Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Suggesting Alternatives for Potentially Insecure Artificial Intelligence
Repositories: An Unsupervised Graph Embedding Approach

Ben Lazarine
Indiana University
belazar@iu.edu

Hongyi Zhu
University of Texas at San Antonio
hongyi.zhu@utsa.edu

Abstract

Emerging Artificial Intelligence (Al) applications
are bringing with them both the potential for significant
societal benefit and harm. Additionally, vulnerabilities
within Al source code can make them susceptible
to attacks ranging from stealing private data to
stealing trained model parameters. Recently, with the
adoption of open-source software (OSS) practices, the
Al development community has introduced the potential
to worsen the number of vulnerabilities present in
emerging Al applications, building new applications on
top of previous applications, naturally inheriting any
vulnerabilities. With the AI OSS community growing
rapidly to a scale that requires automated means of
analysis for vulnerability management, we compare
three categories of unsupervised graph embedding
methods capable of generating repository embeddings
that can be used to rank existing applications based
on their functional similarity for Al developers. The
resulting embeddings can be used to suggest alternatives
to Al developers for potentially insecure Al repositories.

Keywords: Artificial Intelligence, = Open-source
Software, Cybersecurity, = Unsupervised Graph
Embedding.

1. Introduction

In recent years, the rate of artificial intelligence
(AI) development has increased rapidly and has led
to its capabilities surpassing human performance in
tasks ranging from language understanding (Vaswani
et al., 2017) to image recognition (Dosovitskiy et
al., 2020). While this has enabled the emergence
of powerful tools such as ChatGPT and Dall-E, it
has also drawn significant concern from leaders in Al

URI: https://hdl.handle.net/10125/106441
978-0-9981331-7-1
(CC BY-NC-ND 4.0)

H{CSS

Sagar Samtani
Indiana University
ssamtani @iu.edu

Ramesh Venkataraman
Indiana University
venkat@indiana.edu

development, pointing to the potential for unknown
risks and vulnerabilities of these tools to cause societal
damage (Bengio et al., 2022). Examples of the potential
harm AI may pose have already been shown, including
an Al-enabled facial recognition system, developed by
Amazon, exhibiting racial bias and labeling members
of Congress as criminals and an Al chatbot, developed
by Microsoft, being trained by users to be racist and
sexist within 24 hours of release. However, in addition
to these examples of Al unintentionally going wrong,
there are vulnerabilities in Al source code that may soon
become new targets for intentional cyber-attacks. These
attacks will range from adversaries exfiltrating private
information used to train models to adversaries sending
a flood of inputs engineered to require significant
computational power to take down Al systems (MITRE,
2022).

The accelerated rate of development that Al has
seen has largely been spurred by the adoption of
open-source software (OSS) resources and practices by
the Al development community. While accelerating
the rate of development, this adoption has also brought
the potential to increase the number of vulnerabilities
present in emerging Al applications. This is an issue
that is of particular concern to Al developers within
the larger OSS development community, as currently
much of AI development is done iteratively upon
previously developed applications and open-source code
(Langenkamp and Yue, 2022; Jiang et al., 2023a).
Additionally, the nature of AI development lends
itself to such iterative development more so than past
open-source applications, particularly in areas such as
natural language processing and computer vision, as
progress in these application areas has been largely
incremental by nature. GitHub is a popular software
development platform that supports a significant amount

Page 548

Notifications Fork 6.8k Star 14.5k

Issues 738 Pull requests 180 Actions Projects 3 Wiki Security

Go to file About

README.md

torchvision

n docs -- e

Datasets, Transforms and Models
specific to Computer Vision

A
&

The torchvision package consists of popular datasets, model
architectures, and common image transformations for computer vision.

Installation

Please refer to the
torch and torchvision on your system.

To build source, refer to our

to install the stable versions of

Figure 1. GitHub Mechanisms to Facilitate OSS Reuse. Each repository typically includes: (A) Open Issues (B)
Pull Requests (C) Forking and (D) Starring/Watching.

of OSS development, seeing over 400 million OSS
contributions in 2022 (GitHub, 2022). To exemplify
how OSS resources enable iterative Al development,
Figure 1 illustrates mechanisms offered by GitHub to
facilitate code reuse.

