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Abstract

Security concerns around using personally
identifiable information (PIl) introduces notable
privacy concerns in sensor signal-based depression
detection. In this study, we propose a novel attention-
based privacy-preserving model that mitigates these
concerns. It assigns greater weights to non-PlI-
releasing sensors and lesser to high-privacy risk
sensors, leveraging the principles of differential
privacy (DP). We compare the performance of
machine learning and deep learning benchmark
models with and without Pll-releasing sensors. Our
results underline a  significant  performance
discrepancy, suggesting potential instability in
prediction performance without these sensors. Our
proposed model, with a recall, precision, F1 of 0.889,
and an AUC of 0.9, illustrates that high-quality results
are achievable while considering privacy. This
privacy-conscious model has implications for
promoting a more unobtrusive approach to mental
healthcare. Furthermore, the model’s potential for
secure deployment in wide-reaching digital health
applications and collaborative settings enhances its
relevance for large-scale mental monitoring while
preserving privacy.

Keywords: mental health, depression, privacy, sensor
signal, machine learning.

1. Introduction

Mental health disorders have become a leading
cause of disability worldwide, causing significant
impacts on global human health, social and economic
consequences (WHO, 2019). Depression is one of the
most common and serious mental health disorders that
can negatively affect our emotions, thoughts, and
behaviors (APA, 2020). Approximately 280 million
people globally have depression, and this group
typically has higher suicide rates than those with other
disorders (CDC, 2022). Thus, depression has become
a salient societal concern with significant public health
expenditures, such as medical costs. Standard methods
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for assessing depression include the 9-item Patient
Health Questionnaire (PHQ-9), which is directly
drawn from the Diagnostic and Statistical Manual of
Mental Disorders, Fifth Edition (DSM-5) (APA,
2020). Although widely used by clinicians to diagnose
potential patients with depression, such approaches
usually require interviews and self-reports, which are
time-consuming, expensive, and labor-intensive. Self-
reports such as the PHQ-9 survey may be susceptible
to human recall biases and potentially miss out on
moment-by-moment human behavioral patterns
(Opoku Asare et al., 2021).

Mobile technology, such as smartphones and
smartwatches, can provide cost-effective, ubiquitous,
and objective ways to capture multiple dimensions of
human behaviors (Miller et al., 2021). Previous studies
have shown that sensor signal data can be an
alternative method to assess people’s mental health
status (Burns et al., 2011; Bardhan et al., 2020). Given
the high-dimensional and high-velocity nature of
sensor signals, many past researchers have
successfully leveraged machine learning (ML) and
deep learning (DL)-based methods to analyze these
data to identify depressive behaviors (Hussain et al.,
2021; Srikanthan et al., 2021). Despite the numerous
benefits of sensor signal-based analytics for mental
health applications, concerns have been raised related
to the privacy aspects of using sensor signal data (Al
Ameen et al., 2010). In particular, using sensors that
release personally identifiable information (PII), or
data that can be used to identify an individual on its
own or when combined with other information, could
cause significant issues related to surveillance and
privacy breaches (Krishnamurthy & Wills, 2010). For
example, service providers might track patients’ GPS
locations and record sensitive voice messages without
permission. Misuse of sensor data that leads to privacy
breaches would limit or even damage such systems’
potential benefits and adoptions.

Security and privacy are critical in Al-enabled
digital health tools, especially in sensor-based mental
health analysis (Shajari et al., 2023). Protecting Al
models and the data they process is essential to prevent
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misuse, breaches, and other cybersecurity threats
(Ibrahim et al., 2020). Ensuring that sensitive health
data is secure and privacy-preserving builds trust
among users and facilitates wider adoption of these
technologies in mental health care. Given these
significant ramifications, this study aims to develop a
novel attention-based privacy-preserving approach
that integrates differential privacy principles directly
into the scoring function of the attention mechanism
by quantifying the privacy cost associated with each
sensor for depression detection. This model has the
potential to facilitate the trust of DL-based sensor
signal analysis systems and could help promote their
adoption for mental health assessments. Additionally,
the potential for the model to be used collaboratively
across different organizations and settings is
noteworthy. This approach can support collaborative
efforts in mental health monitoring by ensuring secure
and privacy-preserving data sharing.

