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Abstract—The problem of traffic dynamics prediction, aiming
to capture the complicated patterns of urban dynamics and
forecast short-term future traffic status, is essential for managing
transportation systems, reducing congestion, enhancing safety,
improving commuter efficiency, and supporting urban planning
and infrastructure development. Current approaches using ma-
chine learning and deep neural networks have advanced traffic
prediction but often focus on individual urban dynamic aspects
and rely on auto-regressive methods for consecutive predictions,
which can be inaccurate and computationally expensive. In this
work, we propose the Spatial-Temporal Graph LAtent DIffusion
ModeL (STGAIL) to address these limitations. STGAIL views
geographical regions as graphs with various traffic features,
capturing their interconnections. Operating in a pre-trained
latent space, STGAIL uses latent diffusion processes and inno-
vative spatial-temporal graph layers for accurate and efficient
multi-step predictions. Fine-tuning with temporal binary masks
further enhances its performance, avoiding error accumulation
and reducing computational costs. Experiments on real-world
datasets demonstrate STGAIL’s superior accuracy and efficiency
over state-of-the-art methods. We also make our code and dataset
available, contributing to ongoing research in traffic dynamics
prediction.

Index Terms—urban dynamics prediction, latent diffusion
models, spatial-temporal data mining

I. INTRODUCTION

Traffic dynamics refer to the complex patterns of human
mobility on road networks, including variations in traffic
flow, speed, local travel demand, etc. The process of traffic
dynamics prediction aims to forecast how the traffic status
changes and responds to various influences over time. Effective
traffic prediction is essential for managing and optimizing
transportation systems and has significant implications for
numerous urban applications. Accurate prediction of traffic
dynamics can reduce congestion, enhance road safety, and
improve route efficiency for commuters. [17], [18] Moreover,
these predictions are pivotal in urban planning, emergency
response coordination, and infrastructure development. [39]
By utilizing predictive insights, cities can develop more re-
silient and adaptive transportation networks, which are vital
for sustainable urban growth and improving the quality of life
for residents [15], [31].
State-of-the-art (SOTA) approaches. Various studies have
attempted to address the traffic dynamics prediction problem,

Fig. 1: Traffic dynamics correlations (a) and the difference
of auto-regression methods and one-step generation methods
(b). In the left zoomed-in figure in (a), when travel demand
begins to decrease, traffic speed increases ten minutes later. In
the right zoomed-in figure in (a), the taxi inflow decreases ten
minutes after the travel demand decreases.

employing techniques from both traditional machine learn-
ing [4], [6], [19], [34] and deep neural networks [8], [20],
[30], [42], [43], [58]. For example, the TD2-DL model [40]
predicts high-resolution traffic speed propagation by integrat-
ing temporal-spatial dependencies and traffic flow dynamics
using deep learning techniques. Approaches including cST-
ML [55] and DAC-ML [50] utilize meta-learning to adapt to
dynamically changing urban traffic conditions. Furthermore,
the methods such as TrafficGAN [51], Curb-GAN [52], C3-
GAN [54], STrans-GAN [53], and Mest-GAN [56] have been
introduced to estimate traffic under varying urban scenarios.
Additionally, the LSGCN model [14] effectively captures
complex spatial-temporal features, providing stable predictions
for both short and long-term traffic forecasting. Other notable
models like STGCN [41] and GMAN [57] have also been
developed to enhance the understanding and prediction of
traffic flows and related dynamics. However, many of these
methods [53], [54] focus on a single traffic dynamics aspect,
such as traffic speed, and neglect other important traffic
patterns like travel demand and traffic volume. The compli-
cated correlations among various traffic dynamic patterns are
omitted. Additionally, most existing works [40], [50], [52],



TABLE I: Notations.

Notations Descriptions
R = {Rij} Target region.
Xk

R,t Traffic feature of type k at time t, region R.
AR Adjacency matrix at region R.
V R
t = {vij,t} Set of vertices in region R at time t.

GR
t = (V R

t , ER,AR) State of the traffic network at region R, time t.

[55] rely on either auto-regression for long-term prediction
or can only predict for a fixed period [57]. These limitations
hinder the development of more flexible and efficient traffic
prediction models. These limitations are elaborated below:
Limition 1. Complex multifaceted traffic dynamics. Most
current approaches focus on predicting a single facet of
traffic dynamics, such as traffic speed or volume [21], [22],
[48], without considering the interconnectedness among other
facets. However, traffic dynamics are inherently multifaceted
and inter-correlated; overlooking these interconnections can
lead to incomplete and sub-optimal performance. For example,
a spike in traffic volume at a specific location often impacts
traffic speed and congestion levels both upstream and down-
stream and might lead to a temporary traffic speed decrease at
a later time demonstrated in Fig. 1a. When neglecting these
interconnections, models may fail to capture the cascading
effects throughout the traffic network, ultimately resulting in
forecasts that lack holistic accuracy and applicability.
Limitation 2. Inaccurate and inflexible long-term predic-
tion. Most approaches predict longer-term traffic patterns in
an auto-regressive manner, which utilizes previously predicted
data as inputs for future predictions. This approach encounters
two primary issues: (i) Error accumulation is observed when
these models make further predictions based on the assumption
that data predicted in prior steps is sufficiently accurate. How-
ever, any initial inaccuracies tend to accumulate progressively
with each prediction step, exacerbating errors as the process
unfolds and potentially leading to significant deviations in
long-term forecasts [1], [35]. (ii) Excessive computation is
required when auto-regressive models predict traffic dynamics
sequentially, as the model must be run repeatedly to generate
predictions for all future time steps as is shown in Fig. 1b.
This step-by-step nature not only incurs high computational
costs but also introduces delays that are untenable in real-time
traffic management scenarios. Moreover, the inherent rigidity
of this approach limits its ability to adapt swiftly to sudden or
short-term changes in traffic conditions, thus diminishing its
effectiveness in dynamic urban settings.
Our approach. To address the aforementioned challenges and
solve the traffic dynamics prediction problem, this paper in-
troduces the Spatial-Temporal Graph LAtent DIffusion ModeL
(STGAIL). This model views geographical regions as graphs,
with various traffic dynamics as features. This allows STGAIL
to effectively capture the intricate interconnections among
diverse traffic dynamics, as well as the complex road networks
and spatial-temporal correlations within these regions. Draw-
ing inspiration from latent diffusion models, which are capable
of generating multiple data samples simultaneously, STGAIL

