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Abstract 
Anti-phishing research relies on collaboration 

between defensive and offensive efforts. The defensive 

side develops machine learning-based phishing website 

detectors to protect users from phishing attacks. 

However, adversaries can manipulate detectable 

phishing websites into evasive ones as adversarial 

examples, misleading detectors into classifying them as 

legitimate. Therefore, offensive efforts are vital to 
examine the threats posed by adversaries and inform the 

defensive side to improve the adversarial robustness of 

detectors. Prevailing approaches to improve 

adversarial robustness may compromise a detector9s 

original high performance on clean data (non-

adversarial websites) as it becomes more accurate at 

detecting adversarial examples. To address this, we 

propose a novel approach using a Graph Convolutional 

Autoencoder as an auxiliary model to make 

collaborative decisions with the original detector in 

distinguishing evasive phishing websites from 
legitimate ones. We evaluate our approach by 

enhancing a CNN-based detector against adversarial 

attacks. Our approach achieves high adversarial 

robustness while maintaining high performance on 

clean data compared to retraining and fine-tuning 

benchmarks. 
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1. Introduction  

Phishing attacks are a prevalent cybercrime, with 

phishing websites being a particularly grave vector. 

Phishing websites are legitimate-looking web pages to 

trick unsuspecting users into divulging vital 

information, such as usernames, passwords, credit card 

numbers, and other personal details (Tian et al., 2018). 

In recent years, many anti-phishers have turned to 

machine learning to build phishing website detectors. 

Prior work has demonstrated the capabilities of machine 

learning (ML) models to detect phishing websites 
automatically (Abbasi et al, 2015; Ma et al., 2009; 

Opara et al., 2020; Ouyang and Zhang, 2021; Smadi et 

al., 2018). However, ML-based detectors can be evaded 

by adversarial examples generated by adversarial 

attacks. Attackers can carefully manipulate phishing 

websites using evasion techniques to mislead less robust 

detectors into classifying phishing as benign (Apruzzese 

et al., 2022; Montaruli et al., 2023). The deployment of 

ML-based detectors lacking sufficient robustness 

against such attacks could result in many phishing 

websites bypassing defense mechanisms, ultimately 

reaching web users and causing substantial losses. 
Therefore, it is crucial to make ML-based phishing 

website detectors more robust to adversarial attacks. 

To improve adversarial robustness, it is vital for 

offensive side researchers to study adversarial threats 

and inform the defensive side to effectively incorporate 

the knowledge of adversarial examples into their 

defense models. Existing studies on adversarial 

robustness in ML-based phishing website detectors have 

several shortcomings. First, the prevailing approach to 

enhance adversarial robustness in phishing contexts is to 

retrain or fine-tune the detector using adversarial 
examples generated by adversarial attacks. However, 

there exists a trade-off between clean data (non-

adversarial) and adversarial data for a single ML model 

(Wang et al., 2020). Shifting the weights of the detector 

to enhance its ability to detect adversarial examples can 

reduce its accuracy on clean data. Conversely, 

prioritizing performance on clean data may limit 

improvements against adversarial attacks. Second, those 

studies aiming to emulate the most realistic adversarial 

attacks solely focus on the offensive perspective to 

demonstrate that ML-based phishing website detectors 

are vulnerable. However, they fall short in proposing 
mitigation strategies to enhance the detectors against 

adversarial attacks. Studies focusing on the defensive 

side often assume theoretical adversarial attacks as 

threat models, increasing the detector's robustness. Such 

approaches adopt gradient-based threat models from the 
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image classification context, which fails to represent the 

realistic threat posed by adversarial phishing websites. 

In our study, we design an adversarial robustness 

approach that collaboratively considers the defensive 

and offensive perspectives of anti-phishing research. 
This approach enhances the robustness of ML-based 

phishing website detectors against realistic adversarial 

attack scenarios and addresses the performance trade-

off between clean data and adversarial examples. The 

proposed approach has two major components: 

 First, our offensive-side work deploys a threat 

model that emulates adversaries' evasion 

techniques to generate well-crafted phishing 

websites as adversarial examples, which can assess 

the robustness of detectors. 

