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—— Abstract

We show that a variant of the continuous Fréchet distance between polygonal curves can be computed
using essentially the same algorithm used to solve the discrete version. The new variant is not
necessarily monotone, but this shortcoming can be easily handled via refinement.

Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fréchet distance
(i-e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in
practice, takes near linear time on many inputs. The new morphing has the property that the leash
is always as short as possible. These matchings/morphings are more natural, and are better than
the ones computed by standard algorithms — in particular, they handle noise more graciously. This
should make the Fréchet distance more useful for real world applications.

We implemented the new algorithm, and various strategies to obtain fast practical performance.
We performed extensive experiments with our new algorithm, and released publicly available (and
easily installable and usable) Julia and Python packages. In particular, the Julia implementation,
for computing the regular Fréchet distance, seems to be significantly faster than other currently
available implementations. See Table 2.2. Our algorithms can be used to compute the almost-exact
Fréchet distance between polygonal curves.

Implementations and numerous examples are available here: frechet.xyz.
2012 ACM Subject Classification Theory of computation — Computational geometry
Keywords and phrases Curve similarity, Fréchet distance
Digital Object Identifier 10.4230/LIPIcs.SoCG.2025.54
Related Version Full Version: https://arxiv.org/abs/2407.03101 [14]

Supplementary Material Audiovisual (Ezamples): https://frechet.xyz

Software (Python Implementation): https://github.com/eliotwrobson/FrechetLib [17]
archived at swh:1:dir:cf434cal7d61d3d43c67e7bc40£d2eb2b507c9d9

Software (Julia Implementation): https://github.com/sarielhp/FrechetDist.j1 [13]
archived at swh:1:dir:9600673d8c20bc49890fd55¢c71bd6e5c841dc7df

Funding Sariel Har-Peled: Work on this paper was partially supported by a NSF AF award CCF-
2317241.

Benjamin Raichel: Work on this paper was partially supported by NSF AF Award CCF-2311179.
Eliot W. Robson: Work on this paper was partially supported by a NSF AF award CCF-2317241.

© Sariel Har-Peled, Benjamin Raichel, and Eliot W. Robson; N

5v licensed under Creative Commons License CC-BY 4.0 f[ i ],—‘
41st International Symposium on Computational Geometry (SoCG 2025). } % »% }
Editors: Oswin Aichholzer and Haitao Wang; Article No. 54; pp. 54:1-54:13 NI ju

\\v Leibniz International Proceedings in Informatics N
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany



54:2

The Fréchet Distance Unleashed: Approximating a Dog with a Frog

1 Introduction

1.1 Definitions

Given two polygonal curves, their Fréchet distance is the length of a leash that a person
needs, if they walk along one of the curves, while a dog connected by the leash walks along
the other curve, assuming they synchronize their walks so as to minimize the length of this
leash. (Le. they walk so as to minimize their maximum distance apart during the walk.) Our
approach is slightly different than the standard approach, and we define it carefully first.

1.1.1 Free space diagram and morphings

» Definition 1. For a (directed) curve 7 C R?, jts uniform parameterization is the
bijection m : [0, ||w||] = 7, where ||| is the length of w, and for any x € [0, ||x||], the point
m(x) is at distance x (along 7) from the starting point of .

» Definition 2. The free space diagram of two curves m and o is the rectangle R = R(w,0) =
[0, |7]|] < [0, |o|l]. Specifically, for any point (x,y) € R, we associate the elevation function

e(a,y) = |r(z) — o)l

The free space diagram R is partitioned into a non-uniform grid, where each cell cor-
responds to all leash lengths when a point lies on a fixed segment of one curve, and the
other lies on a fixed segment of the other curve, see Figure 1.1. For a given value § > 0, the
sublevel set of a real valued function consists of all inputs whose function value is < §. It is
known that for any value § > 0, the sublevel set of the elevation function inside such a grid
cell is a clipped ellipse.

