
Suggesting Alternatives for Potentially Insecure Artificial Intelligence
Repositories: An Unsupervised Graph Embedding Approach

Ben Lazarine

Indiana University

belazar@iu.edu

Hongyi Zhu

University of Texas at San Antonio

hongyi.zhu@utsa.edu

Sagar Samtani

Indiana University

ssamtani@iu.edu

Ramesh Venkataraman

Indiana University

venkat@indiana.edu

Abstract

Emerging Artificial Intelligence (AI) applications

are bringing with them both the potential for significant

societal benefit and harm. Additionally, vulnerabilities

within AI source code can make them susceptible

to attacks ranging from stealing private data to

stealing trained model parameters. Recently, with the

adoption of open-source software (OSS) practices, the

AI development community has introduced the potential

to worsen the number of vulnerabilities present in

emerging AI applications, building new applications on

top of previous applications, naturally inheriting any

vulnerabilities. With the AI OSS community growing

rapidly to a scale that requires automated means of

analysis for vulnerability management, we compare

three categories of unsupervised graph embedding

methods capable of generating repository embeddings

that can be used to rank existing applications based

on their functional similarity for AI developers. The

resulting embeddings can be used to suggest alternatives

to AI developers for potentially insecure AI repositories.

Keywords: Artificial Intelligence, Open-source

Software, Cybersecurity, Unsupervised Graph

Embedding.

1. Introduction

In recent years, the rate of artificial intelligence

(AI) development has increased rapidly and has led

to its capabilities surpassing human performance in

tasks ranging from language understanding (Vaswani

et al., 2017) to image recognition (Dosovitskiy et

al., 2020). While this has enabled the emergence

of powerful tools such as ChatGPT and Dall-E, it

has also drawn significant concern from leaders in AI

development, pointing to the potential for unknown

risks and vulnerabilities of these tools to cause societal

damage (Bengio et al., 2022). Examples of the potential

harm AI may pose have already been shown, including

an AI-enabled facial recognition system, developed by

Amazon, exhibiting racial bias and labeling members

of Congress as criminals and an AI chatbot, developed

by Microsoft, being trained by users to be racist and

sexist within 24 hours of release. However, in addition

to these examples of AI unintentionally going wrong,

there are vulnerabilities in AI source code that may soon

become new targets for intentional cyber-attacks. These

attacks will range from adversaries exfiltrating private

information used to train models to adversaries sending

a flood of inputs engineered to require significant

computational power to take down AI systems (MITRE,

2022).

The accelerated rate of development that AI has

seen has largely been spurred by the adoption of

open-source software (OSS) resources and practices by

the AI development community. While accelerating

the rate of development, this adoption has also brought

the potential to increase the number of vulnerabilities

present in emerging AI applications. This is an issue

that is of particular concern to AI developers within

the larger OSS development community, as currently

much of AI development is done iteratively upon

previously developed applications and open-source code

(Langenkamp and Yue, 2022; Jiang et al., 2023a).

Additionally, the nature of AI development lends

itself to such iterative development more so than past

open-source applications, particularly in areas such as

natural language processing and computer vision, as

progress in these application areas has been largely

incremental by nature. GitHub is a popular software

development platform that supports a significant amount

Proceedings of the 57th Hawaii International Conference on System Sciences | 2024

Page 548

URI: https://hdl.handle.net/10125/106441
978-0-9981331-7-1
(CC BY-NC-ND 4.0)



Figure 1. GitHub Mechanisms to Facilitate OSS Reuse. Each repository typically includes: (A) Open Issues (B)

Pull Requests (C) Forking and (D) Starring/Watching.

of OSS development, seeing over 400 million OSS

contributions in 2022 (GitHub, 2022). To exemplify

how OSS resources enable iterative AI development,

Figure 1 illustrates mechanisms offered by GitHub to

facilitate code reuse.