To facilitate the reuse of OSS hosted on their
platform, GitHub offers mechanisms for users to
open issues and note areas for improvement, submit
pull requests to contribute code or documentation,
watch repositories that may be of interest for possible
revisiting, and fork (i.e., copy) OSS repositories for
their own development purposes. Developers may take
on any or multiple of these user types within the Al
development community. Regardless of what user type
a developer may be taking on, each type signals that
the user is in the process of or has completed searching
for a repository to reuse. Al developers going through
this process will aim to identify existing repositories
that most closely align with the functionality they are
searching for but also seek repositories with a low
number of vulnerabilities. If an AI developer has found
a repository with too many functionality or security
issues, they may also search for alternatives. To

demonstrate the process an Al developer may follow
when selecting a repository to enhance, replicate, reuse,
or adapt in their own development, we next detail three
steps a typical Al reengineering workflow consists of.

e Step 1: A developer will survey existing
repositories on platforms such as GitHub to
identify potential candidates for reuse. A key
limitation of this step is that it can be difficult and
time-consuming to identify all relevant candidates
through a manual survey consisting of methods
such as keyword searches.

e Step 2: A developer will compare candidate
repositories’ key characteristics to assess which
best aligns with their desired application. In
this step, the developer will likely largely
focus on assessing repository functionality
while potentially assessing supplementary
characteristics such as recent development
activity, support, and possible security issues.
Al-specific functionality characteristics that
are often considered include types of data an
application can operate on (e.g., image, text,
or graph data), whether training data is already

Page 549

provided, the applications underlying architecture
(e.g., PyTorch or Tensorflow), and downstream
tasks that the application may be suited for
(e.g., image recognition, text generation, etc.).
However, a key limitation of this comparison is
that vulnerabilities within the repositories may
not be considered, and even if the developer
would like to, they may be prohibitively difficult
to identify.

* Step 3: A developer will select one or more
repositories for enhancement, replication, reuse,
or adaptation. The key limitation of this step is
that due to the difficulty of manually assessing
repository characteristics, the best repository may
not be selected, potentially leading to increased
development time or selecting a repository with
vulnerabilities to build a new application on top
of, continuing the cycle of OSS development
practices increasing vulnerability presence in
emerging Al applications.

In this paper, we compare unsupervised graph
embedding methods capable of representing repository
relationships and characteristics as easily comparable
embeddings to provide AI developers with a list of
potential applications they can refer to when beginning
their development. Our study offers a significant
practical contribution to the Al development community
by proposing an automated framework to help future Al
developers better identify and select low-vulnerability
repositories capable of performing their desired task in
any Al reengineering process, enhancing their ability
to select appropriate repositories for reuse, making the
process faster, more accurate, and less likely to contain
vulnerabilities.

The remainder of this paper is organized as
follows. First, we review recent machine learning
open-source software (MLOSS) and Unsupervised
Graph Embedding literature. Second, we identify
research gaps in the reviewed literature and pose our
study’s research questions. Third, we present our
research design and explain each component in detail.
Fourth, we present and discuss the results of our
evaluation procedure. Fifth, we illustrate the potential
value of the proposed method through a case study,
and lastly, we conclude this research and summarize
promising directions for future studies.

2. Literature Review
We review two key areas of literature to guide

this research. First, we review MLOSS research to
identify studies that have examined open-source and

security practices of the MLOSS community. Second,
we review unsupervised graph embedding methods to
review approaches to modeling the relationship between
machine learning applications and developers.

2.1. Machine Learning Open-Source Software
Research

Recent MLOSS studies have focused on either
pre-trained models or ML source code repositories.
Additionally, MLOSS studies thus far have primarily
conducted descriptive analysis or manual assessments.
Descriptive studies have worked to cluster machine
learning repositories with similar vulnerabilities
(Sachdeva et al., 2022) and develop taxonomies of
ML frameworks and libraries (Nguyen et al., 2019).
Further studies have conducted manual model or
repository assessments to identify attributes considered
in pre-trained model reuse (Jiang et al., 2023b), identify
bugs in reused pre-trained models (Pan et al., 2022),
develop threat models (Jiang et al., 2022), quantify
MLOSS GitHub contributions (Langenkamp and Yue,
2022), and identify code smells in ML repositories (Van
Oort et al., 2021).