 Second, informed by the insights gained from 
offensive-side work, we design a Graph 

Convolutional Autoencoder (GCAE)-based 

auxiliary model that can be added to the original 

detector to filter out adversarial examples. It works 

as a second gate of detection without altering 

anything within the well-trained original detector.  

The collaborative decision-making between the 

original detector and the auxiliary model mitigates the 

original detector's vulnerability to adversarial examples 

without compromising its ability to detect non-

adversarial phishing and legitimate websites. 

The remainder of this paper is organized as follows. 
First, we review literature related to adversarial 

robustness and graph convolutional autoencoders. 

Second, we identify research gaps and pose research 

questions for study. Third, we present our proposed 

framework and its constituent components. Fourth, we 

present our evaluation and, subsequently, our results. 

Finally, we summarize our contributions and conclude 

this research.  

2. Literature Review 

We review two areas of literature to set the 

foundation of our research. First, we examine prior 

studies on adversarial robustness in phishing website 

detection, considering both the offensive and defensive 

perspectives. Second, we review studies on 

autoencoders that use reconstruction error for anomaly 

detection and explore how this principle is applied in 

detecting adversarial examples. 

2.1. Adversarial Robustness 

Achieving adversarial robustness requires 

understanding both the offensive and defensive 

perspectives. Work concentrating on the offensive side 

seeks to develop threat models that emulate the risks 

posed by adversaries to attack the defensive 

mechanisms. Defensive side studies focus on 

developing robustness approaches that improve 

detection accuracy on adversarial examples and raise the 

attack cost based on understanding the offensive side. 
 

2.1.1. Offensive-side Studies focus on evading ML-

based phishing website detectors through adversarial 

attacks, in which adversarial examples that can bypass 

detection are generated. The foundational research on 

adversarial attacks and robustness originates from 

image tasks (Bai et al., 2021; Goodfellow et al., 2014). 

Thus, many adversarial attacks in the phishing context 

apply the same theoretical attacks used in image 

classification tasks. These threat models introduce noise 

to the feature vectors extracted by detectors to mislead 

detection, such as using Generative Adversarial 
Networks (GAN) (O9Mara et al., 2021; Shirazi et al., 

2021). However, such threat models are poorly suited 

for the context of phishing. Adding noise to the feature 

vectors of images, which are representations of pixels, 

can be directly reflected in the images, resulting in new 

images as adversarial examples. In contrast, adding 

noise to the feature vectors of phishing websites cannot 

be mapped back to real evasion techniques and cannot 

be reversed back to well-rendered phishing websites 

(Montaruli et al., 2023). This indicates that such 

theoretical adversarial attacks are far from realistic in 
the context of phishing, leading to mitigations based on 

unrealistic threat assumptions. For example, Shirazi et 

al. (2021) enhanced ML-based detectors that extract 

features from HTML source code by using feature 

vectors generated from unrealistic threat models. 

To address this issue, some studies have focused on 

emulating phishing evasion attacks as realistically as 

possible. These studies developed threat models that use 

evasion techniques to manipulate the source code of 

phishing websites, generating well-rendered evasive 

phishing websites as adversarial examples (Apruzzese 

et al., 2022; Montaruli et al., 2023; Song et al., 2021). 
Common evasion techniques include injection and 

obfuscation, which can inject invisible benign content 

or hide phishing content within the source code to 

mislead detectors. These studies significantly contribute 

to evaluating the vulnerabilities of ML-based phishing 

website detectors by posing realistic threats in the 

phishing context. However, they only demonstrate the 

threats posed by their attacks without proposing any 

mitigation methods, raising significant concerns about 

detecting such real adversarial attacks. 

 
2.1.2. Defensive-side Studies often seek to develop 

ML-based phishing website detectors that heavily rely 

on URL, HTML, and DOM (created by parsing HTML) 

to extract domain knowledge-based features or 
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embeddings. Both traditional machine learning 

classifiers such as Logistic Regression, Bayesian 

Network, J48 Decision Tree, Support Vector Machine, 

Random Forest, Adaboost and deep learning classifiers 

such as Convolutional Neural Network (CNN) and GCN 
(Graph Convolutional Network) are commonly adopted 

as classifiers (Abbasi et al, 2015; Opara et al., 2020; 

Ouyang and Zhang, 2021; Xiang et al., 2011). 