To facilitate the reuse of OSS hosted on their

platform, GitHub offers mechanisms for users to

open issues and note areas for improvement, submit

pull requests to contribute code or documentation,

watch repositories that may be of interest for possible

revisiting, and fork (i.e., copy) OSS repositories for

their own development purposes. Developers may take

on any or multiple of these user types within the AI

development community. Regardless of what user type

a developer may be taking on, each type signals that

the user is in the process of or has completed searching

for a repository to reuse. AI developers going through

this process will aim to identify existing repositories

that most closely align with the functionality they are

searching for but also seek repositories with a low

number of vulnerabilities. If an AI developer has found

a repository with too many functionality or security

issues, they may also search for alternatives. To

demonstrate the process an AI developer may follow

when selecting a repository to enhance, replicate, reuse,

or adapt in their own development, we next detail three

steps a typical AI reengineering workflow consists of.

• Step 1: A developer will survey existing

repositories on platforms such as GitHub to

identify potential candidates for reuse. A key

limitation of this step is that it can be difficult and

time-consuming to identify all relevant candidates

through a manual survey consisting of methods

such as keyword searches.

• Step 2: A developer will compare candidate

repositories’ key characteristics to assess which

best aligns with their desired application. In

this step, the developer will likely largely

focus on assessing repository functionality

while potentially assessing supplementary

characteristics such as recent development

activity, support, and possible security issues.

AI-specific functionality characteristics that

are often considered include types of data an

application can operate on (e.g., image, text,

or graph data), whether training data is already

Page 549



provided, the applications underlying architecture

(e.g., PyTorch or Tensorflow), and downstream

tasks that the application may be suited for

(e.g., image recognition, text generation, etc.).

However, a key limitation of this comparison is

that vulnerabilities within the repositories may

not be considered, and even if the developer

would like to, they may be prohibitively difficult

to identify.

• Step 3: A developer will select one or more

repositories for enhancement, replication, reuse,

or adaptation. The key limitation of this step is

that due to the difficulty of manually assessing

repository characteristics, the best repository may

not be selected, potentially leading to increased

development time or selecting a repository with

vulnerabilities to build a new application on top

of, continuing the cycle of OSS development

practices increasing vulnerability presence in

emerging AI applications.

In this paper, we compare unsupervised graph

embedding methods capable of representing repository

relationships and characteristics as easily comparable

embeddings to provide AI developers with a list of

potential applications they can refer to when beginning

their development. Our study offers a significant

practical contribution to the AI development community

by proposing an automated framework to help future AI

developers better identify and select low-vulnerability

repositories capable of performing their desired task in

any AI reengineering process, enhancing their ability

to select appropriate repositories for reuse, making the

process faster, more accurate, and less likely to contain

vulnerabilities.

The remainder of this paper is organized as

follows. First, we review recent machine learning

open-source software (MLOSS) and Unsupervised

Graph Embedding literature. Second, we identify

research gaps in the reviewed literature and pose our

study’s research questions. Third, we present our

research design and explain each component in detail.

Fourth, we present and discuss the results of our

evaluation procedure. Fifth, we illustrate the potential

value of the proposed method through a case study,

and lastly, we conclude this research and summarize

promising directions for future studies.

2. Literature Review

We review two key areas of literature to guide

this research. First, we review MLOSS research to

identify studies that have examined open-source and

security practices of the MLOSS community. Second,

we review unsupervised graph embedding methods to

review approaches to modeling the relationship between

machine learning applications and developers.

2.1. Machine Learning Open-Source Software
Research

Recent MLOSS studies have focused on either

pre-trained models or ML source code repositories.

Additionally, MLOSS studies thus far have primarily

conducted descriptive analysis or manual assessments.

Descriptive studies have worked to cluster machine

learning repositories with similar vulnerabilities

(Sachdeva et al., 2022) and develop taxonomies of

ML frameworks and libraries (Nguyen et al., 2019).

Further studies have conducted manual model or

repository assessments to identify attributes considered

in pre-trained model reuse (Jiang et al., 2023b), identify

bugs in reused pre-trained models (Pan et al., 2022),

develop threat models (Jiang et al., 2022), quantify

MLOSS GitHub contributions (Langenkamp and Yue,

2022), and identify code smells in ML repositories (Van

Oort et al., 2021).

