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Abstract

Anti-phishing research relies on collaboration
between defensive and offensive efforts. The defensive
side develops machine learning-based phishing website
detectors to protect users from phishing attacks.
However, adversaries can manipulate detectable
phishing websites into evasive ones as adversarial
examples, misleading detectors into classifying them as
legitimate. Therefore, offensive efforts are vital to
examine the threats posed by adversaries and inform the
defensive side to improve the adversarial robustness of
detectors.  Prevailing  approaches to  improve
adversarial robustness may compromise a detector’s
original high performance on clean data (non-
adversarial websites) as it becomes more accurate at
detecting adversarial examples. To address this, we
propose a novel approach using a Graph Convolutional
Autoencoder as an auxiliary model to make
collaborative decisions with the original detector in
distinguishing  evasive phishing websites from
legitimate ones. We evaluate our approach by
enhancing a CNN-based detector against adversarial
attacks. Our approach achieves high adversarial
robustness while maintaining high performance on
clean data compared to retraining and fine-tuning
benchmarks.

Keywords:  Cybersecurity, = Machine learning,
Adversarial robustness, Phishing website detection,
Graph convolutional autoencoder

1. Introduction

Phishing attacks are a prevalent cybercrime, with
phishing websites being a particularly grave vector.
Phishing websites are legitimate-looking web pages to
trick unsuspecting wusers into divulging vital
information, such as usernames, passwords, credit card
numbers, and other personal details (Tian et al., 2018).
In recent years, many anti-phishers have turned to
machine learning to build phishing website detectors.
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Prior work has demonstrated the capabilities of machine
learning (ML) models to detect phishing websites
automatically (Abbasi et al, 2015; Ma et al., 2009;
Opara et al., 2020; Ouyang and Zhang, 2021; Smadi et
al., 2018). However, ML-based detectors can be evaded
by adversarial examples generated by adversarial
attacks. Attackers can carefully manipulate phishing
websites using evasion techniques to mislead less robust
detectors into classifying phishing as benign (Apruzzese
et al., 2022; Montaruli et al., 2023). The deployment of
ML-based detectors lacking sufficient robustness
against such attacks could result in many phishing
websites bypassing defense mechanisms, ultimately
reaching web users and causing substantial losses.
Therefore, it is crucial to make ML-based phishing
website detectors more robust to adversarial attacks.

To improve adversarial robustness, it is vital for
offensive side researchers to study adversarial threats
and inform the defensive side to effectively incorporate
the knowledge of adversarial examples into their
defense models. Existing studies on adversarial
robustness in ML-based phishing website detectors have
several shortcomings. First, the prevailing approach to
enhance adversarial robustness in phishing contexts is to
retrain or fine-tune the detector using adversarial
examples generated by adversarial attacks. However,
there exists a trade-off between clean data (non-
adversarial) and adversarial data for a single ML model
(Wang et al., 2020). Shifting the weights of the detector
to enhance its ability to detect adversarial examples can
reduce its accuracy on clean data. Conversely,
prioritizing performance on clean data may limit
improvements against adversarial attacks. Second, those
studies aiming to emulate the most realistic adversarial
attacks solely focus on the offensive perspective to
demonstrate that ML-based phishing website detectors
are vulnerable. However, they fall short in proposing
mitigation strategies to enhance the detectors against
adversarial attacks. Studies focusing on the defensive
side often assume theoretical adversarial attacks as
threat models, increasing the detector's robustness. Such
approaches adopt gradient-based threat models from the
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image classification context, which fails to represent the

realistic threat posed by adversarial phishing websites.

In our study, we design an adversarial robustness
approach that collaboratively considers the defensive
and offensive perspectives of anti-phishing research.
This approach enhances the robustness of ML-based
phishing website detectors against realistic adversarial
attack scenarios and addresses the performance trade-
off between clean data and adversarial examples. The
proposed approach has two major components:

e First, our offensive-side work deploys a threat
model that emulates adversaries’ evasion
techniques to generate well-crafted phishing
websites as adversarial examples, which can assess
the robustness of detectors.

e Second, informed by the insights gained from
offensive-side work, we design a Graph
Convolutional ~ Autoencoder  (GCAE)-based
auxiliary model that can be added to the original
detector to filter out adversarial examples. It works
as a second gate of detection without altering
anything within the well-trained original detector.
The collaborative decision-making between the

original detector and the auxiliary model mitigates the

original detector's vulnerability to adversarial examples
without compromising its ability to detect non-
adversarial phishing and legitimate websites.

