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Abstract
N. García-Fritz and H. Pasten showed that Hilbert’s 10th problem is unsolvable in the
ring of integers of number fields of the form Q( 3

√
p,

√−q) for positive proportions
of primes p and q. We improve their proportions and extend their results to the case
of number fields of the form Q( 3

√
p,

√
Dq), where D belongs to an explicit family

of positive square-free integers. We achieve this by using multiple elliptic curves, and
replace their Iwasawa theory arguments by a more direct method.

Mathematics Subject Classification Primary 11G05 · 11U05

1 Introduction

1.1 Historical remarks

In 1900, D. Hilbert posed the following problem:
Hilbert’s 10th problem “Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: to devise a process accord-
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ing to which it can be determined in a finite number of operations whether the equation
is solvable in rational integers.1”

This problem is now known to have a negative answer, i.e., such a general ‘process’
(algorithm) does not exist. In one sentence, the reason for this negative answer is
that the computably enumerable sets (whose elements an algorithm can list) in Z

are precisely the Diophantine sets over Z (roughly, ‘coming from polynomials and
integers’, see Definition 2.1). For the convenience of the reader, we give a brief sketch
of the argument described in [12, Chapter 5, Section 7].

The Diophantine sets of integers can be algorithmically enumerated—call them
D1, D2, . . . , Dn, . . .Cantor’s diagonalization method shows that the set V = {n : n /∈
Dn} is notDiophantine, that is, it is not computationally enumerable.On the other hand,
the set of orderedpairs (n, x)withn an integer and x ∈ Dn isDiophantine (Universality
Theorem), i.e., they are characterized as the solutions to f (n, x, y1, . . . , ym) = 0 for
some integers y1, . . . , ym and a fixed polynomial f . Now if a putative algorithm A
could determinewhether an arbitraryDiophantine equation has integral solutions, then
A could do this for f and thus test whether x ∈ Dn . But then A could test whether
n ∈ Dn and list all those n with n /∈ Dn , contradicting that V is not computably
enumerable.

M.Davis, H. Putnam, and J. Robinsonmade significant progress towards answering
Hilbert’s 10th Problem in the 1950s and 1960s, showing that the computably enumer-
able sets are exponential Diophantine2 [5]. The final piece of the puzzle, showing that
the exponential function is Diophantine, was proved by Y. Matiyasevič in 1970 [10].
The proof involved showing that the Fibonacci numbers are Diophantine, and allowed
for the conclusion that no algorithm as solicited by Hilbert exists:
MRDP Theorem Hilbert’s 10th Problem has a negative solution.

J. Denef and L. Lipshitz [4] generalized the discussion surrounding Hilbert’s 10th
Problem as follows:
Denef–Lipshitz Conjecture Z is a Diophantine subset of the ring of integers of any
number field L .

This conjecture would imply a negative answer to Hilbert’s 10th problem for OL ,
see Claim 3.2 in the main body of the article. Here are the instances where this
conjecture has been resolved.

(a) L is totally real or a quadratic extension of a totally real field; see [3, 4].
(b) [L : Q] = 4, L is not totally real, and L/Q has a proper intermediate field; see

[4].
(c) L has exactly one complex place; see [20, 25, 30].
(d) L is a subfield of one of the extensions mentioned above; see [28]. In particular, it

follows from the Kronecker–Weber Theorem that the analogue of Hilbert’s 10th
Problem is unsolvable when L/Q is abelian.

1 Gegeben eine diophantische Gleichung mit beliebig vielen Unbekannten undmit rationalen ganzzahligen
numerischen Koeffizienten: Ein Verfahren entwickeln, nach dem in endlich vielen Operationen bestimmt
werden kann, ob die Gleichung in rationalen ganzen Zahlen lösbar ist.
2 A set S of ordered n-tuples is called exponential Diophantine if there exists a polynomial
f (x1, . . . , xn , u1, . . . , um , v1, . . . , vm , w1, . . . , wm ) such that (x1, . . . , xn) ∈ S if and only if there exists
ui , vi , wi with f = 0 and ui = v

wi
i for each i .
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(e) If the conjecture holds for a number field F , then it holds for certain infinite families
of degree �n-extensions L of F . More precisely, once F has been chosen, then for
all but finitely many primes � and all n ≥ 1, the conjecture holds for infinitely
many cyclic �n-extensions L of F ; see [16, 17].3 See also [23] for a recent result
on cyclotomic Z�-extensions.

(f) L belongs to an explicit family of number fields of the form Q( 3
√

p,
√−q); see

[6].
(g) In [2], G. Cornelissen, T. Pheidas and K. Zahidi studied the case where L is a

number field satisfying two specific arithmetic conditions.
(h) In the recent preprint of B. Mazur, K. Rubin and A. Shlapentokh [18], related

questions for a large family of Galois extensions of Q have been studied.

Results in (e)–(g) make use of a link initiated by B. Poonen between the Denef-
Lipshitz Conjecture and the theory of elliptic curves. Poonen showed in [21] that
extensions of number fields are integrally Diophantine (Definition 2.3) if there is an
elliptic curve whose rational points in those number fields have rank 1. A. Shlapentokh
in [25] vastly generalized this to arbitrary non-zero rank (Shlapentokh’s Theorem).
B.Mazur andK. Rubin showed in [16] that if the 2-torsion part of the Shafarevich–Tate
groups of elliptic curves is a square for every number field, then the Denef-Lipshitz
Conjecture holds. In [14], R. Murty and H. Pasten considered this problem from the
point of view of analytic aspects of L-functions instead, showing that the automorphy
conjecture and the rank part of the Birch and Swinnerton-Dyer conjecture would imply
it.

The precise version of the most recent result (f) above of N. García-Fritz and
H. Pasten is:

Theorem 1.1 (García-Fritz–Pasten) There are explicit Chebotarev sets (see Defini-
tion 3.4) of primes P and Q, of density 5

16 and 1
12 , such that for all p ∈ P and

q ∈ Q, the analogue of Hilbert’s 10th Problem is unsolvable for the ring of integers
of L = Q( 3

√
p,

√−q).

1.2 Our results

We give a more direct proof of Theorem 1.1 without using results from Iwasawa
theory and improve the density of both P and Q, as well as proving similar results
for new families of extensions. The key result for this more direct proof is a vanishing
theorem of certain Selmer groups, see Theorem 3.6, which allows us to form the set
P . Similar to the method utilized in [6], the set Q is obtained by seeking rank-one
quadratic twists of our auxiliary elliptic curve, which relies crucially on the work of
Kriz and Li [7]. By carefully refining the techniques developed in [6], we prove the
following improvement of Theorem 1.1.

Theorem A (Theorem 4.3) There are explicit Chebotarev sets of primes P and Q,
of density 9

16 and 7
48 , such that for all p ∈ P and q ∈ Q, the analogue of Hilbert’s

10th Problem is unsolvable for the ring of integers of L = Q( 3
√

p,
√−q).

3 We thank Karl Rubin for patiently clarifying this point. The main ingredient for deriving this from [17,
Theorem 1.2] is that the simple abelian variety can be chosen to be a non-CM elliptic curve.
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The key ingredient of the proofs of both Theorems 1.1 and A is the exhibition of an
explicit auxiliary elliptic curve E (ofMordell–Weil rank 0) such that theMordell–Weil
ranks of E over Q( 3

√
p) and Q(

√−q) are 0 and 1, respectively (see Sect. 3 where
we review the general strategy employed). By working with a new auxiliary elliptic
curve, we are able to prove a similar result for the following new families of number
fields:

Theorem B (Theorem 5.3) Let

D = {7, 39, 95, 127, 167, 255, 263, 271, 303, 359, 391, 447, 479, 527, 535,
615, 623, 655, 679, 695}.

For all D ∈ D, there are explicit Chebotarev sets of primes P (independent of D)
and QD, of density 9

16 and 1
12 such that for all p ∈ P and q ∈ QD, the analogue of

Hilbert’s 10th Problem is unsolvable for the ring of integers of L = Q( 3
√

p,
√

Dq).

The families of number fields studied in Theorem B are disjoint from the ones studied
in Theorem 1.1 and Theorem A. Furthermore, these number fields are not Galois over
Q and have exactly two complex places. In particular, they are not covered in the list
of previous known results.

We also prove a modified version of Theorem B by working with a pair of auxiliary
elliptic curves, where we improve significantly the density of P , at the expense of a
smaller set of D and a lower density for the setsQD .

Theorem C (Theorem 6.7) Let D ∈ {7, 615}. There are explicit Chebotarev sets of
primes P (independent of D) and QD, of density 103

128 and 1
36 , such that for all p ∈ P

and q ∈ QD, the analogue of Hilbert’s 10th Problem is unsolvable for the ring of
integers of L = Q( 3

√
p,

√
Dq).

