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Abstract

Furthermore, the model’s potential for 

mental health, depression, privacy, sensor 

signal, machine learning. 

1. Introduction  

Mental health disorders have become a leading 

cause of disability worldwide, causing significant 

impacts on global human health, social and economic 

consequences (WHO, 2019). Depression is one of the 

most common and serious mental health disorders that 

can negatively affect our emotions, thoughts, and 

behaviors (APA, 2020). Approximately 280 million 

people globally have depression, and this group 

typically has higher suicide rates than those with other 

disorders (CDC, 2022). Thus, depression has become 

a salient societal concern with significant public health 

expenditures, such as medical costs. Standard methods 

for assessing depression include the 9-item Patient 

Health Questionnaire (PHQ-9), which is directly 

drawn from the Diagnostic and Statistical Manual of 

Mental Disorders, Fifth Edition (DSM-5) (APA, 

2020). Although widely used by clinicians to diagnose 

potential patients with depression, such approaches 

usually require interviews and self-reports, which are 

time-consuming, expensive, and labor-intensive. Self-

reports such as the PHQ-9 survey may be susceptible 

to human recall biases and potentially miss out on 

moment-by-moment human behavioral patterns 

(Opoku Asare et al., 2021).  

Mobile technology, such as smartphones and 

smartwatches, can provide cost-effective, ubiquitous, 

and objective ways to capture multiple dimensions of 

human behaviors (Miller et al., 2021). Previous studies 

have shown that sensor signal data can be an 

alternative method to assess people’s mental health 
status (Burns et al., 2011; Bardhan et al., 2020). Given 

the high-dimensional and high-velocity nature of 

sensor signals, many past researchers have 

successfully leveraged machine learning (ML) and 

deep learning (DL)-based methods to analyze these 

data to identify depressive behaviors (Hussain et al., 

2021; Srikanthan et al., 2021). Despite the numerous 

benefits of sensor signal-based analytics for mental 

health applications, concerns have been raised related 

to the privacy aspects of using sensor signal data (Al 

Ameen et al., 2010). In particular, using sensors that 

release personally identifiable information (PII), or 

data that can be used to identify an individual on its 

own or when combined with other information, could 

cause significant issues related to surveillance and 

privacy breaches (Krishnamurthy & Wills, 2010). For 

example, service providers might track patients’ GPS 
locations and record sensitive voice messages without 

permission. Misuse of sensor data that leads to privacy 

breaches would limit or even damage such systems’ 
potential benefits and adoptions.  

Security and privacy are critical in AI-enabled 

digital health tools, especially in sensor-based mental 

health analysis (Shajari et al., 2023). Protecting AI 

models and the data they process is essential to prevent 
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misuse, breaches, and other cybersecurity threats 

(Ibrahim et al., 2020). Ensuring that sensitive health 

data is secure and privacy-preserving builds trust 

among users and facilitates wider adoption of these 

technologies in mental health care. Given these 

significant ramifications, this study aims to develop a 

novel attention-based privacy-preserving approach 

that integrates differential privacy principles directly 

into the scoring function of the attention mechanism 

by quantifying the privacy cost associated with each 

sensor for depression detection. This model has the 

potential to facilitate the trust of DL-based sensor 

signal analysis systems and could help promote their 

adoption for mental health assessments. Additionally, 

the potential for the model to be used collaboratively 

across different organizations and settings is 

noteworthy. This approach can support collaborative 

efforts in mental health monitoring by ensuring secure 

and privacy-preserving data sharing. 

The paper is organized as follows. We first review 

literature on AI in secure digital health tools, sensor-

based studies for depression, and general principles of 

attention mechanisms and differential privacy. Based 

on our literature review, we identify research gaps and 

pose research questions for study. Subsequently, we 

introduce the dataset used for our analysis, our 

research framework, and experimental design. We 

then present a set of benchmarking results and assess 

our proposed attention-based model. Finally, we 

discuss implications and propose future research 

directions. 