The remainder of this paper is organized as follows.
First, we review literature related to adversarial
robustness and graph convolutional autoencoders.
Second, we identify research gaps and pose research
questions for study. Third, we present our proposed
framework and its constituent components. Fourth, we
present our evaluation and, subsequently, our results.
Finally, we summarize our contributions and conclude
this research.

2. Literature Review

We review two areas of literature to set the
foundation of our research. First, we examine prior
studies on adversarial robustness in phishing website
detection, considering both the offensive and defensive
perspectives.  Second, we review studies on
autoencoders that use reconstruction error for anomaly
detection and explore how this principle is applied in
detecting adversarial examples.

2.1. Adversarial Robustness

Achieving  adversarial  robustness  requires
understanding both the offensive and defensive
perspectives. Work concentrating on the offensive side
seeks to develop threat models that emulate the risks

posed by adversaries to attack the defensive
mechanisms. Defensive side studies focus on
developing robustness approaches that improve
detection accuracy on adversarial examples and raise the
attack cost based on understanding the offensive side.

2.1.1. Offensive-side Studies focus on evading ML-
based phishing website detectors through adversarial
attacks, in which adversarial examples that can bypass
detection are generated. The foundational research on
adversarial attacks and robustness originates from
image tasks (Bai et al., 2021; Goodfellow et al., 2014).
Thus, many adversarial attacks in the phishing context
apply the same theoretical attacks used in image
classification tasks. These threat models introduce noise
to the feature vectors extracted by detectors to mislead
detection, such as wusing Generative Adversarial
Networks (GAN) (O’Mara et al., 2021; Shirazi et al.,
2021). However, such threat models are poorly suited
for the context of phishing. Adding noise to the feature
vectors of images, which are representations of pixels,
can be directly reflected in the images, resulting in new
images as adversarial examples. In contrast, adding
noise to the feature vectors of phishing websites cannot
be mapped back to real evasion techniques and cannot
be reversed back to well-rendered phishing websites
(Montaruli et al., 2023). This indicates that such
theoretical adversarial attacks are far from realistic in
the context of phishing, leading to mitigations based on
unrealistic threat assumptions. For example, Shirazi et
al. (2021) enhanced ML-based detectors that extract
features from HTML source code by using feature
vectors generated from unrealistic threat models.

To address this issue, some studies have focused on
emulating phishing evasion attacks as realistically as
possible. These studies developed threat models that use
evasion techniques to manipulate the source code of
phishing websites, generating well-rendered evasive
phishing websites as adversarial examples (Apruzzese
et al., 2022; Montaruli et al., 2023; Song et al., 2021).
Common evasion techniques include injection and
obfuscation, which can inject invisible benign content
or hide phishing content within the source code to
mislead detectors. These studies significantly contribute
to evaluating the vulnerabilities of ML-based phishing
website detectors by posing realistic threats in the
phishing context. However, they only demonstrate the
threats posed by their attacks without proposing any
mitigation methods, raising significant concerns about
detecting such real adversarial attacks.

2.1.2. Defensive-side Studies often seek to develop
ML-based phishing website detectors that heavily rely
on URL, HTML, and DOM (created by parsing HTML)
to extract domain knowledge-based features or
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embeddings. Both traditional machine learning
classifiers such as Logistic Regression, Bayesian
Network, J48 Decision Tree, Support Vector Machine,
Random Forest, Adaboost and deep learning classifiers
such as Convolutional Neural Network (CNN) and GCN
(Graph Convolutional Network) are commonly adopted
as classifiers (Abbasi et al, 2015; Opara et al., 2020;
Ouyang and Zhang, 2021; Xiang et al., 2011).

When an ML-based phishing website detector is
found to lack robustness against adversarial attacks,
defensive research focuses on enhancing the adversarial
robustness of the detector based on the understanding of
the threat models. In many defensive studies, threat
models generate adversarial examples from the phishing
samples in the detector's training set, providing new
training samples for adversarial robustness. These
adversarial examples are then used to retrain or fine-
tune the detector to recognize how adversarial examples
can deviate from the detectable phishing samples
(Mehdi Gholampour and Verma, 2023; Sabir et al.,
2022; Shirazi et al., 2021).