If one were to work with a large number of auxiliary elliptic curves, one should get
higher density sets P that get arbitrarily close to 1 with the number of curves, at the
expense of lower density setsQ andQD—see Remark 6.8 for a brief discussion and
Table 1 for the densities of P . It would be very interesting to find such curves, for
which significantly more computing power is certainly needed. It would be interesting
to solve the following problem.

Problem 1.2 Find a method that generates infinitely many such auxiliary elliptic
curves.

An affirmative answer to this problem would imply that the analogue ofP would
have density 1, while our current method of buildingQ could potentially give a set of
density 0.

Problem 1.3 If the answer to Problem 1.2 is affirmative, would it be possible to ensure
that the resulting Q is non-empty? Or even have positive density?

See Remark 6.8 for further discussion related to Problems 1.2 and 1.3.
Finally, we fix a congruent number elliptic curve as our choice of auxiliary elliptic

curve and adapt the techniques developed in [6] to prove the following result.
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Table 1 Densities ofPn for
1 ≤ n ≤ 7

n Density forPn

1 9
16 = 0.5625

2 103
128 = 0.8046875

3 933
1024 = 0.9111328 . . .

4 7855
8192 = 0.9588623 . . .

5 64269
65536 = 0.9806671 . . .

6 519463
524288 = 0.9907970 . . .

7 4175733
4194304 = 0.9955723 . . .

Theorem D (Theorem 7.5) There is an explicit Chebotarev set of primes Pcong with
density 11

16 such that Hilbert’s 10th Problem is unsolvable for the ring of integers of
L = Q( 3

√
p,

√
q) whenever q is a congruent number.

The congruent number problem and Goldfeld’s conjecture predict that the set of
primes q in the statement of Theorem D should be 1

2 . Progress on these problems have
been announced by Kriz [9] and Smith [27].

Organization

Including the introduction, there are seven sections and three appendices. In the pre-
liminary Sect. 2, we record facts about Hilbert’s 10th Problem and Selmer groups.
In Sect. 3 we outline the strategy of using elliptic curves for proving that Hilbert’s
10th Problem is unsolvable in rings of integers of certain number fields. In Sect. 4 we
consider the setting of García-Fritz–Pasten’s Theorem 1.1 and provide improvements
on the proportions.

In Sects. 5 and 6, we deviate from the setting of [6]. We work with auxiliary elliptic
curves with negative minimal discriminant, allowing us to prove the insolubility in
rings of integers of number fields disjoint from those considered in [6]. In the final
Sect. 7, we approach the problem with congruent number elliptic curves. This curve
was not covered by the methods of [6] because of difficult behaviour at the prime
3. More precisely, it has supersingular reduction at the prime 3 with non-surjective
image of the mod 3 residual representation.

The appendices contain a MAGMA code provided to us by Harris B. Daniels and
the SAGE codes that were used to verify various hypotheses in this article.

2 Preliminaries

2.1 Facts related to Hilbert’s 10th problem

We record definitions and properties required for our purposes. For further details we
refer the reader to [12, Chapters 5 and 7].
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Definition 2.1 Let R be a commutative unitary ring and let n be a given positive
integer. We say a set S ⊆ Rn is Diophantine over R if there exists a positive inte-
ger m and a polynomial P(x1, . . . , xn, y1, . . . , ym) with coefficients in R such that
(a1, . . . , an) is in S if and only if there exist elements b1, . . . , bm of R for which
P(a1, . . . , an, b1, . . . , bm) = 0. That is,

(a1, . . . , an) ∈ S ⇐⇒ (∃ b1, . . . , bm)(P(a1, . . . , an, b1, . . . , bm)) = 0

When n = 1, the set S is said to be Diophantine in R.

Example 2.2 (1) The set of non-negative integers a ∈ Z≥0 is Diophantine in Z:

a ∈ Z≥0 ⇐⇒ (∃ b1, b2, b3, b4)(a − b21 − b22 − b23 − b24 = 0).

(2) Any finite set S = {a1, . . . , ar } is Diophantine in any integral domain:

a ∈ S ⇐⇒ (a − a1) . . . (a − ar ) = 0.

(3) The set of composite numbers is Diophantine in Z:

a is a composite number ⇐⇒ (∃ b1, . . . , b8)

(
a=

(
4∑

i=1

b2i +2

)(
8∑

i=5

b2i +2

))
.

(4) If S1 and S2 are Diophantine, then S1 ∪ S2 and S1 ∩ S2 are also Diophantine.

Definition 2.3 Let L2/L1 be an extension of number fields. If OL1 is Diophantine in
OL2 , then L2/L1 is said to be integrally Diophantine.

The following result tells us about the Diophantine relationships between algebraic
number fields.
Transitive Property If L3/L2/L1 is a tower of number fields and both L2/L1 and
L3/L2 are integrally Diophantine, then so is L3/L1.

Proof See [28, Theorem 2.1]. �

Shlapentokh’s Theorem Let L2/L1 be an extension of number fields. Suppose that
there is an elliptic curve E/L1 such that rank E(L2) = rank E(L1) > 0. Then L2/L1
is integrally Diophantine.

Proof See [25]. �


2.2 Facts about Selmer groups of elliptic curves

Throughout this article, � is an odd prime number and E is an elliptic curve defined
over Q with good reduction at �.
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Given a module A over the absolute Galois group GL of a number field L , and
i ≥ 0, the cohomology group Hi (L, A) is defined to be the discrete cohomology
group Hi (GL , A).

The �-Selmer group of E over L is defined as the kernel of the following restriction
map

Sel�(E/L) := ker

(
H1 (L, E[�]) −→

∏
w

H1 (
Lw, E(Lw)

) [�]
)

.

An equivalent definition of the �-Selmer group given in [13, § 1 Corollary 6.6] is the
following: let S be a finite set of primes L containing all the archimedean primes, the
primes above �, and the primes where E has bad reduction. Then

Sel�(E/L) := ker

(
H1 (L S/L, E[�]) −→

∏
w∈S

H1 (
Lw, E(Lw)

) [�]
)

.

Here, L S/L is the maximal extension of L unramified outside the set S.
Now we record a result of J. Brau crucial for our results. Let r be a prime of

semi-stable reduction and choose an integer a so that rs || a, i.e., a = rsd such that
gcd(d, r) = 1 for an integer d. Since r is semi-stable, we can write j = r−n e

f (where
e, f are coprime to r ). Define

ur ,a = dn
(

e

f

)s

.

Theorem 2.4 (Brau) Let � be an odd prime and E/Q be an elliptic curve with good
reduction at �. Let k = Q(μ�) and suppose that Sel�(E/k) is trivial. Consider the
family of �-extensions ka = k( �

√
a). Write S to denote the set of primes containing the

primes above �, the primes of bad reduction of E, the primes which ramify in ka/k,
and the archimedean primes. Denote by Gv the Galois group Gal(ka,w/kv) (where w

is a prime of ka lying above v) and set δv = dimF�
H1

(
Gv, E(ka,w)

)
. Denote by cv

is the Tamagawa number of E/kv and by qv the size of the residue field of kv . Then

dimF�
Sel� (E/ka)Gal(ka/k) =

∑
v∈S

δv.

The values of δv (when v is not a prime of additive reduction) are given in the following
table:
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Reduction type of E at v v ramified in ka/k v inert in ka/k v split in ka/k

good ordinary, v | � δv =
{
1 or 2 if Ẽ(κv)[�] �= 0

0 otherwise
δv = 0

good supersingular, v | � δv =
{

� − 2 if � | a

0 otherwise
δv = 0

good, v � � δv = dimF�
Ẽ(κv)[�] δv = 0

split multiplicative δv =
⎧⎨
⎩1 if u

qv−1
�

rv,a ≡ 1 mod rv
0 otherwise

δv =
{
1 if � | cv

0 otherwise
δv = 0

non-split multiplicative δv = 0

Here, rv is the rational prime below v.

Proof The first assertion of the theorem is [1, Proposition 5.2], which is deduced from
results ofMazur and Rubin proven in [15], and relates the left-hand side of the formula
with the F�-dimensions of local cohomology groups (see also [1, Remark 5.3] where
an alternative proof of the assertion is outlined). We note that the description of the
set S is not clearly mentioned in op. cit.: a partial description of the set S is included
in Proposition 2.1 of op. cit. We further need to include the primes which ramify in
ka/k to ensure that ka is a finite extension of k contained in kS . The values of δv at
non-additive primes are given in the statement of Theorem 1.1 of op. cit.