The primary methodologies used in past studies

have been interviews (Jiang et al., 2023b), taxonomy

development (Nguyen et al., 2019; Pan et al., 2022),

and manual model/source code examination (Jiang et

al., 2022; Langenkamp and Yue, 2022; Van Oort et

al., 2021), with limited use of automated methods

(Sachdeva et al., 2022). This has significantly restricted

the number of models and repositories extant studies

have examined, with the majority ranging between 10

and 100. Additionally, while studies have conducted

vulnerability scans (Sachdeva et al., 2022; Van Oort

et al., 2021), identified studies have yet to extend

their analysis to ranking repositories most suitable for

reuse from a functionality or security perspective. The

lack of automated methods to examine repositories,

as well as the lack of literature examining how to

compare repositories from a functionality and security

perspective, within extant MLOSS research leaves a

significant need for the development of tools that can

automatically provide AI developers with the ability

to quickly and accurately assess repositories being

considered for reengineering by the functionality they

provide and the number of security issues they contain.

2.2. Unsupervised Graph Embedding

Identifying repositories that are close in

functionality and do not have many vulnerabilities

requires representing them in vector space to enable

ML-based methods such as ranking (Goyal and Ferrara,

Page 550



2018). GitHub follows a bipartite network structure,

with relationships between repositories and developers

(Lazarine et al., 2020). Past literature representing

repositories and developers as a bipartite network

has generated monopartite network projections of

connected repositories and developers (Barabasi, 2013).

Unsupervised graph embedding methods can operate on

such a network, enabling practical analysis of a network

of repositories by representing each repository based on

its characteristics and network information. Traditional

methods identified in our review can be grouped into

three categories based on how they operate:

• Autoencoder-Based Methods such as Graph

Convolution Autoencoder (GCAE) and

Variational Graph Autoencoder (VGAE) (Kipf

and Welling, 2016a) combine graph convolutional

networks (GCNs) and autoencoders; using a

GCN-based encoder to capture structural and

feature information of a node and its neighbors

via neighborhood aggregation, and a decoder to

update nodal embeddings for accurate network

reconstruction.

• GCN-Based Deep Representation Methods

such as Graph Convolutional Networks (GCN)

(Kipf and Welling, 2016b), Simplified Graph

Convolutions (SGC) (Wu et al., 2019), and

Graph Attention Networks (GAT) (Velickovic et

al., 2017) use graph convolutional networks to

capture nodal structure and feature information

via message passing in which nodes exchange

information with their neighbors to update their

embeddings.

• Matrix Factorization-Based Deep

Representation Methods such as

Text-Associated Deepwalk (TADW) (Yang et al.,

2015) and Text-Enhanced Network Embedding

(TENE) (Yang and Yang, 2018) learn nodal

embeddings by decomposing the adjacency and

feature matrices into lower dimensional matrices

that represent nodes and their embeddings.

In general, unsupervised graph embedding

methods can capture repository characteristics and

network information in an embedding, encoding

local neighborhood and feature information for each

repository into embeddings suitable for downstream

tasks such as similarity ranking.

2.3. Research Gaps and Questions

We identified two key research gaps from our

literature review. First, recent MLOSS research

has primarily consisted of manual and descriptive

investigations of machine learning repositories.

As a result, MLOSS research has yet to develop

automated solutions to reduce vulnerabilities in

emerging repositories. Second, extant research has not

leveraged unsupervised graph embedding techniques

to generate repository representations that can be

used to identify repository alternatives based on their

functionality characteristics; however, such deep

learning methods are a promising solution for this

task due to their ability to fully leverage relationship

and characteristic information of repositories. Based

on these research gaps, we propose the following

questions:

• How can we address key limitations AI

developers face when going through the

process of searching, comparing, and selecting

repositories for reengineering?

• How can unsupervised graph embedding methods

represent repositories with similar functionality to

facilitate repository alternative ranking?

3. Research Design

We present our proposed research framework

in Figure 3. The framework has four major

components: Research Testbed, Graph Formulation,

Graph Embedding, and Experiments and Evaluation.