Retraining and fine-tuning have significant
limitations in that they shift the weights of the original
detector. In retraining, the training set of the original
detector is augmented with the generated adversarial
examples, and the detector is retrained from scratch on
the augmented training set. In fine-tuning, the generated
adversarial examples are used to slightly adjust the
weights of the pre-trained detector. However, it has been
demonstrated that there is a trade-off between clean data
(non-adversarial) and adversarial examples for a single
machine-learning model (Wang et al., 2020). Improving
adversarial robustness might hurt its detection accuracy
on clean data while maintaining detection accuracy on
clean data might limit the improvement of adversarial
robustness. No matter how a single detector tries to
balance these two aspects, relying solely on one detector
makes achieving optimal performance in both aspects
difficult. Therefore, we need a novel adversarial
robustness method that can maintain the high accuracy
of the original detector on clean data while mitigating
its vulnerability to adversarial examples. Instead of
adjusting a single detector, one potential mechanism is
introducing an auxiliary model to filter out adversarial
examples once they bypass the original detector.

2.2. Graph Convolutional Autoencoder

Autoencoders are particularly effective due to their
ability to learn data representations and reconstruct
inputs, making them suitable for distinguishing a
specific class from a mixture of multiple types of
samples in datasets. When trained on a specific class of
samples, autoencoders can learn to reconstruct these
samples well, thereby filtering out samples that do not

belong to that class (Ma et al., 2021). This makes an
autoencoder trained on adversarial examples an
appropriate  auxiliary model for distinguishing
adversarial examples from legitimate websites when
they are mixed together. In the context of phishing
website detection, realistic adversarial examples are
well-rendered, evasive phishing websites with carefully
manipulated HTML source code (Montaruli et al.,
2023). The auxiliary model needs to learn the unique
HTML patterns of these examples.

HTML source code is organized by elements such
as <html>, <body>, <div>, <p>, etc. The elements are
linked together, creating parent-child and sibling
relationships.  Therefore, ~Graph  Convolutional
Autoencoder (GCAE) is particularly effective for
processing HTML source code because it has been
shown to perform well in learning source code
representations in a syntax tree structure (Ding et al.,
2023). GCAEs combine the strengths of autoencoders
and graph convolutional networks to process data
structured as graphs. The input to a GCAE is a graph
G = (V,E) where V is the set of nodes, and E is the set
of edges. Each node v; is associated with a feature
vector x;. The encoder of the GCAE consists of multiple
graph convolutional layers that progressively reduce the
dimensionality of the input features. After the encoding
layer, the input graph is represented in a lower-
dimensional latent space z that captures the most
important features of the input graph. The decoder of the
GCAE attempts to reconstruct the original input graph
from the latent representation. In the context of HTML
source code, elements are represented as nodes, and
parent-child and sibling relationships between elements
are represented as edges.

3. Research Questions

We identified several limitations from the prior
adversarial robustness studies on phishing website
detection. First, there is a lack of work on enhancing the
adversarial robustness of ML-based phishing website
detectors against realistic adversarial attacks, where
well-rendered phishing websites are generated as
adversarial examples to evade detection. Second,
commonly used adversarial robustness methods, such as
retraining or fine-tuning ML-based phishing website
detectors, face a trade-off between detection accuracy
on clean data and adversarial examples. Based on these
limitations, we pose the following research questions for
the study:

e How can we enhance the adversarial robustness of
the detector against threat models that generate
well-rendered phishing websites as adversarial
examples?

Page 423



Data Collection
Data Source:
PhishTank, Tranco

dversarial attack _L__="1
Phishing Websites QX
Threat Model

Adversarial Robustness Framework

The Enhanced Detector with Autoencoder-|
(a) The Original Detector

Evaluation

der-based Auxiliary Model

Input

Websites
Sandboxed Environment:
JetStream2

¥ GNU Wget ]

&

=

2-layer
GCN
Encoder

2-layer
GCN
Decoder

Latent
Space

&: reconstruction error threshold

Y Decision Score Vs.
Websites g, originat detectarthreshold| = LT SCOTCoriginat r Fine-tuned }
. . Decision§ Detector
Legitimate Websites ecisionScore >a ] e Y —
S.
5 2 Phishing| || remeeememeeeeeeeeey
Fetch the Files Supporting (b) Autoencoder-based Auxiliary ! OurEnhanced |
. e Model Trained on Adversarial ! '
the Rendering of Entire Examples Reconstructed Detector

Input

Decision Score > a /2

Decision Score =

@+ MSEix, x’))

Evaluation Metrics:
1. Performance on clean
data: Accuracy, precision,
recall, F1.
2. Adversarial robustness:
Number of evasive phishing]
websites

Representation x*

Legitimate

Figure 1. Adversarial Robustness Research Design.

e How can we adapt a GCAE as an auxiliary model
to the original detector, improving the detection of
adversarial examples without compromising the
detector's accuracy on clean data?