We now give a brief sketch of the proof of the formulae for the values of δv given
in the statement of the theorem. The local cohomology groups of interest are denoted
by Wv,ka and are isomorphic to H1

(
Gv, E(ka,w)

)
with Gv = Gal(ka,w/kv); their F�

dimensions are denoted by δv . As one would expect, the value of δv depends on the
reduction type of E at v and on the splitting behaviour of v in ka . Note that when v is an
archimedean prime or is totally split in ka , then we have trivially H1

(
Gv, E(ka,w)

) =
0. Hence, one is only required to consider the cases of non-archimedean primes v that
are inert or ramified in ka .

When v � �, and v is a prime of good reduction or or a prime of non-split multi-
plicative reduction, the dimension calculations follow from the standard short exact
sequence [26, Chapter VII, Proposition 2.1]

0 −→ Ê(ka,w) −→ E0(ka,w) −→ Ẽns(κw) −→ 0,

and the theory of formal groups. If the reduction type is good then

Hi (
Gv, Ê(ka,w)

) = 0 for i = 1, 2,

which implies that

Wv,ka
∼= H1(Gv, Ẽ(κw)).

If v is ramified, the action of Gv on Ẽ(κw) = Ẽ(κv) is trivial and the cohomology
group on the right-hand side becomes Hom

(
Z/�Z, Ẽ(κv)

)
. Thus, the formula of δv

follows. In the inert case, the result follows from Lang’s theorem in [11, p. 204]; see
[1, Proposition 5.6]. In the case of non-split multiplicative reduction, the group Wv,ka

is always trivial: in the ramified case, this follows from our assumption that � ≥ 3 and

123



Hilbert’s 10th problem and elliptic curves…

in the inert case this is a consequence of Lang’s theorem (see Proposition 5.8 of op.
cit.).

When v � � is a prime of split multiplicative reduction, it follows from the theory
of Tate curves that there exists a unique q ∈ kv such that E over kv is isomorphic
to Eq(kv). Moreover, δv = 1 if and only if q is the norm of a unit. If the prime v is
(tamely) ramified in the cyclic extension then one uses the properties of tame Hilbert
symbol (see [24, Chapter XIV]). On the other hand, when v is unramified, the norm
map is surjective on the units and the condition on the q being a norm element can be
translated to a condition on the local Tamagawa number. For details, the reader may
refer to Propositions 5.7 and 6.1 in [1].

Finally, when v | �, the case when E has good ordinary reduction was studied
in [15] (see also [1, Proposition 5.9]). On the other hand, the case of supersingular
reduction involves studying the image of the norm map of a formal groups of height
> 1; see Proposition 5.10 and 6.2 of op. cit. for details. �

Remark 2.5 Attentive readers will have noticed that we have left out the description of
δv at additive primes, which were not studied in [1]. For our purposes, it is enough to
consider elliptic curves whose additive primes satisfy very specific conditions, which
is why they are left out in the statement of Theorem 2.4. The treatment of the particular
additive primes we are interested in will be carried out in the proof of Theorem 3.6
below.

3 Strategy

In this section, we outline the strategy of the proofs of Theorems A–D. Our approach
is inspired by the techniques developed in [6] but is more direct and free of Iwasawa
theoretic arguments. The following consequence of Shlapentokh’s Theorem plays a
key role.

Proposition 3.1 Let F/Q be any number field and K/Q be a quadratic extension.
Consider the compositum L = F · K . If there is an elliptic curve E/Q satisfying

(i) rank E(F) = 0 and
(ii) rank E(K ) > 0,

then L/F is integrally Diophantine, i.e., OF is Diophantine in OL .

Proof See [6, Proposition 3.3]. �

Ifwe further know that F/Q is integrallyDiophantine (i.e.,Z isDiophantine inOF ),

then by the Transitive Property, L/Q is also integrally Diophantine. The following
argument is standard, but we repeat it for the reader’s convenience.

Claim 3.2 If Z is Diophantine in OL (Definition 2.1), then the analogue of Hilbert’s
10th Problem for OL has a negative solution.

Justification: Let P be the polynomial in OL [Xi , Y j, j ′ ]1≤i, j≤n,1≤ j ′≤l that shows that
Z is Diophantine in OL and let f1, . . . , fm ∈ Z[X1, . . . , Xn]. By Definition 2.1, the
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collection of polynomials

f1, . . . , fm, P(X1, Y1,1, . . . , Y1,k), . . . , P(Xn, Yn,1, . . . , Yn,k)

is solvable in OL precisely if the polynomials f1, . . . , fm are solvable in Z. In other
words, if we are able to decide the solubility of polynomials over OL , then we would
be able to decide the solubility of f1, . . . , fm over Z. This is a contradiction to MRDP
Theorem, which completes the justification.

Thus, the tasks at hand are the following:

(1) Find a rank 0 elliptic curve E/Q and two families of number fields:

• one family such that rank of E/Q does not jump in the number fields.
• another family of (quadratic) extensions such that rank does jump.

(2) Determine how large these families are.

3.1 Step 1: rank stabilization in cubic extensions

Throughout this section, E/Q is an elliptic curve with good reduction at a fixed prime
�. Consider the Galois group G E,� := Gal(Q(E[�])/Q), and note that G E,� may be
viewed as a subgroup of GL2(Z/�Z) via the residual representation

ρ̄E,� : G E,� ↪→ GL2(Z/�Z).

Assume that p �= � is a prime coprime to the conductor of E , i.e., p is unramified in
Q(E[�]). Let σp ∈ G E,� be the Frobenius at p. The trace and determinant of ρ̄(σp)

are as follows

trace ρ̄E,�(σp) = ap(E) = p + 1 − # Ẽ(Fp),

det ρ̄E,�(σp) = p.

For a prime v | p of Q(μ�), let f be the integer such that the residue field of Q(μ�)

at v is given by κv = Fp f (note that f is independent of the choice of v). According
to a formula of A. Weil (see [26, Theorem V.2.3.1]),

#E(κv) = p f + 1 − α f − β f ≡ 2 − α f − β f mod �,

where α and β are the eigenvalues of ρ̄E,�(σp).

Definition 3.3 For g ∈ G E,�, denote by f (g) the smallest positive integer f satisfying

detρ̄E,�(g) f = 1. (1)

Define the set HE,� to consist of all g ∈ G E,� such that the eigenvalues α, β ∈ F� of
ρ̄(g) satisfy

α f (g) + β f (g) �= 2. (2)
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Note that (1) implies that (αβ) f (g) = 1. Therefore, the condition (2) is equivalent
to α f (g) �= 1.

Definition 3.4 Aset of primesS is called aChebotarev set if there is aGalois extension
K/Q and a conjugacy-stable set C ⊆ Gal(K/Q) such that up to a finite set, S agrees
with the set {p : Frobp ∈ C}.

Finite unions, finite intersections, and complements of Chebotarev sets are again
Chebotarev.

The Chebotarev density theorem states that if S arises from K and C as above, then
the density of S defined as the limit

lim
x→∞

#S ∩ [1, x]
π(x)

exists and is equal to #C/[K : Q]. Here, we have used the standard notation π(x) to
denote the number of prime numbers ≤ x .

Lemma 3.5 For a prime p �= �, let v be a prime of Q(μ�) above p, and κv be the
residue field at v. The density of primes p coprime to the conductor of E so that

E(κv)[�] = 0 is
(
#HE,�

#G E,�

)
.

Proof This is [8, Lemma 8.9]—we repeat the brief proof for the convenience of the
reader aswewill be using it later. By definition, σp ∈ HE,� if and only if E(κv)[�] = 0.
The result follows from the Chebotarev density theorem. �


Wenowwork toward finding a set of primesP such that for all p ∈ P theMordell–
Weil rank of E

(
Q( 3

√
p)

)
is zero. We prove a modified version of [6, Theorem 4.1].

The major point in which our proof differs is that it does not rely on Iwasawa theory,
but rather on Brau’s Theorem 2.4.

Theorem 3.6 Let � > 2 be a prime. Let E/Q be an elliptic curve with conductor N
such that

(1) E has good reduction at �;
(2) Sel� (E/Q(μ�)) = 0
(3) � � Tam (E/Q(μ�)) · # Ẽ�(F�).

Consider the set of prime numbers

P(E, �) = {p : p � N , av(E) �≡ 2 mod �},

where v denotes any prime of Q(μ�) lying above p and av(E) = 1+ #κv − # Ẽv(κv).
Then for every �-power free integer a > 1 supported in P(E, �), the Selmer group
Sel�∞

(
E/Q(μ�,

�
√

a)
)

is trivial.

Proof We write k = Q(μ�) and ka = k( �
√

a). Note that ka/k is a Galois extension of
number fields of degree �. Let G denote its Galois group.
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We make the following crucial observation: Suppose v � � is a prime in k that
ramifies in ka . Then we know that v divides a. But a is supported on P(E, �). This
forces v to lie above a prime p for some p ∈ P(E, �), justifying our choice of letter
v. We thus have by assumption that

av(E) �≡ 2 mod �.