is designed to predict traffic dynamics both accurately and
efficiently for multiple future time steps at once, thereby
circumventing the limitations associated with auto-regressive
prediction methods. Our key contributions are detailed below:
• We propose a novel spatial-temporal graph latent diffusion

model – STGAIL, specifically designed for capturing the
complicated traffic patterns. STGAIL operates in a pre-
trained graph latent space, effectively reducing computa-
tional complexity by projecting traffic dynamics graphs into
latent vectors using a pre-trained autoencoder and a dis-
criminator. Moreover, STGAIL integrates a latent diffusion
model equipped with innovative spatial and temporal graph
layers, which are adept at learning interconnections among
various traffic dynamics and capturing their complex spatial-
temporal dependencies (Sec. III-A and III-B).

• We introduce a conditional generation approach, adapt-
ing our STGAIL model to predict traffic dynamics for a
flexible period. During this phase, temporal binary masks
and masked traffic dynamics graphs are used to condition
the well-trained STGAIL model, enabling it to effectively
produce traffic predictions for multiple time steps concur-
rently. This conditioning method prevents the accumulation
of prediction errors and reduces computational costs, sig-
nificantly enhancing both the accuracy and efficiency of the
predictions (Sec. III-C).

• We conducted extensive experiments with real-world traf-
fic dynamics datasets to evaluate the effectiveness of our
proposed STGAIL model. The results demonstrate that
STGAIL significantly improves traffic prediction perfor-
mance in terms of accuracy and efficiency and surpasses
state-of-the-art baseline methods. As a contribution to the
research community, we have made our code and unique
dataset available through an anonymous GitHub link 1

(Sec. IV).

II. OVERVIEW

In this section, we formally define the traffic dynamics
prediction problem.To facilitate understanding and clarity, the
notations used in this paper are provided in Tab. I.

A. Definitions & Notations

Definition 1 (Target region R). We partition a city into P⇥Q

grid cells with equal side-length in latitude and longitude as
shown in Fig. 2. We denote the set of grid cells as S = {sij},
where 1  i  P, 1  j  Q. A target region R formed by
n⇥n grid cells is a square geographic region within the city,
where n < min(P,Q). The whole city can be split into many
overlapping regions denoted as R = {Rij}, where Rij =
hsij , ni is uniquely defined by the grid cell sij in the top-left
corner of the region and a number n indicating the side-length
of the region.
Definition 2 (Traffic dynamics Xk

R,t). Traffic dynamics, such
as speed, volume, and density, are essential for characterizing
the traffic status of the road network. We denote a type k

1Code: https://github.com/Yliu1111/STGAIL.git

https://github.com/Yliu1111/STGAIL.git


Fig. 2: Illustration example of a region with n⇥ n grid cells
in the roadmap.

dynamics for the target region R at time t by a matrix Xk
R,t 2

Rn⇥n, where each entry x
k
ij,t 2 R corresponds to the type k

dynamics for a specific grid cell sij within the target region R

at time t. There are in total K distinct types of urban dynamics,
thereby 1  k  K.

In our study, we have access to the historical traffic dynam-
ics over a span of time denoted as {Xk

R,t}Tt=1 for dynamics
type k and 1  k  K, where T denotes the series length of
Xk.
Definition 3 (Adjacency Matrix AR). The adjacency ma-
trix AR corresponds to a specific region R, indicating the
traffic correlations and geographical patterns along the road
networks, and thus describing the connections among grid
cells sij within the target region R. AR is a square matrix
AR 2 Rn2⇥n2

, and each entry a(i�1)n+j,(i0�1)n+j0 is the
traffic correlation between grid cells sij and si0j0 in region
R.
Definition 4 (Traffic Dynamics Graph GR

t ). A traffic dynam-
ics graph GR

t , denoted as GR
t = (V R

t , E
R
,AR), represents

the traffic status along road networks at time t for region R.
Here, V R

t = {vij,t} comprises a set of vertices, where each
vertex vij,t corresponds to a specific grid cell sij within region
R at time t, and is associated with K types of traffic dynamic
features, i.e., vij,t = [x1

ij,t, · · · , xK
ij,t]

|. The set of edges E
R,

representing connections among the nodes, is quantified by the
adjacency matrix AR indicating complicated road connectivity
and geographical patterns.