The paper is organized as follows. We first review
literature on Al in secure digital health tools, sensor-
based studies for depression, and general principles of
attention mechanisms and differential privacy. Based
on our literature review, we identify research gaps and
pose research questions for study. Subsequently, we
introduce the dataset used for our analysis, our
research framework, and experimental design. We
then present a set of benchmarking results and assess
our proposed attention-based model. Finally, we
discuss implications and propose future research
directions.

2. Literature Review

We reviewed several areas of literature to set the
foundation for this study. First, we reviewed the
relevance of Al in secure digital health tools,
particularly focusing on sensor-based mental health
analysis. Second, we reviewed previous studies on
sensor-based mental health analysis, specifically
focusing on efforts made toward privacy preservation
and identifying potential methodologies for depression
detection. Third, we reviewed the general principle of
the attention mechanism to identify its advantages and
limitations for identifying the most important yet least
privacy-sensitive sensors. Finally, we reviewed the
concept of differential privacy to explore how it could
be used to adjust the traditional attention mechanism.

2.1. Al in Secure Digital Health Tools

Al is increasingly integral to digital health tools,
offering advanced capabilities for monitoring and
analyzing health data. In sensor-based mental health
analysis, Al can facilitate real-time, continuous

assessments that complement traditional methods
(Shajari et al., 2023). However, this integration raises
significant  security and privacy  concerns,
necessitating the protection of Al models and the data
they process to prevent personal information misuse
and breaches (Rieke et al., 2020). The deployment of
Al in healthcare settings has shown vulnerabilities to
adversarial attacks, data poisoning, privacy leaks, and
the unauthorized use of personal health data, leading
to user distrust and negative sentiments (Khalid et al.,
2023; Mitchell & El-Gayar, 2023; Silva et al., 2020).

Despite these concerns, limited research focuses
on the security or privacy of Al models in mental
health monitoring. Past studies on passive sensing data
have identified privacy concerns such as loss of
confidentiality and data misuse (Rogan et al., 2024).
Existing literature often neglects the balance between
preserving privacy and maintaining Al models’
accuracy and reliability in mental health. More
importantly, such concerns could negatively impact
therapeutic relationships between patients and
therapists (Byrne et al., 2022). Thus, this gap
highlights the need for research on integrating privacy-
preserving techniques within Al models, especially for
sensor-based mental health assessments such as
depression detection.

2.2. ML and DL Approaches for Sensor
Signal-based Depression Detection

Prior research has focused on utilizing sensor
signal data for depression analysis, providing more
objective and ubiquitous measures for mental health
assessments (Tigga & Garg, 2023; Jiao et al., 2023;
Yuan et al., 2023; Morshed et al., 2019). Most studies
have primarily concentrated on analyzing various
aspects of human behavior, including physical
activity, social activity, and sleep patterns, to detect
depression (Pfaff et al., 2022; Ding et al., 2021). These
studies typically collected or analyzed passive sensor
data reflecting the physical activity aspects of human
behavior. For instance, mobile phones were used to
record patient locations, which were then analyzed to
identify mood disorders like depression or bipolar
disorder (Delgado-Santos et al., 2022; Trifan et al.,
2019). However, location data such as GPS
coordinates are considered as PII and are thus sensitive
(Ren et al., 2016). As a result, some studies proposed
using self-reported survey data or non-Pll-releasing
sensors as alternatives. Despite these adaptations,
these studies primarily focused on the data collection
aspect rather than data analysis. Therefore, we place
specific emphasis on studies that have analyzed sensor
signal data for mental health.
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Within the existing literature, classical ML, DL,
and statistical analysis emerged as the most frequently
used methods for sensor data analysis. Specifically,
Support Vector Machines (SVM) and K-Nearest
Neighbors (KNN) algorithms were widely employed
due to their proficiency in generating accurate
predictions on existing mental health datasets (Jiao et
al., 2023; Kim et al., 2021). Nevertheless, these
methods may struggle to capture sensor data’s
complex and non-linear relationships. To address such
limitations, Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), and their variants
were commonly used DL methods due to their
inherent ability to process high-dimensional sensor
signal data without the need for manual feature
engineering (Tigga & Garg, 2023; Khan et al., 2022;
Anjum et al., 2022). While most studies focused on
supervised learning tasks such as depression detection,
only a few addressed unsupervised learning tasks like
clustering analysis (Nguyen et al., 2021).