We describe each in the following sub-sections.

3.1. Research Testbed: MLOSS Repositories
on GitHub and Vulnerability Assessment

The first component of our research testbed is a

collection of 990 MLOSS repositories on GitHub. To

identify a related community of MLOSS repositories in

which multiple options will be present for various tasks,

we used the GitHub Search API with the term ”Hugging

Face.” Hugging Face is a platform that supports AI

development, providing foundational repositories and

computational resources needed to develop new AI

models and host them in an easy-to-use environment.

To leverage issues, pull requests, watches, and forks

as a mechanism for identifying related repositories, we

identified 27,167 issues, 3,071 pull requests, 27,786

watches, and 4,620 forks across our collection of 990

repositories. This number of issues, pull requests,

watches, and forks indicates that we successfully

identified an ML community with a high level of

development activity and interest.

The second component of our research testbed

is a vulnerability assessment conducted with three

prevailing open-source static application security testing

(SAST) tools popular within the information security

Page 551



Figure 2. Proposed Research Framework

community: Semgrep (Kluban et al., 2022), Bandit

(Torkura and Meinel, 2016), and Flawfinder (Kaur and

Nayyar, 2020). We selected these tools based on

their usability and popularity to maximize coverage

of vulnerability types and programming languages.

Semgrep leverages community-published rulesets to

scan all types of files for 15 vulnerability types (potential

passwords/keys, weak cryptography, dangerous file

permissions, dangerous handling of user input, etc.)

across four categories (secrets, insecure permissions and

functions, web attack susceptibilities, and AI-specific

vulnerabilities). Semgrep is the only SAST tool

capable of scanning for AI-specific vulnerabilities that

we have identified. Bandit scans Python files for

11 vulnerability types across three categories (secrets,

insecure permissions and functions, and web attack

susceptibilities), and Flawfinder scans C/C++ files for

four vulnerability types across the same three categories.

All three scanners provide severity and confidence

scores for identified vulnerabilities. A summary of our

vulnerability assessment results is shown in Table 1.

Table 1. Summary of GitHub Vulnerability Scan

Results

Overall, our vulnerability assessment returned

75,496 vulnerabilities across 537 repositories in

our GitHub collection, with 3,990 high severity,

10,141 medium severity, and 65,902 low severity

vulnerabilities. Our assessment returned 1,659

secrets, 62,553 insecure, 4,445 attack, and 6,839

AI-specific vulnerabilities by category. We observe

that the identified vulnerabilities follow a typical

severity distribution, with most of the vulnerabilities

being low severity. Additionally, the majority of

vulnerabilities identified were insecure permissions and

functions. Lastly, each vulnerability category was

observed to affect at least 175 repositories, with

insecure permissions and functions and AI-specific

vulnerabilities affecting the most at 450 and 235,

respectively.

3.2. Graph Formulation

As identified previously, the relationship

between repositories and developers on GitHub

can be represented as a bipartite projection that can

subsequently be projected into monopartite networks

for repositories and users (Lazarine et al., 2020).

Therefore, we denote four bipartite networks as

GT = R, DT , E, F ;T ∈ (f, i, w, p), where G

is an undirected bipartite graph, R is the node set,

r1, r2, r3, . . . rn, of all repositories. D is the node

set, d1, d2, d3, . . . dn, of all developers with a T

relationship to a repository, E is the edge set, e1, e2, e3,

. . . en, of edges between repositories and developers,

F is the feature matrix of each repository node

(repository functions and number of vulnerabilities),

and T ∈ (f, i, w, p) is the set of developer types,

denoting developers that have forked, opened an issue,

watched, or submitted a pull request to a repository,

respectively. We project our four bipartite networks

into four monopartite networks of related repositories

defined as GT = RT , E, F ;T ∈ (f, i, w, p), where

G is an undirected graph, R is the node set, r1, r2,

r3, . . . rn, of all repositories with a T relationship,

E is the edge set, e1, e2, e3, . . . en, of edges

Page 552



between repositories, F is the feature matrix of each

repository node (repository functions and number of

vulnerabilities), and T ∈ (f, i, w, p) is the set of

repository relationships, denoting repositories that share

common forking, issue opening, watching, or pull

requesting developers, respectively.