From the proof of Lemma 3.5, the primes of good reduction v satisfying the above
condition are those which satisfy

Ẽv(κv)[�] = (0).

Further, Lemma 3.5 itself tells us that P(E, �) is a Chebotarev set with density(
#HE,�

#G E,�

)
.

In view of the assumption that Sel� (E/Q(μ�)) = 0, we may apply Theorem 2.4.
We shall consider two separate cases, namely when E is semi-stable and when E is
not semi-stable.

Let us first consider the semi-stable case. The only primes that can ramify are the
primes dividing �a. Since a lies in the support ofP(E, �), it is clear that when v | a,
we have δv = 0, where δv is given as in the statement of Theorem 2.4 (we are in the
row of v � �, v good). Once again from Theorem 2.4 we see that the hypotheses on the
Tamagawa number and the fact that � is non-anomalous imply that Sel� (E/ka)G = 0
when E/Q has no prime of additive reduction. By [19, Proposition 1.6.12], we deduce
that Sel� (E/ka)) = 0.

Suppose now that E is not semi-stable. Again, by [19, Proposition 1.6.12], to show
that Sel� (E/ka) = 0, it suffices to show that Sel� (E/ka)G = 0.

As discussed in [1, Remark 5.3], there is an isomorphism of F�-vector spaces

Sel� (E/ka)G �
⊕
v∈S

H1 (
Gv, E(ka,w)

) [�],

where w is a prime of ka lying above v. Just as before, Theorem 2.4 tells us that when
v is a prime of good reduction or a prime of multiplicative reduction, the summand
H1

(
Gv, E(ka,w)

) [�] vanishes. It remains to study the summands arising from the
additive primes. Let v be a prime of additive reduction and write r for the rational
prime lying below v. Recall that E has good reduction at �. It tells us that � �= r , which
implies the following isomorphism

H1 (
Gv, E(ka,w)

) [�] � H1 (
Gv, E(ka,w)[�]) .

Therefore, it is enough to show that

E(ka,w)[�] = 0. (3)

We have assumed that � � Tam(E/k); it follows � � Tam(E/ka). Since v is a prime
of additive reduction and r � �a, the base change E/ka still has additive reduction at
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w. It follows from [31, Theorem 2.30] that

|Ẽns(κw)| = |κw| �≡ 0 (mod �).

Recall that (see [26, Chapter VII, Proposition 2.1])

|E(ka,w)[�]| = |E(ka,w)/�E(ka,w)| = |Ẽns(κw)[�]| × |c(�)
w (E/ka)| = 1,

proving (3). Therefore, we conclude that

Sel� (E/ka)G = Sel� (E/ka) = 0.

�

Remark 3.7 We compare our result with [6, Theorem 4.1]. There are three main dif-
ferences:

• we can define a larger setP(E, �), i.e., without assuming that p ≡ 1 (mod �).
• we only need to assume that � is a prime of good reduction (not good ordinary
reduction).

• we do not require that the mod � representation be surjective.

The authors in [6] only assume that rank E(k) = 0 and that X(E/k)[�] = 0. However,
we have the additional assumption that E/k has no �-torsion. The advantage is that
we obtain that the �-Selmer group over ka is trivial, not just finite. But we point out
that the auxiliary elliptic curve that is used in [6] also satisfies this extra hypothesis
that we impose.

The same Iwasawa theoretic argument used in [6, Theorem 4.1] can be repeated if
� is a prime of good ordinary reduction, the setP(E, �) is as in our current theorem,
and with no hypothesis on the mod � representation being surjective.

3.2 Step 2: rank jump in a quadratic extension

Wewill rely heavily on the work of D. Kriz and C. Li [7] to construct a set of primesQ
such that for all q ∈ Q, the Mordell–Weil rank of E

(
Q(

√−q)
)

or E
(
Q(

√|dK |q)
)

is 1.

3.2.1 Recollections from [7]

We remind the reader of two results from [7] which will allow us to obtain information
on the rank jump upon performing a base-change.

Let E/Q be an elliptic curve of conductor N and K be a quadratic field. Define the
set of primes

QK (E) = {
q : q � 2N , q splits in K , and aq(E) ≡ 1 (mod 2)

}
.
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Theorem 3.8 Let E/Q be an elliptic curve of conductor N with trivial 2-torsion. Let
K be an imaginary quadratic field satisfying the Heegner hypothesis for N.4 Let P
denote a Heegner point Suppose that

2 splits in K and
|Ẽns(F2)| · logωE

(P)

2
�≡ 0 (mod 2). (*)

Then for each square-free integer d ≡ 1 (mod 4) supported onQK (E), the rank part
of the Birch–Swinnerton-Dyer conjecture is true for E (d)/Q and E (d·dK )/Q. One of
these two curves has (algebraic and analytic) rank zero and the other has (algebraic
and analytic) rank one.

If further, the Tamagawa number at 2 is odd,

rank E(Q) = rank E (d)(Q) if and only if �E < 0 or ,�E > 0 and d > 0,

where �E is the minimal discriminant of E.

Proof See [7, Theorem 4.3 and Corollary 5.11]. �

The next two results are restatements of the above theorem, but we record them

separately since they will be required for our calculations.

Corollary 3.9 Let K be an imaginary quadratic field and let E/Q be an elliptic curve
satisfying the following properties:

(i) rank E(Q) = 0.
(ii) E(Q)[2] is trivial.
(iii) (E, K ) satisfies the Heegner Hypothesis.
(iv) Hypothesis (*) holds.
(v) c2(E) is odd.
(vi) �E < 0.

Then, rank E (d·dK ) = 1 for all d ≡ 1 (mod 4) supported on QK (E).

Proof Since we assume that �E < 0, this means that for all d ≡ 1 mod 4,

rank E(Q) = rank E (d)(Q).

The first assertion of Theorem 3.8 implies that E (d·dK )/Q has (analytic and algebraic)
rank one. �


In exactly the same way, we can prove the following result.

Corollary 3.10 Let K be an imaginary quadratic field and let E/Q be an elliptic curve
satisfying the following properties:

(i) rank E(Q) = 0.
(ii) E(Q)[2] is trivial.

4 It means that all primes dividing N split completely in K .

123



Hilbert’s 10th problem and elliptic curves…

(iii) (E, K ) satisfies the Heegner Hypothesis.
(iv) Hypothesis (*) holds.
(v) c2(E) is odd.
(vi) �E > 0 and d < 0.

Then, rank E (d) = 1 for all d ≡ 1 (mod 4) supported on QK (E).

3.3 Step 3: determining the size of these families of extensions

3.3.1 The density ofP

We consider the special case where ρE,� is surjective. We shall consider more general
cases in subsequent sections. We begin with the following elementary lemma:

Lemma 3.11 Suppose that ρ̄E,� is surjective. When � = 3, we have

#HE,�

#G E,�

= 9

16
.

Proof The group G E,�
∼= GL2(Z/�Z) has �(� − 1)2(� + 1) = 48 elements. As in [8,

Appendix A], we may divide G E,� into the following conjugacy classes:

• Let Ca,b be the set of diagonalizable matrices with eigenvalues a, b ∈ F�
× with

a �= b. We have (� − 1)(� − 2)/2 choices of Ca,b and for each choice, #Ca,b =
�(� + 1).

• Let Ca be the set of non-diagonal matrices with one single eigenvalue a ∈ F�
×.

There are (� − 1) choices for Ca and for each choice, #Ca = �2 − 1.

• Let Da =
{(

a 0
0 a

)}
, a ∈ F×

� . Then, there are (� − 1) choices for a and for each

choice #Da = 1.
• Let Eλ be the set of matrices whose eigenvalues are λ and λ′, where λ ∈ F�2 \ F�

and λ′ is the conjugate of λ. There are �(�−1)/2 choices for λ and for each choice
of λ, #Eλ = �2 − �.

All elements in Eλ belong to HE,�, giving �2(� − 1)2/2 = 18 elements. For con-
tributions from Da and Ca , we seek a ∈ F×

� whose order is even. The only choice
is a = 2. This gives (�2 − 1) + 1 = 9 elements. Finally, there is no element in
Ca,b belonging to HE,�, since if g ∈ Ca,b, the eigenvalues of g are 1 and 2, forcing
f (g) = 2 and a f (g) + b f (g) = 2. Summing up, the result follows. �

Remark 3.12 [6, Proposition 4.6] when applied with � = 3, yields a proportion equal
to 5/16. The proportion obtained in Lemma 3.11 exceeds this by 1/4.

