, ICML, and ICLR, with 717, 666, and 643,
imput | objects. respectively, and the repositories identified within ICLR
SQL | Hardcoded | Unsanitized Yes | No | Yes papers had the most forking activity.
injection| expressions | SQL F 634 H : F d 1 11 d
Web rom the 373, ugging Face models collecte
ac XML Dangerous | Insec Y N Yes
Attack atack | XML | eepelib S T in Perspectiv 2e, 241,403 models were identified to be
library use linked to 6,554 unique GitHub Repositories, linking
XSS | Dangerous | By — default | Yes | No | Yes 11% of our Hugging Face collection. Natural language
vuln. library jinja2 sets . . : .
usage autoescape (o processing (NLP) models, reinforcement learning (RL)
False. . . .
- P~ - — < - models, and audio models had the most links, with
rivacy ensitive ata eaks [o es . ..
attack information | of sensitive 19,782, 10,357, and 3,928, reSpeCthely. In addltlon,
s informati .
AbSpecific (—— ex'”“"r]e i de 'O"d 13,339 models that did not have a defined category were
Mode Manipulate | Malicious data No No Yes . .
evasion | daa modified during also found to have GitHub links.
securlty testing Additionally, in Perspective 2, we used Hugging

metadata and the percentage of models that have each
populated are summarized in Table 5.

Each model collected had an associated full name.
However, no other field was fully populated, with 76%
of the models having some level of content metadata
present, 56% denoting the library with which they
were developed and very few denoting the languages
and datasets with which they were trained (4 and 5%
respectively). These results illustrate that, while there
are hundreds of thousands of models on Hugging Face,
many have sparse details and may be poorly maintained
and unlikely to be used.

Face as a seed to identify additional Al repositories on
GitHub. Examining the verified Hugging Face account
on GitHub, we identified 111 hosted repositories. These
repositories were forked 28,067 times and we added all
of these forks to our collection. Lastly, using the GitHub
search API with ’huggingface’ as a search term, we
identified 990 additional repositories.

4.3. Vulnerability Assessment Results

Overall, our vulnerability assessment of the GitHub
repositories collected from Perspectives 1 and 2
returned 6,751,739 vulnerabilities. A summary of our
vulnerability assessment results is shown in Table 6.

The results of our vulnerability assessment include
624,973 high severity, 530,100 medium severity, and

Page 408

Table 6. Summary of GitHub Vulnerability
Assessment Results

Repository # of | Severity Total # of
Group Repos High Medium| Low Vulnerabilities
Perspective 1 3,393 47,842 32,077 244776 324,695
Perspective 2 6,554 32,640 16,940 460,766 510,346
Hugging Face 111 689 1,096 130 1,915

Root

Hugging Face 28,067 537,815 472,304| 4.824,765| 5,834,884
Forks

Hugging Face 990 5,987 7,683 66,229 79,899
Searched

Total 39,115 624,973 530,100 5,596,666 6,751,739

5,596,666 low severity vulnerabilities. = While the
vast majority of the vulnerabilities identified were low
severity (83%), across the repositories in Perspective
1 and the Hugging Face forks, there are a significant
number of high severity vulnerabilities, with each
averaging 14 and 12 high severity vulnerabilities per
repository respectively. In comparison, the repositories
in Perspective 2, Hugging Face roots, and Hugging
Face searched each averaged 5, 6, and 6 high severity
vulnerabilities respectively. This may indicate that Al
code associated with models published in academic
venues (Perspective 1) may be more insecure than Al
code written to train models hosted on Hugging Face
(Perspective 2). It may also indicate that after forking
Hugging Face root repositories, GitHub users either
preserve or introduce high severity vulnerabilities.

5. Opportunities for Research and
Practice

The results from our MLOSS Collection Pipeline
open several promising opportunities for research and
practice. Our collection can help Al researchers address
this challenge by offering a comprehensive set of static
vulnerability assessment results for study. Researchers
who perform dynamic assessments can leverage our
collection to map (e.g., in manners that align with the
Al Risk Management Framework from NIST) static
vulnerabilities to dynamic vulnerabilities they may lead
to. Successfully performing this mapping can facilitate
the prediction of dynamic vulnerabilities from a static
vulnerability assessment (which is significantly easier to
perform).

A second promising area for study that our collection
may facilitate is the identification of cross-platform
vulnerability propagation (aligning with the Measure
aspect of NIST AI RMF). As Al developers publishing
models on Hugging Face leverage source code from
GitHub, vulnerabilities may spread across the platforms.
Researchers can leverage our collection to identify

critically vulnerable repositories on GitHub that are
being leveraged to train a large number of the models
hosted on Hugging Face, identify how many models
GitHub vulnerabilities have spread to, and perform
targeted vulnerability remediation. Additionally,
developers who engage in insecure development
practices across both platforms can be identified and
invited to Al security workshops.

Lastly, for practitioners such as security teams within
organizations that use Al, our vulnerability assessment
can help them improve their Al supply chain security
(e.g., aligning with the manage component of the Al
RMF). Organizations looking to adopt Al are often
faced with the question of whether to incorporate
MLOSS. While one drawback to using MLOSS is
the security risks associated with OSS practices, the
publicly discoverable nature of vulnerabilities can also
be leveraged to guide which MLOSS assets may be
adopted. Security teams can leverage our collection to
ensure that MLOSS assets their organization’s leverage
are secure or to understand what security risks are being
taken on and how to address them.

To facilitate these opportunities for research and
practice, a GitHub repository that will contain the source
code and instructions needed to instantiate the presented
pipeline is forthcoming. Additionally, the repository
will provide a template instructing how the pipeline may
be launched leveraging cloud resources. Researchers
and practitioners will be able to find the repository at
https://github.com/benlazarine/mloss-vap.