4. Proposed Research Design

To address our research questions, we propose a
novel adversarial robustness with three components
(Figure 1): (1) Data collection; (2) An adversarial
robustness framework with a threat model providing
realistic emulation of adversarial attacks and a GCAE as
an auxiliary model to enhance the original detector; (3)
Evaluation, where we compare the detection accuracy
on clean data and the robustness to adversarial attacks
for the original detector, retrained detector, fine-tuned
detector, and the proposed approach.

4.1. Data Collection

We developed a web crawler to harvest phishing
and legitimate websites to train detectors for our
experiment. The crawler utilized GNU Wget (Dobolyi
and Abbasi, 2016; Purwanto et al., 2023) to visit URLs
and retrieve and download all files necessary to
reproduce the rendering of websites offline. The
collection was conducted in a sandboxed environment
on Jetstream2 (Hancock et al., 2021). We ran the
crawler on May 06, 2024, to collect verified phishing
websites from PhishTank, an online phishing
verification platform, and obtained 10,000 unique
phishing websites, each capable of rendering a unique
appearance offline. Similarly, we fetched 10,000
legitimate websites from Tranco (Pochat et al., 2019), a
research-oriented top sites ranking list that provides a
list of legitimate websites with malicious sites removed.
In total, we obtained 20,000 clean (non-adversarial) data
points for the training and test set of detectors.

4.2. Adversarial Robustness Framework

Our adversarial robustness framework has two
components. The offensive side is a threat model that
manipulates the HTML source code of detectable
phishing websites, transforming them into evasive
phishing websites as adversarial examples without
breaking the rendering. The defensive side is an
enhanced version of the detector, where we design an
autoencoder-based auxiliary model to filter out
adversarial examples missed by the original detector.

4.2.1. Threat Model. Given the high realism of
adversarial attacks proposed by Montaruli et al. (2023),
we leverage their algorithms as threat models, attacking
our detectors to generate well-rendered phishing
websites as adversarial examples. Montaruli et al.
(2023)  designed a  query-efficient black-box
optimization algorithm to optimally employ 16 evasion
techniques (Table 1) to manipulate the HTML code of
detectable phishing websites, minimizing the decision
score at which the target detector can classify phishing
websites. Each manipulation on a phishing website
produces a new version of the HTML source code
without changing its rendering. All evasion techniques
selected are frequently used by adversaries in the wild,
such as injecting invisible internal and external links,
adding fake copyright, obfuscating JavaScript, and
altering CSS styles of hidden elements to be less
detectable. The adversarial attacks can be deployed in
black-box scenarios, requiring no information about the
detector's training data, features, or architectures. The
threat model only requires the classification result — the
decision score from the target detector - following each
manipulation as the feedback to judge the effectiveness
of its manipulations.
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Table 1. Evasion Techniques of Threat Model.

Category Evasion Technique Manipulation method
InjectIntElem Injecting 10 internal links by <a> elements in body/head.
InjectIntElemFoot Injecting 10 internal links by <a> elements in the footer.
InjectIntLinkElem  |Injecting 10 internal links by <link> elements.
Injection InjectExtElem Injecting 10 external links by <link> elements in body/head.
InjectExtEleFoot Injecting 10 external links by <link> elements in the footer.
InjectFakeFavicon  |Injecting a fake favicon by <link> element.
InjectFakeCopyright |Injecting a fake copyright by <p> element.
ObfuscateExtLinks Rep}acmg externgl links in the bodys: elements Wlth 1_nvahd internal links and
Obfuscation putting external links back by JavaScript at execution time.
Obfuscate]S Encoding JavaScript function within a <script> element.
UpdateForm Replacing action’s attribute value of forms.
UpdateIntAnchors Replacing href’s attribute value of anchors.
UpdateHiddenDivs  |Replacing style’s attribute value of <div> elements.
UpdateHiddenButtons }‘{gmov1n% the_ disabled attr1but§ of <buttop> c?lements and putting the
. .. disabled” attribute back by JavaScript at execution time.
Updating Sensitive
Information Replacing type attribute value of <input> elements or removing the “disabled”
UpdateHiddenInputs |attribute of <input> elements and putting the “disabled” attribute back by
JavaScript at execution time.
Updatelframe Replacing style’s attribute value of <iframe> elements.
UpdateTitle Replacing t_he original t.1t1e \_Vlth domain name and putting the original title back
by JavaScript at execution time.
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Figure 2. Autoencoder-based Auxiliary Model.