» Definition 3. A morphing! m between m and o is a (not self-intersecting) curve m C
R(m,0) with endpoints (0,0) and (||7||, ||loll). The set of all morphings between 7 and o is
My ». A morphing that is o segment inside each cell of the free space diagram that it visits,
is well behaved?.

Intuitively, a morphing is a reparameterization of the two curves, encoding a synchronized
motion along the two curves. That is, for a morphing m € M, ,, and t € [0, [|[m ], this
encodes the configuration, with a point 7(x(m(t))) €  matched with o (y(m(t))) € 0. The
elevation of this configuration is €(t) = €(m(t)) = |7 (z(m(t)) — o (y(m(t))]|.

1.1.2 Fréchet distance

» Definition 4. The width of a morphing m between m and o is w(m) = maxe(o,|jm|] €(t)-
The Fréchet distance between the two curves m and o is

dy(m,0) = min w(m),
mGM;U

where M;U C My, is the set of all x/y-monotone morphings.

1A morphing induces a natural homotopy between the two curves.
2 All the morphings we deal with in this paper are well behaved.
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Figure 1.1 Two curves, their free space diagram (and the associated elevation function), and
the optimal Fréchet morphing between the two curves encoded as an x/y-monotone curve. More
illustrations and animations of this example are available here.

The classical (discrete) Fréchet morphing, The retractable discrete Fréchet morph-
caring only about the maximum leash ing, using the shortest leash possible at
length. each point.

Figure 1.2 A comparison between the classical and retractable Fréchet distances. Observe that
the morphing generated by the classical distance can be quite loose in many places. An animation
of both morphings is available here.

Conceptually, the Fréchet distance is the problem of computing the minimum bottleneck
matching between two curves, respecting the order and continuity of the curves.® Alternatively,
it is an Ls.-norm type measure of the similarity between two curves. It thus suffers from
sensitivity to outliers. Furthermore, even if only a small portion of the morphing requires a
long leash, the measure, and the algorithms computing it, may use this long leash in large
portions of the walk, generating a matching that is loose in many places, see Figure 1.2.

Observe that the Fréchet distance is the minimum value such that the sublevel set of the
elevation function has an z/y-monotone path from (0,0) to (||7||, |lo|) in R.

1.2 Background

Alt and Godau [1] presented a rather involved O(n?logn) time algorithm to compute the
Fréchet distance using parametric search. The parametric search can be removed by using
randomization, giving a simpler algorithm as shown in [12]. Buchin et al. [7] presented
an alternative algorithm for computing the Fréchet distance that replaces the decision
procedure by using a data-structure to maintain appropriate lower envelopes. Despite some
simplifications, all these algorithms are somewhat involved.

Unfortunately, it is believed this problem requires quadratic time in the worst case,
although a logarithmic speedup is possible; see [5] and references therein. The quadratic time
can be improved for realistic inputs by assuming that the input is “nice”, and introducing
approximation, but the resulting algorithms are still not simple [9].

3 Formally, since the reparameterization is not one-to-one, this is not quite a matching. One can restrict
to using only such bijections, with no adverse effects, but it adds a level of tediousness, which we avoid
for the sake of simplicity of exposition.
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1.2.1 Variants of the Fréchet distance

Weak Fréchet distance. The weak Fréchet distance allows morphings where the agents
are allowed to go back and traverse portions of the curve visited previously (i.e., the morphing
does not have to be x/y-monotone). Since the weak Fréchet distance allows considering
more parameterizations, it is potentially smaller, and we have that d%¥(7,0) < d4(7,0), for
any two curves 7, 0. Elegantly, Alt and Godau [1] showed the weak Fréchet distance can be
reduced to computing the minimum spanning tree of an appropriate graph. Unfortunately,
there does not seem to be a natural way to overcome this non-monotonicity (and thus get
the “strong” version).