When an ML-based phishing website detector is 

found to lack robustness against adversarial attacks, 

defensive research focuses on enhancing the adversarial 

robustness of the detector based on the understanding of 

the threat models. In many defensive studies, threat 

models generate adversarial examples from the phishing 

samples in the detector's training set, providing new 

training samples for adversarial robustness. These 

adversarial examples are then used to retrain or fine-
tune the detector to recognize how adversarial examples 

can deviate from the detectable phishing samples 

(Mehdi Gholampour and Verma, 2023; Sabir et al., 

2022; Shirazi et al., 2021).  

Retraining and fine-tuning have significant 

limitations in that they shift the weights of the original 

detector. In retraining, the training set of the original 

detector is augmented with the generated adversarial 

examples, and the detector is retrained from scratch on 

the augmented training set. In fine-tuning, the generated 

adversarial examples are used to slightly adjust the 
weights of the pre-trained detector. However, it has been 

demonstrated that there is a trade-off between clean data 

(non-adversarial) and adversarial examples for a single 

machine-learning model (Wang et al., 2020). Improving 

adversarial robustness might hurt its detection accuracy 

on clean data while maintaining detection accuracy on 

clean data might limit the improvement of adversarial 

robustness. No matter how a single detector tries to 

balance these two aspects, relying solely on one detector 

makes achieving optimal performance in both aspects 

difficult. Therefore, we need a novel adversarial 

robustness method that can maintain the high accuracy 
of the original detector on clean data while mitigating 

its vulnerability to adversarial examples. Instead of 

adjusting a single detector, one potential mechanism is 

introducing an auxiliary model to filter out adversarial 

examples once they bypass the original detector. 

2.2. Graph Convolutional Autoencoder 

Autoencoders are particularly effective due to their 

ability to learn data representations and reconstruct 

inputs, making them suitable for distinguishing a 
specific class from a mixture of multiple types of 

samples in datasets. When trained on a specific class of 

samples, autoencoders can learn to reconstruct these 

samples well, thereby filtering out samples that do not 

belong to that class (Ma et al., 2021). This makes an 

autoencoder trained on adversarial examples an 

appropriate auxiliary model for distinguishing 

adversarial examples from legitimate websites when 

they are mixed together. In the context of phishing 
website detection, realistic adversarial examples are 

well-rendered, evasive phishing websites with carefully 

manipulated HTML source code (Montaruli et al., 

2023). The auxiliary model needs to learn the unique 

HTML patterns of these examples. 

HTML source code is organized by elements such 

as <html>, <body>, <div>, <p>, etc. The elements are 

linked together, creating parent-child and sibling 

relationships. Therefore, Graph Convolutional 

Autoencoder (GCAE) is particularly effective for 

processing HTML source code because it has been 

shown to perform well in learning source code 
representations in a syntax tree structure (Ding et al., 

2023). GCAEs combine the strengths of autoencoders 

and graph convolutional networks to process data 

structured as graphs. The input to a GCAE is a graph 

� = (�, �) where � is the set of nodes, and � is the set 

of edges. Each node �! is associated with a feature 

vector �!. The encoder of the GCAE consists of multiple 

graph convolutional layers that progressively reduce the 

dimensionality of the input features. After the encoding 
layer, the input graph is represented in a lower-

dimensional latent space � that captures the most 

important features of the input graph. The decoder of the 

GCAE attempts to reconstruct the original input graph 

from the latent representation. In the context of HTML 

source code, elements are represented as nodes, and 

parent-child and sibling relationships between elements 

are represented as edges. 

3. Research Questions 

We identified several limitations from the prior 

adversarial robustness studies on phishing website 

detection. First, there is a lack of work on enhancing the 

adversarial robustness of ML-based phishing website 

detectors against realistic adversarial attacks, where 

well-rendered phishing websites are generated as 

adversarial examples to evade detection. Second, 

commonly used adversarial robustness methods, such as 
retraining or fine-tuning ML-based phishing website 

detectors, face a trade-off between detection accuracy 

on clean data and adversarial examples. Based on these 

limitations, we pose the following research questions for 

the study: 

 How can we enhance the adversarial robustness of 

the detector against threat models that generate 

well-rendered phishing websites as adversarial 

examples? 
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 How can we adapt a GCAE as an auxiliary model 

to the original detector, improving the detection of 

adversarial examples without compromising the 

detector's accuracy on clean data? 