3.3. Graph Embedding

Successful ranking of repositories by functionality

and vulnerability level in a network requires an

unsupervised graph embedding method that can

consider all repository alternatives and account for

nodal features. Therefore, we select methods from

three categories of unsupervised graph representation

learning to identify which method is best able to capture

repository network and feature information. The graph

embedding process is as follows:

• Step 1 (Graph Representation): The input

network of repositories is represented as an

adjacency matrix representing linked repositories

and a feature matrix representing the functionality

and vulnerability information of each repository.

Each repository’s functionality information is

encoded from its name, description, and readme

file as a vector leveraging Doc2Vec (Rokon et al.,

2021; Le and Mikolov, 2014) and its vulnerability

information is represented as the number of

vulnerabilities within the repository for each type

of vulnerability identified by Semgrep, Bandit and

Flawfinder (Lazarine et al., 2020).

• Step 2 (Embedding Generation): Each

unsupervised graph embedding method performs

its primary operation (autoencoding, message

passing, or matrix factorization) generating

and updating embeddings for each repository,

capturing structural and feature information.

• Step 3 (Repository Representations):

Repository representations are obtained for

each repository from the final layer of the graph

embedding method.

This procedure results in repository embeddings

that can be compared by cosine similarity to identify

a ranked list of potential repository alternatives by

functionality.

3.4. Evaluation Procedure

In our experimentation, we compare 11 baseline

deep learning methods to evaluate three major categories

of baseline embedding methods:

• Autoencoder-Based Deep Representation

Learning, including Graph Convolutional

Autoencoder (GCAE) (Kipf and Welling, 2016a),

Graph Attention Autoencoder (GATE) (Salehi

and Davulcu, 2019), and Variational Graph

Autoencoder (VGAE) (Kipf and Welling, 2016a).

• GCN-Based Deep Representation Learning,

including Graph Convolutional Network (GCN)

(Kipf and Welling, 2016b), Simplified Graph

Convolutions (SGC) (Wu et al., 20129),

Graph Attention Network (GAT) (Velickovic

et al., 2017), and Approximate Personalized

Propagation of Neural Predictions (APPNP)

(Gasteiger et al., 2018).

• Matrix Factorization-Based Deep

Representation Learning, including

Text-Associated Deep Walk (TADW) (Yang

et al., 2015), Text-Enhanced Network Embedding

(TENE) (Yang and Yang, 2018), Binarized

Attributed Network Embedding (BANE) (Yang et

al., 2018), and Fusing Structure and Content via

Non-negative Matrix Factorization (FSCNMF)

(Bandyopadhyay et al., 2018).

In Experiment 1, repository embeddings are

generated by each benchmark method, and the

embedding performances are evaluated with Mean

Average Precision (MAP). MAP evaluates the quality

of embeddings produced by an unsupervised graph

embedding method by attempting to reconstruct

the network from the embeddings and comparing

the reconstructed network to the original network,

calculating the average precision of each node (Ciu et

al., 2018). This evaluates how well the embeddings

produced by the graph embedding method encoded the

network’s structure.

We performed Experiment 1 on all four identified

repository networks and across two feature set

combinations (repository functionality features alone

and repository functionality and vulnerability features)

to observe model performances across various datasets

and evaluate each model’s ability to encode functionality

and vulnerability features together.

4. Results and Discussion

We present the results for Experiment 1 are

presented in Table 2. The best performances are

highlighted in boldface.