Despite the effectiveness of these methods, a
significant gap persists in the literature as the privacy
concerns associated with PII have not been adequately
addressed. Thus, there is a need to develop a privacy-
preserving approach that maintains depression
detection accuracy. This challenge necessitates
techniques that could help identify and prioritize less
privacy-sensitive but highly predictive sensor data.
One promising method is the attention mechanism, a
technique in neural networks that focuses on the input
data’s most important features, which could be
adapted for our privacy-oriented context.

2.3. Attention Mechanisms

Attention mechanisms are a technique in neural
networks that assigns trainable weights to source data,
helping extract the most important features of the task
(Du et al., 2019). Attention mechanisms can help
model performance by focusing on relevant parts of
the input data. Attention mechanisms comprise a
query (Q), the key (K), and the value (V) (Brauwers
and Frasincar, 2021). The query represents the
expected outcome or intermediate result of a neural
network, the key is the source data, and the value is the
internal representation extracted by the neural network
(Niu et al., 2021). Attention mechanisms typically use
a scoring function to compute the similarity between
the O and each key K (Samtani et al., 2021). This
function assigns weights to the input features,
reflecting their importance or contribution to the task.
In our context, the scoring function can evaluate the
importance of each sensor for depression detection.

However, this traditional attention approach does
not account for privacy. Intuitively, sensors with

higher privacy concerns should be seen as more
sensitive or risky and, thus, should receive lower
weights. This is a significant limitation of standard
attention mechanisms. Hence, our objective should be
to develop a modified scoring function that balances
the importance of sensor data for depression detection
and its associated privacy risk. This way, we can
identify the most relevant sensors with the least
privacy sensitivity. By incorporating differential
privacy principles into the scoring function of the
attention mechanism, we can potentially address the
limitation of traditional attention mechanisms in
addressing privacy concerns.

2.4. Differential Privacy

Differential privacy (DP) is a privacy framework
and mathematical concept that provides a rigorous and
quantifiable measure of privacy preservation in data
analysis (Dwork, 2006). Its objective is to protect
individuals’ privacy by ensuring that including or
excluding their data does not significantly affect the
outcome or conclusions of an analysis or computation.
Differential privacy applications have been explored
in various domains, including healthcare, finance,
social sciences, and more (Ficek et al., 2021; Byrd &
Polychroniadou, 2020; Kenny et al., 2021). These
studies underscore the increasing recognition of
differential privacy as an effective approach for
safeguarding privacy across different fields.
Differential privacy also holds tremendous potential,
for developing a privacy-preserving model for sensor
signal depression detection.

Incorporating differential privacy principles into
the scoring function allows us to assign appropriate
sensor weights based on their privacy risk. This
ensures that sensors with higher privacy concerns
receive lower weights, reducing their impact on the
model’s decision-making process. Furthermore,
integrating differential privacy principles can quantify
the privacy cost associated with each sensor.
Considering the privacy implications of the sensor
data and accounting for the sensitivity of each sensor
can help strike a balance between accurate depression
detection and preserving user privacy.