As we have the traffic dynamics {Xk
R,t}Tt=1 for any specific

region R over the time span where 1 < t < T for dynamic
types 1  k  K to represent vertices, and road network data
to derive the edges and adjacency matrices, the corresponding
traffic dynamics graphs at region R are obtained and denoted
as GR = {GR

t }Tt=1. We also denote G = {GR}R2R as the
set of all graph sequences.

B. Preliminaries: Latent Diffusion Models
Latent Diffusion Models (LDMs) [25] are an advanced

variant of diffusion models [13] designed to improve com-
putational and memory efficiency. By first compressing input
data into a lower-dimensional latent space using a trained
autoencoder, LDMs can focus on generating high-fidelity
reconstructions from this reduced latent space. LDMs involves
an encoder E(x) = z that maps the input data x ⇠ Pdata

to a latent representation z, and a decoder Q(z) = x̂ that
reconstructs the data. The diffusion process in this latent space
is designed to model the latent distribution via iterative denois-
ing with denoising score matching [25]. It involves a forward
diffusion process to gradually add Gaussian noise ✏ ⇠ N (0, I)
to latent samples z⌧ = ↵⌧z + �⌧ ✏ where ↵⌧ and �⌧ are
a noise schedule parameterized by a diffusion-time ⌧ , such
that the logarithmic signal-to-noise ratio �⌧ = log(↵2

⌧/�
2
⌧ )

decreases monotonically. It then trains a denoiser model f✓

parameterized by ✓ to denoise the diffused z⌧ by minimizing
the denoising score matching objective:

min
✓

Ex⇠Pdata,⌧⇠p⌧ ,✏⇠N (0,I)

h
k✏� f✓(z⌧ , ⌧)k22

i
.

Here, the diffusion time ⌧ is sampled from a uniform distribu-
tion p⌧ ⇠ U{1, O}, utilizing a cosine noise schedule to define
↵⌧ and �⌧ with S being the diffusion time limit. Specifically,
the relationship �

2
⌧ = 1 � ↵

2
⌧ is maintained to ensure the

preservation of variance throughout the diffusion process.
Limitations of LDMs in Traffic Dynamics Prediction.
Recent literature has extensively explored the use of various
latent diffusion models to learn diverse data distributions [3],
[26], [27], [29], [33]. However, these models face significant
challenges when applied directly to traffic dynamics prediction
for the following reasons: (i) standard LDMs struggle to
capture the spatial-temporal dependencies critical to accurately
modeling traffic dynamics. The underlying mechanism of
LDMs, based on the stochastic generation process of diffusion,
inherently overlooks the temporal correlations among data
points generated sequentially. This omission can lead to fore-
casts that fail to reflect real-world temporal dynamics in traffic
patterns. (ii) To the best of our knowledge, no prior works of
LDMs study the complex spatial patterns of traffic and the
interconnections among various aspects of traffic dynamics.
Traffic prediction requires not only predicting the status of
traffic at individual locations but also understanding how these
geographical locations influence each other. These limitations
highlight the need for enhancements in LDM approaches to
address the spatial-temporal intricacies of traffic dynamics.

C. Problem Definition & Challenges
Unlike prior works [50], [55] that either predicts short-term

traffic dynamics or fixed-length long-term traffic dynamics, we
target the problem that predicts traffic dynamics for a flexible
period given an arbitrary length of historical observations all
at once. Therefore, we formally define our problem below:
Problem Definition (Flexible Horizon Graph-based Traffic
Dynamics Prediction). Given the historical traffic dynamics
graphs GR = {GR

t }mt=1 for any region R 2 R over a
period of m time steps, our objective is to train a model f✓,
parameterized by ✓, that can effectively capture the spatial
and temporal dependencies inherent in the traffic data. This
model should be able to predict future traffic dynamics graphs
{ĜR

t }m+`
t=m+1 over a period of ` time steps for any region

R 2 R.
Challenges. As illustrated in the introduction, the flexible
horizon graph-based traffic dynamics prediction problem is



Fig. 3: Autoencoder and discriminator for pre-training the
latent space.

challenging in the following aspects: (C1) How to capture and
characterize the complicated spatial-temporal variation and
flow in traffic dynamics graph sequences, and compress them
into a lower-dimensional space? (C2) How to leverage latent
diffusion models to learn the distribution of the complicated
spatial-temporal graph sequences? (C3) How to adapt the
learned knowledge to help predict future traffic dynamics of
a flexible period at one time?

III. METHODOLOGY

Inspired by the LDMs (see Sec. II-B), we aim to address
the traffic dynamics prediction problem using a novel spatial-
temporal graph latent diffusion model, i.e., STGAIL. STGAIL
features innovative designs that address the inherent limita-
tions of standard LDMs when applied in the spatial-temporal
domain, and are specifically tailored to overcome the chal-
lenges outlined in Sec. II-C. These novel features include: (i)
designing an autoencoder to compress traffic dynamics graph
sequences into a lower-dimensional latent space and leveraging
adversarial training to enhance the recognition of traffic pattern
change over time (addressing challenge C1, see Sec. III-A); (ii)
integrating LDMs and designing spatial and temporal graph
layers to capture and enhance the spatial-temporal correlations
captured in the compressed latent space (addressing challenge
C2, see Sec. III-B); (iii) designing a masking approach to
enable the learned latent diffusion model to function as a
predictive model for generating flexible horizon predictions
given an arbitrary length of historical observations (addressing
challenge C3, see Sec. III-C).