2. Literature Review 

We reviewed several areas of literature to set the 

foundation for this study. First, we reviewed the 

relevance of AI in secure digital health tools, 

particularly focusing on sensor-based mental health 

analysis. Second, we reviewed previous studies on 

sensor-based mental health analysis, specifically 

focusing on efforts made toward privacy preservation 

and identifying potential methodologies for depression 

detection. Third, we reviewed the general principle of 

the attention mechanism to identify its advantages and 

limitations for identifying the most important yet least 

privacy-sensitive sensors. Finally, we reviewed the 

concept of differential privacy to explore how it could 

be used to adjust the traditional attention mechanism. 

2.1. AI in Secure Digital Health Tools 

AI is increasingly integral to digital health tools, 

offering advanced capabilities for monitoring and 

analyzing health data. In sensor-based mental health 

analysis, AI can facilitate real-time, continuous 

assessments that complement traditional methods 

(Shajari et al., 2023). However, this integration raises 

significant security and privacy concerns, 

necessitating the protection of AI models and the data 

they process to prevent personal information misuse 

and breaches (Rieke et al., 2020). The deployment of 

AI in healthcare settings has shown vulnerabilities to 

adversarial attacks, data poisoning, privacy leaks, and 

the unauthorized use of personal health data, leading 

to user distrust and negative sentiments (Khalid et al., 

2023; Mitchell & El-Gayar, 2023; Silva et al., 2020).  

Despite these concerns, limited research focuses 

on the security or privacy of AI models in mental 

health monitoring. Past studies on passive sensing data 

have identified privacy concerns such as loss of 

confidentiality and data misuse (Rogan et al., 2024). 

Existing literature often neglects the balance between 

preserving privacy and maintaining AI models’ 
accuracy and reliability in mental health. More 

importantly, such concerns could negatively impact 

therapeutic relationships between patients and 

therapists (Byrne et al., 2022). Thus, this gap 

highlights the need for research on integrating privacy-

preserving techniques within AI models, especially for 

sensor-based mental health assessments such as 

depression detection.  

2.2. ML and DL Approaches for Sensor 

Signal-based Depression Detection 

       Prior research has focused on utilizing sensor 

signal data for depression analysis, providing more 

objective and ubiquitous measures for mental health 

assessments (Tigga & Garg, 2023; Jiao et al., 2023; 

Yuan et al., 2023; Morshed et al., 2019). Most studies 

have primarily concentrated on analyzing various 

aspects of human behavior, including physical 

activity, social activity, and sleep patterns, to detect 

depression (Pfaff et al., 2022; Ding et al., 2021). These 

studies typically collected or analyzed passive sensor 

data reflecting the physical activity aspects of human 

behavior. For instance, mobile phones were used to 

record patient locations, which were then analyzed to 

identify mood disorders like depression or bipolar 

disorder (Delgado-Santos et al., 2022; Trifan et al., 

2019). However, location data such as GPS 

coordinates are considered as PII and are thus sensitive 

(Ren et al., 2016). As a result, some studies proposed 

using self-reported survey data or non-PII-releasing 

sensors as alternatives. Despite these adaptations, 

these studies primarily focused on the data collection 

aspect rather than data analysis. Therefore, we place 

specific emphasis on studies that have analyzed sensor 

signal data for mental health. 
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      Within the existing literature, classical ML, DL, 

and statistical analysis emerged as the most frequently 

used methods for sensor data analysis. Specifically, 

Support Vector Machines (SVM) and K-Nearest 

Neighbors (KNN) algorithms were widely employed 

due to their proficiency in generating accurate 

predictions on existing mental health datasets (Jiao et 

al., 2023; Kim et al., 2021). Nevertheless, these 

methods may struggle to capture sensor data’s 
complex and non-linear relationships. To address such 

limitations, Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), and their variants 

were commonly used DL methods due to their 

inherent ability to process high-dimensional sensor 

signal data without the need for manual feature 

engineering (Tigga & Garg, 2023; Khan et al., 2022; 

Anjum et al., 2022). While most studies focused on 

supervised learning tasks such as depression detection, 

only a few addressed unsupervised learning tasks like 

clustering analysis (Nguyen et al., 2021).  