4. Proposed Research Design 

To address our research questions, we propose a 

novel adversarial robustness with three components 
(Figure 1): (1) Data collection; (2) An adversarial 

robustness framework with a threat model providing 

realistic emulation of adversarial attacks and a GCAE as 

an auxiliary model to enhance the original detector; (3) 

Evaluation, where we compare the detection accuracy 

on clean data and the robustness to adversarial attacks 

for the original detector, retrained detector, fine-tuned 

detector, and the proposed approach.  

4.1. Data Collection 

We developed a web crawler to harvest phishing 

and legitimate websites to train detectors for our 

experiment. The crawler utilized GNU Wget (Dobolyi 

and Abbasi, 2016; Purwanto et al., 2023) to visit URLs 

and retrieve and download all files necessary to 

reproduce the rendering of websites offline. The 

collection was conducted in a sandboxed environment 

on Jetstream2 (Hancock et al., 2021). We ran the 

crawler on May 06, 2024, to collect verified phishing 
websites from PhishTank, an online phishing 

verification platform, and obtained 10,000 unique 

phishing websites, each capable of rendering a unique 

appearance offline. Similarly, we fetched 10,000 

legitimate websites from Tranco (Pochat et al., 2019), a 

research-oriented top sites ranking list that provides a 

list of legitimate websites with malicious sites removed. 

In total, we obtained 20,000 clean (non-adversarial) data 

points for the training and test set of detectors. 

4.2. Adversarial Robustness Framework 

Our adversarial robustness framework has two 

components. The offensive side is a threat model that 

manipulates the HTML source code of detectable 

phishing websites, transforming them into evasive 

phishing websites as adversarial examples without 

breaking the rendering. The defensive side is an 
enhanced version of the detector, where we design an 

autoencoder-based auxiliary model to filter out 

adversarial examples missed by the original detector. 

 

4.2.1. Threat Model. Given the high realism of 

adversarial attacks proposed by Montaruli et al. (2023), 

we leverage their algorithms as threat models, attacking 

our detectors to generate well-rendered phishing 

websites as adversarial examples. Montaruli et al. 

(2023) designed a query-efficient black-box 

optimization algorithm to optimally employ 16 evasion 
techniques (Table 1) to manipulate the HTML code of 

detectable phishing websites, minimizing the decision 

score at which the target detector can classify phishing 

websites. Each manipulation on a phishing website 

produces a new version of the HTML source code 

without changing its rendering. All evasion techniques 

selected are frequently used by adversaries in the wild, 

such as injecting invisible internal and external links, 

adding fake copyright, obfuscating JavaScript, and 

altering CSS styles of hidden elements to be less 

detectable. The adversarial attacks can be deployed in 

black-box scenarios, requiring no information about the 
detector's training data, features, or architectures. The 

threat model only requires the classification result 3 the 

decision score from the target detector - following each 

manipulation as the feedback to judge the effectiveness 

of its manipulations.
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Category Evasion Technique Manipulation method 

Injection 

InjectIntElem Injecting 10 internal links by <a> elements in body/head. 

InjectIntElemFoot Injecting 10 internal links by <a> elements in the footer. 

InjectIntLinkElem Injecting 10 internal links by <link> elements. 

InjectExtElem Injecting 10 external links by <link> elements in body/head. 

InjectExtEleFoot Injecting 10 external links by <link> elements in the footer. 

InjectFakeFavicon Injecting a fake favicon by <link> element. 

InjectFakeCopyright Injecting a fake copyright by <p> element. 

Obfuscation 
ObfuscateExtLinks 

Replacing external links in the body's elements with invalid internal links and 
putting external links back by JavaScript at execution time. 

ObfuscateJS Encoding JavaScript function within a <script> element. 

Updating Sensitive 
Information 

UpdateForm Replacing action9s attribute value of forms. 

UpdateIntAnchors Replacing href9s attribute value of anchors. 

UpdateHiddenDivs Replacing style9s attribute value of <div> elements. 