Discrete Fréchet distance. The complexity of these algorithms, together with sensitivity
of the Fréchet distance to noise, lead to using “easier” related measures, such as the discrete
version of the problem, and dynamic time-warping (discussed below). In the discrete version,
you are given two sequences of points pi,...,p,, and qi,...,Gm, and the purpose is for
two “frogs” starting at p; and ¢;, respectively, to jump through the points in the sequence
until reaching p,, ¢m, respectively, while minimizing the maximum distance between the two
frogs during this traversal. At each step, only one of the frogs can jump from its current
location to the next point in its sequence (no jumping back). Computing the optimal distance
under this measure can be done by dynamic-programming, similar to the standard approach
to edit-distance. Indeed, the configuration space here is the grid H = [n] x [m], where
[n] ={1,...,n}.

To use the discrete version in the continuous case, one sprinkles enough points along
both input curves, and then solves the discrete version of the problem. Beyond the error
this introduces, to get a distance that is close to the standard Fréchet distance, one has to
sample the two curves quite densely in some cases.

For the (monotone) discrete Fréchet distance the induced graph on the grid H is a DAG,
and the task of computing the Fréchet distance is to find a minimum bottleneck path from
(1,1) to (n,m), where the weights are on the vertices. Here, the weight on the vertex (i, j)
is the distance ||p; — g;||. In particular, a Fréchet morphing is an x/y-monotone path in H
from (1,1) to (n,m). The standard algorithm to do this traverses the grid, say, by increasing
rows 4, and in each row by increasing column j, such that the value at (7, ) is the maximum
of the length of the leash of this configuration, together with the minimum solution for
(i —1,7) and (4,5 — 1). This algorithm leads to a straightforward, O(nm) time algorithm
for the discrete Fréchet distance. However, the morphing computed might be inferior, see
Figure 1.2 for such a bad example.

Retractable Fréchet. For simplicity, assume that the pairwise distances between all pairs of
points in the two sequences are unique. We would like to imagine that we have a retractable
leash, that can become shorter at times, and the leash “resists” being longer than necessary.
It is thus natural to ask for a morphing where the leash as short as possible at any point in
time.

Informally, the optimal retractable Fréchet morphing between the two sequences includes
the bottleneck configuration, realizing the Fréchet distance, in the middle of its path, and
the two subpaths from the endpoints to this configuration have to be also recursively optimal.
This is formally defined and described in the Full version of the paper [14]. This concept was
introduced by Buchin et al. [6]. Interestingly, they show that the discrete version can be
computed in O(nm) time, but unfortunately, the algorithm is quite complicated. They also
show that the continuous retractable Fréchet can be computed in O(n®logn) time.
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Buchin et al. [6] refers to this Fréchet distance as locally correct, but we prefer the
retractable labeling. The term “retractable Fréchet” was used by Buchin et al. [7], but in a
different (and not formally defined) context than ours.

(Continuous) Dynamic Time Warping. One way to get less sensitivity for noise is to
compute the total area “swept” by the leash as the walk is being performed. In the discrete
case, we simply add up the lengths of the leashes during the configurations in the walk.
There is also work on extending this to the continuous setting [15, 2]. For the continuous case
this intuitively boils down to computing (or approximating) an integral along the morphing.
See full version of the paper [14] for more details.

1.2.2 Critical events

)

The standard algorithm for computing the Fréchet distance works by performing a “binary’
search for the Fréchet distance. Given a candidate distance, it constructs a “parametric”
diagram that is a grid, where inside each grid cell the feasible region is a clipped ellipse. The
task is then to decide if there is an z/y-monotone path from the bottom left corner to the
top right corner, which is easily doable. The critical values the search is done over are:

(1) Vertez-vertex events: The distance between two vertices of the two curves,
(1) Vertez-edge events: The distance between a vertex of one curve, and an edge of the
other.
(111) Monotonicity events: This is the minimum distance between a point on one edge e of
the curves, and (maximum distance to) two vertices u, v of the other curve. Specifically,
it is realized by the point on e with equal distance to u and v.

