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Abstract

We show that a variant of the continuous Fréchet distance between polygonal curves can be computed

using essentially the same algorithm used to solve the discrete version. The new variant is not

necessarily monotone, but this shortcoming can be easily handled via refinement.

Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fréchet distance

(i.e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in

practice, takes near linear time on many inputs. The new morphing has the property that the leash

is always as short as possible. These matchings/morphings are more natural, and are better than

the ones computed by standard algorithms – in particular, they handle noise more graciously. This

should make the Fréchet distance more useful for real world applications.

We implemented the new algorithm, and various strategies to obtain fast practical performance.

We performed extensive experiments with our new algorithm, and released publicly available (and

easily installable and usable) Julia and Python packages. In particular, the Julia implementation,

for computing the regular Fréchet distance, seems to be significantly faster than other currently

available implementations. See Table 2.2. Our algorithms can be used to compute the almost-exact

Fréchet distance between polygonal curves.

Implementations and numerous examples are available here: frechet.xyz.
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1 Introduction

1.1 Definitions

Given two polygonal curves, their Fréchet distance is the length of a leash that a person

needs, if they walk along one of the curves, while a dog connected by the leash walks along

the other curve, assuming they synchronize their walks so as to minimize the length of this

leash. (I.e. they walk so as to minimize their maximum distance apart during the walk.) Our

approach is slightly different than the standard approach, and we define it carefully first.

1.1.1 Free space diagram and morphings

◮ Definition 1. For a (directed) curve π ⊆ R
d, its uniform parameterization is the

bijection π : [0, ‖π‖] → π, where ‖π‖ is the length of π, and for any x ∈ [0, ‖π‖], the point

π(x) is at distance x (along π) from the starting point of π.

◮ Definition 2. The free space diagram of two curves π and σ is the rectangle R = R(π, σ) =

[0, ‖π‖]× [0, ‖σ‖]. Specifically, for any point (x, y) ∈ R, we associate the elevation function

e(x, y) = ‖π(x) − σ(y)‖.

The free space diagram R is partitioned into a non-uniform grid, where each cell cor-

responds to all leash lengths when a point lies on a fixed segment of one curve, and the

other lies on a fixed segment of the other curve, see Figure 1.1. For a given value δ ≥ 0, the

sublevel set of a real valued function consists of all inputs whose function value is ≤ δ. It is

known that for any value δ ≥ 0, the sublevel set of the elevation function inside such a grid

cell is a clipped ellipse.

◮ Definition 3. A morphing1
m between π and σ is a (not self-intersecting) curve m ⊆

R(π, σ) with endpoints (0, 0) and (‖π‖ , ‖σ‖). The set of all morphings between π and σ is

Mπ,σ. A morphing that is a segment inside each cell of the free space diagram that it visits,

is well behaved2.

Intuitively, a morphing is a reparameterization of the two curves, encoding a synchronized

motion along the two curves. That is, for a morphing m ∈ Mπ,σ, and t ∈ [0, ‖m‖], this

encodes the configuration, with a point π
(

x(m(t))
)

∈ π matched with σ
(

y(m(t))
)

∈ σ. The

elevation of this configuration is e(t) = e(m(t)) =
∥

∥π
(

x(m(t)
)

− σ
(

y(m(t)
)∥

∥ .

1.1.2 Fréchet distance

◮ Definition 4. The width of a morphing m between π and σ is ω(m) = maxt∈[0,‖m‖] e(t).

The Fréchet distance between the two curves π and σ is

dF(π, σ) = min
m∈M+

π,σ

ω(m),

where M+
π,σ ⊆ Mπ,σ is the set of all x/y-monotone morphings.

1 A morphing induces a natural homotopy between the two curves.
2 All the morphings we deal with in this paper are well behaved.
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Figure 1.1 Two curves, their free space diagram (and the associated elevation function), and

the optimal Fréchet morphing between the two curves encoded as an x/y-monotone curve. More

illustrations and animations of this example are available here.

The classical (discrete) Fréchet morphing,

caring only about the maximum leash

length.