UpdateHiddenButtons 
Removing the <disabled= attribute of <button> elements and putting the 
<disabled= attribute back by JavaScript at execution time. 

UpdateHiddenInputs 
Replacing type attribute value of <input> elements or  removing the <disabled= 
attribute of <input> elements and putting the <disabled= attribute back by 
JavaScript at execution time. 

UpdateIframe Replacing style9s attribute value of <iframe> elements. 

UpdateTitle 
Replacing the original title with domain name and putting the original title back 
by JavaScript at execution time. 

 

 

4.2.2. Enhanced Detector with Autoencoder-based 

Auxiliary Model. The enhanced detector consists of 

two components: (a) an original detector well-trained on 

clean data without considering adversarial attacks and 

(b) an autoencoder-based auxiliary model that filters out 

adversarial examples misclassified as legitimate by the 

original detector. Our threat model and the autoencoder-

based auxiliary model are independent of any specific 

design of the original detector. Therefore, our 

adversarial robustness framework can enhance any 

detector vulnerable to adversarial attacks that 

manipulate HTML source code as long as the detector 
extracts part of its features from HTML. 

Typically, an ML-based phishing website detector 

produces prediction probability as the decision score 

and has a threshold based on the decision score to 

determine the predicted class label. In the original 

detector, we use ��"#!$!%&' to denote its decision score 

and � to denote the threshold. The ��"#!$!%&' ranges 

from 0 to 1. The original detector classifies a website as 

phishing if ��"#!$!%&' > � and as legitimate if 

��"#!$!%&' 	f 	�. In adversarial attacks, adversaries 
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manipulate phishing websites to cause the original 

detector to misclassify them. This means that the 

��"#!$!%&' for generated adversarial examples will be 

intentionally reduced to within the range (0, �). After an 

attack, relying solely on ��"#!$!%&' 	f � to classify 

legitimate websites cannot distinguish adversarial 

examples from true legitimate websites. Therefore, to 

address this issue, we design an autoencoder-based 

auxiliary model to differentiate adversarial examples 

from true legitimate websites when the original detector 

produces ��"#!$!%&' 	f 	�. 

The autoencoder-based auxiliary model aims to 

learn the differences between adversarial examples and 
legitimate websites. As mentioned in the literature 

review, autoencoders are powerful tools for 

reconstructing the types of examples they are trained on. 

Those that cannot be reconstructed well can be 

classified as a different class. Therefore, our auxiliary 

model is trained on adversarial examples to accurately 

reconstruct them. These adversarial examples are 

generated from the training set of the original detector 

using the threat model, which transforms detectable 

phishing websites into adversarial examples. This 

approach allows the auxiliary model to learn the 
manipulated patterns derived from the clean data that 

the original detector has not learned. 

Our autoencoder design considers the manipulation 

actions of adversaries. HTML source code is organized 

by elements linked in a DOM tree structure. Adversaries 

may use various evasion techniques to change HTML 

components, affecting element information (e.g., name, 

attributes, and text values) and the overall DOM tree 

structure. Since Graph Convolutional Networks (GCNs) 

have been shown to effectively represent source code in 

a syntax tree structure (Ding et al., 2023), we design a 

GCAE with two GCN layers as the encoder and two 
GCN layers as the decoder (Figure 2). 

The GCAE input consists of an edge matrix and a 

node matrix derived from the HTML. The edge matrix 

describes the DOM tree structure, while the node matrix 

is derived from the node embedding �('()(%* which 

concatenates three components of an element: tag name 

�*&$, attribute names �&**, and text �*(+*. Both �*&$ and 

�&** are extracted via one-hot encoding, and �*(+* is the 

embedding vector extracted using the pre-trained BERT 
model. We measure the reconstruction error of our 

auxiliary model using the mean squared error (MSE) 

between the input � and the reconstructed output �2, 
denoted as ���(�, �2). We denote the reconstruction 

error threshold by �. When websites containing both 

adversarial examples and true legitimate websites pass 

through the auxiliary model, the following criterion is 

used: if a website can be reconstructed with 

���(�, �2) < �, it is likely to be an adversarial 

example, given that the auxiliary model is trained on 

adversarial examples. Conversely, if ���(�, �2) 	g �, it 

will likely be a legitimate website. In our enhanced 

detector, the final Decision Score, denoted as ��, is 
determined through the collaboration of the original 

detector and the auxiliary model: 

If ��"#!$!%&' > �, then ��	 = ��"#!$!%&'	. 