        Despite the effectiveness of these methods, a 

significant gap persists in the literature as the privacy 

concerns associated with PII have not been adequately 

addressed. Thus, there is a need to develop a privacy-

preserving approach that maintains depression 

detection accuracy. This challenge necessitates 

techniques that could help identify and prioritize less 

privacy-sensitive but highly predictive sensor data. 

One promising method is the attention mechanism, a 

technique in neural networks that focuses on the input 

data’s most important features, which could be 

adapted for our privacy-oriented context. 

2.3. Attention Mechanisms 

       Attention mechanisms are a technique in neural 

networks that assigns trainable weights to source data, 

helping extract the most important features of the task 

(Du et al., 2019). Attention mechanisms can help 

model performance by focusing on relevant parts of 

the input data. Attention mechanisms comprise a 

query (Q), the key (K), and the value (V) (Brauwers 

and Frasincar, 2021). The query represents the 

expected outcome or intermediate result of a neural 

network, the key is the source data, and the value is the 

internal representation extracted by the neural network 

(Niu et al., 2021). Attention mechanisms typically use 

a scoring function to compute the similarity between 

the Q and each key K (Samtani et al., 2021). This 

function assigns weights to the input features, 

reflecting their importance or contribution to the task. 

In our context, the scoring function can evaluate the 

importance of each sensor for depression detection.  

       However, this traditional attention approach does 

not account for privacy. Intuitively, sensors with 

higher privacy concerns should be seen as more 

sensitive or risky and, thus, should receive lower 

weights. This is a significant limitation of standard 

attention mechanisms. Hence, our objective should be 

to develop a modified scoring function that balances 

the importance of sensor data for depression detection 

and its associated privacy risk. This way, we can 

identify the most relevant sensors with the least 

privacy sensitivity. By incorporating differential 

privacy principles into the scoring function of the 

attention mechanism, we can potentially address the 

limitation of traditional attention mechanisms in 

addressing privacy concerns. 

2.4. Differential Privacy 

       Differential privacy (DP) is a privacy framework 

and mathematical concept that provides a rigorous and 

quantifiable measure of privacy preservation in data 

analysis (Dwork, 2006). Its objective is to protect 

individuals’ privacy by ensuring that including or 

excluding their data does not significantly affect the 

outcome or conclusions of an analysis or computation. 

Differential privacy applications have been explored 

in various domains, including healthcare, finance, 

social sciences, and more (Ficek et al., 2021; Byrd & 

Polychroniadou, 2020; Kenny et al., 2021). These 
studies underscore the increasing recognition of 

differential privacy as an effective approach for 

safeguarding privacy across different fields.  

Differential privacy also holds tremendous potential, 

for developing a privacy-preserving model for sensor 

signal depression detection.  

       Incorporating differential privacy principles into 

the scoring function allows us to assign appropriate 

sensor weights based on their privacy risk. This 

ensures that sensors with higher privacy concerns 

receive lower weights, reducing their impact on the 

model’s decision-making process. Furthermore, 

integrating differential privacy principles can quantify 

the privacy cost associated with each sensor. 

Considering the privacy implications of the sensor 

data and accounting for the sensitivity of each sensor 

can help strike a balance between accurate depression 

detection and preserving user privacy. 

3. Research Gaps and Questions 

We identified several research gaps based on our 

literature review. First, while previous research in 

sensor-based mental health analysis has made strides 

in privacy preservation, the focus has primarily been 

on data collection rather than data analysis. This 

highlights a gap in understanding the privacy 

implications during the analysis phase. Second, 
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although sensor data has been effectively utilized for 

depression detection, privacy concerns related to PII 

have often been overlooked. Consequently, there is a 

critical need to develop a privacy-preserving approach 

that ensures accurate depression detection while 

safeguarding individual privacy. Lastly, attention 

mechanisms, despite their potential to prioritize 

relevant sensor data, often fail to consider privacy 

risks when scoring the importance of sensors. This 

necessitates the development of a modified scoring 

function that balances sensor importance and privacy 

risks. Building upon these research gaps, we propose 

the following research questions:  

• What is the performance of ML and DL models 

when all available sensors are considered, and 

how does their performance change when privacy 

is taken into account by utilizing only non-PII-

releasing sensors for depression detection?  