The first two types of events are easy to handle, but the monotonicity events are the bane of
the algorithms for the Fréchet distance.

1.2.3 Algorithm engineering the Fréchet distance

Given the asymptotic complexity and involved implementations of the aforementioned
algorithms, there has been substantial work on practical aspects of computing the Fréchet
distance. In particular, in 2017, ACM SIGSPATIAL GIS Cup had a programming challenge
to implement algorithms for computing the Fréchet distance. See [19] for details.

More recently, Bringmann et al. [3] presented an optimized implementation of the decider
for the Fréchet distance. Somewhat informally, Bringmann et al. [3] builds a decider for the
Fréchet distance using a kd-tree over the free space diagram, keeping track of the reachable
regions on the boundary of each cell, refining cells by continuing down the (virtual) kd-tree
if needed.

1.3 Our results
1.3.1 Result I: A new algorithm for retractable discrete Fréchet

We observe that a natural approach to compute the retractable Fréchet morphing is to
modify Dijkstra’s/Prim’s algorithm so that it solves the minimum bottleneck path problem.
This observation leads to a simpler (but log factor slower) algorithm for computing it. The
only modification of Dijkstra necessary is that one always handles the cheapest edge coming
out of the current cut induced by the set of vertices already handled. (In the discrete Fréchet
case, the weights are on the vertices, but this is a minor issue.) This modified version of
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Figure 1.3 Two curves, and their associated VE-Fréchet graph. Note, that every internal edge of
the grid contains a portal (i.e., vertex of the graph), but in many cases the portals of two edges are
co-located on their common vertex (see the squared marked vertex in the middle figure) For the
edges adjacent to the starting and ending corners we set their portals to lie at the corners themselves.
See here for more info about a similar example.

Dijkstra is well known, but we include, for the sake of completeness, the proof showing that it
indeed computes the recursively optimal path, which is also a retractable Fréchet morphing
between the two sequences. This immediately leads to better and more natural morphings,
see Figure 1.2.

Maybe more importantly, in practice, one does not need to explore the whole space of nm
configurations (since we are in the discrete case, a configuration (7, j) € [n] x [m] encodes
the matching of p; with ¢;), as the algorithm can stop as soon as it arrives at the destination
configuration (n,m). Informally, if the discrete Fréchet distance is “small” compared to the
vast majority of pairwise distances (i.e., the two sequences are similar), then the algorithm
only explores a small portion of the configuration space. Thus, this leads to an algorithm that
is faster than the standard algorithm in many natural cases, while computing a significantly
better output morphing.

1.3.2 Result II: A new distance and algorithm: VE-Fréchet

It is not clear how to extend the above to the continuous case. A natural first step is to
consider the continuous Fréchet distance, where one restricts the solution inside each cell
of the free space diagram to be a segment (which is already the case for the morphings
computed by existing algorithms), but more importantly, insisting that the shape of this
segment must be determined only locally, thus facilitating a greedy strategy compatible
with the retractable approach. In practical terms, we throw away the (global) monotonicity
events.

Traveling only through vertex-edge events. Because of the continuity and strict convexity
of the elevation function, the function has a unique minimum on each edge of the free space
diagram grid — geometrically, this is the minimum distance between a vertex of one curve, and
an edge of the other curve (a vertez-edge event). We restrict our solution to enter and leave
a cell only through these porials (which are easy to compute). The continuous configuration
space now collapses to a discrete graph that is somewhat similar to the natural grid graph
on [n] x [m]. Indeed, a grid cell has four portals on its boundary edges. Specifically, there
are directed edges from the portal on the bottom edge, to the portal on the top and right
edges of the cell. Similarly, there are edges from the portal on the left edge, to the portals
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lying on the top and right edges. As before, the values are on the portals, and our purpose is
to compute the optimal bottleneck path in this grid-like graph. Examples of this graph are
depicted in Figure 1.3, Figure 1.4 and Figure 1.5.