4.2.2. Enhanced Detector with Autoencoder-based
Auxiliary Model. The enhanced detector consists of
two components: (a) an original detector well-trained on
clean data without considering adversarial attacks and
(b) an autoencoder-based auxiliary model that filters out
adversarial examples misclassified as legitimate by the
original detector. Our threat model and the autoencoder-
based auxiliary model are independent of any specific
design of the original detector. Therefore, our
adversarial robustness framework can enhance any
detector vulnerable to adversarial attacks that

manipulate HTML source code as long as the detector
extracts part of its features from HTML.

Typically, an ML-based phishing website detector
produces prediction probability as the decision score
and has a threshold based on the decision score to
determine the predicted class label. In the original
detector, we use DS, ginq to denote its decision score
and & to denote the threshold. The DSy, iginq; ranges
from O to 1. The original detector classifies a website as
phishing if DSy iging > a and as legitimate if
DSorigina < @. In adversarial attacks, adversaries
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manipulate phishing websites to cause the original
detector to misclassify them. This means that the
DSorigina for generated adversarial examples will be
intentionally reduced to within the range (0, @). After an
attack, relying solely on DSy iging < @ to classify
legitimate websites cannot distinguish adversarial
examples from true legitimate websites. Therefore, to
address this issue, we design an autoencoder-based
auxiliary model to differentiate adversarial examples
from true legitimate websites when the original detector
produces DSyrigina < @.

The autoencoder-based auxiliary model aims to
learn the differences between adversarial examples and
legitimate websites. As mentioned in the literature
review, autoencoders are powerful tools for
reconstructing the types of examples they are trained on.
Those that cannot be reconstructed well can be
classified as a different class. Therefore, our auxiliary
model is trained on adversarial examples to accurately
reconstruct them. These adversarial examples are
generated from the training set of the original detector
using the threat model, which transforms detectable
phishing websites into adversarial examples. This
approach allows the auxiliary model to learn the
manipulated patterns derived from the clean data that
the original detector has not learned.

Our autoencoder design considers the manipulation
actions of adversaries. HTML source code is organized
by elements linked in a DOM tree structure. Adversaries
may use various evasion techniques to change HTML
components, affecting element information (e.g., name,
attributes, and text values) and the overall DOM tree
structure. Since Graph Convolutional Networks (GCNs)
have been shown to effectively represent source code in
a syntax tree structure (Ding et al., 2023), we design a
GCAE with two GCN layers as the encoder and two
GCN layers as the decoder (Figure 2).

The GCAE input consists of an edge matrix and a
node matrix derived from the HTML. The edge matrix
describes the DOM tree structure, while the node matrix
is derived from the node embedding e,jomen: Which
concatenates three components of an element: tag name
€tqg- attribute names e,;;, and text ey, Both e,,4 and
eqs: are extracted via one-hot encoding, and e, is the
embedding vector extracted using the pre-trained BERT
model. We measure the reconstruction error of our
auxiliary model using the mean squared error (MSE)
between the input x and the reconstructed output x',
denoted as MSE (x,x"). We denote the reconstruction
error threshold by €. When websites containing both
adversarial examples and true legitimate websites pass
through the auxiliary model, the following criterion is
used: if a website can be reconstructed with
MSE(x,x") <€, it is likely to be an adversarial

example, given that the auxiliary model is trained on
adversarial examples. Conversely, if MSE (x,x") = ¢, it
will likely be a legitimate website. In our enhanced
detector, the final Decision Score, denoted as DS, is
determined through the collaboration of the original
detector and the auxiliary model:

If DSyriginat > @, then DS = DSyriginar -

Else, DS = a/(1 + w)'

&€
The intuition behind this collaborative decision-making

process is to use the original detector as the primary
model to classify the input as a phishing website when

DSorigina 18 larger than @. When the DSy ging; falls

between 0 and «, the final classification detection
considers the GCAE-based auxiliary model as well to
distinguish adversarial examples from true legitimate
websites. For DSy igina < @, DS is calculated by
MSE(xx'
a/(1+ ﬂ) When MSE(x,x") < &, DS ranges
&
between /2 and , leading the enhanced detector to
classify the input as an adversarial example. Conversely,

when MSE (x,x") = €, DS ranges between 0 and & /2,
leading the enhanced detector to classify the input as a
true legitimate website.

5. Evaluation

To evaluate the performance of our adversarial
robustness framework, we exhibit the robustness
process of an ML-based phishing website detector that
is not robust against adversarial attacks. We split 80%
of the collected 20,000 clean data into the training set
and 20% into the test set. Convolutional Neural
Networks (CNN) are popular for designing phishing
website detectors, and many adversarial attack studies
use CNN-based classifiers as their target detectors
(Apruzzese et al.,, 2022; Montaruli et al., 2023).
Therefore, we prepared a CNN-based detector that
extracts features from HTML based on the design by
Opara et al. (2020). This detector was trained on our
training set and will be the target of the threat model.
The threshold a for this detector was set as 0.5.