• How can we develop an attention-based model 

that assigns higher weights to sensors that have 

the most significant impact on model performance 

while being the least sensitive in terms of privacy? 

4. Research Framework 

To address the proposed research questions, we 

propose a research framework with three major 

components: (1) Data Collection & Data 

Preprocessing, (2) Proposed Attention-based Privacy-

Preserving Model, and (3) Model Evaluations. We 

detail each component in the following sub-sections. 

4.1. Data Collection and Preprocessing 

We used the publicly available StudentLife 

dataset, which contains comprehensive phone sensor 

recordings from 48 students over 10 weeks (Wang et 

al., 2014). The dataset includes multiple categories of 

sensor signal data with timestamps that reflect various 

aspects of the student’s physical activities, social 

activities, and sleep patterns (Table 1).  

 
Table 1. StudentLife Dataset Overview 

Sensor Description PII Feature 
Total data 

points 

GPS 

GPS coordinates 

collected every 10 

minutes 

Yes 

timestamp 231,851 

latitude 231,851 

longitude 231,851 

altitude 231,851 

Bluetooth 

Surrounding 

Bluetooth signal 

every 10 minutes 

Yes 
timestamp 1,288,526 

signal level 1,288,526 

WiFi 
Surrounding Wifi  

signal strength 
Yes 

timetamp 18,429,544 

signal level 18,429,544 

Conver-

sation 

Records when 

participants were 

around conversations 

No 
start_timestamp 79,023 

start_timestamp 79,023 

Light 

Records when at a 

dark environment 

for > an hour 

No 
start_time 7,254 

end_time 7,254 

Phone 

Lock 

Records when the 

phone was locked 

for > an hour 

No 
start_time 9,275 

end_time 9,275 

Phone 

Charge 

Records when the 

phone was charged 

for > an hour 

No 
start_time 3,318 

end_time 3,318 

        

      Past literature has indicated that GPS location 

coordinates (latitude, longitude, and altitude), 

Bluetooth signals, and Wi-Fi are PII-releasing sensors 

(Fanourakis, 2020). The non-PII-releasing sensors 

include surrounding sound, dark/light environment, 

phone lock frequency, and phone charge information 

of users. Besides the sensors with timestamps, the 

StudentLife dataset contains responses to the PHQ-9 

survey collected from the students, which we used as 

labels in our classification tasks. 38 of the 48 were 

classified as having a low risk of depression, and 10 

were identified as having a high risk.  

      To preprocess the data, we addressed the missing 

data, as the sensors are not always active. In cases 

where timestamps were included, we extracted the 

time of day and day of the week from the timestamp 

data, providing our model with potentially useful 

temporal information. Since we are working with DL 

models, we also normalized our data. This process 

ensures that all features have a similar scale and 

prevents certain features from dominating the learning 

process (Singh and Singh, 2020). 

4.2. Proposed Attention-based Privacy-

Preserving Model 

Given the limitations of prevailing DL-based 

models and traditional attention mechanisms, we 

propose a novel Attention-based Privacy-Preserving 

Model (Figure 1) for depression detection.  
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Figure 1. Proposed Attention-based Privacy-

Preserving Model 
 

The proposed model seeks to understand which 

non-PII-releasing sensors have the highest impact on 

model performance through a novel attention 

mechanism and calculate each sensor’s privacy cost 

(sensitivity). This quantitative privacy measure helps 

create a balance between achieving predictive 

accuracy and preserving data privacy. The proposed 

model contains four components: 

a. Feature encoding: Due to the complexity and 

high-dimensionality of sensor signal data, we 

initially process each feature (both PII-releasing 

and non-PII-releasing) with an RNN/LSTM 

encoder. This operation condenses the features 

into more compact embeddings and lowers their 

dimensions, helping to simplify further 

computations. 

b. Differential privacy term calculation: Next, we 

define a function Ā for each sensor that captures 

the essence of the sensor data. For instance, Ā 

could be a function that calculates the mean 

sensor value. Then we calculate the sensitivity of Ā for each sensor, representing its privacy cost. 