A. Traffic Graph Compression with Adversarial Autoencoders
To address challenge C1 – characterizing and compressing

the complex spatial-temporal variations in traffic dynamics
graph sequences into a lower-dimensional latent space – we
pre-train an autoencoder inspired by prior works [10], [12].
Unlike standard autoencoders that primarily handle stochastic
data samples, our autoencoder is specifically designed to
process and encode sequential data. To better capture the
sequential patterns in traffic dynamics graph sequences, we
incorporate adversarial training with a discriminator.

The encoding process maps the input historical traffic dy-
namics graph sequence {Gt}Tt=1 into latent representations
{zt}Tt=1 using an encoder E� parameterized by � imple-
mented with multiple layers of Graph Convolutional Networks
(GCNs) [16] to capture the complicated graph information.

The decoder Q parameterized by  then reconstructs these
graph sequences from the latent representations, as illustrated
in Fig. 3. The objective for training the encoder-decoder is:

min
�, 

LE,Q = E{Gt}T
t=1⇠G

"
1

T

TX

t=1

kGt � Ĝtk22

#
, (1)

where Ĝt = Q�(E (Gt)) represents the graph reconstructed
at time t. This objective function compels the encoder to
minimize discrepancies between the actual and reconstructed
graphs, thereby effectively learning a latent representation of
sequential traffic dynamics.

However, creating a robust latent space involves more than
accurate graph reconstruction; it also requires verifying the
temporal coherence of the reconstructed graphs. To enhance
the quality of the latent space, we incorporate a discriminator
D! parameterized by ! with adversarial training. As depicted
in Fig. 3, the discriminator D! utilizes Graph Convolutional
Long Short-Term Memory (GC-LSTM) networks [5], which
are particularly effective at capturing both spatial and temporal
dependencies in traffic data. The discriminator’s role is to
assess the reliability and temporal consistency of the recon-
structed traffic sequences, assigning an output of 1 for real
graph sequences that exhibit strong temporal coherence, and 0
for graphs generated by the encoder. Both the autoencoder and
discriminator work in an adversarial way, where the former
aiming to bypass detection by producing increasingly accurate
encodings, while the latter strives to detect discrepancies.
The objective function of the discriminator is formulated as
follows:

max
!

LD = E{Gt}T
t=1⇠G

h
log

�
1�D!({Gt}Tt=1

�

+ log
�
D!({Ĝt}Tt=1)

�i
.

(2)

Here, the discriminator D! tries to distinguish between real
traffic dynamics graph sequences {Gt}Tt=1 and generated
ones {Ĝt}Tt=1. The overall objective function for pre-training
combines the contributions of both the autoencoder (E�, Q )
and the discriminator D! , i.e.,

min
�, 

max
!

Lpretrain = LE,Q + LD. (3)

The autoencoder and the discriminator are trained iteratively
under this final objective in Eq. (3), with LD also influenc-
ing the parameter updates for the encoder E� and decoder
Q . This integrated adversarial training approach enables the
learning of a high-quality, reliable latent space, crucial for
building our STGAIL in the next steps.

B. Spatial-Temporal Graph Latent Diffusion Model

To address challenge C2, we design the Spatial-Temporal
Graph Latent Diffusion Model, in short, STGAIL. STGAIL
aims to learn the distribution of traffic dynamics graph
sequences more effectively within the latent space Z =
{{zt}Tt=1|zt = E(Gt), for Gt 2 {Gt}Tt=1, {Gt}Tt=1 2 G},



Fig. 4: STGAIL diffusion model.

and perform traffic dynamics graph generation. STGAIL con-
sists of two novel designs: (1) a STGAIL diffusion design
to learn the distribution of latent graph sequences, and (2)
a STGAIL diffusion backbone to better capture complicated
spatial-temporal correlations of traffic dynamics in STGAIL.
STGAIL diffusion design. To better learn the distribution
of traffic dynamics graph latent sequences Z , we design
diffusion models tailored for sequential data. First, we stack
each traffic dynamics graph latent sequence {zt}Tt=1 into a
latent matrix Z = [z1, · · · , zT ], and apply diffusion on these
latent matrices via iterative denoising with denoising score
matching. STGAIL adds Gaussian noise ✏ ⇠ N (0, I) to latent
samples Z⌧ = ↵⌧Z + �⌧ ✏, where ↵⌧ and �⌧ are parameters
in a noise schedule governed by diffusion time ⌧ , such
that the logarithmic signal-to-noise ratio �⌧ = log(↵2

⌧/�
2
⌧ )

decreases monotonically. The model then trains a denoiser
f✓, parameterized by ✓, to denoise Z⌧ by minimizing the
denoising score matching objective:

min
✓

EZ⇠Pdata,⌧⇠p⌧ ,✏⇠N (0,I)

h
k✏� f✓(Z⌧ , ⌧)k22

i
. (4)

Here, the diffusion time ⌧ is sampled from a uniform distri-
bution p⌧ ⇠ U{1, O}, using a cosine noise schedule to define
↵⌧ and �⌧ . Specifically, �2

⌧ = 1� ↵
2
⌧ is maintained to ensure

the preservation of variance throughout the diffusion process.
STGAIL diffusion backbone. STGAIL’s architecture ex-
tracts spatial and temporal features for traffic dynamics pre-
diction. It integrates graph convolutions and gated temporal
convolutions within a denoiser model f✓ to capture dependen-
cies in traffic networks. Each spatial-temporal block consists
of two gated temporal graph layers and a central spatial graph
layer, efficiently processing graph-structured time series data.
Temporal Graph Layers in STGAIL employ 1-D causal con-
volutions followed by gated linear units (GLU), leveraging
the rapid training and simpler structure of CNNs over RNNs.
Specifically, the output of the temporal graph layer is:

Htemporal = GLU(Wtemp ⇤ Z+ btemp),

where Wtemp and btemp are the weights and biases of the
temporal graph layer, and ⇤ denotes the convolution operation.