The retractable discrete Fréchet morph-

ing, using the shortest leash possible at

each point.

Figure 1.2 A comparison between the classical and retractable Fréchet distances. Observe that

the morphing generated by the classical distance can be quite loose in many places. An animation

of both morphings is available here.

Conceptually, the Fréchet distance is the problem of computing the minimum bottleneck

matching between two curves, respecting the order and continuity of the curves.3 Alternatively,

it is an L∞-norm type measure of the similarity between two curves. It thus suffers from

sensitivity to outliers. Furthermore, even if only a small portion of the morphing requires a

long leash, the measure, and the algorithms computing it, may use this long leash in large

portions of the walk, generating a matching that is loose in many places, see Figure 1.2.

Observe that the Fréchet distance is the minimum value such that the sublevel set of the

elevation function has an x/y-monotone path from (0, 0) to (‖π‖ , ‖σ‖) in R.

1.2 Background

Alt and Godau [1] presented a rather involved O(n2 log n) time algorithm to compute the

Fréchet distance using parametric search. The parametric search can be removed by using

randomization, giving a simpler algorithm as shown in [12]. Buchin et al. [7] presented

an alternative algorithm for computing the Fréchet distance that replaces the decision

procedure by using a data-structure to maintain appropriate lower envelopes. Despite some

simplifications, all these algorithms are somewhat involved.

Unfortunately, it is believed this problem requires quadratic time in the worst case,

although a logarithmic speedup is possible; see [5] and references therein. The quadratic time

can be improved for realistic inputs by assuming that the input is “nice”, and introducing

approximation, but the resulting algorithms are still not simple [9].

3 Formally, since the reparameterization is not one-to-one, this is not quite a matching. One can restrict
to using only such bijections, with no adverse effects, but it adds a level of tediousness, which we avoid
for the sake of simplicity of exposition.

SoCG 2025
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1.2.1 Variants of the Fréchet distance

Weak Fréchet distance. The weak Fréchet distance allows morphings where the agents

are allowed to go back and traverse portions of the curve visited previously (i.e., the morphing

does not have to be x/y-monotone). Since the weak Fréchet distance allows considering

more parameterizations, it is potentially smaller, and we have that dw
F

(π, σ) ≤ d
F

(π, σ), for

any two curves π, σ. Elegantly, Alt and Godau [1] showed the weak Fréchet distance can be

reduced to computing the minimum spanning tree of an appropriate graph. Unfortunately,

there does not seem to be a natural way to overcome this non-monotonicity (and thus get

the “strong” version).

Discrete Fréchet distance. The complexity of these algorithms, together with sensitivity

of the Fréchet distance to noise, lead to using “easier” related measures, such as the discrete

version of the problem, and dynamic time-warping (discussed below). In the discrete version,

you are given two sequences of points p1, . . . , pn, and q1, . . . , qm, and the purpose is for

two “frogs” starting at p1 and q1, respectively, to jump through the points in the sequence

until reaching pn, qm, respectively, while minimizing the maximum distance between the two

frogs during this traversal. At each step, only one of the frogs can jump from its current

location to the next point in its sequence (no jumping back). Computing the optimal distance

under this measure can be done by dynamic-programming, similar to the standard approach

to edit-distance. Indeed, the configuration space here is the grid H = JnK × JmK, where

JnK = {1, . . . , n}.

To use the discrete version in the continuous case, one sprinkles enough points along

both input curves, and then solves the discrete version of the problem. Beyond the error

this introduces, to get a distance that is close to the standard Fréchet distance, one has to

sample the two curves quite densely in some cases.

For the (monotone) discrete Fréchet distance the induced graph on the grid H is a DAG,

and the task of computing the Fréchet distance is to find a minimum bottleneck path from

(1, 1) to (n, m), where the weights are on the vertices. Here, the weight on the vertex (i, j)

is the distance ‖pi − qj‖. In particular, a Fréchet morphing is an x/y-monotone path in H

from (1, 1) to (n, m). The standard algorithm to do this traverses the grid, say, by increasing

rows i, and in each row by increasing column j, such that the value at (i, j) is the maximum

of the length of the leash of this configuration, together with the minimum solution for

(i − 1, j) and (i, j − 1). This algorithm leads to a straightforward, O(nm) time algorithm

for the discrete Fréchet distance. However, the morphing computed might be inferior, see

Figure 1.2 for such a bad example.