This design was motivated by the concept of 

differential privacy, a paradigm stating that if we 

remove the information of a single user in the 

dataset, the output of the algorithm should not 

change significantly (Zhao and Chen, 2022). In 

our case, for each student ÿ, we create a new 

version of the dataset �2ÿ with that student’s data 
removed. We call these datasets �21, �22,..., 

�2Ā for n students. Next, we calculate the absolute 

difference between Ā(�) and each of Ā(�2), 

which gives a set of absolute changes: |Ā(�) −Ā(�′1)|, |Ā(�) − Ā(�′2)|, ..., |Ā(�) − Ā(�′Ā)|.  
       Thus, for each sensor, �ÿĀýÿþÿÿÿþĂ(Ā) =��ā|Ā(�) − Ā(�2)|, the maximum value in this 

set of absolute changes. The idea here lies in 

understanding the sensitivity of a sensor to the 

absence of a student’s data. Essentially, a sensor 

is deemed highly influential and potentially 

privacy-releasing/violating if its function’s output 

greatly changes due to the removal of a single 

person’s data. This change is what we call as 

<sensitivity=. By capturing the worst-case change 

in the function’s output, we obtain a robust 

measure of privacy risk. 

c. Attention score calculation: For each sensor �ÿ  
(both non-PII and PII-releasing), we first 

calculate its similarities with all other sensors �Ā 

using the cosine similarity measure. We then sum 

the similarity scores for each sensor �ÿ  across all 

other sensors �Ā to represent its total information 

contribution, as shown in (1). Also in the previous 

step, we calculated each sensor’s sensitivity term, 

also called the DP term, as shown in (2).∑ �āý(�ÿ , �Ā) = ∑ �ÿ , �Ā6�ÿ6‖�Ā‖ ,    ∀Ā b ÿ    (1) �ÿĀýÿþÿÿÿþĂ(Ā_�ÿ) = ��ā|Ā_�ÿ(�) − Ā_�ÿ(�2)| (2) 

       Next, an attention score for each sensor �ÿ  is 

calculated as the sum of its similarity scores with 

all other sensors �Ā minus its sensitivity term. In 

this case, the intuition is that the more privacy-

releasing a certain sensor is, the higher sensitivity 

it is likely to have, thus the calculated attention 

weight will be lower. This represents the balance 

between the sensor’s information contribution 

and its privacy cost. Thus, the attention score for  �ÿ  would be (1) − (2). We then normalize these 

attention scores using the SoftMax function to get 

a weight Āÿ for each sensor. This ensures the 

weights across all sensors sum to 1.  

d. Depression detection: Finally, we assign Āÿ to 

the initial features and pass the weighted 

representations to three layers of multi-layer 

perceptron (MLP) to perform the depression 

detection task. We chose MLP due to its 

effectiveness in handling high-dimensional data 

and its demonstrated success in similar contexts 

(Yu et al., 2024). However, our approach is 

flexible and allows for the use of any classifier 

based on specific requirements and constraints. 

       The novelty of our proposed attention-based 

privacy-preserving framework lies in its integration of 

differential privacy principles directly into the scoring 
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function of the attention mechanism. This integration 

is achieved by quantifying the privacy cost or 

sensitivity associated with each sensor and 

incorporating it into the computation of attention 

scores. This approach effectively balances each 

sensor’s information contribution and its potential 

privacy risks. 

4.3. Model Evaluations 

Our model evaluation consists of two experiments 

designed to assess the performance and effectiveness 

of our proposed approach. In experiment I, we conduct 

a comparison between different benchmark models by 

considering the inclusion or exclusion of personally 

identifiable information (PII)-releasing sensors. 

Specifically, we run the models with both the inclusion 

and exclusion of PII-releasing sensors such as GPS, 

Bluetooth, and Wi-Fi. By analyzing the variations in 

model performance, we can understand the 

significance and indispensability of PII-releasing 

sensors in the detection of depression. In experiment 

II, we proceed to evaluate the full model that we have 

designed. In this evaluation, we assign weights to 

distinct sensors based on their importance and privacy 

risk. By incorporating the principles of differential 

privacy into the attention mechanism, we can 
effectively balance the contribution of each sensor 

while considering privacy concerns. This experiment 

allows us to examine the performance of the model 

when attention weights are applied to different 

sensors, providing insights into the effectiveness of 

our privacy-preserving approach. 