The original detector achieved 88% accuracy on the
test set, correctly identifying 1,920 out of 2,000 phishing
websites (Table 2, Original). To test the adversarial
robustness of the detector, we conducted adversarial
attacks using the threat model. It manipulated the 1,920
detectable phishing websites in the test set, transforming
them into well-rendered evasive phishing websites as
adversarial examples. As the number of manipulations
allowed on each detectable phishing website increased,
the total number of generated adversarial examples also
increased until no more detectable phishing websites
could be transformed into evasive cases. In total, 461 out
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of 1,920 detectable phishing websites were transformed
into evasive ones, reducing the detection accuracy from
88% to 76.48% (Figure 3, Panel (A)).

The robustness test demonstrated that the original
detector is vulnerable to adversarial attacks,. In our
experiment, we compare the performance of three
adversarial robustness methods. In addition to our
proposed method with the auxiliary model, we have two
benchmarks: (1) retraining the original detector from
scratch with the training set augmented with adversarial
examples and (2) fine-tuning the original detector using
adversarial examples. We evaluate performance based
on the adversarial robustness to assess the improvement
in detecting adversarial attacks and the accuracy of the
clean data to determine if enhancing adversarial
robustness compromises the high detection performance
of the original detector on clean data.

6. Experiments and Results

All three adversarial robustness methods need to be
learned from adversarial examples during their training

process. Therefore, we use the threat model to generate
adversarial examples from the original detector's
training set. As a result, 1,928 evasive phishing websites
were generated from 7,767 detectable phishing websites
in the training set. They represent the unseen phishing
patterns that the original detector did not learn.

The retrained detector was trained on an augmented
training set with 16,000 clean data points and 1,928
adversarial examples. The fine-tuned detector was fine-
tuned on only the 1,928 adversarial examples to adjust
the weights of the original detector. The GCAE, used as
our auxiliary model, was trained on the 1,928
adversarial examples. We found that the reconstruction
error MSE(x,x") for most adversarial examples is
smaller than 0.005. Therefore, we set € = 0.005 as the
reconstruction error threshold in the enhanced detector.
In Figure 3, panels (B) to (F) show the adversarial
robustness tests for the retrained detector, fine-tuned
detectors trained for various epochs, and our model.

Table 2. Performance of Detectors on Test Set (clean data).

Accuracy Precision | Recall | F1 Score | AUC TP FP FN TN
(A) Original 0.88 0.89 0.88 0.8792 0.88 1920 | 400 80 1600

(B) Retrained 0.8972 0.8993 0.8972 | 0.8971 0.8972 | 1866 | 277 134 1723
(CO)Fine-tuned (2 epochs) 0.8785 0.891 0.8785 | 0.8775 | 0.8785 | 1936 | 422 64 1578
(D) Fine-tuned (5 epochs) 0.8678 0.8848 0.8678 | 0.8663 | 0.8677 | 1946 | 475 54 1525
(E) Fine-tuned (9 epochs) 0.8343 0.8651 0.8343 | 0.8307 | 0.8343 | 1959 | 622 41 1378
(F) Our Proposed Model 0.8762 0.8872 0.8762 | 0.8754 | 0.8763 | 1921 416 79 1584

(A) Original detector, accuracy: 0.88-0.76
500 500

(B) Retrained detector, accuracy: 0.90 - 0.84
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Figure 3. Adversarial Robustness Test of Detectors.
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Compared to the original detector (A), which
allowed the threat model to generate 461 evasive
phishing websites, all adversarial robustness methods
enhance the detector's robustness by reducing the
number of evasive phishing websites generated. Our
proposed model outperforms the others by only
allowing 147 detectable phishing websites to be
transformed into evasive phishing websites. The overall
accuracy of our proposed model after being attacked
remains at 84%, which is significantly higher than the
original detector. Table 2 compares the performance of
detectors on the test set, which reflects their
performance on clean data before being attacked.