The GLU activation function is GLU(A,B) = A ⌦ �(B)
where � is the sigmoid function and ⌦ denotes element-wise
multiplication.
Spatial Graph Layers operates directly on graph-structured
data. These convolutions employ Chebyshev polynomials and
first-order approximation strategies [11], [45], [46] to extract
significant spatial patterns. The spatial graph convolution is:

Hspatial =
MX

m=0

Tm(L̃)ZWm,

where Tm(L̃) are the Chebyshev polynomials of the scaled
Laplacian L̃, Z is the input feature matrix, Wm are the
trainable weights, and M is the order of the polynomial.

Each spatial-temporal block in STGAIL combines these
layers to capture both spatial and temporal dependencies.
The output of a spatial-temporal block can be expressed as:
Hblock = g�(Htemporal,Hspatial) where g� denotes the integra-
tion function of the temporal and spatial outputs. With this
design, the model efficiently handles traffic graph sequence
and captures crucial spatial and temporal features.

C. STGAIL Flexible Horizon Prediction

After getting a well-trained STGAIL, capable of generating
sequential graphs of traffic dynamics for specific regions from
random noise, we introduce our prediction solution to address
challenge C3. Notice that directly using the diffusion model
cannot make predictions. Our solution enables STGAIL to
function as a predictive model that generates future traffic
predictions based on historical traffic data rather than solely
on random inputs.

We employ a temporal binary mask mS to manage varying
lengths of traffic sequences that need prediction, adapting
STGAIL to perform traffic prediction tailored to specific
regions. This process utilizes the pre-trained latent space,
where the temporal binary mask, mS , masks the T �S latent
traffic dynamics graphs that STGAIL is tasked to predict. Here,
T represents the total sequence length of the traffic dynamics,
and S is a variable of the historical graph sequence lengths
that the prediction builds upon.

To better prepare STGAIL for prediction tasks, we ap-
pend a prediction layer parameterized by � implemented
with GCN [16] at the of the diffusion model and fine-tune
them. In the fine-tuning process, the masked latent graph
sequence Zmasked = mS � Z is concatenated with the mask
mS itself and input into the prediction layer. Formally, let
cS = (Zmasked,mS) denote the concatenated conditioning of
masks and masked latent graphs, the objective for fine-tuning
is,

min
✓,�

EZ⇠Pdata,mS⇠pS ,⌧⇠p⌧ ,✏⇠N (0,I)

h
k✏� f✓,�(Z⌧ ; cS , ⌧)k22

i
,

(5)
where Z⌧ denotes diffused encodings, pS represents the mask
sampling distribution, and ✏ is the Gaussian noise vector ✏ ⇠
N (0, I).



Algorithm 1 Algorithm for STGAIL
Input: Traffic dynamics graphs G and initialized parameters

for encoder E�, decoder Q , discriminator D! , and
denoiser model f✓; batch size b, noise schedule ↵⌧ , �⌧ .

Output: Well-trained encoder E�, decoder Q , discrimina-
tor D! , and denoiser model f✓.

1: Part 1: Traffic Graph Compression:
2: for iteration i = 1, 2, 3, · · · do
3: Sample a batch of b graph sequences Gi = {{Gt}Tt=1},

where | Gi |= b.
4: Encode Gi and decode to get the reconstruction Ĝi =

{{ĜR
t }Tt=1} and calculate Eq. (1).

5: Evaluate real and generated sequences Gi and Ĝi re-
spectively and calculate Eq. (2).

6: Update �, and  to minimize Eq. (3).
7: Update ! to maximize Eq. (3).
8: end for
9: Obtain well-trained E�, Q and D! .

10: Part 2: STGAIL Training:
11: for iteration = 1, 2, 3, · · · do
12: Sample a batch of b graph sequences Gi = {{Gt}Tt=1},

where | Gi |= b.
13: Get latent graphs Zi = {{zt}Tt=1} with E�, and stack

each sequence to get Z̃i = {Z}.
14: Sample a batch of b time steps {⌧} with ⌧ ⇠ U{1, I}

and noises {✏} with ✏ ⇠ N (0, I) respectively and
construct noisy latents.

15: Update f✓ using Eq. (4).
16: end for
17: A pre-trained model f✓ is produced.
18: Part 3: Flexible Horizon Prediction:
19: for iteration i = 1, 2, 3, · · · do
20: Sample one graph sequence {Gt}Tt=1, and one S ⇠

U{1, T}, diffusion time ⌧ ⇠ U{1, O} and noise ✏ ⇠
N (0, I).

21: Get latent graphs Z with E�, and condition cS .
22: Update f✓,� using Eq. (5).
23: end for

This method allows STGAIL to generate extended traffic
prediction sequences from initial historical data, preserv-
ing temporal dependencies and consistency. Consequently,
STGAIL is transformed into a traffic prediction model that
adapts to various regions and prediction lengths, providing
accurate and efficient traffic predictions over multiple time
steps. The algorithm for our STGAIL is shown in Alg. 1.