The primary methodologies used in past studies
have been interviews (Jiang et al., 2023b), taxonomy
development (Nguyen et al., 2019; Pan et al., 2022),
and manual model/source code examination (Jiang et
al.,, 2022; Langenkamp and Yue, 2022; Van Oort et
al., 2021), with limited use of automated methods
(Sachdeva et al., 2022). This has significantly restricted
the number of models and repositories extant studies
have examined, with the majority ranging between 10
and 100. Additionally, while studies have conducted
vulnerability scans (Sachdeva et al., 2022; Van Oort
et al., 2021), identified studies have yet to extend
their analysis to ranking repositories most suitable for
reuse from a functionality or security perspective. The
lack of automated methods to examine repositories,
as well as the lack of literature examining how to
compare repositories from a functionality and security
perspective, within extant MLOSS research leaves a
significant need for the development of tools that can
automatically provide Al developers with the ability
to quickly and accurately assess repositories being
considered for reengineering by the functionality they
provide and the number of security issues they contain.

2.2. Unsupervised Graph Embedding

Identifying repositories that are close in
functionality and do not have many vulnerabilities
requires representing them in vector space to enable
ML.-based methods such as ranking (Goyal and Ferrara,

Page 550

2018). GitHub follows a bipartite network structure,
with relationships between repositories and developers
(Lazarine et al., 2020). Past literature representing
repositories and developers as a bipartite network
has generated monopartite network projections of
connected repositories and developers (Barabasi, 2013).
Unsupervised graph embedding methods can operate on
such a network, enabling practical analysis of a network
of repositories by representing each repository based on
its characteristics and network information. Traditional
methods identified in our review can be grouped into
three categories based on how they operate:

* Autoencoder-Based Methods such as Graph
Convolution Autoencoder (GCAE) and
Variational Graph Autoencoder (VGAE) (Kipf
and Welling, 2016a) combine graph convolutional
networks (GCNs) and autoencoders; using a
GCN-based encoder to capture structural and
feature information of a node and its neighbors
via neighborhood aggregation, and a decoder to
update nodal embeddings for accurate network
reconstruction.

* GCN-Based Deep Representation Methods
such as Graph Convolutional Networks (GCN)
(Kipf and Welling, 2016b), Simplified Graph
Convolutions (SGC) (Wu et al.,, 2019), and
Graph Attention Networks (GAT) (Velickovic et
al., 2017) use graph convolutional networks to
capture nodal structure and feature information
via message passing in which nodes exchange
information with their neighbors to update their

embeddings.
¢ Matrix Factorization-Based Deep
Representation Methods such as

Text-Associated Deepwalk (TADW) (Yang et al.,
2015) and Text-Enhanced Network Embedding
(TENE) (Yang and Yang, 2018) learn nodal
embeddings by decomposing the adjacency and
feature matrices into lower dimensional matrices
that represent nodes and their embeddings.

In general, unsupervised graph embedding
methods can capture repository characteristics and
network information in an embedding, encoding
local neighborhood and feature information for each
repository into embeddings suitable for downstream
tasks such as similarity ranking.

2.3. Research Gaps and Questions

We identified two key research gaps from our
literature review. First, recent MLOSS research
has primarily consisted of manual and descriptive

investigations of machine learning repositories.
As a result, MLOSS research has yet to develop
automated solutions to reduce vulnerabilities in
emerging repositories. Second, extant research has not
leveraged unsupervised graph embedding techniques
to generate repository representations that can be
used to identify repository alternatives based on their
functionality characteristics; however, such deep
learning methods are a promising solution for this
task due to their ability to fully leverage relationship
and characteristic information of repositories. Based
on these research gaps, we propose the following
questions:

e How can we address key limitations Al
developers face when going through the
process of searching, comparing, and selecting
repositories for reengineering?

* How can unsupervised graph embedding methods
represent repositories with similar functionality to
facilitate repository alternative ranking?

3. Research Design

We present our proposed research framework
in Figure 3. The framework has four major
components: Research Testbed, Graph Formulation,
Graph Embedding, and Experiments and Evaluation.
We describe each in the following sub-sections.

3.1. Research Testbed: MLOSS Repositories
on GitHub and Vulnerability Assessment

The first component of our research testbed is a
collection of 990 MLOSS repositories on GitHub. To
identify a related community of MLOSS repositories in
which multiple options will be present for various tasks,
we used the GitHub Search API with the term "Hugging
Face.” Hugging Face is a platform that supports Al
development, providing foundational repositories and
computational resources needed to develop new Al
models and host them in an easy-to-use environment.
To leverage issues, pull requests, watches, and forks
as a mechanism for identifying related repositories, we
identified 27,167 issues, 3,071 pull requests, 27,786
watches, and 4,620 forks across our collection of 990
repositories. This number of issues, pull requests,
watches, and forks indicates that we successfully
identified an ML community with a high level of
development activity and interest.