Else, �� = �/(1 +
,-.(+,+1)

3
). 

The intuition behind this collaborative decision-making 

process is to use the original detector as the primary 

model to classify the input as a phishing website when 

��"#!$!%&' is larger than �. When the ��"#!$!%&' falls 

between 0 and �, the final classification detection 

considers the GCAE-based auxiliary model as well to 

distinguish adversarial examples from true legitimate 

websites. For ��"#!$!%&' 	f 	�, �� is calculated by  

�/(1 +
���(�,�2)

�
). When ���(�, �2) < �, �� ranges 

between �/2 and �, leading the enhanced detector to 

classify the input as an adversarial example. Conversely, 

when ���(�, �2) g �, �� ranges between 0 and �/2, 

leading the enhanced detector to classify the input as a 

true legitimate website. 

5. Evaluation 

To evaluate the performance of our adversarial 

robustness framework, we exhibit the robustness 

process of an ML-based phishing website detector that 

is not robust against adversarial attacks. We split 80% 

of the collected 20,000 clean data into the training set 
and 20% into the test set. Convolutional Neural 

Networks (CNN) are popular for designing phishing 

website detectors, and many adversarial attack studies 

use CNN-based classifiers as their target detectors 

(Apruzzese et al., 2022; Montaruli et al., 2023). 

Therefore, we prepared a CNN-based detector that 

extracts features from HTML based on the design by 

Opara et al. (2020). This detector was trained on our 

training set and will be the target of the threat model. 

The threshold ³ for this detector was set as 0.5. 

The original detector achieved 88% accuracy on the 

test set, correctly identifying 1,920 out of 2,000 phishing 
websites (Table 2, Original). To test the adversarial 

robustness of the detector, we conducted adversarial 

attacks using the threat model. It manipulated the 1,920 

detectable phishing websites in the test set, transforming 

them into well-rendered evasive phishing websites as 

adversarial examples. As the number of manipulations 

allowed on each detectable phishing website increased, 

the total number of generated adversarial examples also 

increased until no more detectable phishing websites 

could be transformed into evasive cases. In total, 461 out 
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of 1,920 detectable phishing websites were transformed 

into evasive ones, reducing the detection accuracy from 

88% to 76.48% (Figure 3, Panel (A)). 

The robustness test demonstrated that the original 

detector is vulnerable to adversarial attacks,. In our 
experiment, we compare the performance of three 

adversarial robustness methods. In addition to our 

proposed method with the auxiliary model, we have two 

benchmarks: (1) retraining the original detector from 

scratch with the training set augmented with adversarial 

examples and (2) fine-tuning the original detector using 

adversarial examples. We evaluate performance based 

on the adversarial robustness to assess the improvement 

in detecting adversarial attacks and the accuracy of the 

clean data to determine if enhancing adversarial 

robustness compromises the high detection performance 

of the original detector on clean data. 

6. Experiments and Results  

All three adversarial robustness methods need to be 

learned from adversarial examples during their training 

process. Therefore, we use the threat model to generate 

adversarial examples from the original detector's 

training set. As a result, 1,928 evasive phishing websites 

were generated from 7,767 detectable phishing websites 

in the training set. They represent the unseen phishing 
patterns that the original detector did not learn. 

The retrained detector was trained on an augmented 

training set with 16,000 clean data points and 1,928 

adversarial examples. The fine-tuned detector was fine-

tuned on only the 1,928 adversarial examples to adjust 

the weights of the original detector. The GCAE, used as 

our auxiliary model, was trained on the 1,928 

adversarial examples. We found that the reconstruction 

error ���(�, �2) for most adversarial examples is 

smaller than 0.005. Therefore, we set � = 0.005 as the 

reconstruction error threshold in the enhanced detector. 

In Figure 3, panels (B) to (F) show the adversarial 

robustness tests for the retrained detector, fine-tuned 

detectors trained for various epochs, and our model.