IV. EXPERIMENT

In our experiments, we aim to evaluate the effectiveness of
our STGAIL for traffic prediction tasks. We will answer the
following questions with extensive experiments: (1) Can our
model accurately predict different traffic dynamics compared
to other state-of-the-art methods? (2) Can our STGAIL outper-
form auto-regressive baselines in traffic dynamics prediction in
terms of accuracy and efficiency? (3) Are different components

of our STGAIL, including the autoencoder, discriminator, and
spatial-temporal graph layer, effective in enhancing prediction
accuracy? (4) How do different hyperparameters affect the
performance of our STGAIL?

A. Dataset and Experiment Descriptions

Data Description. We evaluate our STGAIL using three
real-world urban dynamics datasets from Shenzhen, China,
spanning from July 1st to December 31st, 2016. These datasets
include: (1) traffic speed, (2) taxi inflow, and (3) travel
demand. The urban area of Shenzhen is divided into 40⇥ 50
equal-sized grid cells, which are further aggregated into 63
regions. Each region, containing a 10⇥ 10 grid, is treated as
a graph where each grid cell represents a node. Consequently,
each graph comprises 10⇥10 nodes, with each node associated
with different traffic dynamics features including traffic speed,
taxi inflow, and travel demand. More details about our urban
dynamics datasets are as follows:
• Traffic Speed: The dataset includes traffic speed measure-

ments across 63 regions, captured in 4416 one-hour intervals
over a six-month period. For each grid cell and time slot,
the average traffic speed is determined by dividing the total
travel distance by the elapsed time.

• Taxi Inflow: This dataset records the number of taxis
arriving in each of the 63 regions, also measured in 4416
one-hour intervals over six months. The taxi inflow for each
grid cell is quantified by tallying the total arrivals within
each hour.

• Travel Demand: This dataset tracks hourly taxi pickups
and drop-offs in 63 regions over the same time frame.
Due to the challenge of collecting comprehensive travel
demand data across all transportation modes, it focuses on
taxi services. Several studies have confirmed the relevance
and effectiveness of using taxi data as a proxy for overall
travel demand [51]–[54].
In summary, all three datasets have been aggregated and

processed to yield dimensions of (162⇥ 63, 12, 100, 3). Here,
162 represents the number of days, 12 indicates the twelve
one-hour time slots per day, 63 corresponds to the number of
regions or graphs, 100 denotes the number of nodes per graph,
and 3 signifies the number of features per node.
Adjacency Matrix. The adjacency matrices for traffic dynam-
ics graphs are derived using the Pearson correlation coefficient
to measure the traffic correlation between nodes. The Pearson
correlation coefficient, ⇢X,Y , for two time series X and Y is
given by:

⇢X,Y =

Pn
i=1(Xi � X̄)(Yi � Ȳ )qPn

i=1(Xi � X̄)2
qPn

i=1(Yi � Ȳ )2
,

where Xi and Yi are the traffic values at time i, and X̄ and
Ȳ are the average values of the time series X and Y . This
method creates an adjacency matrix that represents the strength
of linear relationships between nodes, forming the foundation
of our graph-based model.



TABLE II: Performance of traffic dynamics prediction. One-hour and two-hour prediction results are provided in this table.
Dataset Metric STGAIL DYffusion GAGCN TGC-LSTM STGCN GCRN GAT GMAN VideoLDM

One-hour

Traffic speed RMSE 0.133 0.215 0.201 0.205 0.219 0.185 0.201 0.513 0.134
MAPE(%) 33.1 83.0 95.3 34.8 51.3 83.7 184.7 214.0 65.32

Taxi inflow RMSE 0.146 0.239 0.219 0.229 0.515 0.170 0.185 0.623 0.165
MAPE(%) 10.5 42.5 57.7 108.7 152.3 39.0 47.1 85.5 11.9

Travel demand RMSE 0.168 0.291 0.264 0.254 0.730 0.279 0.250 0.757 0.170
MAPE(%) 68.3 69.1 85.8 104.8 78.5 70.0 70.9 116.4 158.1

Two-hour

Traffic speed RMSE 0.113 0.215 0.215 0.209 0.263 0.197 0.212 0.564 0.113
MAPE(%) 35.5 110.4 136.2 36.2 70.0 56.5 104.1 134.2 72.39

Taxi inflow RMSE 0.230 0.241 0.249 0.284 0.391 0.238 0.242 0.433 0.232
MAPE(%) 14.7 41.5 47.0 126.7 213.0 39.1 46.1 73.0 15.7

Travel demand RMSE 0.215 0.347 0.313 0.303 0.709 0.288 0.309 0.463 0.238
MAPE(%) 69.9 74.4 74.1 128.6 217.7 108.3 72.3 121.4 167.5

Fig. 5: Results of STGAIL and auto-regression models on the
performance of traffic speed prediction.

B. Baselines
We use graph-based auto-regressive models and non-auto-

regressive models including diffusion models as baselines
to evaluate our STGAIL. The non auto-regressive baselines
include:

• DYffusion [3]: DYffusion is an advanced diffusion model
for probabilistic spatial-temporal forecasting, designed
to generate stable and accurate rollout forecasts. By
coupling temporal dynamics with diffusion steps, it is
well-suited for traffic dynamics prediction.