3. Research Gaps and Questions

We identified several research gaps based on our
literature review. First, while previous research in
sensor-based mental health analysis has made strides
in privacy preservation, the focus has primarily been
on data collection rather than data analysis. This
highlights a gap in understanding the privacy
implications during the analysis phase. Second,
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although sensor data has been effectively utilized for
depression detection, privacy concerns related to PII
have often been overlooked. Consequently, there is a
critical need to develop a privacy-preserving approach
that ensures accurate depression detection while
safeguarding individual privacy. Lastly, attention
mechanisms, despite their potential to prioritize
relevant sensor data, often fail to consider privacy
risks when scoring the importance of sensors. This
necessitates the development of a modified scoring
function that balances sensor importance and privacy
risks. Building upon these research gaps, we propose
the following research questions:

e What is the performance of ML and DL models
when all available sensors are considered, and
how does their performance change when privacy
is taken into account by utilizing only non-PII-
releasing sensors for depression detection?

e How can we develop an attention-based model
that assigns higher weights to sensors that have
the most significant impact on model performance
while being the least sensitive in terms of privacy?

4. Research Framework

To address the proposed research questions, we
propose a research framework with three major
components: (1) Data Collection & Data
Preprocessing, (2) Proposed Attention-based Privacy-
Preserving Model, and (3) Model Evaluations. We
detail each component in the following sub-sections.

4.1. Data Collection and Preprocessing

We used the publicly available StudentLife
dataset, which contains comprehensive phone sensor
recordings from 48 students over 10 weeks (Wang et
al., 2014). The dataset includes multiple categories of
sensor signal data with timestamps that reflect various
aspects of the student’s physical activities, social
activities, and sleep patterns (Table 1).

Table 1. StudentLife Dataset Overview

Conver- Records when start_timestamp|79,023
ation participants were  [No -
i around conversations|  [start_timestamp(79,023
Records when at a start time 7,254
Light |dark environment [No —
for > an hour end_time 7,254
Phone Records when the Start_time 0,275
[ ock phone was locked  |No
oc for > an hour lend_time 9,275
Phone [Records when the Start_time 3,318
ch phone was charged |No
A eor > an hour end_time 3,318

Sensor [Description PII [Feature To.t al data
oints
. timestamp 231,851
Grs  folleced every 10 [veqltitude  PALEST
; y “fongitude 231,851
minutes
altitude 231,851
Surrounding timestamp 1,288,526
Bluetooth|Bluetooth signal Yes
levery 10 minutes signal level 1,288,526
WiFi Surrounding Wifi J timetamp 18,429,544
signal strength signal level 18,429,544

Past literature has indicated that GPS location
coordinates (latitude, longitude, and altitude),
Bluetooth signals, and Wi-Fi are Pll-releasing sensors
(Fanourakis, 2020). The non-Pll-releasing sensors
include surrounding sound, dark/light environment,
phone lock frequency, and phone charge information
of users. Besides the sensors with timestamps, the
StudentLife dataset contains responses to the PHQ-9
survey collected from the students, which we used as
labels in our classification tasks. 38 of the 48 were
classified as having a low risk of depression, and 10
were identified as having a high risk.

To preprocess the data, we addressed the missing
data, as the sensors are not always active. In cases
where timestamps were included, we extracted the
time of day and day of the week from the timestamp
data, providing our model with potentially useful
temporal information. Since we are working with DL
models, we also normalized our data. This process
ensures that all features have a similar scale and
prevents certain features from dominating the learning
process (Singh and Singh, 2020).

4.2. Proposed Attention-based Privacy-
Preserving Model

Given the limitations of prevailing DL-based
models and traditional attention mechanisms, we
propose a novel Attention-based Privacy-Preserving
Model (Figure 1) for depression detection.
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Figure 1. Proposed Attention-based Privacy-

Preserving Model

The proposed model seeks to understand which

non-PlI-releasing sensors have the highest impact on
model performance through a novel attention
mechanism and calculate each sensor’s privacy cost
(sensitivity). This quantitative privacy measure helps
create a balance between achieving predictive
accuracy and preserving data privacy. The proposed
model contains four components:

a.