Corollary 3.13 Suppose that E/Q is an elliptic curve satisfying the hypotheses of
Theorem 3.6 with � = 3. Then, there exists a Chebotarev set of primes P(E, 3) with
density 9

16 such that for all p ∈ P(E, 3), the Mordell–Weil rank of E
(
Q( 3

√
p)

) = 0.

Proof It follows from Theorem 3.6 (with � = 3), Lemma 3.11 and the Chebotarev
density theorem. �
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Remark 3.14 The main improvement in our result compared to [6, Theorem 4.1] is
that we work with a larger set of primes P(E, �). In particular, we do not need to
impose the hypothesis that the primes p ∈ P(E, �) satisfy the additional hypothesis
that p ≡ 1 (mod �).

3.3.2 The density ofQ

To determine the density of the set Q we use the following lemma.

Lemma 3.15 Let E/Q be an elliptic curve of conductor N and let K be a fixed
quadratic field. Define

Q(E, K ) = {
q : q � 2N , q splits in K , aq(E) ≡ 1 (mod 2)

}
Q+(E, K ) = {q : q ∈ Q(E, K ) and q ≡ 1 (mod 4)}
Q−(E, K ) = {q : q ∈ Q(E, K ) and q ≡ −1 (mod 4)}

If the mod 2 representation is surjective and Gal (Q(E[2])) /Q does not contain K
or Q(

√−1), then the density of the sets Q(E, K ), Q+(E, K ), and Q−(E, K ) are 1
6 ,

1
12 , and 1

12 respectively.

Proof See [6, Lemma 5.1]. �


4 Hilbert’s 10th problem for rings of integers of Q( 3
√
p,

√−q)

The main goal of this section is to prove Theorem A, which provides an improvement
of [6, Theorem 1.2]. Our calculations in Sect. 3.3.1 already allows us to obtain a set
P with larger density. We shall work with two auxiliary imaginary quadratic fields,
allowing us to improve [6, Lemma 6.4] by enlarging the setQ. In other words, we are
able to larger sets P and Q (compared with Theorem 1.1) such that for all p ∈ P
and q ∈ Q, Hilbert’s 10th Problem has a negative solution for rings of integers of
Q( 3

√
p,

√−q).

4.1 Rank jump inmultiple quadratic fields

Fix an elliptic curve E/Q. We work with more than one auxiliary imaginary quadratic
fields and study rank jumps of E in any one of these fields.

Lemma 4.1 Let K(1), . . . , K(n) be n distinct imaginary quadratic fields. Suppose that
E/Q is an elliptic curve such that its mod 2 representation is surjective and that the
Galois extension Q (E[2]) /Q does not contain Q(

√−1) nor K(i) for 1 ≤ i ≤ n.
Then,

Q(n)(E) = {
q : q ≡ −1 (mod 4), q splits in any one of K(1) or . . . or K(n),

aq(E) ≡ 1 (mod 2)
}
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is a Chebotarev set of primes with density 1
6 × (

1 − 1
2n

)
.

Proof We can rewrite

Q(n)(E) = QK(1) (E) ∪ QK(2) (E) ∪ · · · ∪ QK(n)(E).

Therefore, it is clear thatQ(n)(E) is a Chebotarev set. Using a matrix counting argu-
ment5 as in [6, Lemma 6.4], it is easy to see that the set

{
q : q splits in any one of K(1) or . . . or K(n), aq(E) ≡ 1 (mod 2)

}
has density

(
1 − 1

2n

) × 1
3 . Here, the first factor comes from the fact that we must

avoid counting those primes q which are inert in all of the imaginary quadratic fields
K(1), . . . , K(n). By the Chebotarev density theorem, this happens for exactly 1

2n pro-
portion of the primenumbers. Sincewehave assumed thatQ(E[2])/Qdoes not contain
Q(

√−1) we can apply Lemma 3.15 to conclude that the desired density is

1

2
×

(
1 − 1

2n

)
× 1

3
. �


Lemma 4.2 Consider the elliptic curve E = 557b1. We use Cremona’s convention of
labeling elliptic curves. Then, there exists a Chebotarev set of primes Q with density
7
48 such that for all q ∈ Q,

rank E
(
Q(

√−q)
) = 1.

Proof One can further verify using [29] that

(i) E has Mordell–Weil rank 0 over Q and trivial 2-torsion.
(ii) The minimal discriminant of E is positive.
(iii) The Tamagawa number at 2 is odd.
(iv) E has surjective mod 2 representation.
(v) The only degree two subfield of theGalois extensionQ (E[2]) /Q has discriminant

557.

One can check that the Heegner Hypothesis is satisfied for the pairs (E, Q(
√−7)),

(E, Q(
√−79)) and (E, Q(

√−127)), and that Hypothesis (*) holds for each of these
imaginary quadratic fields.

Choose Q = Q
Q(

√−7)(E) ∪ Q
Q(

√−79)(E) ∪ Q
Q(

√−127)(E). We know from

Lemma 4.1 that Q is a Chebotarev set of density 7
48 . Furthermore, Corollary 3.10

tells us that for integers d = −q ≡ 1 (mod 4) that are supported on Q
Q(

√−7)(E) or

Q
Q(

√−79)(E) or Q
Q(

√−127)(E), the Mordell–Weil rank of the twisted curve E (d) is
1. It follows that for each q ∈ Q,

rank E
(
Q(

√−q)
) = rank E(Q) + rank E (−q)(Q) = 1.

5 Alternatively, one may use an inclusion–exclusion argument combined with the fact that the density of
the set

{
q : q splits in K(i), aq (E) ≡ 1 (mod 2)

}
is 1

6 for each i .
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This completes the proof of the lemma. �


4.2 Application to Hilbert’s 10th problem

We now prove Theorem A. Our result improves upon [6, Theorem 1.2] and provides
a larger class of extensions where Hilbert’s 10th Problem is unsolvable.

Theorem 4.3 There are explicit Chebotarev sets of primes P and Q of density 9
16 and

7
48 , respectively such that for all p ∈ P and q ∈ Q, the analogue of Hilbert’s 10th
Problem is unsolvable for the ring of integers of L = Q( 3

√
p,

√−q).

Proof We will work with the rank 0 auxiliary elliptic curve E = 557b1. This elliptic
curve satisfies the hypotheses of Theorem 3.6, see [6, Lemma 6.2].6 We set P and
Q to be the sets of primes given in Corollary 3.13 and Lemma 4.2 respectively. For
each p ∈ P and q ∈ Q, the rank of the elliptic curve remains of Mordell–Weil
rank 0 over the cubic extension Q( 3

√
p) and has rank 1 over the imaginary quadratic

extension Q(
√−q). Proposition 3.1 asserts that Q( 3

√
p,

√−q)/Q( 3
√

p) is integrally
Diophantine. But, it is well-known that Q( 3

√
p)/Q is integrally Diophantine since

Q( 3
√

p) has exactly one complex place. The result follows from theTransitive Property.
�


5 Hilbert’s 10th problem for rings of integers of Q( 3
√
p,

√
Dq)

In this section, we work with a fixed elliptic curve of negative minimal discriminant
and an imaginary quadratic field of discriminant −D. We will show that there exist
Chebotarev setsP andQD of positive density such that for all p ∈ P , and q ∈ QD ,
Hilbert’s 10th Problem has a negative solution for two families of rings of integers
of Q( 3

√
p,

√
Dq). Unlike in the previous section, the extensions we obtain contain

a real quadratic subfield, rather than an imaginary one. While these extensions are
still deduced from results of Kriz–Li [7] by verifying Hypothesis (*) for an auxiliary
elliptic curve and imaginary quadratic fields, we obtain real quadratic fields where
we achieve rank jumps since the minimal discriminant of our chosen elliptic curve is
negative (see Lemma 5.2 below for details).

Lemma 5.1 Consider the elliptic curve E =704g1.

(1) The hypotheses of Theorem 3.6 are satisfied.
(2) Hypothesis (*) holds for K = Q(

√−D) where D is in the set7

D = {7, 39, 95, 127, 167, 255, 263, 271, 303, 359, 391, 447, 479, 527, 535,
615, 623, 655, 679, 695}.

Proof (1) The hypotheses can be verified using [29] (see Sect. B.1).

6 One extra condition we need to check using [29] is that E(Q(μ3))[3] is trivial.
7 We only checked through the values of D with D < 700.
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(2) For Q(
√−7) this is recorded in [7, Table 2]. For the other values of D, the condi-

tions can be verified using [29]; and the code is provided in Sect. C.1.
�


Lemma 5.2 Consider the elliptic curve E =704g1. Define the set

QD(E) =
{

q : q ≡ −1 (mod 4), q splits in Q(
√−D), aq(E) ≡ 1 (mod 2)

}
,

such that Hypothesis (*) holds for Q(
√−D). This is a Chebotarev set of primes of

density 1
12 . Moreover, for all q ∈ QD,

rank E
(
Q(

√
Dq)

)
= 1.