• VideoLDM [2]: VideoLDM is designed for high-
resolution video generation using a diffusion model in
a compressed latent space. Incorporating a temporal di-
mension and fine-tuning on traffic data, it captures spatial-
temporal dependencies for traffic predictions.

• GMAN [57]: GMAN addresses long-term traffic predic-
tion using an encoder-decoder architecture with attention
blocks. A transform attention layer links the encoder and
decoder, converting features into future sequences and
reducing error propagation.

The auto-regressive baselines include:
• GAGCN [38]: GAGCN leverages graph attention net-

works to dynamically capture and adjust spatial asso-
ciations among nodes over time, effectively modeling
complex spatial and temporal dependencies for accurate
traffic predictions.

• TGC-LSTM [7]: TGC-LSTM captures time-varying pat-
terns and spatial dependencies using traffic and spectral
graph convolutions, making it effective for traffic dynam-
ics prediction.

• STGCN [41]: STGCN effectively handles the complexi-
ties and nonlinearity of traffic flow, making it suitable for

mid- and long-term predictions. It formulates the prob-
lem on graphs using a fully convolutional architecture,
avoiding standard convolutional and recurrent units.

• GCRN [28]: GCRN extends RNNs to graph-structured
data, modeling spatial and temporal dependencies to ef-
fectively predict complex spatial-temporal traffic patterns.

• GAT [37]: GATs use masked self-attentional layers
to handle graph-structured data, overcoming traditional
graph convolutional limitations. We enhance this by
sequentially passing data through the model for each
hour, allowing it to use previous predictions as inputs
for forecasting subsequent hours and capturing temporal
dependencies effectively.

C. Evaluation Metrics
We use mean absolute percentage error (MAPE) and root

mean square error (RMSE) for evaluation:

MAPE =
1

NsNt

NsX

s=1

NtX

t=1

����
ys,t � ŷs,t

ys,t

���� ,

RMSE =

vuut 1

NsNt

NsX

s=1

NtX

t=1

(ys,t � ŷs,t)
2
,

where Ns is the number of nodes for a graph (Ns = 100
in this work), Nt is the number of predicted time slots, ys,t
represents the ground-truth traffic dynamics observed in the
s-th node at the t-th time slot, and ŷs,t is the corresponding
predicted value.

D. Experimental Settings
All experiments use the Adam optimizer with an initial

learning rate of 0.0001. For prediction tasks, 50 regions are
used for training and the remaining 13 for testing, training
with one node feature at a time.

E. Empirical Results
Results of Question (1). To assess the performance of
STGAIL in traffic dynamics prediction, we conducted experi-
ments on three different urban dynamics datasets: traffic speed,
taxi inflow, and travel demand. We performed both one-hour
and two-hour predictions and compared the results against
state-of-the-art baseline models mentioned in Sec. IV-B. As
shown in Tab. II, our model consistently outperforms the
baseline models across all datasets and metrics. For one-hour



TABLE III: Ablation study: Impacts of different components in STGAIL. We assess the importance of the Autoencoder,
Discriminator, and Temporal graph layer in STGAIL and show the corresponding urban dynamics prediction performance.

Dataset Metric STGAIL STGAIL w/o Autoencoder STGAIL w/o Discriminator STGAIL w/o Spatial-temporal graph layer

One-hour

Traffic speed RMSE 0.133 0.206 0.240 0.192
MAPE(%) 33.1 67.7 61.7 54.3

Taxi inflow RMSE 0.146 0.204 0.268 0.188
MAPE(%) 10.5 13.5 11.0 16.9

Travel demand RMSE 0.168 0.219 0.180 0.187
MAPE(%) 68.2 80.3 111.3 214.3

Two-hour

Traffic speed RMSE 0.113 0.210 0.256 0.272
MAPE(%) 35.5 51.4 50.0 78.5

Taxi inflow RMSE 0.230 0.295 0.266 0.266
MAPE(%) 14.7 20.4 18.5 19.7

Travel demand RMSE 0.215 0.352 0.256 0.266
MAPE(%) 69.9 75.8 117.3 216.6

Fig. 6: Impacts of hyperparameters on the RMSE performance of traffic speed prediction.

forecasts, our model shows the lowest RMSE and MAPE
values in predicting traffic speed, taxi inflow, and travel
demand. This trend of superior performance extends to two-
hour predictions, where our STGAIL model continues to excel.
The effectiveness of STGAIL in producing more accurate pre-
dictions than other baseline models stems from its capability to
capture both spatial and temporal dependencies in the data. By
integrating a latent diffusion model with innovative spatial and
temporal graph layers, STGAIL effectively learns the complex
relationships inherent in traffic dynamics, ensuring both spatial
coherence and temporal consistency. Additionally, the fine-
tuning process enables STGAIL to quickly adapt to specific
regional conditions, enhancing its functionality as a predictive
tool and helping to minimize prediction errors.
Results of Question (2). As illustrated in Fig. 5, we conducted
a comparative analysis to assess the performance of STGAIL
against traditional auto-regressive models in predicting traffic
speed. The experiment was conducted over one to four-hour
traffic speed prediction using auto-regression baselines, includ-
ing TGC-LSTM, GAGCN, STGCN, and GAT. The results,
depicted in Fig. 5, consistently show that STGAIL outperforms
these models across all prediction tasks. Additionally, consid-
ering STGAIL’s capability to generate predictions for multiple
time steps simultaneously, we also examined its time efficiency
in comparison to auto-regressive baselines. The findings, as
shown in Fig. 5, indicate that STGAIL significantly reduces
prediction time, especially for three to four-hour forecasts,
outperforming auto-regressive models including TGC-LSTM,
GAGCN, STGCN, and GAT. These results collectively under-
score the superior effectiveness and efficiency of STGAIL over
traditional auto-regressive models.
Results of Question (3) (Ablation Study). We conducted