In Experiment 1, GCAE performed with a MAP of

0.347, 0.336, 0.452, and 0.487 for each network with the

repository functionality feature set. This outperforms all

other methods in three of the four repository networks,

Page 553



Table 2. Experiment 1 Results

with GATE performing second best in the pull request

repository network (0.331) and the fork repository

network (0.411) and VGAE performing best in the

issue repository network (0.337) and second best in the

watch repository network (0.274). Interestingly, we

see that while GCAE is the best-performing method

overall, its performance drops significantly for the issue,

fork, and watch networks, with drops of 11.6%, 18.9%,

and 19.8%, respectively, when vulnerability features

are included. This drop in performance is seen across

many of the methods, indicating that these benchmark

methods struggle to encode both functionality and

vulnerability information of a repository while retaining

information about the network structure. Additionally,

the autoencoder-based methods performed the best

across all four networks, with the matrix factorization

methods performing second best, and the GCN-based

methods performing the worst, indicating that the

autoencoder-based methods can best capture both the

local repository relationships and repository features.

5. Case Study

To demonstrate the practical value of our proposed

research framework for AI developers, we conduct

a case study illustrating how it addresses the key

limitations of the current AI reengineering process

that AI developers go through. The aim of our case

study is to identify potential alternative repositories

for a key vulnerable repository identified from our

GitHub collection. We conduct our case study on the

990 Hugging Face related repositories collected as our

research testbed. The overall process for conducting our

case study is comprised of four steps:

• Step 1 (GitHub Collection): In this step, we

identify and collect 990 related AI repositories on

GitHub, using the key words of ”Hugging Face”.

• Step 2 (Vulnerability Scanning): In this step,

we scan every repository collected in Step

1 for vulnerabilities using the aforementioned

vulnerability scanners.

• Step 3 (Embedding Generation): Here, we

leverage the best-performing graph embedding

method from Experiment 1 (GCAE) to generate

embeddings for every repository, embedding each

repository’s network and feature information.

• Step 4 (Alternative Identification): For

a selected key vulnerable repository, we

perform cosine similarity analysis to identify

repositories with similar embeddings, signaling

similar functionality and analyze their potential

effectiveness as alternatives for reengineering.

The repository we select for Step 4 in our case study

is HugNLP. HugNLP is a popular NLP library based on

Hugging Face Transformers with 218 stars and 9 forks.

However, this repository contains 248 vulnerabilities,

102 of which are AI-specific vulnerabilities including

potential code injection and insecure deserialization.

Using the embeddings generated by GCAE in Step

3, and comparing them for similarity to HugNLP’s

embedding, we can identify three NLP repositories with

significantly fewer vulnerabilities that AI developers

may consider as alternatives to HugNLP:

• KNN-Transformers: This repository trains

sequence-to-sequence language models, and

our vulnerability assessment only identified 9

vulnerabilities within it, the majority of which

being low severity. This would be a promising

alternative for any AI developer looking to train or

develop a language model capable of performing

sequence-to-sequence tasks.

• T2t-tuner: This repository can be used to train

text-to-text language models with Transformers,

and our vulnerability assessment only identified

one low-severity vulnerability within it. This

Page 554



repository would be a promising alternative for

text generation-based AI tasks. Additionally,

identifying this repository highlights the potential

of our proposed framework to address the first

key limitation of the AI reengineering workflow,

alternative identification. T2t-tuner only has 18

stars and three forks, indicating that developers

may find it difficult to find via simple repository

search.

• T5-flax-gcp: This repository provides developers

with a tutorial to pre-train and fine-tune an NLP

model for sequence-to-sequence tasks. While

this repository uses JAX as its AI library, it may

still be a promising alternative to HugNLP as our

vulnerability assessment found it to have only two

vulnerabilities.

6. Conclusion and Future Work

We focus the context of our study on AI

repositories and development due to AI’s continuing

increase in its potential impacts, aiming to address

the problem of AI reengineering leading to increased

vulnerabilities in emerging AI applications. Identifying

that extant research has yet to leverage graph embedding

methods as a technique to compare repositories within

an AI development community, we compare 11

graph embedding methods to generate embeddings of

repositories for downstream ranking. We evaluate each

method on four repository networks constructed from a

collection of AI repositories related to Hugging Face.

Our results demonstrate that GCAE is a promising

method to capture the functionality and vulnerability

information of repositories while retaining key network

information. Our study’s practical contribution is

to AI developers, making finding all potential AI

task alternatives, considering functionality and security

characteristics of given alternatives, and selecting an

alternative for reuse faster and more likely to result in

the best alternative being selected.