The second component of our research testbed
is a vulnerability assessment conducted with three
prevailing open-source static application security testing
(SAST) tools popular within the information security

Page 551

Research
Testbed

MLOSS Repositories

on GitHub

Vulnerability
Assessment

A%

Flawfinder

Semgrep

Graph Formulation

Bipartite Network
Gg = (R,Ug,E,F)

* R:Repositories

* Upg: Forking
users

* E:User-Repo
Edge

* F:Repository
Features

"=;

Monopartite Fork
Repository
Network

Bipartite Network
Gy = (R, U,,E,F)

* R:Repositories
* U,:Forking
users

Graph Experiments and
Embedding Evaluation
. Experimentation
Unsupervised Benchmark
Gragt Embeckiing Unsupervised
Methods P

Graph Embedding

* E:User-Repo Methods

Edge Y -
« F:Repository Node Embe.ddmg

Features Generation Cisa St

v Vulnerability
v 1 1 sas " .
Monopartite Similar .Node Mitigation Analysis

Watch Repository Ranking

Network

community: Semgrep (Kluban et al., 2022), Bandit

Figure 2. Proposed Research Framework

secrets,

62,553 insecure,

4,445 attack, and 6,839

(Torkura and Meinel, 2016), and Flawfinder (Kaur and
Nayyar, 2020). We selected these tools based on
their usability and popularity to maximize coverage
of vulnerability types and programming languages.
Semgrep leverages community-published rulesets to
scan all types of files for 15 vulnerability types (potential
passwords/keys, weak cryptography, dangerous file
permissions, dangerous handling of user input, etc.)
across four categories (secrets, insecure permissions and
functions, web attack susceptibilities, and Al-specific
vulnerabilities). Semgrep is the only SAST tool
capable of scanning for Al-specific vulnerabilities that
we have identified. Bandit scans Python files for
11 vulnerability types across three categories (secrets,
insecure permissions and functions, and web attack
susceptibilities), and Flawfinder scans C/C++ files for
four vulnerability types across the same three categories.
All three scanners provide severity and confidence
scores for identified vulnerabilities. A summary of our
vulnerability assessment results is shown in Table 1.

Table 1. Summary of GitHub Vulnerability Scan

Results
Severity Total |Affected
High Medium|Low Repositories
VulnerabilitylSecret 47 [124 1,488 [1,659 164
Category |Insecure|802 |4,268 |57,483(62,553 450
Attack P8 [1,131 [3,286 4,445 [175
Al- 3,11381 3,645 6,839 [235
Specific
Total 3,990(5,604 165,902(75,496 [537
Overall, our vulnerability assessment returned

75,496 vulnerabilities across 537 repositories in
our GitHub collection, with 3,990 high severity,
10,141 medium severity, and 65,902 low severity
vulnerabilities. Our assessment returned 1,659

Al-specific vulnerabilities by category. We observe
that the identified vulnerabilities follow a typical
severity distribution, with most of the vulnerabilities
being low severity. Additionally, the majority of
vulnerabilities identified were insecure permissions and
functions. Lastly, each vulnerability category was
observed to affect at least 175 repositories, with
insecure permissions and functions and Al-specific
vulnerabilities affecting the most at 450 and 235,
respectively.

3.2. Graph Formulation

As identified previously, the relationship
between repositories and developers on GitHub
can be represented as a bipartite projection that can
subsequently be projected into monopartite networks
for repositories and users (Lazarine et al., 2020).
Therefore, we denote four bipartite networks as
Gr = R, Dr, E, F;T € (f,i,w, p), where G
is an undirected bipartite graph, R is the node set,
rl, 12, 13, ... rn, of all repositories. D is the node
set, d1, d2, d3, ... dn, of all developers with a T
relationship to a repository, E is the edge set, el, e2, e3,

en, of edges between repositories and developers,
F is the feature matrix of each repository node
(repository functions and number of vulnerabilities),
and T € (f,i,w, p) is the set of developer types,
denoting developers that have forked, opened an issue,
watched, or submitted a pull request to a repository,
respectively. We project our four bipartite networks
into four monopartite networks of related repositories
defined as G = Rp, E, F;T € (f,i,w, p), where
G is an undirected graph, R is the node set, rl, 12,
r3, ... rm, of all repositories with a T relationship,
E is the edge set, el, e2, e3, en, of edges

Page 552

between repositories, F is the feature matrix of each
repository node (repository functions and number of
vulnerabilities), and T € (f,i,w, p) is the set of
repository relationships, denoting repositories that share
common forking, issue opening, watching, or pull
requesting developers, respectively.