Our proposed model performs very similarly to the
original detector on all nine evaluation metrics
(accuracy, precision, recall, F1 score, AUC, TP, FP, FN,
and TN). This demonstrates that our proposed model
does not compromise the original detector’s high
performance on clean data while achieving the highest
adversarial robustness among all detectors. This
experiment demonstrates the shortcomings of fine-
tuning and retraining mentioned in the literature review.
The trade-off between clean data performance and
adversarial robustness exists for benchmark models. For
fine-tuning, we present three versions of the fine-tuned
detector trained for 2 epochs, 5 epochs, and 9 epochs.
Panels (C) to (E) in Figure 3 and Table 2 show that
adversarial robustness increases as the detector is fine-
tuned for more epochs; however, clean data
performance declines simultaneously. For retraining,
the performance on clean data does not decline; rather,
it increases slightly. This is because, to achieve the
adversarial robustness shown in Figure 3 (B), the model
had to be trained for more epochs than the original
detector, which improves its performance on clean data.
However, its adversarial robustness is still worse than
our proposed model as it focuses more on maintaining
high performance on clean data.

7. Contributions and Future Directions

Our study contributes two key aspects to the
adversarial robustness literature in phishing website
detection. First, our adversarial robustness framework
emphasizes collaboration between offensive and
defensive efforts. Insights gained from the offensive
side's realistic emulation of adversarial attacks are
applied to enhance ML-based phishing website
detectors. Rather than relying on an unrealistic threat
model, we improve the robustness of detectors against
realistic adversarial attacks by generating well-crafted
phishing websites as adversarial examples. Second, to
the best of our knowledge, we are among the first to
propose an auxiliary model to assist the original detector
in filtering out adversarial examples in the context of

phishing detection. The collaboration between the
auxiliary model and the original detector mitigates the
original detector's vulnerability to adversarial examples.
As a result, our approach achieves high adversarial
robustness while maintaining the original detector's high
performance on clean data. Additionally, our framework
is not limited to any specific detector; as long as the
threat model can manipulate the website components
used by the detector, our framework can be employed to
test and enhance the detector's adversarial robustness.

The collaborative decision-making between the
original detector and the auxiliary model may also be
generalizable to other detection domains threatened by
evasion problems. For instance, in phishing emails and
fake news detection, we can use Large Language
Models as auxiliary models to learn the semantic
patterns of adversarial examples. In future research, we
plan to conduct more experiments to demonstrate the
effectiveness of our framework on multiple ML-based
phishing website detectors with different designs. We
will also introduce our adversarial robustness approach
to other domains. Further testing the proposed approach
in other contexts can help mitigate the ever-growing
issue of fake or fraudulent content generation.

8. References

Abbasi, A., Zahedi, F. “., Zeng, D., Chen, Y., Chen, H., &
Nunamaker Jr, J. F. (2015). Enhancing predictive
analytics for anti-phishing by exploiting website genre
information. Journal of Management Information
Systems, 31(4), 109-157.
https://doi.org/10.1080/07421222.2014.1001260.

Apruzzese, G., Conti, M., & Yuan, Y. (2022). Spacephish: The
evasion-space of adversarial attacks against phishing
website detectors using machine learning. Proceedings of
the 38th Annual Computer Security Applications
Conference, 171-185.
https://doi.org/10.1145/3564625.3567980.

Bai, T., Luo, J., Zhao, J., Wen, B., & Wang, Q. (2021). Recent
advances in adversarial training for adversarial
robustness. arXiv  preprint  arXiv:2102.01356.
https://doi.org/10.48550/arXiv.2102.01356.

Ding, Z., Li, H., Shang, W. & Chen, T.H. (2023). Towards
learning generalizable code embeddings using task-
agnostic  graph  convolutional networks. ACM
Transactions on Software Engineering and Methodology,
32(2), 1-43. https://doi.org/10.1145/3542944.

Dobolyi, D.G. & Abbasi, A., (2016). Phishmonger: A free and
open source public archive of real-world phishing
websites. 2016 IEEE conference on intelligence and
security informatics (IS1), 31-36.
https://doi.org/10.1109/1S1.2016.7745439.

Goodfellow, L.J., Shlens, J. & Szegedy, C., 2014. Explaining
and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
https://doi.org/10.48550/arXiv.1412.6572.

Page 428



Hancock, D.Y., Fischer, J., Lowe, J.M., Snapp-Childs, W.,
Pierce, M., Marru, S., Coulter, J.E., Vaughn, M., Beck,
B., Merchant, N. & Skidmore, E. (2021). Jetstream?2:
Accelerating cloud computing via Jetstream. /n Practice
and Experience in Advanced Research Computing, 1-8.
https://doi.org/10.1145/3437359.3465565.

Li, H., Zhou, S., Yuan, W., Luo, X., Gao, C. & Chen, S.
(2021). Robust android malware detection against
adversarial example attacks. Proceedings of the Web
Conference 2021, 3603-3612.
https://doi.org/10.1145/3442381.3450044.