As with any research, our study has limitations.

First, we analyze each repository network individually,

which may lead to incomplete repository relationships,

potentially failing to identify the best alternative

recommendations. This limitation may be overcome

by designing a framework that examines all four

repository networks together when generating each

repository embedding. Such a framework would better

leverage the full crowd wisdom available on GitHub to

identify repository alternatives. Second, our research

is limited by using static application security testing

tools to conduct our vulnerability assessment. Dynamic

scanning tools may identify a more expansive set of

vulnerabilities. Finally, our framework does not account

for the evolution of a repository. Considering temporal

dynamics may help pinpoint alternative repositories’

viability at the appropriate time points.

There are several promising directions for future

research. Our study primarily focuses on suggesting

less vulnerable AI repositories as alternatives for an

AI developer to consider; however, AI developers

may have specific needs that do not allow for using

alternatives. Here, AI developers may benefit from

a tool that automatically maps vulnerabilities within

a repository they are using to a threat model and

remediation strategies such that they can understand

whether the vulnerabilities have a potential for impact

in their reuse and how to address them if they

do. Further research may extend this work to map

all emerging AI repositories to use cases and threat

models to understand whether vulnerability remediation

is important for a given repository. Conducting a

dynamic vulnerability assessment of AI applications

in a deployed environment can significantly elevate

our understanding of their vulnerabilities and their

implications.

7. References

Bandyopadhyay, S., Kara, H., Kannan, A. and

Murty, M.N., 2018. Fscnmf: Fusing structure and

content via non-negative matrix factorization for

embedding information networks. arXiv preprint

arXiv:1804.05313.

Barabási, A.L., 2013. Network science. Philosophical

Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 371(1987),

p.20120375.

Bengio Y., Russell S., and Selman, B., 2023.

Pause Giant AI Experiments: An Open Letter.

FutureofLife.org.

Ciu, P., Wang, X., Pei, J., and Zhu, W., “A Survey on

Network Embedding,” IEEE TKDE, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A.,

Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S. and Uszkoreit,

J., 2020. An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint

arXiv:2010.11929.

Gasteiger, J., Bojchevski, A. and Günnemann, S., 2018,

Predict then Propagate: Graph Neural Networks meet

Personalized PageRank. In International Conference on

Learning Representations.

Goyal, P., and Ferrara, E., “Graph Embedding

Techniques, Applications, and Performance: A Survey.”

Knowledge-Based Systems, 151, pages 78–94, 2018.

Page 555



https://atlas.mitre.org

https://octoverse.github.com

Jiang, W., Banna, V., Vivek, N., Goel, A., Synovic, N.,

Thiruvathukal, G.K. and Davis, J.C., 2023. Challenges

and Practices of Deep Learning Model Reengineering:

A Case Study on Computer Vision. arXiv preprint

arXiv:2303.07476.

Jiang, W., Synovic, N., Hyatt, M., Schorlemmer, T.R.,

Sethi, R., Lu, Y.H., Thiruvathukal, G.K. and Davis,

J.C., 2023. An empirical study of pre-trained model

reuse in the hugging face deep learning model registry.

arXiv preprint arXiv:2303.02552.

Jiang, W., Synovic, N., Sethi, R., Indarapu, A., Hyatt,

M., Schorlemmer, T.R., Thiruvathukal, G.K. and Davis,

J.C., 2022, November. An Empirical Study of Artifacts

and Security Risks in the Pre-trained Model Supply

Chain. In Proceedings of the 2022 ACM Workshop

on Software Supply Chain Offensive Research and

Ecosystem Defenses (pp. 105-114).

Kaur, A., and Nayyar, R., “A Comparative Study of

Static Code Analysis Tools for Vulnerability Detection

in C/C++ and JAVA Source Code,” Procedia Computer

Science, 171, pages 2023–2029, 2020.

Kipf, T.N. and Welling, M., 2016. Variational graph

auto-encoders. arXiv preprint arXiv:1611.07308.