3.3. Graph Embedding

Successful ranking of repositories by functionality
and vulnerability level in a network requires an
unsupervised graph embedding method that can
consider all repository alternatives and account for
nodal features. Therefore, we select methods from
three categories of unsupervised graph representation
learning to identify which method is best able to capture
repository network and feature information. The graph
embedding process is as follows:

e Step 1 (Graph Representation): The input
network of repositories is represented as an
adjacency matrix representing linked repositories
and a feature matrix representing the functionality
and vulnerability information of each repository.
Each repository’s functionality information is
encoded from its name, description, and readme
file as a vector leveraging Doc2Vec (Rokon et al.,
2021; Le and Mikolov, 2014) and its vulnerability
information is represented as the number of
vulnerabilities within the repository for each type
of vulnerability identified by Semgrep, Bandit and
Flawfinder (Lazarine et al., 2020).

e Step 2 (Embedding Generation): Each
unsupervised graph embedding method performs
its primary operation (autoencoding, message
passing, or matrix factorization) generating
and updating embeddings for each repository,
capturing structural and feature information.

e Step 3 (Repository Representations):
Repository representations are obtained for
each repository from the final layer of the graph
embedding method.

This procedure results in repository embeddings
that can be compared by cosine similarity to identify
a ranked list of potential repository alternatives by
functionality.

3.4. Evaluation Procedure

In our experimentation, we compare 11 baseline
deep learning methods to evaluate three major categories
of baseline embedding methods:

* Autoencoder-Based Deep Representation
Learning, including Graph Convolutional
Autoencoder (GCAE) (Kipf and Welling, 2016a),
Graph Attention Autoencoder (GATE) (Salehi
and Davulcu, 2019), and Variational Graph
Autoencoder (VGAE) (Kipf and Welling, 2016a).

¢ GCN-Based Deep Representation Learning,
including Graph Convolutional Network (GCN)
(Kipf and Welling, 2016b), Simplified Graph
Convolutions (SGC) (Wu et al., 20129),
Graph Attention Network (GAT) (Velickovic
et al., 2017), and Approximate Personalized
Propagation of Neural Predictions (APPNP)
(Gasteiger et al., 2018).

¢ Matrix Factorization-Based Deep
Representation Learning, including
Text-Associated Deep Walk (TADW) (Yang
et al., 2015), Text-Enhanced Network Embedding
(TENE) (Yang and Yang, 2018), Binarized
Attributed Network Embedding (BANE) (Yang et
al., 2018), and Fusing Structure and Content via
Non-negative Matrix Factorization (FSCNMF)
(Bandyopadhyay et al., 2018).

In Experiment 1, repository embeddings are
generated by each benchmark method, and the
embedding performances are evaluated with Mean
Average Precision (MAP). MAP evaluates the quality
of embeddings produced by an unsupervised graph
embedding method by attempting to reconstruct
the network from the embeddings and comparing
the reconstructed network to the original network,
calculating the average precision of each node (Ciu et
al., 2018). This evaluates how well the embeddings
produced by the graph embedding method encoded the
network’s structure.

We performed Experiment 1 on all four identified
repository networks and across two feature set
combinations (repository functionality features alone
and repository functionality and vulnerability features)
to observe model performances across various datasets
and evaluate each model’s ability to encode functionality
and vulnerability features together.

4. Results and Discussion

We present the results for Experiment 1 are
presented in Table 2. The best performances are
highlighted in boldface.