6. Conclusion and Future Work

With the number of MLOSS assets hosted on
platforms such as GitHub and Hugging Face continuing
to grow exponentially, this study has presented an
MLOSS Collection Pipeline to systematically collect,
link, and assess them for vulnerabilities. Our pipeline
has resulted in a comprehensive collection of models
hosted on Hugging Face, Al repositories on GitHub,
and static vulnerabilities they contain. In addition, we
discuss promising research and practice opportunities
that our resulting collection may facilitate. Future
work from this study will continue to incrementally
collect Hugging Face and GitHub data with our pipeline.
Furthermore, key limitations of our pipeline that may be
addressed include incorporating additional vulnerability
scanners and identifying additional mechanisms to link
Hugging Face models to the source code that was
leveraged to train them. For example, incorporating
dynamic vulnerability assessments of AI models can
potentially return a wider range of results, as they can
effectively capture a model’s input, output, and task to

Page 409

scan it during runtime. Ultimately, these scan results can
help to facilitate additional research opportunities that
align with critical national initiatives such as NIST’s Al
Risk Management Framework.

7. References

Bengio Y., Russell S., and Selman, B. (2023).
Pause Giant AI Experiments: An Open Letter.
FutureofLife.org.

Cotroneo, D., De Luca, R., & Liguori, P. (2024).

Devaic: A tool for security assessment
of ai-generated code. arXiv preprint
arXiv:2404.07548.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. (2012,
February). Social coding in GitHub: transparency
and collaboration in an open software repository.
In Proceedings of the ACM 2012 conference
on computer supported cooperative work (pp.
1277-1286).

Dillon, J.V., Langmore, I., Tran, D., Brevdo, E.,
Vasudevan, S., Moore, D., Patton, B., Alemi, A.,
Hoffman, M. and Saurous, R.A. (2017). Tensorflow
distributions. arXiv preprint arXiv:1711.10604.

Go, K. R., Soundarapandian, S., Mitra, A., Vidoni,
M., and Ferreyra, N. E. D. (2023). Simple stupid
insecure practices and GitHub’s code search: A
looming threat?. Journal of Systems and Software,
202, 111698.

Gonzalez, D., Zimmermann, T., and Nagappan, N.
(2020, June). The state of the ml-universe: 10
years of artificial intelligence & machine learning
software development on github. In Proceedings
of the 17th International conference on mining
software repositories (pp. 431-442).

Gooden, D. (2024). What we know about the xz Utils
backdoor that almost infected the world. In Ars
Technica.

Harzevili, N. S., Shin, J., Wang, J., Wang, S., &
Nagappan, N. (2023, May). Characterizing and
understanding software security vulnerabilities in
machine learning libraries. In 2023 IEEE/ACM
20th International Conference on Mining Software
Repositories (MSR) (pp. 27-38). IEEE.

Jia, L., Zhong, H., Wang, X., Huang, L., & Lu, X.
(2021). The symptoms, causes, and repairs of bugs
inside a deep learning library. Journal of Systems
and Software, 177, 110935.

Jiang, W., Cheung, C., Thiruvathukal, G. K., & Davis,
J. C. (2023). Exploring naming conventions (and
defects) of pre-trained deep learning models in
hugging face and other model hubs. arXiv preprint
arXiv:2310.01642.

Jiang, W., Synovic, N., Hyatt, M., Schorlemmer,
T.R., Sethi, R., Lu, Y.H., Thiruvathukal, G.K. and
Davis, J.C. (2023, May). An empirical study of
pre-trained model reuse in the hugging face deep
learning model registry. In 2023 IEEE/ACM 45th
International Conference on Software Engineering
(ICSE) (pp. 2463-2475). IEEE.

Kathikar, A., Nair, A., Lazarine, B., Sachdeva, A.,
and Samtani, S. (2023, October). Assessing
the vulnerabilities of the open-source artificial
intelligence (AI) landscape: A large-scale analysis
of the Hugging Face platform. In 2023
IEEE International Conference on Intelligence and
Security Informatics (ISI) (pp. 1-6). IEEE.

Kaur, A., and Nayyar, R. (2020). A comparative study of
static code analysis tools for vulnerability detection
in c/c++ and java source code. Procedia Computer
Science, 171, 2023-2029.

Ladisa, P, Plate, H., Martinez, M., and Barais, O. (2023,
May). Sok: Taxonomy of attacks on open-source
software supply chains. In 2023 IEEE Symposium
on Security and Privacy (SP) (pp. 1509-1526).
IEEE.

Lazarine, B., Zhang, Z., Sachdeva, A., Samtani, S., and
Zhu, H. (2022, August). Exploring the Propagation
of Vulnerabilities from GitHub Repositories
Hosted by Major Technology Organizations. In
Proceedings of the 15th Workshop on Cyber
Security Experimentation and Test (pp. 145-150).

MITRE. (2023). MITRE ATLAS.
https://atlas.mitre.org.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L. and Desmaison, A. (2019). Pytorch: An
imperative style, high-performance deep learning
library. Advances in neural information processing
systems, 32.

Research, reuse, repeat. Nature Machine Intelligence 2,
729 (2020).

Sachdeva, A., Lazarine, B., Dama, R., Samtani,
S., & Zhu, H. (2022, November). Identifying
Patterns of Vulnerability Incidence in Foundational
Machine Learning Repositories on GitHub: An
Unsupervised Graph Embedding Approach. In
2022 IEEE International Conference on Data
Mining Workshops ICDMW) (pp. 1-8). IEEE.

Page 410