Figure 1.4 Left: Two curves. Right: Their elevation function, and the associated graph. See
here for more info.

Figure 1.5 The VE-Fréchet morphing for the two curves from Figure 1.3. Note, that the solution
is “slightly” not x/y-monotone. For animation of this morphing, follow the link.

» Remark 5. A somewhat similar idea was used by Munich and Perona [15], but they used
it in the other direction — namely, in defining a better CDTW distance for two discrete
sequences. However, this idea was already present (implicitly) in the original work of Alt and
Godau [1] — indeed, their algorithm for the Weak Fréchet distance uses only the Vertex-Edge
events (i.e., edges in the free space diagram). This boils down to solving the bottleneck
shortest path problem in an undirected graph. In this case, this problem can be solved
by computing the minimum spanning tree (e.g., by Prim’s algorithm, which is a variant of
Dijkstra’s algorithm), as Alt and Godau do. For the directed case, one needs to use a variant
of Dijkstra’s algorithm [11] — see full version of the paper [14]. See also Buchin et al. [4] who
also used a similar idea.

We can now run the retractable bottleneck shortest-path algorithm (i.e., the variant of
Dijkstra described above) on this implicitly defined graph computing the vertices and edges
of it, as they are being explored. For many natural inputs, this algorithm does not explore
a large fraction of the configuration space, as it involves distances that are significantly
larger than the maximum leash length needed. The algorithm seems to have near linear
running time for many natural inputs. The VE-Fréchet morphing is the one induced by
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the computed path in this graph. Unfortunately, the VE-Fréchet morphing might allow
the agents to move backwards on an edge, but importantly, the motion across a vertex is
monotone. Namely, the VE-Fréchet is monotone for vertices, but not necessarily monotone
on the edges. A vertex is thus a checkpoint that once passed, cannot be crossed back.

1.3.3 Result Ill: New algorithm for the regular Fréchet distance

The natural question is how to use the (easily computable) VE-Fréchet morphing to compute
the optimal (regular) continuous Fréchet distance. We next describe how this can be done in
practice.

The hunt for a monotone morphing. We denote the VE-Fréchet distance between two
curves m and o by dj(m, ). Clearly, we have that di (7, o) < dj(7,0) < dgs(m, 0).

One can of course turn any morphing into a monotone one by staying put instead of
moving back. This is appealing for VE-Fréchet, as the corresponding VE morphing m, say
between two curves 7 and o, never backtracks over vertices (only edges), so we already expect
the error this introduces to be relatively small. Let m ™ denote the monotone morphing
resulting from this simple strategy. Observe that

wim) =d¥(m,0) <ds(m, o) <w(m™).

In particular, if w(m) = w(m ™), then ds(m, o) is realized by m ™, and we have computed
the Fréchet distance between 7 and o.

A less aggressive approach is to introduce new vertices in the middle of the edges of 7
and o as to enforce monotonicity. Indeed, clearly, if we refine both curves by repeatedly
introducing vertices into them, the VE-Fréchet distance between the two curves converges
to the Fréchet distance between the original curves, as introducing a vertex in the middle
of an edge does not change the regular Fréchet distance, while preventing the VE-Fréchet
morphing from backtracking over this point.

We refer to this process of adding vertices to the two curves as refinement. (See Fig-
ure 1.6.) In practice, in many cases, one or two rounds of (carefully implemented) refinement
are enough to isolate the maximum leash in the morphing from the non-monotonicity, and
followed by the above brute-force monotonization leads to the (practically) optimal Fréchet
distance. Even for pathological examples, after a few more rounds of refinement, this process
computes the almost-exact Fréchet distance. That is, the computed lower bound, which is
the VE-Fréchet distance, is equal to the width of the computed monotone morphing, which
is the Fréchet distance.