In Experiment 1, GCAE performed with a MAP of
0.347, 0.336, 0.452, and 0.487 for each network with the
repository functionality feature set. This outperforms all
other methods in three of the four repository networks,

Page 553

Table 2. Experiment 1 Results

Category Model Pull Request Issue Fork 'Watch
Function [Function+ [Function [Function+ Function [Function+ [Function Function+
[Vulnerability [Vulnerability [Vulnerability Vulnerability
| Autoencoder GCAE 0.347 0.382 0.336 0.220 0.452 0.263 0.487 0.309
GATE 0.331 0.300 0.327 0.341 0411 0.367 0.210 0.217
'VGAE 0.293 0.360 0.337 0.215 0.392 0.363 0.274 0.335
GCN GCN 0.097 0.027 0.127 0.063 0.205 0.085 0.153 0.161
GAT 0.066 0.030 0.049 0.020 0.036 0.195 0.151 0.008
SGC 0.060 0.034 0.107 0.071 0.202 0.070 0.000 0.165
APPNP 0.064 0.080 0.109 0.093 0.229 0.183 0.179 0.165
Matrix TADW 0.075 0.088 0.092 0.094 0.261 0.204 0.198 0.183
[Factorization TENE 0.089 0.083 0.123 0.110 0.252 0.223 0.177 0.168
BANE 0.102 0.108 0.091 0.137 0.210 0.236 0.172 0.184
FSCNMF]0.082 0.080 0.104 0.112 0.221 0.219 0.163 0.164

with GATE performing second best in the pull request
repository network (0.331) and the fork repository
network (0.411) and VGAE performing best in the
issue repository network (0.337) and second best in the
watch repository network (0.274). Interestingly, we
see that while GCAE is the best-performing method
overall, its performance drops significantly for the issue,
fork, and watch networks, with drops of 11.6%, 18.9%,
and 19.8%, respectively, when vulnerability features
are included. This drop in performance is seen across
many of the methods, indicating that these benchmark
methods struggle to encode both functionality and
vulnerability information of a repository while retaining
information about the network structure. Additionally,
the autoencoder-based methods performed the best
across all four networks, with the matrix factorization
methods performing second best, and the GCN-based
methods performing the worst, indicating that the
autoencoder-based methods can best capture both the
local repository relationships and repository features.

5. Case Study

To demonstrate the practical value of our proposed
research framework for Al developers, we conduct
a case study illustrating how it addresses the key
limitations of the current Al reengineering process
that Al developers go through. The aim of our case
study is to identify potential alternative repositories
for a key vulnerable repository identified from our
GitHub collection. We conduct our case study on the
990 Hugging Face related repositories collected as our
research testbed. The overall process for conducting our
case study is comprised of four steps:

e Step 1 (GitHub Collection): In this step, we
identify and collect 990 related Al repositories on
GitHub, using the key words of "Hugging Face”.

e Step 2 (Vulnerability Scanning): In this step,

we scan every repository collected in Step
1 for vulnerabilities using the aforementioned
vulnerability scanners.

¢ Step 3 (Embedding Generation): Here, we
leverage the best-performing graph embedding
method from Experiment 1 (GCAE) to generate
embeddings for every repository, embedding each
repository’s network and feature information.

e Step 4 (Alternative Identification): For
a selected key vulnerable repository, we
perform cosine similarity analysis to identify
repositories with similar embeddings, signaling
similar functionality and analyze their potential
effectiveness as alternatives for reengineering.

The repository we select for Step 4 in our case study
is HugNLP. HugNLP is a popular NLP library based on
Hugging Face Transformers with 218 stars and 9 forks.
However, this repository contains 248 vulnerabilities,
102 of which are Al-specific vulnerabilities including
potential code injection and insecure deserialization.
Using the embeddings generated by GCAE in Step
3, and comparing them for similarity to HugNLP’s
embedding, we can identify three NLP repositories with
significantly fewer vulnerabilities that Al developers
may consider as alternatives to HugNLP:

e KNN-Transformers: This repository trains
sequence-to-sequence language models, and
our vulnerability assessment only identified 9
vulnerabilities within it, the majority of which
being low severity. This would be a promising
alternative for any Al developer looking to train or
develop a language model capable of performing
sequence-to-sequence tasks.

e T2t-tuner: This repository can be used to train
text-to-text language models with Transformers,
and our vulnerability assessment only identified
one low-severity vulnerability within it. This

Page 554

repository would be a promising alternative for
text generation-based Al tasks. Additionally,
identifying this repository highlights the potential
of our proposed framework to address the first
key limitation of the Al reengineering workflow,
alternative identification. T2t-tuner only has 18
stars and three forks, indicating that developers
may find it difficult to find via simple repository
search.