Proof The proof is adapted from [6, Lemma 6.4]. The key difference in the proof
is that the elliptic curve 704g1 has negative minimal discriminant. Hence, we must
apply Corollary 3.9 (instead of Corollary 3.10). The hypotheses of Corollary 3.9 can
be verified directly (for example from LMFDB). The said corollary asserts that for
d ≡ 1 (mod 4) supported on QD(E), we have

rank E (Dd) = 1.

But note that d can take either positive or negative values. Therefore, choosing d to be
the negative of a prime number inQD(E); i.e., d ≡ −q ≡ 1 (mod 4), we have that

rank E (Dq) = 1.

In other words,

rank E
(
Q(

√
Dq)

)
= 1.

Since E =704g1 has surjective mod 2 representation and Q(
√−11) is the unique

imaginary quadratic subfield in the Galois extension Q(E[2]/Q), the density result
follows from Lemma 3.15. �

We can now prove Theorem B.

Theorem 5.3 For all D ∈ D, there are explicit Chebotarev sets of primes P (which is
independent of D) and QD of density 9

16 and 1
12 respectively such that for all p ∈ P

and q ∈ QD, the analogue of Hilbert’s 10th Problem is unsolvable for the ring of
integers of L = Q( 3

√
p,

√
Dq).

Proof This result can be proven in the same way as Theorem 4.3. The only difference
is that we use E =704g1 and the imaginary quadratic field Q(

√−D). �
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6 Studying Hilbert’s 10th problemproblem via a pair of elliptic curves

The goal of this section is to study a slightly different version of Theorem 5.3 by
working with two auxiliary elliptic curves. This allows us to obtain a larger set ofP ,
at the expense of a smaller set of D with a lower density for QD .

6.1 Rank stabilization over cubic extensions for a pair of elliptic curves

The goal of this section is to study a version of Corollary 3.13 for a pair of two elliptic
curves (see Corollary 6.3 below). We first introduce the following definition.

Definition 6.1 Let E1/Q and E2/Q be two elliptic curves, and let � be a prime number.

• Define the sets

G E1,E2,� = {(A, B) ∈ GL2(Z/�Z) × GL2(Z/�Z) : det(A) = det(B)}
HE1,E2,� = {

(A, B) ∈ G E1,E2,� : A ∈ HE1,� or B ∈ HE1,�

}
.

• Elliptic curves E1 and E2 are said to be maximally disjoint at � if the image of
the product of their mod � representations

ρ̄E1,E2,� : GQ → GL(E1[�]) × GL(E2[�]) = GL2(Z/�Z) × GL2(Z/�Z).

is given by G E1,E2,�.
8

In particular, the definition of maximally disjoint implies that both ρ̄E1,� and ρ̄E2,�

are surjective.

Proposition 6.2 Suppose that E1/Q and E2/Q are two elliptic curves that are maxi-
mally disjoint at � = 3. Then,

#HE1,E2,�

#G E1,E2,�

= 103

128
.

Proof Under the notation of the proof of Lemma 3.11, the conjugacy classes of
GL2(F3) are given by the following representatives

Ca,b :
(
1

−1

)
(12 elements each)

Ca :
(
1 1
1

)
,

(−1 1
−1

)
(8 elements each)

Da :
(
1
1

)
,

(−1
−1

)
(1 element each)

8 Note that the image of ρ̄E1,E2,� is always a subgroup of G E1,E1,� since the determinant of the mod �

representation of an elliptic curve is the mod � cyclotomic character.
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Eλ :
(

1
−1

)
,

(
1

1 −1

)
,

(
1

1 1

)
(6 elements each),

where we have highlighted the ones lying inside HE,� in grey shade. Therefore, we
can count the elements in G E1,E2,� via the following table:

(
1

−1

) (
1 1
1

) (
1
1

) (−1 1
−1

) (−1
−1

) (
1

−1

) (
1

1 −1

) (
1

1 1

)
(
1

−1

)
144� 96 12 96 12 72 72� 72�(

1 1
1

)
96 64� 8� 64� 8� 48� 48 48(

1
1

)
12 8� 1� 8� 1� 6� 6 6(−1 1

−1

)
96 64� 8� 64� 8� 48� 48 48(−1

−1

)
12 8� 1� 8� 1� 6� 6 6(

1
−1

)
72 48� 6� 48� 6� 36� 36 36(

1
1 −1

)
72� 48 6 48 6 36 36� 36�(

1
1 1

)
72� 48 6 48 6 36 36� 36�

A check mark signifies that the product of the conjugacy classes belongs to G E1,E2,�,
with those lying inside HE1,E2,� highlighted ingrey shade.Wededuce that #G E1,E2,� =
1152 (this is exactly half of # GL2(Z/�Z) × GL2(Z/�Z) since G E1,E2,� is the kernel
of the group surjective homomorphism from GL2(Z/�Z) × GL2(Z/�Z) to F×

� given
by (A, B) �→ det(AB)) and #HE1,E2,� = 927. �

Corollary 6.3 Suppose that E1/Q and E2/Q are two elliptic curves which are maxi-
mally disjoint at 3 and that both E1 and E2 satisfy the hypotheses of Theorem 3.6 with
� = 3. Then, there exists a Chebotarev set of primes P with density 103

128 such that for
all p ∈ P , either rank E1

(
Q( 3

√
p)

) = 0 or rank E2
(
Q( 3

√
p)

) = 0.

Proof On takingP to be the unionP(E1, 3)∪P(E2, 3), the result follows from the
Chebotarev density theorem, Proposition 6.2 and Theorem 3.6. �


Analogously, for an integer n ≥ 1, one may define the set Pn as the union
P(E1, 3)∪· · ·∪P(En, 3) for elliptic curves E1, . . . , En that such that the imageof the
representation ρ̄E1,3×ρ̄En ,3 is given by

{
(A1, · · · , An) ∈ (GL2(Z/3Z))n : det(A1) =

· · · det(An)}.
Lemma 6.4 The density for Pn is

2 · 24n − 12n − 9n

2 · 24n
= 1 − 3n + 4n

23n+1 .

Proof There are in total 48n elements in (GL2(Z/�Z))n . Half of the elements of
GL2(Z/�Z) have determinant 1, while the other half have determinant 2. Therefore,
there are 1

2n−1 × 48n = 2 · 24n n-tuples with matching determinant. Of those, we
exclude those without factors in HE,�, i.e., the n-tuples of matrices which are

1. all in the same conjugacy class as

(
1

−1

)
, of which there are 12n , or
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2. in all possible combinations of conjugacy classes represented by

(
1 1
1

)
and

(
1
1

)
.

As for the size of the latter type of matrices, the conjugacy class for

(
1 1
1

)
has size

8, while that of the identity matrix is 1, so keeping in mind the possible positions, the
latter count is

8n +
(

n

1

)
8n−1 + . . . +

(
n

n − 1

)
8 + 1 = (8 + 1)n .

The result follows. �

In particular, the density of Pn approaches 1 as n → ∞. In Table 1, we list the
densities for Pn for some small n. The cases n = 1 (resp. n = 2) correspond to
Lemma 3.11 (resp. Corollary 6.3).

6.2 Rank jumps for two elliptic curves

Next, we study families of real quadratic fields where the Mordell–Weil ranks of two
elliptic curves increase under base-change simultaneously.

Lemma 6.5 Let K be an imaginary quadratic field. Suppose that there exist two ellip-
tic curves E1/Q and E2/Q such that their mod 2 representations are surjective.
Further suppose that E1, E2 are maximally disjoint at 2 and that the Galois extension
Q (E1[2], E2[2]) /Q does not contain Q(

√−1) or K . Then,

QK (E1, E2) = {q : q ≡ −1 (mod 4), q splits in K ,

aq(E1) ≡ aq(E2) ≡ 1 (mod 2)
}

is a Chebotarev set of primes with density 1
36 .