» Remark 6 (Almost-exact: Floating point issues). As we are implementing our algorithm
using floating point arithmetic, and the calculation of the optimal Fréchet distance involves
distances, impreciseness is unavoidable. A slight improvement in preciseness can be achieved
by using squared distances (and also slightly faster code) — but for simplicity we have not
used this idea in our code. In particular, we take the somewhat pragmatic view, that an
approximation to the optimal up to a factor of (say) 1.00001 can be considered as computing
the “optimal” solution. We refer to such solutions as being almost-exact.

Note that Fréchet morphings are somewhat less sensitive to numerical issues than other
geometric problems — indeed, once a morphing is computed, one can compute its width
directly.
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Figure 1.6 For these two curves, the solution involves an agent stopping at one point on one
curve while the other agent traverses is zig-zag, and vice versa. The algorithm enforces monotonicity
by refining the two curves by introducing new vertices. For the results, see here.

» Remark 7 (What if one wants the exact distance?). As pointed above, our algorithm computes
the almost-exact Fréchet distance, and in practice there is no difference to the exact Fréchet
distance (and in many cases they seem to coincide). Nevertheless, what if one insists on the
exact Fréchet distance?

The refinement process can be modified to compute the monotonicity events on the
regions on the curves where monotonicity is being violated. This would readily lead to an
exact algorithm — from implementation point of view such a modification seems pointless,
and we did not pursue it any further.

1.3.4 Result IV: Computing the Fréchet distance quickly for real inputs

The above leaves us with a natural strategy for computing the Fréchet distance between
two given curves. Compute quickly, using simplification, a morphing between the two input
curves, and maintain (using VE-Fréchet, for example) both upper and lower bounds on the
true Fréchet distance. By carefully inspecting the morphing, (re)simplifying the curves in a
way that is sensitive to their (local) Fréchet distance, and recomputing the above bounds, one
can get an improved morphing. Repeat this process potentially several times till the upper
and lower bounds meet, at which point the optimal Fréchet distance has been computed.

This seems somewhat overkill, but it enables us to compute (in practice) the almost-exact
Fréchet distance between huge polygonal curves quickly.

1.3.5 Main contribution: Implementation in Julia and Python

We implemented the above algorithms as official packages in Python and Julia. The Python
package is available at https://github.com/eliotwrobson/FrechetLib, and the Julia
package is available at https://github.com/sarielhp/FrechetDist.jl. Animations and
examples computed by the new algorithm are available at https://frechet.xyz/.

1.3.6 Additional results

Sweep distance. We demonstrate how one can convert our algorithm for computing VE-
Fréchet to an algorithm that computes a variant of the CDTW distance, which we call the
sweep distance. One can then use refinement to approximate the CDTW distance. One can
also compute a lower bound on this quantity, and the two quantities converge. See the full
version of the paper [14] for details.

Fast simplification. We show how to preprocess a curve 7 with n vertices, in O(nlogn)
time, such that given a query w, one can quickly extract a simplification of 7 of 7w, such
that dg(m,7) < w. Importantly, the time to extract 7 is proportional to its size (i.e., the
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extraction is output sensitive). More importantly, in practice, this works quite well — the size
of |V (7)| is reasonably close (by a constant factor) to the optimal approximation. Combined
with greedy simplification, this yields a very good simplification result. See the full version
of the paper [14] for details.

1.4 Significance

We demonstrate in this paper that a minor variant of the continuous Fréchet distance
can be computed by a strikingly simple Dijkstra type algorithm. Furthermore, for many
real world inputs it runs in near linear time (out of the box). Similarly, for many real
world inputs, the computed morphing is monotone, thus realizing the (standard) Fréchet
distance. More importantly, because of the retractable nature of the morphing computed,
the matching computed is more natural, and can handle noise/outliers more gracefully than
the matchings computed by the current algorithms for the Fréchet distance. Indeed, areas
that are noise/outliers are isolated in the morphing to a small interval which can be easily
identified and handled, see Figure 1.2. We believe that this makes the morphings computed by
our new algorithms significantly better for real world applications than previous algorithms.
There is also previous work on other variants of Fréchet distance that are more robust to
uncertainty and outliers [10], and shortcutting [8].