» TS-flax-gep: This repository provides developers
with a tutorial to pre-train and fine-tune an NLP
model for sequence-to-sequence tasks. While
this repository uses JAX as its Al library, it may
still be a promising alternative to HugNLP as our
vulnerability assessment found it to have only two
vulnerabilities.

6. Conclusion and Future Work

We focus the context of our study on Al
repositories and development due to AI's continuing
increase in its potential impacts, aiming to address
the problem of Al reengineering leading to increased
vulnerabilities in emerging Al applications. Identifying
that extant research has yet to leverage graph embedding
methods as a technique to compare repositories within
an Al development community, we compare 11
graph embedding methods to generate embeddings of
repositories for downstream ranking. We evaluate each
method on four repository networks constructed from a
collection of Al repositories related to Hugging Face.
Our results demonstrate that GCAE is a promising
method to capture the functionality and vulnerability
information of repositories while retaining key network
information. Our study’s practical contribution is
to Al developers, making finding all potential Al
task alternatives, considering functionality and security
characteristics of given alternatives, and selecting an
alternative for reuse faster and more likely to result in
the best alternative being selected.

As with any research, our study has limitations.
First, we analyze each repository network individually,
which may lead to incomplete repository relationships,
potentially failing to identify the best alternative
recommendations. This limitation may be overcome
by designing a framework that examines all four
repository networks together when generating each
repository embedding. Such a framework would better
leverage the full crowd wisdom available on GitHub to
identify repository alternatives. Second, our research
is limited by using static application security testing
tools to conduct our vulnerability assessment. Dynamic
scanning tools may identify a more expansive set of

vulnerabilities. Finally, our framework does not account
for the evolution of a repository. Considering temporal
dynamics may help pinpoint alternative repositories’
viability at the appropriate time points.

There are several promising directions for future
research. Our study primarily focuses on suggesting
less vulnerable Al repositories as alternatives for an
Al developer to consider; however, Al developers
may have specific needs that do not allow for using
alternatives. Here, Al developers may benefit from
a tool that automatically maps vulnerabilities within
a repository they are using to a threat model and
remediation strategies such that they can understand
whether the vulnerabilities have a potential for impact
in their reuse and how to address them if they
do. Further research may extend this work to map
all emerging Al repositories to use cases and threat
models to understand whether vulnerability remediation
is important for a given repository. Conducting a
dynamic vulnerability assessment of Al applications
in a deployed environment can significantly elevate
our understanding of their vulnerabilities and their
implications.

7. References

Bandyopadhyay, S., Kara, H., Kannan, A. and
Murty, M.N., 2018. Fscnmf: Fusing structure and
content via non-negative matrix factorization for
embedding information networks. arXiv preprint
arXiv:1804.05313.

Barabasi, A.L., 2013. Network science. Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 371(1987),
p-20120375.

Bengio Y., Russell S., and Selman, B., 2023.
Pause Giant AI Experiments: An Open Letter.
FutureofLife.org.

Ciu, P, Wang, X., Pei, J., and Zhu, W., “A Survey on
Network Embedding,” IEEE TKDE, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A.,
Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit,
J.,2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Gasteiger, J., Bojchevski, A. and Giinnemann, S., 2018,
Predict then Propagate: Graph Neural Networks meet
Personalized PageRank. In International Conference on
Learning Representations.

Goyal, P, and Ferrara, E., “Graph Embedding
Techniques, Applications, and Performance: A Survey.”
Knowledge-Based Systems, 151, pages 78-94, 2018.

Page 555

https://atlas.mitre.org

https://octoverse.github.com

Jiang, W., Banna, V., Vivek, N., Goel, A., Synovic, N.,
Thiruvathukal, G.K. and Davis, J.C., 2023. Challenges
and Practices of Deep Learning Model Reengineering:
A Case Study on Computer Vision. arXiv preprint
arXiv:2303.07476.

Jiang, W., Synovic, N., Hyatt, M., Schorlemmer, T.R.,
Sethi, R., Lu, Y.H., Thiruvathukal, G.K. and Davis,
J.C., 2023. An empirical study of pre-trained model
reuse in the hugging face deep learning model registry.
arXiv preprint arXiv:2303.02552.

Jiang, W., Synovic, N., Sethi, R., Indarapu, A., Hyatt,
M., Schorlemmer, T.R., Thiruvathukal, G.K. and Davis,
J.C., 2022, November. An Empirical Study of Artifacts
and Security Risks in the Pre-trained Model Supply
Chain. In Proceedings of the 2022 ACM Workshop
on Software Supply Chain Offensive Research and
Ecosystem Defenses (pp. 105-114).