Feature encoding: Due to the complexity and
high-dimensionality of sensor signal data, we
initially process each feature (both PlIl-releasing
and non-Pll-releasing) with an RNN/LSTM
encoder. This operation condenses the features
into more compact embeddings and lowers their
dimensions, helping to simplify further
computations.

Differential privacy term calculation: Next, we
define a function f for each sensor that captures
the essence of the sensor data. For instance, f
could be a function that calculates the mean
sensor value. Then we calculate the sensitivity of
f for each sensor, representing its privacy cost.
This design was motivated by the concept of
differential privacy, a paradigm stating that if we
remove the information of a single user in the
dataset, the output of the algorithm should not
change significantly (Zhao and Chen, 2022). In
our case, for each student m, we create a new
version of the dataset D',,, with that student’s data
removed. We call these datasets D'y, D’',,...,

D’,, for n students. Next, we calculate the absolute
difference between f(D) and each of f(D'),
which gives a set of absolute changes: |f(D) —
fFODLIFD) = FD )N, s If (D) = FD'R)I-
Thus, for each sensor, Sensitivity(f) =
Max|f (D) — f(D")], the maximum value in this
set of absolute changes. The idea here lies in
understanding the sensitivity of a sensor to the
absence of a student’s data. Essentially, a sensor
is deemed highly influential and potentially
privacy-releasing/violating if its function’s output
greatly changes due to the removal of a single
person’s data. This change is what we call as
“sensitivity”. By capturing the worst-case change
in the function’s output, we obtain a robust
measure of privacy risk.
Attention score calculation: For each sensor S;
(both non-PII and Pll-releasing), we first
calculate its similarities with all other sensors S;
using the cosine similarity measure. We then sum
the similarity scores for each sensor S; across all
other sensors S; to represent its total information
contribution, as shown in (1). Also in the previous
step, we calculated each sensor’s sensitivity term,
also called the DP term, as shown in (2).

Si, S L
ZCOS(SL,S) ZI|S;|||S , ViEi ()

Sensitivity(f_S;) = Max|f_S;(D) — f_S;(D")]| (2)
Next, an attention score for each sensor S; is
calculated as the sum of its similarity scores with
all other sensors S; minus its sensitivity term. In
this case, the intuition is that the more privacy-
releasing a certain sensor is, the higher sensitivity
it is likely to have, thus the calculated attention
weight will be lower. This represents the balance
between the sensor’s information contribution
and its privacy cost. Thus, the attention score for
S; would be (1) — (2). We then normalize these
attention scores using the SoftMax function to get
a weight w; for each sensor. This ensures the
weights across all sensors sum to 1.
Depression detection: Finally, we assign w; to
the initial features and pass the weighted
representations to three layers of multi-layer
perceptron (MLP) to perform the depression
detection task. We chose MLP due to its
effectiveness in handling high-dimensional data
and its demonstrated success in similar contexts
(Yu et al., 2024). However, our approach is
flexible and allows for the use of any classifier
based on specific requirements and constraints.
The novelty of our proposed attention-based

privacy-preserving framework lies in its integration of
differential privacy principles directly into the scoring
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function of the attention mechanism. This integration
is achieved by quantifying the privacy cost or
sensitivity associated with each sensor and
incorporating it into the computation of attention
scores. This approach effectively balances each
sensor’s information contribution and its potential
privacy risks.

4.3. Model Evaluations

Our model evaluation consists of two experiments
designed to assess the performance and effectiveness
of our proposed approach. In experiment I, we conduct
a comparison between different benchmark models by
considering the inclusion or exclusion of personally
identifiable information (PII)-releasing sensors.
Specifically, we run the models with both the inclusion
and exclusion of Pll-releasing sensors such as GPS,
Bluetooth, and Wi-Fi. By analyzing the variations in
model performance, we can understand the
significance and indispensability of Pll-releasing
sensors in the detection of depression. In experiment
II, we proceed to evaluate the full model that we have
designed. In this evaluation, we assign weights to
distinct sensors based on their importance and privacy
risk. By incorporating the principles of differential
privacy into the attention mechanism, we can
effectively balance the contribution of each sensor
while considering privacy concerns. This experiment
allows us to examine the performance of the model
when attention weights are applied to different
sensors, providing insights into the effectiveness of
our privacy-preserving approach.