Kipf, T.N. and Welling, M., 2016. Semi-supervised

classification with graph convolutional networks. In The

International Conference on Learning Representations.

Kluban, M., Mannan, M. and Youssef, A., 2022,

May. On measuring vulnerable JavaScript functions

in the wild. In Proceedings of the 2022 ACM on Asia

Conference on Computer and Communications Security

(pp. 917-930).

Langenkamp, M. and Yue, D.N., 2022, July. How

Open Source Machine Learning Software Shapes AI.

In Proceedings of the 2022 AAAI/ACM Conference on

AI, Ethics, and Society (pp. 385-395).

Lazarine, B., Samtani, S., Patton, M., Zhu, H.,

Ullman, S., Ampel, B. and Chen, H., 2020, November.

Identifying vulnerable GitHub repositories and users in

scientific cyberinfrastructure: An unsupervised graph

embedding approach. In 2020 IEEE International

Conference on Intelligence and Security Informatics

(ISI) (pp. 1-6). IEEE.

Le, Q. and Mikolov, T., 2014, June. Distributed

representations of sentences and documents. In

International conference on machine learning (pp.

1188-1196). PMLR.

Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V.,

López Garcı́a, Á., Heredia, I., Malı́k, P. and Hluchý, L.,

2019. Machine learning and deep learning frameworks

and libraries for large-scale data mining: a survey.

Artificial Intelligence Review, 52, pp.77-124.

Pan, R., Biswas, S., Chakraborty, M., Cruz, B.D. and

Rajan, H., 2022. An Empirical Study on the Bugs

Found while Reusing Pre-trained Natural Language

Processing Models. arXiv preprint arXiv:2212.00105.

Rokon, M.O.F., Yan, P., Islam, R. and Faloutsos,

M., 2021, September. Repo2vec: A comprehensive

embedding approach for determining repository

similarity. In 2021 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp.

355-365). IEEE.

Sachdeva, A., Lazarine, B., Dama, R., Samtani,

S. and Zhu, H., 2022, November. Identifying

Patterns of Vulnerability Incidence in Foundational

Machine Learning Repositories on GitHub: An

Unsupervised Graph Embedding Approach. In 2022

IEEE International Conference on Data Mining

Workshops (ICDMW) (pp. 1-8). IEEE.

Salehi, A. and Davulcu, H., 2019. Graph attention

auto-encoders. arXiv preprint arXiv:1905.10715.

Torkura, K. A., and Meinel, C., “Towards Vulnerability

Assessment as a Service in OpenStack Clouds,”

Proceedings - Conference on Local Computer

Networks, LCN, pages 1–8, 2016.

Van Oort, B., Cruz, L., Aniche, M. and Van Deursen,

A., 2021, May. The prevalence of code smells in

machine learning projects. In 2021 IEEE/ACM 1st

Workshop on AI Engineering-Software Engineering for

AI (WAIN) (pp. 1-8). IEEE.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, I.,

2017. Attention is all you need. Advances in neural

information processing systems, 30.

Veličković, P., Cucurull, G., Casanova, A., Romero,

A., Liò, P. and Bengio, Y., 2017, Graph Attention

Networks. In International Conference on Learning

Representations.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T. and

Weinberger, K., 2019, May. Simplifying graph

convolutional networks. In International conference on

machine learning (pp. 6861-6871). PMLR.

Yang, C., Liu, Z., Zhao, D., Sun M., and Chang, E.,

“Network Representation Learning with Rich Text

Information,” In Proceedings of the 24th International

Joint Conference on Artificial Intelligence, 2015.

Yang, H., Pan, S., Zhang, P., Chen, L., Lian, D. and

Zhang, C., 2018, November. Binarized attributed

network embedding. In 2018 IEEE International

Conference on Data Mining (ICDM) (pp. 1476-1481).

IEEE.

Yang, S. and Yang, B., 2018, August. Enhanced

network embedding with text information. In 2018

24th International Conference on Pattern Recognition

(ICPR) (pp. 326-331). IEEE.

Page 556