Kaur, A., and Nayyar, R., “A Comparative Study of
Static Code Analysis Tools for Vulnerability Detection
in C/C++ and JAVA Source Code,” Procedia Computer
Science, 171, pages 2023-2029, 2020.

Kipf, T.N. and Welling, M., 2016. Variational graph
auto-encoders. arXiv preprint arXiv:1611.07308.

Kipf, T.N. and Welling, M., 2016. Semi-supervised
classification with graph convolutional networks. In The
International Conference on Learning Representations.
Kluban, M., Mannan, M. and Youssef, A., 2022,
May. On measuring vulnerable JavaScript functions
in the wild. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security
(pp. 917-930).

Langenkamp, M. and Yue, D.N., 2022, July. How
Open Source Machine Learning Software Shapes Al.
In Proceedings of the 2022 AAAI/ACM Conference on
Al, Ethics, and Society (pp. 385-395).

Lazarine, B., Samtani, S., Patton, M., Zhu, H.,
Ullman, S., Ampel, B. and Chen, H., 2020, November.
Identifying vulnerable GitHub repositories and users in
scientific cyberinfrastructure: An unsupervised graph
embedding approach. In 2020 IEEE International
Conference on Intelligence and Security Informatics
(ISI) (pp. 1-6). IEEE.

Le, Q. and Mikolov, T., 2014, June. Distributed
representations of sentences and documents. In
International conference on machine learning (pp.
1188-1196). PMLR.

Nguyen, G., Dlugolinsky, S., Bobdk, M., Tran, V.,
Lépez Garcia, A., Heredia, 1., Malik, P. and Hluchy, L.,
2019. Machine learning and deep learning frameworks
and libraries for large-scale data mining: a survey.
Artificial Intelligence Review, 52, pp.77-124.

Pan, R., Biswas, S., Chakraborty, M., Cruz, B.D. and
Rajan, H., 2022. An Empirical Study on the Bugs
Found while Reusing Pre-trained Natural Language
Processing Models. arXiv preprint arXiv:2212.00105.
Rokon, M.O.F,, Yan, P, Islam, R. and Faloutsos,
M., 2021, September. Repo2vec: A comprehensive
embedding approach for determining repository
similarity. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (pp.
355-365). IEEE.

Sachdeva, A., Lazarine, B., Dama, R., Samtani,
S. and Zhu, H., 2022, November. Identifying
Patterns of Vulnerability Incidence in Foundational
Machine Learning Repositories on GitHub: An
Unsupervised Graph Embedding Approach. In 2022
IEEE International Conference on Data Mining
Workshops (ICDMW) (pp. 1-8). IEEE.

Salehi, A. and Davulcu, H., 2019. Graph attention
auto-encoders. arXiv preprint arXiv:1905.10715.
Torkura, K. A., and Meinel, C., “Towards Vulnerability
Assessment as a Service in OpenStack Clouds,”
Proceedings - Conference on Local Computer
Networks, LCN, pages 1-8, 2016.

Van Oort, B., Cruz, L., Aniche, M. and Van Deursen,
A., 2021, May. The prevalence of code smells in
machine learning projects. In 2021 IEEE/ACM 1st
Workshop on Al Engineering-Software Engineering for
AI (WAIN) (pp. 1-8). IEEE.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, £.. and Polosukhin, I.,
2017. Attention is all you need. Advances in neural
information processing systems, 30.

Velickovié, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P. and Bengio, Y., 2017, Graph Attention
Networks. In International Conference on Learning
Representations.

Wu, F, Souza, A., Zhang, T., Fifty, C., Yu, T. and
Weinberger, K., 2019, May. Simplifying graph
convolutional networks. In International conference on
machine learning (pp. 6861-6871). PMLR.

Yang, C., Liu, Z., Zhao, D., Sun M., and Chang, E.,
“Network Representation Learning with Rich Text
Information,” In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, 2015.

Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D. and
Zhang, C., 2018, November. Binarized attributed
network embedding. In 2018 IEEE International
Conference on Data Mining (ICDM) (pp. 1476-1481).
IEEE.

Yang, S. and Yang, B., 2018, August. Enhanced
network embedding with text information. In 2018
24th International Conference on Pattern Recognition
(ICPR) (pp. 326-331). IEEE.

Page 556