Our benchmark model selections include classical
ML-based models frequently employed in prior sensor
signal analysis literature for depression detection.
These models include SVM, KNN, Logistic
Regression (LR), and Gradient Boosting (GB)
classifier. Additionally, we incorporate prevailing DL-
based techniques, such as CNN, RNN, Long Short-
Term Memory (LSTM), Bidirectional Long Short-
Term Memory (BiLSTM), and Gated Recurrent Unit
(GRU) identified in related literature, as the second set
of our benchmarks.

We select recall, precision, and Fl-score as our
evaluation metrics since these were the most
commonly used in prior relevant literature. These
metrics are calculated using the following formulas
where True Positives (TP) refer to correctly predicted
positive values, True Negatives (TN) to correctly
predicted negative values, False Positives (FP) to
instances where the actual class is no but the predicted
class is yes, and False Negatives (FN) to instances
where the actual class is yes but the predicted class is
no: (1) Precision = TPs / (TPs + FPs), (2) Recall =

TPs /(TPs + FNs), (3) FI = 2 ((Precision * Recall) /
(Precision + Recall)).

5. Results and Discussions

5.1. Experiment I

In experiment I, we ran ML and DL-based
benchmark models with and without including PII-
releasing sensors, aiming to discern differences in
model performance to address our first proposed
research question. Table 2 summarizes the model
performance with all PIl-releasing sensors vs. without
PIl-releasing sensors.

Table 2. ML/DL-based Benchmark Performance

All Sensors (PII & Non-PII Sensors
ML/DL | pon-PII) Only
Model

Rec. | Pre. F1 Rec. | Pre. F1
KNN 0.875 ] 0.917 | 0.883 | 0.400 | 0.250 | 0.308
LR 0.750 | 0.857 ] 0.750 | 0.875 | 0.917 | 0.883
SVM 0.500 | 0.278 | 0.357 | 0.500 | 0.222 | 0.308
GB 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
RNN 0.889 | 0.889 | 0.889 | 0.889 | 0.853 | 0.870
LSTM 0.889 | 0.860 | 0.874 | 0.889 | 0.821 | 0.853
GRU 0.889 | 0.889 | 0.889 | 0.889 | 0.889 | 0.889
BiLSTM | 0.889 | 0.889 | 0.889 | 0.889 | 0.869 | 0.879
CNN 0.889 | 0.889 | 0.889 | 0.889 | 0.888 | 0.888

Our findings reveal that the elimination of PII
sensors led to different detection performances in 7 out
of 9 evaluated ML/DL models (appearing in boldface).
The exclusion of Pll-releasing sensors significantly
affects certain ML models. For example, the KNN
model exhibits a high dependence on these sensors,
which sees its recall drop from 0.875 to 0.4, precision
drop from 0.917 to 0.25, and F1-score drop from 0.883
to 0.308 when excluding PII-releasing sensors.
Conversely, few models, such as GB, show resilience
against excluding PII-releasing sensors, maintaining
comparably stable performance levels. This indicates
their potential as privacy-friendly predictive models.
Nevertheless, this apparent disparity underlines the
impact of sensor type selection on model performance.
It’s also important to note that traditional ML models
inherently depend on more aggregated level data as
they struggle with high-dimensional sensor data. This
trait might contribute to the extreme values and
instability we observe in the results.