Retractable Fréchet. For simplicity, assume that the pairwise distances between all pairs of

points in the two sequences are unique. We would like to imagine that we have a retractable

leash, that can become shorter at times, and the leash “resists” being longer than necessary.

It is thus natural to ask for a morphing where the leash as short as possible at any point in

time.

Informally, the optimal retractable Fréchet morphing between the two sequences includes

the bottleneck configuration, realizing the Fréchet distance, in the middle of its path, and

the two subpaths from the endpoints to this configuration have to be also recursively optimal.

This is formally defined and described in the Full version of the paper [14]. This concept was

introduced by Buchin et al. [6]. Interestingly, they show that the discrete version can be

computed in O(nm) time, but unfortunately, the algorithm is quite complicated. They also

show that the continuous retractable Fréchet can be computed in O(n3 log n) time.
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Buchin et al. [6] refers to this Fréchet distance as locally correct, but we prefer the

retractable labeling. The term “retractable Fréchet” was used by Buchin et al. [7], but in a

different (and not formally defined) context than ours.

(Continuous) Dynamic Time Warping. One way to get less sensitivity for noise is to

compute the total area “swept” by the leash as the walk is being performed. In the discrete

case, we simply add up the lengths of the leashes during the configurations in the walk.

There is also work on extending this to the continuous setting [15, 2]. For the continuous case

this intuitively boils down to computing (or approximating) an integral along the morphing.

See full version of the paper [14] for more details.

1.2.2 Critical events

The standard algorithm for computing the Fréchet distance works by performing a “binary”

search for the Fréchet distance. Given a candidate distance, it constructs a “parametric”

diagram that is a grid, where inside each grid cell the feasible region is a clipped ellipse. The

task is then to decide if there is an x/y-monotone path from the bottom left corner to the

top right corner, which is easily doable. The critical values the search is done over are:

(I) Vertex-vertex events: The distance between two vertices of the two curves,

(II) Vertex-edge events: The distance between a vertex of one curve, and an edge of the

other.

(III) Monotonicity events: This is the minimum distance between a point on one edge e of

the curves, and (maximum distance to) two vertices u, v of the other curve. Specifically,

it is realized by the point on e with equal distance to u and v.

The first two types of events are easy to handle, but the monotonicity events are the bane of

the algorithms for the Fréchet distance.

1.2.3 Algorithm engineering the Fréchet distance

Given the asymptotic complexity and involved implementations of the aforementioned

algorithms, there has been substantial work on practical aspects of computing the Fréchet

distance. In particular, in 2017, ACM SIGSPATIAL GIS Cup had a programming challenge

to implement algorithms for computing the Fréchet distance. See [19] for details.

More recently, Bringmann et al. [3] presented an optimized implementation of the decider

for the Fréchet distance. Somewhat informally, Bringmann et al. [3] builds a decider for the

Fréchet distance using a kd-tree over the free space diagram, keeping track of the reachable

regions on the boundary of each cell, refining cells by continuing down the (virtual) kd-tree

if needed.

1.3 Our results

1.3.1 Result I: A new algorithm for retractable discrete Fréchet

We observe that a natural approach to compute the retractable Fréchet morphing is to

modify Dijkstra’s/Prim’s algorithm so that it solves the minimum bottleneck path problem.

This observation leads to a simpler (but log factor slower) algorithm for computing it. The

only modification of Dijkstra necessary is that one always handles the cheapest edge coming

out of the current cut induced by the set of vertices already handled. (In the discrete Fréchet

case, the weights are on the vertices, but this is a minor issue.) This modified version of

SoCG 2025
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lying on the top and right edges. As before, the values are on the portals, and our purpose is

to compute the optimal bottleneck path in this grid-like graph. Examples of this graph are

depicted in Figure 1.3, Figure 1.4 and Figure 1.5.