an ablation study to assess the significance of each com-
ponent in our STGAIL model, comparing the full STGAIL
model against three variants: STGAIL w/o Autoencoder
(i.e., excluding the autoencoder), STGAIL w/o Discriminator
(i.e., excluding the discriminator), and STGAIL w/o Spatial-
Temporal Graph Layer (i.e., substituting the spatial-temporal
graph layer with a GCN). These comparisons elucidate the
contribution of each component to the model’s efficacy in
predicting traffic dynamics. In Tab. III, the omission of any
component results in increased RMSE and MAPE, under-
scoring their collective importance in enhancing prediction
accuracy. Notably, the complete STGAIL model consistently
outperforms its ablated versions across all metrics and datasets.
Detailed analysis shows that while the STGAIL model without
the spatial-temporal graph layer has a similar RMSE to the full
model for short-term traffic speed predictions, it gets a higher
MAPE. This suggests that the spatial-temporal graph layer
significantly reduces relative error, improving forecast accu-
racy, especially for longer horizons and more variable factors
like taxi inflow and travel demand. Furthermore, performance
comparisons reveal that removing either the autoencoder or
the discriminator degrades performance compared to the full
STGAIL model. The autoencoder creates a perceptually sim-
ilar but simpler latent space, while the discriminator assesses
the reliability and temporal consistency of the reconstructed
traffic sequences. Together, these components enhance the
latent space quality and overall predictive performance.
Results of Question (4). To study how different hyperparam-
eters affect the performance, we select four major hyperpa-
rameters including the the length of the binary temporal mask
LMASK, diffusion time ⌧ , numbers of layers in the STGAIL NL

and the type of noise schedule method for diffusion, and test



how different values of these hyperparameters affect the traffic
speed prediction performance. As shown in Fig. 6(a), we find
that the RMSE performance is optimal when the mask length
LMASK is 2. As the mask length increases from 2 to 5, the
RMSE progressively worsens. Fig. 6(b) shows that the longer
diffusion time ⌧ goes on, the better traffic prediction performs.
As shown in Fig. 6(c), if the number of graph layers in the
STGAIL, NL is 2, we can get the best prediction performance.
As shown in Fig. 6(d), where we adjusted the noise schedule
method, it is evident that with cosine schedule, the model is
better capable of predicting accurate traffic speed.

V. RELATED WORK

Traffic dynamics prediction is key for traffic management,
urban planning, and intelligent transportation systems. Re-
search ranges from traditional machine learning to advanced
deep learning models. Key contributions include integrating
temporal-spatial dependencies in models like TD2-DL [40] for
speed predictions and using meta-learning approaches such
as cST-ML [55] and DAC-ML [50] to adapt to changing
traffic conditions. Generative models like TrafficGAN [51]
and STrans-GAN [53] estimate traffic across diverse scenarios,
while LSGCN [14] captures complex spatiotemporal features
for stable forecasts. Models like STGCN [41] and GMAN [57]
enhance traffic flow predictions, and frameworks combining
traditional theories with machine learning improve volume and
flow forecasts [36], [44]. Advanced methods like ConvLSTM
for accidents [43] and CNNs for citywide flow [47] empha-
size spatial dependencies and real-time processing. However,
focusing on single dynamics and using auto-regressive models
often lead to error accumulation and high computation costs.
Our model addresses these issues by capturing diverse traffic
dynamics for accurate, efficient multi-step predictions.
Diffusion models transform Gaussian noise into detailed data
distributions via reverse diffusion, enhancing image synthe-
sis [9]. Sohl-Dickstein et al. [32] first modeled this pro-
cess as a Markov chain. Latent diffusion models, operat-
ing in compressed spaces, offer efficiency and adaptability,
as demonstrated in high-quality image generation from text
[24] and conditional generation [13]. They also excel in
trajectory generation [49] and video generation [23]. Despite
their success, diffusion models are underexplored in traffic
dynamics prediction. This paper introduces a novel latent
diffusion model to forecast diverse traffic dynamics, effectively
capturing spatial-temporal dependencies.

VI. CONCLUSION

In conclusion, this paper introduces the Spatial-Temporal
Graph Latent Diffusion Model (STGAIL), a novel approach
that efficiently predicts future traffic dynamics, overcoming
the limitations of traditional auto-regressive methods. STGAIL
operates within a pre-trained graph latent space to significantly
reduce computational complexity. This model integrates novel
spatial and temporal graph layers within a latent diffusion
framework, enhancing the learning of complex traffic dynam-
ics. Furthermore, our innovative fine-tuning approach ensures

accurate, concurrent predictions across multiple time steps,
reducing both error accumulation and computational demands.
Extensive experiments with real-world datasets confirm that
STGAIL outperforms existing SOTA, significantly enhancing
the accuracy and efficiency of traffic dynamics predictions.
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