Accuracy Precision Recall F1 Score AUC TP FP FN TN 

(A) Original 0.88 0.89 0.88 0.8792 0.88 1920 400 80 1600 

(B) Retrained 0.8972 0.8993 0.8972 0.8971 0.8972 1866 277 134 1723 

(C)Fine-tuned (2 epochs) 0.8785 0.891 0.8785 0.8775 0.8785 1936 422 64 1578 

(D) Fine-tuned (5 epochs) 0.8678 0.8848 0.8678 0.8663 0.8677 1946 475 54 1525 
(E) Fine-tuned (9 epochs) 0.8343 0.8651 0.8343 0.8307 0.8343 1959 622 41 1378 
(F) Our Proposed Model 0.8762 0.8872 0.8762 0.8754 0.8763 1921 416 79 1584 
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 Compared to the original detector (A), which 

allowed the threat model to generate 461 evasive 

phishing websites, all adversarial robustness methods 

enhance the detector's robustness by reducing the 

number of evasive phishing websites generated. Our 
proposed model outperforms the others by only 

allowing 147 detectable phishing websites to be 

transformed into evasive phishing websites. The overall 

accuracy of our proposed model after being attacked 

remains at 84%, which is significantly higher than the 

original detector. Table 2 compares the performance of 

detectors on the test set, which reflects their 

performance on clean data before being attacked. 

Our proposed model performs very similarly to the 

original detector on all nine evaluation metrics 

(accuracy, precision, recall, F1 score, AUC, TP, FP, FN, 

and TN). This demonstrates that our proposed model 
does not compromise the original detector9s high 

performance on clean data while achieving the highest 

adversarial robustness among all detectors. This 

experiment demonstrates the shortcomings of fine-

tuning and retraining mentioned in the literature review. 

The trade-off between clean data performance and 

adversarial robustness exists for benchmark models. For 

fine-tuning, we present three versions of the fine-tuned 

detector trained for 2 epochs, 5 epochs, and 9 epochs. 

Panels (C) to (E) in Figure 3 and Table 2 show that 

adversarial robustness increases as the detector is fine-
tuned for more epochs; however, clean data 

performance declines simultaneously. For retraining, 

the performance on clean data does not decline; rather, 

it increases slightly. This is because, to achieve the 

adversarial robustness shown in Figure 3 (B), the model 

had to be trained for more epochs than the original 

detector, which improves its performance on clean data. 

However, its adversarial robustness is still worse than 

our proposed model as it focuses more on maintaining 

high performance on clean data. 

7. Contributions and Future Directions 

Our study contributes two key aspects to the 

adversarial robustness literature in phishing website 

detection. First, our adversarial robustness framework 

emphasizes collaboration between offensive and 

defensive efforts. Insights gained from the offensive 

side's realistic emulation of adversarial attacks are 

applied to enhance ML-based phishing website 
detectors. Rather than relying on an unrealistic threat 

model, we improve the robustness of detectors against 

realistic adversarial attacks by generating well-crafted 

phishing websites as adversarial examples. Second, to 

the best of our knowledge, we are among the first to 

propose an auxiliary model to assist the original detector 

in filtering out adversarial examples in the context of 

phishing detection. The collaboration between the 

auxiliary model and the original detector mitigates the 

original detector's vulnerability to adversarial examples. 

As a result, our approach achieves high adversarial 

robustness while maintaining the original detector's high 
performance on clean data. Additionally, our framework 

is not limited to any specific detector; as long as the 

threat model can manipulate the website components 

used by the detector, our framework can be employed to 

test and enhance the detector's adversarial robustness. 

The collaborative decision-making between the 

original detector and the auxiliary model may also be 

generalizable to other detection domains threatened by 

evasion problems. For instance, in phishing emails and 

fake news detection, we can use Large Language 

Models as auxiliary models to learn the semantic 

patterns of adversarial examples. In future research, we 
plan to conduct more experiments to demonstrate the 

effectiveness of our framework on multiple ML-based 

phishing website detectors with different designs. We 

will also introduce our adversarial robustness approach 

to other domains. Further testing the proposed approach 

in other contexts can help mitigate the ever-growing 

issue of fake or fraudulent content generation. 
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