Our benchmark model selections include classical 

ML-based models frequently employed in prior sensor 

signal analysis literature for depression detection. 

These models include SVM, KNN, Logistic 

Regression (LR), and Gradient Boosting (GB) 

classifier. Additionally, we incorporate prevailing DL-

based techniques, such as CNN, RNN, Long Short-

Term Memory (LSTM), Bidirectional Long Short-

Term Memory (BiLSTM), and Gated Recurrent Unit 

(GRU) identified in related literature, as the second set 

of our benchmarks.  

We select recall, precision, and F1-score as our 

evaluation metrics since these were the most 

commonly used in prior relevant literature. These 

metrics are calculated using the following formulas 

where True Positives (TP) refer to correctly predicted 

positive values, True Negatives (TN) to correctly 

predicted negative values, False Positives (FP) to 

instances where the actual class is no but the predicted 

class is yes, and False Negatives (FN) to instances 

where the actual class is yes but the predicted class is 

no: (1) Precision = TPs / (TPs + FPs), (2) Recall = 

TPs / (TPs + FNs), (3) F1 = 2 ((Precision * Recall) / 

(Precision + Recall)). 

5. Results and Discussions 

5.1. Experiment I 

In experiment I, we ran ML and DL-based 

benchmark models with and without including PII-

releasing sensors, aiming to discern differences in 

model performance to address our first proposed 

research question. Table 2 summarizes the model 

performance with all PII-releasing sensors vs. without 

PII-releasing sensors.  

 
Table 2. ML/DL-based Benchmark Performance 

ML/DL 

Model 

All Sensors (PII & 

non-PII) 

Non-PII Sensors 

Only 

Rec. Pre. F1 Rec. Pre. F1 

KNN 0.875 0.917 0.883 0.400 0.250 0.308 

LR 0.750 0.857 0.750 0.875 0.917 0.883 

SVM 0.500 0.278 0.357 0.500 0.222 0.308 

GB 1.000 1.000 1.000 1.000 1.000 1.000 

RNN 0.889 0.889 0.889 0.889 0.853 0.870 

LSTM 0.889 0.860 0.874 0.889 0.821 0.853 

GRU 0.889 0.889 0.889 0.889 0.889 0.889 

BiLSTM 0.889 0.889 0.889 0.889 0.869 0.879 

CNN 0.889 0.889 0.889 0.889 0.888 0.888 

 

       Our findings reveal that the elimination of PII 

sensors led to different detection performances in 7 out 

of 9 evaluated ML/DL models (appearing in boldface). 

The exclusion of PII-releasing sensors significantly 

affects certain ML models. For example, the KNN 

model exhibits a high dependence on these sensors, 

which sees its recall drop from 0.875 to 0.4, precision 

drop from 0.917 to 0.25, and F1-score drop from 0.883 

to 0.308 when excluding PII-releasing sensors. 

Conversely, few models, such as GB, show resilience 

against excluding PII-releasing sensors, maintaining 

comparably stable performance levels. This indicates 

their potential as privacy-friendly predictive models. 

Nevertheless, this apparent disparity underlines the 

impact of sensor type selection on model performance. 

It’s also important to note that traditional ML models 

inherently depend on more aggregated level data as 

they struggle with high-dimensional sensor data. This 

trait might contribute to the extreme values and 

instability we observe in the results.  

       In addition, our initial analysis demonstrates that 

DL benchmarks consistently outperform ML 

benchmarks on average, highlighting their superior 

capability and stability in sensor-based depression 

detection. However, the presence or absence of PII-
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releasing sensors also impacts the performance of DL 

models. Excluding PII-releasing sensors negatively 

affects most DL models, including RNN, LSTM, 

BiLSTM, and CNN, leading to average declining 

performance metrics. For example, the LSTM model 

experiences a reduction in its precision from 0.86 to 

0.821 and in its F1 score from 0.874 to 0.853 when 

PII-releasing sensors are excluded. This suggests that 

including PII-releasing sensors contributes to the 

improved performance of these models in detecting 

depression. On the other hand, only GRU 

demonstrates higher resilience against the exclusion of 

PII-releasing sensors, maintaining stable performance 

without heavy reliance on PII-related information.  