0.25

0.50

0.75

1.00

1.25

Figure 1.4 Left: Two curves. Right: Their elevation function, and the associated graph. See

here for more info.

0.25

0.50

0.75

1.00

1.25

Figure 1.5 The VE-Fréchet morphing for the two curves from Figure 1.3. Note, that the solution

is “slightly” not x/y-monotone. For animation of this morphing, follow the link.

◮ Remark 5. A somewhat similar idea was used by Munich and Perona [15], but they used

it in the other direction – namely, in defining a better CDTW distance for two discrete

sequences. However, this idea was already present (implicitly) in the original work of Alt and

Godau [1] – indeed, their algorithm for the Weak Fréchet distance uses only the Vertex-Edge

events (i.e., edges in the free space diagram). This boils down to solving the bottleneck

shortest path problem in an undirected graph. In this case, this problem can be solved

by computing the minimum spanning tree (e.g., by Prim’s algorithm, which is a variant of

Dijkstra’s algorithm), as Alt and Godau do. For the directed case, one needs to use a variant

of Dijkstra’s algorithm [11] – see full version of the paper [14]. See also Buchin et al. [4] who

also used a similar idea.

We can now run the retractable bottleneck shortest-path algorithm (i.e., the variant of

Dijkstra described above) on this implicitly defined graph computing the vertices and edges

of it, as they are being explored. For many natural inputs, this algorithm does not explore

a large fraction of the configuration space, as it involves distances that are significantly

larger than the maximum leash length needed. The algorithm seems to have near linear

running time for many natural inputs. The VE-Fréchet morphing is the one induced by

SoCG 2025
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the computed path in this graph. Unfortunately, the VE-Fréchet morphing might allow

the agents to move backwards on an edge, but importantly, the motion across a vertex is

monotone. Namely, the VE-Fréchet is monotone for vertices, but not necessarily monotone

on the edges. A vertex is thus a checkpoint that once passed, cannot be crossed back.

1.3.3 Result III: New algorithm for the regular Fréchet distance

The natural question is how to use the (easily computable) VE-Fréchet morphing to compute

the optimal (regular) continuous Fréchet distance. We next describe how this can be done in

practice.

The hunt for a monotone morphing. We denote the VE-Fréchet distance between two

curves π and σ by dve
F

(π, σ). Clearly, we have that dw
F

(π, σ) ≤ dve
F

(π, σ) ≤ d
F

(π, σ).

One can of course turn any morphing into a monotone one by staying put instead of

moving back. This is appealing for VE-Fréchet, as the corresponding VE morphing m, say

between two curves π and σ, never backtracks over vertices (only edges), so we already expect

the error this introduces to be relatively small. Let m
+ denote the monotone morphing

resulting from this simple strategy. Observe that

ω(m) = dve
F (π, σ) ≤ dF(π, σ) ≤ ω(m+).

In particular, if ω(m) = ω(m+), then d
F

(π, σ) is realized by m
+, and we have computed

the Fréchet distance between π and σ.

A less aggressive approach is to introduce new vertices in the middle of the edges of π

and σ as to enforce monotonicity. Indeed, clearly, if we refine both curves by repeatedly

introducing vertices into them, the VE-Fréchet distance between the two curves converges

to the Fréchet distance between the original curves, as introducing a vertex in the middle

of an edge does not change the regular Fréchet distance, while preventing the VE-Fréchet

morphing from backtracking over this point.

We refer to this process of adding vertices to the two curves as refinement. (See Fig-

ure 1.6.) In practice, in many cases, one or two rounds of (carefully implemented) refinement

are enough to isolate the maximum leash in the morphing from the non-monotonicity, and

followed by the above brute-force monotonization leads to the (practically) optimal Fréchet

distance. Even for pathological examples, after a few more rounds of refinement, this process

computes the almost-exact Fréchet distance. That is, the computed lower bound, which is

the VE-Fréchet distance, is equal to the width of the computed monotone morphing, which

is the Fréchet distance.