We then show how to modify this algorithm to compute the (monotone) Fréchet distance
(in cases when the morphing was not already monotone), and how to make it handle large
inputs quickly via simplifications (handling all the technical difficulties this gives rise to).

Finally, we implemented our new algorithms in Julia and Python, and made them
publicly available as standard packages, thus making the computation of the Fréchet distance
accessible to a wider audience. Using such packages in Python/Julia is significantly easier
than using any not pre-compiled code in C++.

Summary. The combination of simplification, new (and not so new) algorithmic ideas
(such as retractablity via Dijkstra, and VE-Fréchet, among others), and careful implementa-
tion, leads to fast performance in practice beating other implementations. We discuss our
implementation next — the algorithmic ideas described above are covered in detail in the
appendices.

Full version. Due to space limitations, all the low-level details are omitted from this
version. See the full version of the paper [14] (https://arxiv.org/abs/2407.03101) for
these details.

2 Implementation and experiments

We include here some tables with information about the performance of our implementation.
For details about the implementation, see the full version of the paper [14].

2.1 Discussion

Overall, it is clear that our Julia implementation is faster than other currently available
implementations for computing the Fréchet distance. Beyond that, Julia seems like a great
programming language to develop geometric algorithms — providing a combination of a safe,
multi-threaded, high-level programming language with the performance of C++, without the
pain involved in working in C++.
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Table 2.1 The inputs tested and where they are taken from, birds referring to the stork migration
dataset [18], the GeoLife dataset [20], and Pigeons referring to a dataset from [16].

Input | Description
1 birds: 1787_1 / 1797_1
birds: 2307_3 / 2859_3
birds: 23222 / 1793_4
GeoLife 20080928160000 / 20081219114010
GeoLife 20090708221430 / 20090712044248
Pigeons RH887_1 / RH887_11
Pigeons C369_5 / C873_6
Pigeons C360_10 / C480_9

0 ~N OO WwN

Table 2.2 Julia/C++ comparison, demonstrating that the Julia implementation is significantly
faster. The C++ implementation is from Bringmann et al. [3]. Running times are in seconds. Julia
MT stands for the multi-threaded implementation — since multi-threading is easy in Julia, and the
task at hand is easily parallizable, we tested this, but of course this should not be taken as a direct
(or remotely fair) comparison to the C++ implementation, and is provided for the reader amusement.
In particular, the multi-threading done is pretty naive, and better performance should be possible
by better fine-grained partition of the tasks. The tests were performed on a Linux system with
64GB memory with Intel i7-11700 CPU, with a decent 16 threads CPU, but far from the fastest
hardware currently available. The “# pairs” column is the number of pairs of curves that had their
Fréchet distance compared during this test. The “avg # points” is the average number of vertices
per curve in this input set — underlying the benefit of simplification for the GeoLife input set.

Total RT in seconds
Dataset # pairs | avg # points || C++ || Julia | Julia MT | C++ / Julia
sigspatial 322,000 247.8 || 145 102 25 1.42
Characters | 253,000 120.9 90 72 18 1.25
Geolife 322,000 1080.4 || 646 70 30 9.22
All tests combined 881 244 73 3.61

One optimization used by the Julia code, that should be generally useful, is the following.
As a preprocessing step, precompute a hierarchy of simplified curves for each input curve.
This improves the query process, but makes the preprocessing more expensive. Thus, storing
such precomputed hierarchies might be a good idea if input curves are going to be used
repeatedly for performing distance queries. We emphasize that the reported running times
include this (light) preprocessing stage (interestingly, the SIGSPTIAL [19] competition
allowed such preprocessing to not be included in the overall running time).
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