       Conducting further testing and evaluation on 

multiple datasets is crucial to enhancing the reliability 

and generalizability of our findings. However, the 

observed performance discrepancies in both our 

benchmark settings highlight the instability of model 

performance when PII-releasing sensors are removed. 

These findings underscore the importance of 

developing a more robust privacy-preserving approach 

for depression detection. 

5.2. Experiment II 

Our proposed attention-based privacy-preserving 
model achieved a recall of 0.889, precision of 0.889, 

F1 of 0.889, and AUC of 0.9. These scores outperform 

most DL-based benchmarks and are on par with the 

best-performing DL benchmark, GRU, which also 

achieved 0.889 for recall, precision, and F1. These 

performances indicate that standard DL models’ 
reliance on high-dimensional data, some of which may 

be private and sensitive, which increases the risk of 

privacy invasion. Our proposed model, however, is 

designed to strike a balance between privacy and 

performance by leveraging an attention mechanism 

that weighs sensors based on their informational 

contribution and privacy risk. Our model’s 
performance proves that it’s possible to maintain high-

quality results while protecting privacy. Further, using 

an attention mechanism presents an interesting avenue 

for model interpretability, making our model more 

transparent. By assigning weights to each sensor 

feature, our model also provides a clear explanation of 

the role each sensor plays in the depression detection 

task, which might be beneficial for future research and 

model improvements.  

6. Theoretical Contributions and 

Practical Implications 

6.1. Theoretical Contributions 

This study introduces a novel integration of 

differential privacy principles into the attention 

mechanisms of DL models, addressing a key 

limitation in traditional approaches that focus on 

enhancing model performance but often overlook 

privacy risks. By refining feature selection while 

proactively mitigating privacy concerns, our approach 

represents a theoretical advancement that bridges the 

gap between maximizing data utility and ensuring 

robust privacy protections in ML/DL models. 

Our proposed attention mechanism represents a 

shift in how privacy is treated in AI model design for 

healthcare. Traditionally, privacy considerations are 

often addressed after a model has been developed, 

through external safeguards or post-hoc adjustments. 

In contrast, our approach embeds privacy-preserving 

techniques directly into the core of the model’s 
decision-making process, making privacy an integral 

aspect of the model’s architecture and throughout the 

model’s lifecycle, from initial design to deployment. 

By embedding differential privacy directly into 

AI models, our study contributes to the broader 

theoretical discourse on the convergence of AI and 

cybersecurity. It offers a new perspective on designing 

AI systems that are secure by design where privacy 

and security are foundational elements, not secondary 

concerns. This perspective is critical in fields like 

healthcare, where the sensitivity of data demands 

rigorous privacy safeguards. Our approach 

demonstrates that it is possible to build AI models that 

are both high-performing and privacy-conscious, 

opening new avenues for research that balances these 

often-competing objectives. 

6.2. Practical Implications 

The practical implications of our study extend to 

various stakeholders involved in mental health care, 

with a strong emphasis on enhancing security and 

privacy in mental health assessments. Our model 

ensures the protection of sensitive data while 

providing a respectful, non-intrusive tool for 

monitoring mental health. 

Privacy-focused healthcare entities: Integrating 

our privacy-preserving model into healthcare systems 

can potentially benefit stakeholders involved in 

regulatory compliance, such as healthcare providers 

and administrative bodies. This approach supports 

compliance with key regulatory standards, such as the 
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Health Insurance Portability and Accountability Act 

(HIPAA) in the United States, thereby reducing the 

risks associated with data breaches. By bolstering user 

confidentiality and fostering trust, hospitals and 

mental health clinics can elevate their digital health 

solutions, creating a safer and more reliable healthcare 

environment. These advancements benefit healthcare 

providers and regulatory authorities by ensuring that 

privacy standards are consistently met and maintained, 

thereby strengthening trust in healthcare systems. 