Proof We argue as in [6, Proof of Lemma 5.1(ii)], who treated the case of one elliptic
curve and obtained a density of 1

6 . For E = E1 or E = E2, the condition aq(E) ≡ 1
(mod 2) corresponds to the image of Frobq being the two elements

[
1 1
1 0

]
and

[
0 1
1 1

]
,

i.e., two of the six possible matrices of GL2(F2) ∼= S3. Note that they each have
determinant −1, so the maximally disjoint condition alone would imply that all four
combinations of these two matrices occur in the image of ρ̄E1,E2,2 giving a proportion
of 4

36 . The other conditions cut down the proportion by a factor of 1
2 each by the

Chebotarev density theorem and the fact that q ≡ −1 (mod 4) is a splitting condition
in Q(

√−1), which alongside K we assumed to not be in Q (E1[2], E2[2]). We thus
obtain a density of 1

2 × 1
2 × 4

36 , i.e., one-third the proportion compared to when we
work with one elliptic curve. �

Corollary 6.6 Suppose that there are two elliptic curves E1/Q and E2/Q satisfying
the hypotheses of the above Lemma 6.5 and of Corollary 3.9 for some imaginary
quadratic field K = Q(

√−D). Then for any q ∈ QK (E1, E2), rank E1(Q(
√

Dq)) =
1 = rank E2(Q(

√
Dq)).
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Proof We argue as in Corollary 6.5 to conclude that the quadratic twists of E1 and E2
by −D have Q-rational points of rank 1. Indeed, we can apply the last assertion of
Theorem 3.8 to see that rank E(Q) = rank E (−q)(Q) = 0 and from the first assertion,
conclude that rank E ((−q)·(−D))(Q) = 1 for each of E = E1 and E = E2. Hence,
rank E1(Q(

√
Dq)) = 1 = rank E2(Q(

√
Dq)). �


This when combined with Corollary 6.3 proves Theorem C.

Theorem 6.7 There are explicit Chebotarev sets of primes P and Q (resp. P and
Q′) of density 103

128 and 1
36 such that for all (p, q) ∈ P ×Q (resp. (p, q ′) ∈ P ×Q′),

the analogue of Hilbert’s 10th Problem is unsolvable for the ring of integers of L =
Q( 3

√
p,

√
7q) (resp. L ′ = Q( 3

√
p,

√
615q ′)).

Proof We combine Corollary 6.3 and Lemma 6.5 with Corollary 6.6. We work with
the elliptic curves E1 =704g1 and E2 =1472 j1. Using the code in Appendix A, we
verify maximal disjointedness at � = 3, and check that each elliptic curve satisfies the
other required conditions, i.e.,

1. the hypotheses of Lemma 6.5 and
2. those of Theorem 3.8.

As for the former conditions, we know that E1 and E2 are maximally disjoint at 2,
as can be verified in Appendix A. One can verify that Q(E1[2], E2[2]) contains three
degree 2 subfields of conductors −11, −23, and 253.

To check the conditions of Theorem 3.8, we refer the reader to the SAGE code in
Appendix A, where we choose K = Q(

√−7) (resp. K = Q(
√−615)) We let P =

P(E1, 3)∪P(E2, 3) (defined in Theorem 3.6), and letQ := Q
Q(

√−7)(E1, E2) and
Q′ := Q

Q(
√−615)(E1, E2) as in Lemma 6.5. From this we know that for p ∈ P and

q ∈ Q, either rank E1
(
Q( 3

√
p)

) = 0 or rank E2
(
Q( 3

√
p)

) = 0 from Corollary 3.13,
and for q ∈ Q, we have rank E1(Q(

√
Dq)) = rank E2(Q(

√
Dq)) = 1 for D = 7

and for D = 615. We can now apply Proposition 3.1 to at least one of E1 or E2. The
result then follows from Shlapentokh’s Theorem. �

Remark 6.8 We included only two elliptic curves, obtaining the density corresponding
to n = 2 in Table 1. With enough computing power, it should in principle be possi-
ble to generalize Theorem 6.7 further using n auxiliary elliptic curves satisfying the
appropriate hypotheses for an arbitrary n. It would be interesting to see how big n
could be made with the most powerful computers available. The analogue of the set
P should then have density 1− 3n+4n

23n+1 (cf. Table 1, where the analogue ofP is called
Pn). As for the analogue of the setQ built out of n curves, the "worst case scenario"
would occur when the image of the representation ρ̄E1,...,En ,2 = ρ̄E1,2 × · · · × ρ̄En ,2
is (GL2(Z/2Z))n . Its density would be 1

4 × 1
3n . However, it is possible that the density

is higher and does not converge to zero. For example, if the image of ρ̄E1,...,En ,2 is
isomorphic to the diagonal embedding of GL2(Z/2Z), then the density would be 1

12 .

Remark 6.9 Suppose that one could find an elliptic curve other than 557b1, which
has positive discriminant and satisfies the hypotheses of Theorem 3.6 with � = 3. If
furthermore the new curve and 557b1 aremaximally disjoint at 3, then one could obtain

123

https://www.lmfdb.org/EllipticCurve/Q/704/d/1
https://www.lmfdb.org/EllipticCurve/Q/1472/e/1
https://www.lmfdb.org/EllipticCurve/Q/557/b/1
https://www.lmfdb.org/EllipticCurve/Q/557/b/1


D. Kundu et al.

a similar result to Theorem 6.7, where one improves the density ofP in Theorem 4.3
to 103

128 . The density of the resulting Q would depend on the joint image of the mod 2
representations of the two curves. Due to the limited computing power we have had
access to, we have not been able to find such a curve.

7 Congruent number elliptic curves and Hilbert’s 10th problem

We study a different version of Theorem 6.7 using congruent number elliptic curves.
One advantage of this approach is that one may make use of recent breakthroughs in
Goldfeld’s conjecture for these curves to study the set Q.

7.1 Congruent number elliptic curves

In this section we study the congruent number elliptic curve E = 32a2, defined by
the equation y2 = x3 − x . Note that E has good supersingular reduction at 3 with
a3(E) = 0.

Similar to the curve 704g1 studied in Lemma 5.1, we can check that E satisfies the
hypotheses of Theorem 3.6 for � = 3 using [29].

We now calculate the density of the setP(E, 3) given in Theorem 3.6.

Lemma 7.1 For E = 32a2, we have

#HE,3

#G E,3
= 11

16
.

In other words, the setP(E, 3) defined in the statement of Theorem 3.6 is a Chebotarev
set of density 11

16 .

Proof The curve E has complex multiplication and the image of ρ̄E,3 is maximal,
given by the following 16 matrices:

(
1
1

)
,

(
2 2
1

)
,

(
1 1
2

)
,

(
2
2 1

)
,

(
1
1 2

)
, and

(
2
2

)
,

(
2 2
2 1

)
,

(
1 1
1 2

)
,(

2 1
1

)
,

(
1 2
2

)
,

(
2

2 2

)
,

(
1

1 1

)
,

(
2

1

)
,

(
1

2

)
,

(
1 2
2 2

)
,

(
2 1
1 1

)
,

with the ones lying inside HE,3 highlighted in grey shade. �

Remark 7.2 Curiously, even though ρ̄E,3 is not surjective, we are actually getting
a larger proportion than the case where the representation is surjective studied in
Lemma 3.11.

A straightforward application of Theorem 3.6 shows that

Corollary 7.3 There exists a Chebotarev set Pcong of primes of density 11
16 such that

the Mordell–Weil rank of E/Q( 3
√

p) is 0 for all p ∈ Pcong.
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7.2 Rank jump in real quadratic fields

We now turn our attention to studying real quadratic fields over which E has positive
rank. The congruent number problem predicts that for all positive square-free integers
n that are congruent to 5, 6, 7 mod 8, the quadratic twist of E given by

E (n) : ny2 = x3 − x

has positive Mordell–Weil rank. In particular, it predicts that rank E
(
Q(

√
n)

)
is pos-

itive.

Definition 7.4 LetQcong be the set of primesq such that the elliptic curveqy2 = x3−x
has positive Mordell–Weil rank over Q (or equivalently q is a congruent number).

A result announced by Smith in [27, Theorem 1.5] says that E (n) has positive
Mordell–Weil over Q for at least 62.9% of n that are congruent to 5 and 7 modulo
8. In particular, it says that Qcong has density at least 31.45%. More recently, Kriz
[9] announced a proof of Goldfeld’s conjecture for the family of congruent number
elliptic curves. In particular, it says that the density of Qcong is precisely 1

2 .
We conclude this section with the following result, which is Theorem D in the

introduction.

Theorem 7.5 Let Pcong and Qcong be the set of primes defined as in Corollary 7.3
and Definition 7.4. Then, the analogue of Hilbert’s 10th Problem is unsolvable for the
ring of integers of L = Q( 3

√
p,

√
q).