Ma, J., Saul, L.K., Savage, S. & Voelker, G.M. (2009).
Beyond blacklists: learning to detect malicious web sites
from suspicious URLs. Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, 1245-1254.
https://doi.org/10.1145/1557019.1557153.

Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z.,
Xiong, H. & Akoglu, L. (2021). A comprehensive survey
on graph anomaly detection with deep learning. /IEEE
Transactions on Knowledge and Data Engineering,
35(12), 12012-12038.
https://doi.org/10.1109/TKDE.2021.3118815.

Montaruli, B., Demetrio, L., Pintor, M., Compagna, L.,
Balzarotti, D. & Biggio, B., 2023, November. Raze to the
Ground: Query-Efficient Adversarial HTML Attacks on
Machine-Learning  Phishing Webpage Detectors.
Proceedings of the 16th ACM Workshop on Artificial
Intelligence and Security, 233-244.
https://doi.org/10.1145/3605764.3623920.

O'Mara, A., Alsmadi, I. & AlEroud, A. (2021). Generative
Adverserial Analysis of Phishing Attacks on Static and
Dynamic Content of Webpages. 2021 IEEE Intl Conf on
Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing &
Communications, Social Computing & Networking,
1657-1662. https://doi.org/10.1109/ISPA-BDCloud-
Social Com-SustainCom52081.2021.00222.

Opara, C., Wei, B. & Chen, Y. (2020). HTMLPhish: enabling
phishing web page detection by applying deep learning
techniques on HTML analysis. 2020 International Joint
Conference on Neural Networks (IJCNN), 1-8.
https://doi.org/10.1109/IJCNN48605.2020.9207707.

Ouyang, L. & Zhang, Y. (2021). Phishing Web Page Detection
with HTML-Level Graph Neural Network. 2021 IEEE
20th International Conference on Trust, Security and
Privacy in Computing and Communications (TrustCom),

952-958.
https://doi.org/10.1109/TrustCom53373.2021.00133.

Pochat, V. L., Van Goethem, T., Tajalizadehkhoob, S.,
Korczy nski, M., & Joosen, W. (2019). Tranco: A
research-oriented top sites ranking hardened against
manipulation. Proceedings of the 26th Annual Network
and Distributed System Security Symposium (NDSS).
https://doi.org/10.14722/ndss.2019.23.

Purwanto, R.W., Pal, A., Blair, A. & Jha, S. (2022). Phishsim:
Aiding phishing website detection with a feature-free
tool. IEEE Transactions on Information Forensics and
Security, 17, 1497-1512.
https://doi.org/10.1109/TIFS.2022.3164212.

Sabir, B., Babar, M.A., Gaire, R. & Abuadbba, A. (2022).
Reliability and robustness analysis of machine learning
based phishing url detectors. /[EEE Transactions on
Dependable and Secure Computing.
https://doi.org/10.1109/TDSC.2022.3218043.

Shirazi, H., Bezawada, B., Ray, I. & Anderson, C. (2021).
Directed adversarial sampling attacks on phishing
detection. Journal of Computer Security, 29(1), 1-23.
https://doi.org/10.3233/JCS-191411.

Smadi, S., Aslam, N. & Zhang, L. (2018). Detection of online
phishing email using dynamic evolving neural network
based on reinforcement learning. Decision Support
Systems, 107, 88-102.
https://doi.org/10.1016/j.dss.2018.01.001.

Song, F., Lei, Y., Chen, S., Fan, L. & Liu, Y. (2021).
Advanced evasion attacks and mitigations on practical
ML-based phishing website classifiers. International
Journal of Intelligent Systems, 36(9), 5210-5240.
https://doi.org/10.1002/int.22510.

Tian, K., Jan, S.T., Hu, H., Yao, D. & Wang, G. (2018).
Needle in a haystack: Tracking down elite phishing
domains in the wild. Proceedings of the Internet
Measurement Conference 2018, 429-442.
https://doi.org/10.1145/3278532.3278569.

Wang, H., Chen, T., Gui, S., Hu, T., Liu, J. & Wang, Z. (2020).
Once-for-all adversarial training: In-situ tradeoff
between robustness and accuracy for free. Advances in
Neural Information Processing Systems, 33, 7449-7461.
https://proceedings.neurips.cc/paper_files/paper/2020/fil
€/537d9b6¢927223c796cac288cced29df-Paper.pdf

Xiang, G., Hong, J., Rose, C.P. & Cranor, L. (2011). Cantina+
a feature-rich machine learning framework for detecting
phishing web sites. ACM Transactions on Information
and  System  Security (TISSEC), 14(2), 1-28.
https://doi.org/10.1145/2019599.2019606.

Page 429