Patients: Our privacy-preserving model reassures 

patients by prioritizing the safety of their personal 

data. It balances accurate depression detection with 

privacy preservation, fostering trust in AI-assisted 

mental health technology. Patients can engage 

confidently with our system, reassured by its robust 

performance and commitment to protecting sensitive 

information. This increased trust may lead to broader 

adoption of such technologies in mental health 

management, paving the way for earlier detection and 

intervention. 

Organizations: Organizations can leverage our 

model for large-scale mental health monitoring, 

enabling them to safely support the mental well-being 

of their employees. By integrating our model into 

existing healthcare systems, organizations can 

enhance data security and privacy while providing 

management with valuable insights into overall mental 

health trends within their workforce. This approach 

allows for early identification of potential issues, 

enabling timely interventions that improve employee 

well-being, reduce absenteeism, and maintain high 

levels of productivity. Additionally, it can help foster 

an organizational culture that prioritizes mental health 

without compromising employee privacy.  

7. Discussions 

Our study has implications for collaborative 

systems and technologies in environments where 

multiple stakeholders need to securely share and 

analyze sensitive data. Our privacy-preserving model 

enables this by focusing on data patterns rather than 

individual data points. By analyzing aggregate 

patterns across datasets, our model can derive 

meaningful insights, such as feature importance, 

without exposing individual-level information.  

This approach allows institutions to collaborate 

effectively, leveraging overall trends and relationships 

within the aggregated data to identify key factors 

affecting mental health, all while ensuring individual 

privacy is strictly maintained. For instance, 

universities could collaborate to monitor the mental 

health of student populations across different 

campuses using our model. By securely aggregating 

data from various institutions, these universities can 

identify common mental health trends, such as 

increased anxiety or depression during exam periods, 

and implement targeted interventions like counseling 

services or stress management workshops. Similarly, 

organizations could use our model to monitor the 

mental well-being of employees across different 

branches or departments. By sharing data securely, 

organizations can detect workplace stress patterns, 

such as those linked to tight deadlines or high 

workloads and introduce wellness programs or support 

systems to mitigate these issues. 

One limitation of our study is that the data utilized 

was collected on an individual level. However, this 

does not diminish the model’s relevance for 

collaborative use. The core privacy-preserving 

principles of our model allow it to focus on aggregate 

data patterns rather than individual data points, 

enabling secure aggregation and anonymization of 

individual data. This makes the model suitable for 

collaborative analysis across multiple entities, as it can 

derive meaningful insights from overall trends without 

exposing sensitive information. 

8. Conclusion 

Previous studies in sensor-based mental health 

analysis have made valuable contributions but have 

often placed more emphasis on data collection than 

analysis and have not adequately addressed privacy 

preservation concerns. This study contributes to 

addressing the critical issue of privacy in sensor-based 

depression detection by developing a novel attention-

based model. Our model helps address these gaps by 

demonstrating the feasibility and potential of building 

privacy-preserving ML models without sacrificing 

performance. By incorporating differential privacy 

principles into the attention mechanism’s scoring 

function, we effectively address the privacy concerns 

associated with PII-releasing sensors. Furthermore, 

the proposed model has significant potential for use in 

wide-reaching digital health applications for mental 

health, ensuring data security and privacy on a large 

scale. 

There are several promising directions for future 

research. First, it is crucial to conduct further 

evaluation and validation of our attention-based model 

on larger and more diverse datasets. This will enable 

us to ensure its generalizability and effectiveness 

across different populations and settings, establishing 

its robustness and reliability in real-world 

applications. Second, extending our current model by 

exploring methods to avoid using any PII-releasing 

sensors while still maintaining high detection accuracy 

is essential. One example could include developing a 
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knowledge distillation architecture that can effectively 

transfer the knowledge gained from PII-releasing 

sensors to future tasks, even in the absence of PII data. 

Finally, future research could explore the development 

of models for federated learning, where organizations 

train on decentralized data without sharing raw 

information. This can further validate the effectiveness 

of privacy-preserving methods in collaborative 

settings, enhancing joint analysis in multi-institutional 

studies and mental health initiatives while ensuring 

user privacy. 
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