◮ Remark 6 (Almost-exact: Floating point issues). As we are implementing our algorithm

using floating point arithmetic, and the calculation of the optimal Fréchet distance involves

distances, impreciseness is unavoidable. A slight improvement in preciseness can be achieved

by using squared distances (and also slightly faster code) – but for simplicity we have not

used this idea in our code. In particular, we take the somewhat pragmatic view, that an

approximation to the optimal up to a factor of (say) 1.00001 can be considered as computing

the “optimal” solution. We refer to such solutions as being almost-exact.

Note that Fréchet morphings are somewhat less sensitive to numerical issues than other

geometric problems – indeed, once a morphing is computed, one can compute its width

directly.
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Figure 1.6 For these two curves, the solution involves an agent stopping at one point on one

curve while the other agent traverses is zig-zag, and vice versa. The algorithm enforces monotonicity

by refining the two curves by introducing new vertices. For the results, see here.

◮ Remark 7 (What if one wants the exact distance?). As pointed above, our algorithm computes

the almost-exact Fréchet distance, and in practice there is no difference to the exact Fréchet

distance (and in many cases they seem to coincide). Nevertheless, what if one insists on the

exact Fréchet distance?

The refinement process can be modified to compute the monotonicity events on the

regions on the curves where monotonicity is being violated. This would readily lead to an

exact algorithm – from implementation point of view such a modification seems pointless,

and we did not pursue it any further.

1.3.4 Result IV: Computing the Fréchet distance quickly for real inputs

The above leaves us with a natural strategy for computing the Fréchet distance between

two given curves. Compute quickly, using simplification, a morphing between the two input

curves, and maintain (using VE-Fréchet, for example) both upper and lower bounds on the

true Fréchet distance. By carefully inspecting the morphing, (re)simplifying the curves in a

way that is sensitive to their (local) Fréchet distance, and recomputing the above bounds, one

can get an improved morphing. Repeat this process potentially several times till the upper

and lower bounds meet, at which point the optimal Fréchet distance has been computed.

This seems somewhat overkill, but it enables us to compute (in practice) the almost-exact

Fréchet distance between huge polygonal curves quickly.

1.3.5 Main contribution: Implementation in Julia and Python

We implemented the above algorithms as official packages in Python and Julia. The Python

package is available at https://github.com/eliotwrobson/FrechetLib, and the Julia

package is available at https://github.com/sarielhp/FrechetDist.jl. Animations and

examples computed by the new algorithm are available at https://frechet.xyz/.

1.3.6 Additional results

Sweep distance. We demonstrate how one can convert our algorithm for computing VE-

Fréchet to an algorithm that computes a variant of the CDTW distance, which we call the

sweep distance. One can then use refinement to approximate the CDTW distance. One can

also compute a lower bound on this quantity, and the two quantities converge. See the full

version of the paper [14] for details.

Fast simplification. We show how to preprocess a curve π with n vertices, in O(n log n)

time, such that given a query w, one can quickly extract a simplification of π of π, such

that d
F

(π, π) ≤ w. Importantly, the time to extract π is proportional to its size (i.e., the

SoCG 2025
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extraction is output sensitive). More importantly, in practice, this works quite well – the size

of |V (π)| is reasonably close (by a constant factor) to the optimal approximation. Combined

with greedy simplification, this yields a very good simplification result. See the full version

of the paper [14] for details.

1.4 Significance

We demonstrate in this paper that a minor variant of the continuous Fréchet distance

can be computed by a strikingly simple Dijkstra type algorithm. Furthermore, for many

real world inputs it runs in near linear time (out of the box). Similarly, for many real

world inputs, the computed morphing is monotone, thus realizing the (standard) Fréchet

distance. More importantly, because of the retractable nature of the morphing computed,

the matching computed is more natural, and can handle noise/outliers more gracefully than

the matchings computed by the current algorithms for the Fréchet distance. Indeed, areas

that are noise/outliers are isolated in the morphing to a small interval which can be easily

identified and handled, see Figure 1.2. We believe that this makes the morphings computed by

our new algorithms significantly better for real world applications than previous algorithms.