In addition, our initial analysis demonstrates that
DL benchmarks consistently outperform ML
benchmarks on average, highlighting their superior
capability and stability in sensor-based depression
detection. However, the presence or absence of PII-
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releasing sensors also impacts the performance of DL
models. Excluding Pll-releasing sensors negatively
affects most DL models, including RNN, LSTM,
BiLSTM, and CNN, leading to average declining
performance metrics. For example, the LSTM model
experiences a reduction in its precision from 0.86 to
0.821 and in its F1 score from 0.874 to 0.853 when
PlIl-releasing sensors are excluded. This suggests that
including PII-releasing sensors contributes to the
improved performance of these models in detecting
depression. On the other hand, only GRU
demonstrates higher resilience against the exclusion of
PII-releasing sensors, maintaining stable performance
without heavy reliance on Pll-related information.

Conducting further testing and evaluation on
multiple datasets is crucial to enhancing the reliability
and generalizability of our findings. However, the
observed performance discrepancies in both our
benchmark settings highlight the instability of model
performance when Pll-releasing sensors are removed.
These findings underscore the importance of
developing a more robust privacy-preserving approach
for depression detection.

5.2. Experiment II

Our proposed attention-based privacy-preserving
model achieved a recall of 0.889, precision of 0.889,
F1 of 0.889, and AUC of 0.9. These scores outperform
most DL-based benchmarks and are on par with the
best-performing DL benchmark, GRU, which also
achieved 0.889 for recall, precision, and F1. These
performances indicate that standard DL models’
reliance on high-dimensional data, some of which may
be private and sensitive, which increases the risk of
privacy invasion. Our proposed model, however, is
designed to strike a balance between privacy and
performance by leveraging an attention mechanism
that weighs sensors based on their informational
contribution and privacy risk. Our model’s
performance proves that it’s possible to maintain high-
quality results while protecting privacy. Further, using
an attention mechanism presents an interesting avenue
for model interpretability, making our model more
transparent. By assigning weights to each sensor
feature, our model also provides a clear explanation of
the role each sensor plays in the depression detection
task, which might be beneficial for future research and
model improvements.

6. Theoretical Contributions and
Practical Implications

6.1. Theoretical Contributions

This study introduces a novel integration of
differential privacy principles into the attention
mechanisms of DL models, addressing a key
limitation in traditional approaches that focus on
enhancing model performance but often overlook
privacy risks. By refining feature selection while
proactively mitigating privacy concerns, our approach
represents a theoretical advancement that bridges the
gap between maximizing data utility and ensuring
robust privacy protections in ML/DL models.

Our proposed attention mechanism represents a
shift in how privacy is treated in AI model design for
healthcare. Traditionally, privacy considerations are
often addressed after a model has been developed,
through external safeguards or post-hoc adjustments.
In contrast, our approach embeds privacy-preserving
techniques directly into the core of the model’s
decision-making process, making privacy an integral
aspect of the model’s architecture and throughout the
model’s lifecycle, from initial design to deployment.

By embedding differential privacy directly into
Al models, our study contributes to the broader
theoretical discourse on the convergence of Al and
cybersecurity. It offers a new perspective on designing
Al systems that are secure by design where privacy
and security are foundational elements, not secondary
concerns. This perspective is critical in fields like
healthcare, where the sensitivity of data demands
rigorous privacy safeguards. Our approach
demonstrates that it is possible to build AI models that
are both high-performing and privacy-conscious,
opening new avenues for research that balances these
often-competing objectives.

6.2. Practical Implications

The practical implications of our study extend to
various stakeholders involved in mental health care,
with a strong emphasis on enhancing security and
privacy in mental health assessments. Our model
ensures the protection of sensitive data while
providing a respectful, non-intrusive tool for
monitoring mental health.

Privacy-focused healthcare entities: Integrating
our privacy-preserving model into healthcare systems
can potentially benefit stakeholders involved in
regulatory compliance, such as healthcare providers
and administrative bodies. This approach supports
compliance with key regulatory standards, such as the
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Health Insurance Portability and Accountability Act
(HIPAA) in the United States, thereby reducing the
risks associated with data breaches. By bolstering user
confidentiality and fostering trust, hospitals and
mental health clinics can elevate their digital health
solutions, creating a safer and more reliable healthcare
environment. These advancements benefit healthcare
providers and regulatory authorities by ensuring that
privacy standards are consistently met and maintained,
thereby strengthening trust in healthcare systems.