Proof This follows from the same proof as Theorem 4.3. �


Appendix A MAGMA code for verification of maximal disjointedness

The Magma code below, written by Harris B. Daniels, is used to verify whether two
elliptic curves are maximally disjoint at a prime p.

function SimpleSplit(f)
Factors := [vec[1] : vec in Factorization(f) | Degree(vec[1]) gt 1]\\

;
Fields := [NumberField(fac) : fac in Factors];
K := Rationals();
for F in Fields do

K := Compositum(F,K);
end for;
return K;

end function;

//Given 2 elliptic curves E1 and E2 and a prime p, it returns true
if Q(E1[p])

//meet Q(E2[p]) eq Q(zeta_p). Note that if Q(E1[p]) eq Q(E2[p])
eq Q(zeta_p),

//then this function will return true.
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function HasMaxDisjointPTorsion(E1,E2,p)
f1 := DivisionPolynomial(E1,p);
f2 := DivisionPolynomial(E2,p);
K1<a1> := SimpleSplit(f1);
K2<a2> := SimpleSplit(f2);
P1<y1> := PolynomialRing(K1);
P2<y2> := PolynomialRing(K2);

//Now we see if we need to add any y coordinates.
rts1 := [vec[1] : vec in Roots(P1!f1) |

IsIrreducible(Evaluate(DefiningPolynomial(E1),\\
[vec[1],y1,1]))];

rts2 := [vec[1] : vec in Roots(P2!f2) |
IsIrreducible(Evaluate(DefiningPolynomial(E2),\\

[vec[1],y2,1]))];
//If there are y-coordinates to add, we add them now to K1 and K2 \\

to make L1 and L2.
if #rts1 ne 0 then

p1 := Evaluate(DefiningPolynomial(E1),[rts1[1],y1,1]);
L1<b1> := AbsoluteField(ext<K1 | p1>);

else
L1<b1> := K1;

end if;

if #rts2 ne 0 then
p2 := Evaluate(DefiningPolynomial(E2),[rts2[1],y2,1]);
L2<b2> := AbsoluteField(ext<K2 | p2>);

else
L2<b2> := K2;

end if;

dp1 := DefiningPolynomial(L1); //The splitting field of L1 is \\
Q(E1[p])

dp2 := DefiningPolynomial(L2); //The splitting field of L2 is\\
Q(E2[p])

//This last step checks the degrees are what they should be.
s1 := #GaloisGroup(dp1);
s2 := #GaloisGroup(dp2);
s3 := #GaloisGroup(dp1*dp2);
return s1*s2 div EulerPhi(p) eq s3;

end function;

E1 := EllipticCurve("704g1");
E2 := EllipticCurve("1472j1");
p := 3; // change the 3 to a 2 to check for maximal disjointness at 2

HasMaxDisjointPTorsion(E1,E2,p);

Appendix B SAGE code for preserving the rank in cubic extensions

Appendix B.1 Elliptic curve of conductor 704

Start with the elliptic curve E = 704g1 (Cremona label).
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1. E has good ordinary reduction at 3.
2. At all the primes p, the residual Galois representation of E has maximal image.
3. We also check that 3 is not a prime of anomalous reduction.
4. The twist of E by −3 has rank 0. To calculate the rank of the twisted elliptic curve

use:

E = EllipticCurve(’704g1’)
Et = E.quadratic_twist(-3)
Et.rank()

5. It is clear that the base-change of E to Q(
√−3) has rank 0. Just to be sure, we can

check:

E = EllipticCurve(’704g1’)
K.<t> = QuadraticField(-3)
EK = E.base_extend(K)
EK.rank()

6. We check that the order of the torsion group of E over Q(
√−3) is not divisible

by 3. Just to be sure, we can check:

E = EllipticCurve(’704g1’)
K.<t> = QuadraticField(-3)
EK = E.base_extend(K)
EK.torsion_group()

7. The primes of bad reduction are 2, 11 (which are both inert in Q(
√−3)). This is

also clear from [7, Table 2]. To obtain the local data use:

E = EllipticCurve(’704e1’)
K.<t> = QuadraticField(-3)
EK = E.base_extend(K)
EK.local_data(2)
EK.local_data(11)

Output: The Tamagawa number at the inert prime 2 is 1 and at the inert prime 11
is 1.

8. To see that 3 � #X(E/Q(
√−3)), we can use [22, Theorem 2.1]. It suffices to check

that #X(E (−3)/Q) is not divisible by 3. For this, use:

E = EllipticCurve(’704g1’)
Et = E.quadratic_twist(-3)
St = Et.sha()
St.an()

Output: The (analytic) Shafarevich–Tate group is trivial for the quadratic twist of
E .

Remark B.1 This elliptic curve satisfies the Hypothesis (*) when the imaginary
quadratic field is Q(

√−7), see [7, Table 2].
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Appendix B.2 Elliptic curve of conductor 1472

Now we work with the elliptic curve E = 1472 j1 (Cremona label). For this curve, we
can check all the properties as in the previous section. This elliptic curve is not in the
table of Kriz–Li since the conductor is larger than 750. We now check that Hypothesis
(*) is satisfied in Appendix C.

Appendix C SAGE code for verifying Hypothesis (*) for curves 704g1,
1472j1, and 557b1

Appendix C.1 When conductor is 704 or 1472

The prime 2 is a prime of bad reduction for the curve of conductor 704 and 1472. Since
the Heegner hypothesis is satisfied for K = Q(

√−7), it follows immediately that 2
splits in the extension K/Q. The other way to check is to use quadratic reciprocity:
since −7 ≡ 1 (mod 4) it follows that the discriminant dK of K is −7. Since, dK ≡ 1
(mod 8), we know that 2 splits in K . The same argument shows that 2 splits in
K = √−615.

Finding the size of Ẽns(F2)

Note that 2 is a prime of additive reduction for both the elliptic curves of interest.
Hence,

|Ẽns(F2)| = |Ẽ(F2)| − 1 = 3 − 1 = 2.

Finding the Heegner Point in K

When K has class number 1

Since Q(
√−7) has class number 1, the Heegner point lies in K itself. However, we

write a general code suggested by J. Cremona available here which will allow us to
change K :

E = EllipticCurve(’704g1’)
a = -7 # conductor of the imaginary quadratic field
P = E.heegner_point(a) # this Heegner point is in H(K)
P1 = P.point_exact()
K = P1[0].parent()
E = P1.curve()
G = K.automorphisms()
def apply(sigma, pt):

E = pt.curve()
return E([sigma(c) for c in pt])

sum([apply(sigma,P1) for sigma in G], 0)
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s = K(a).sqrt()
H = sum([apply(sigma,P1) for
sigma in G if sigma(s)==s], 0)

# this is the Heegner point in K
r1 = -H[0]/-H[1] # r= -x(H)/y(H)
#parameter corresponding to H
H2 = H + H # sum of Heegner points 2H
r2 = -H2[0]/-H2[1] # r= -x(H2)/y(H2)
#parameter corresponding to 2H

Calculating the 2-adic valuation of |˜Ens(F2)| log!E
(P)

L2=r2.parent()
u=QQ.valuation(2)
vL2=u.extensions(L2); v2=vL2[0]
print(v2(r2), v2(r2-r2ˆ3/3))
# obtain what to evaluate by checking
the first terms of E.formal_group().log(10)

The output is 1 1. This means that Hypothesis (*) is satisfied for K = Q(
√−7).

When K does not have class number 1

Our code above works for any imaginary quadratic field, not just those with class
number 1. We use it to check that both the elliptic curves of interest, namely 704g1
and 1472 j1 satisfy Hypothesis (*) when the imaginary quadratic field is Q(

√−615).

Appendix C.2 When conductor is 557

In [7, Table 2], it is already checked that E=557b1 satisfies Hypothesis (*) when
the imaginary quadratic field is Q(

√−7). To check that the same holds for Q(
√−79)

(resp.Q(
√−127)), we need to first verify that 2 splits inQ(

√−79) (resp.Q(
√−127)).

This follows from the observation that −127 ≡ 1 (mod 8).
For the elliptic curve E = 557b1, the prime 2 is a prime of good reduction so we

can use the code to know |Ẽns(F2)|:
EllipticCurve(GF(2),’557b1’).cardinality()

The output is 1.
Now we calculate the 2-adic valuation of |Ẽns(F2)| logωE

(P) = logωE
(P):

E = EllipticCurve(’557b1’)
a = -127 # replace with -79 for the other verification
P = E.heegner_point(a)
P1 = P.point_exact(300) #might have to increase precision
K = P1[0].parent()
E = P1.curve()
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G = K.automorphisms()
def apply(sigma, pt):

E = pt.curve()
return E([sigma(c) for c in pt])

sum([apply(sigma,P1) for sigma in G], 0)
s = K(a).sqrt()
H = sum([apply(sigma,P1) for sigma in
G if sigma(s)==s], 0)

# this is the Heegner point in K
r1 = -H[0]/-H[1] # r= -x(H)/y(H)
#parameter corresponding to H

L1=r1.parent()
u=QQ.valuation(2)
vL1=u.extensions(L1); v1=vL1[0]
print(v1(r1-r1ˆ3/3))

The output is 1. This means that Hypothesis (*) is satisfied for K = Q(
√−127).
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