There is also previous work on other variants of Fréchet distance that are more robust to

uncertainty and outliers [10], and shortcutting [8].

We then show how to modify this algorithm to compute the (monotone) Fréchet distance

(in cases when the morphing was not already monotone), and how to make it handle large

inputs quickly via simplifications (handling all the technical difficulties this gives rise to).

Finally, we implemented our new algorithms in Julia and Python, and made them

publicly available as standard packages, thus making the computation of the Fréchet distance

accessible to a wider audience. Using such packages in Python/Julia is significantly easier

than using any not pre-compiled code in C++.

Summary. The combination of simplification, new (and not so new) algorithmic ideas

(such as retractablity via Dijkstra, and VE-Fréchet, among others), and careful implementa-

tion, leads to fast performance in practice beating other implementations. We discuss our

implementation next – the algorithmic ideas described above are covered in detail in the

appendices.

Full version. Due to space limitations, all the low-level details are omitted from this

version. See the full version of the paper [14] (https://arxiv.org/abs/2407.03101) for

these details.

2 Implementation and experiments

We include here some tables with information about the performance of our implementation.

For details about the implementation, see the full version of the paper [14].

2.1 Discussion

Overall, it is clear that our Julia implementation is faster than other currently available

implementations for computing the Fréchet distance. Beyond that, Julia seems like a great

programming language to develop geometric algorithms – providing a combination of a safe,

multi-threaded, high-level programming language with the performance of C++, without the

pain involved in working in C++.
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Table 2.1 The inputs tested and where they are taken from, birds referring to the stork migration

dataset [18], the GeoLife dataset [20], and Pigeons referring to a dataset from [16].

Input Description

1 birds: 1787_1 / 1797_1

2 birds: 2307_3 / 2859_3

3 birds: 2322_2 / 1793_4

4 GeoLife 20080928160000 / 20081219114010

5 GeoLife 20090708221430 / 20090712044248

6 Pigeons RH887_1 / RH887_11

7 Pigeons C369_5 / C873_6

8 Pigeons C360_10 / C480_9

Table 2.2 Julia/C++ comparison, demonstrating that the Julia implementation is significantly

faster. The C++ implementation is from Bringmann et al. [3]. Running times are in seconds. Julia

MT stands for the multi-threaded implementation – since multi-threading is easy in Julia, and the

task at hand is easily parallizable, we tested this, but of course this should not be taken as a direct

(or remotely fair) comparison to the C++ implementation, and is provided for the reader amusement.

In particular, the multi-threading done is pretty naive, and better performance should be possible

by better fine-grained partition of the tasks. The tests were performed on a Linux system with

64GB memory with Intel i7-11700 CPU, with a decent 16 threads CPU, but far from the fastest

hardware currently available. The “# pairs” column is the number of pairs of curves that had their

Fréchet distance compared during this test. The “avg # points” is the average number of vertices

per curve in this input set – underlying the benefit of simplification for the GeoLife input set.

Total RT in seconds

Dataset # pairs avg # points C++ Julia Julia MT C++ / Julia

sigspatial 322, 000 247.8 145 102 25 1.42

Characters 253, 000 120.9 90 72 18 1.25

Geolife 322, 000 1080.4 646 70 30 9.22

All tests combined 881 244 73 3.61

One optimization used by the Julia code, that should be generally useful, is the following.

As a preprocessing step, precompute a hierarchy of simplified curves for each input curve.

This improves the query process, but makes the preprocessing more expensive. Thus, storing

such precomputed hierarchies might be a good idea if input curves are going to be used

repeatedly for performing distance queries. We emphasize that the reported running times

include this (light) preprocessing stage (interestingly, the SIGSPTIAL [19] competition

allowed such preprocessing to not be included in the overall running time).
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