Patients: Our privacy-preserving model reassures
patients by prioritizing the safety of their personal
data. It balances accurate depression detection with
privacy preservation, fostering trust in Al-assisted
mental health technology. Patients can engage
confidently with our system, reassured by its robust
performance and commitment to protecting sensitive
information. This increased trust may lead to broader
adoption of such technologies in mental health
management, paving the way for earlier detection and
intervention.

Organizations: Organizations can leverage our
model for large-scale mental health monitoring,
enabling them to safely support the mental well-being
of their employees. By integrating our model into
existing healthcare systems, organizations can
enhance data security and privacy while providing
management with valuable insights into overall mental
health trends within their workforce. This approach
allows for early identification of potential issues,
enabling timely interventions that improve employee
well-being, reduce absenteeism, and maintain high
levels of productivity. Additionally, it can help foster
an organizational culture that prioritizes mental health
without compromising employee privacy.

7. Discussions

Our study has implications for collaborative
systems and technologies in environments where
multiple stakeholders need to securely share and
analyze sensitive data. Our privacy-preserving model
enables this by focusing on data patterns rather than
individual data points. By analyzing aggregate
patterns across datasets, our model can derive
meaningful insights, such as feature importance,
without exposing individual-level information.

This approach allows institutions to collaborate
effectively, leveraging overall trends and relationships
within the aggregated data to identify key factors
affecting mental health, all while ensuring individual
privacy is strictly maintained. For instance,
universities could collaborate to monitor the mental
health of student populations across different
campuses using our model. By securely aggregating

data from various institutions, these universities can
identify common mental health trends, such as
increased anxiety or depression during exam periods,
and implement targeted interventions like counseling
services or stress management workshops. Similarly,
organizations could use our model to monitor the
mental well-being of employees across different
branches or departments. By sharing data securely,
organizations can detect workplace stress patterns,
such as those linked to tight deadlines or high
workloads and introduce wellness programs or support
systems to mitigate these issues.

One limitation of our study is that the data utilized
was collected on an individual level. However, this
does not diminish the model’s relevance for
collaborative wuse. The core privacy-preserving
principles of our model allow it to focus on aggregate
data patterns rather than individual data points,
enabling secure aggregation and anonymization of
individual data. This makes the model suitable for
collaborative analysis across multiple entities, as it can
derive meaningful insights from overall trends without
exposing sensitive information.

8. Conclusion

Previous studies in sensor-based mental health
analysis have made valuable contributions but have
often placed more emphasis on data collection than
analysis and have not adequately addressed privacy
preservation concerns. This study contributes to
addressing the critical issue of privacy in sensor-based
depression detection by developing a novel attention-
based model. Our model helps address these gaps by
demonstrating the feasibility and potential of building
privacy-preserving ML models without sacrificing
performance. By incorporating differential privacy
principles into the attention mechanism’s scoring
function, we effectively address the privacy concerns
associated with Pll-releasing sensors. Furthermore,
the proposed model has significant potential for use in
wide-reaching digital health applications for mental
health, ensuring data security and privacy on a large
scale.

There are several promising directions for future
research. First, it is crucial to conduct further
evaluation and validation of our attention-based model
on larger and more diverse datasets. This will enable
us to ensure its generalizability and effectiveness
across different populations and settings, establishing
its robustness and reliability in real-world
applications. Second, extending our current model by
exploring methods to avoid using any PII-releasing
sensors while still maintaining high detection accuracy
is essential. One example could include developing a
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knowledge distillation architecture that can effectively
transfer the knowledge gained from Pll-releasing
sensors to future tasks, even in the absence of PII data.
Finally, future research could explore the development
of models for federated learning, where organizations
train on decentralized data without sharing raw
information. This can further validate the effectiveness
of privacy-preserving methods in collaborative
settings, enhancing joint analysis in multi-institutional
studies and mental health initiatives while ensuring
user privacy.
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