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We consider turbulence of waves interacting weakly via four-wave scattering (sea waves, plasma waves,
spin waves, etc.). In the first order in the interaction, a closed kinetic equation has stationary solutions
describing turbulent cascades. We show that the higher-order terms generally diverge both at small (IR) and
large (UV) wave numbers for direct cascades. The analysis up to the third order identifies the most UV-
divergent terms. To gain qualitative analytic control, we sum a subset of the most UV divergent terms, to all
orders, giving a perturbation theory free from UV divergence, showing that turbulence becomes
independent of the dissipation scale when it goes to zero. On the contrary, the IR divergence (present
in the majority of cases) makes the effective coupling parametrically larger than the naive estimate and
growing with the pumping scale L (similar to anomalous scaling in fluid turbulence). In such cases, the
kinetic equation does not describe wave turbulence even of arbitrarily small level at a given k if kL is large
enough that is the cascade is sufficiently long. We show that the character of strong turbulence is
determined by whether the effective four-wave interaction is enhanced or suppressed by collective effects.
The enhancement possibly signals that strong turbulence is dominated by multiwave bound states (solitons,
shocks, cusps), similar to confinement in quantum chromodynamics.
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Kinetic equations are workhorses of physics and engi-
neering. They describe transport phenomena and turbu-
lence, from gas pipes and oceans to plasmas in space and in
thermonuclear reactors. These equations are so effective
because they reduce the description of multiparticle or
multiwave systems to a closed equation on a single-particle
probability distribution or a single-wave vector occupation
number. The equations have solutions that describe thermal
equilibria, transport in weakly nonequilibrium states, and
even turbulent states. The question is whether accounting
for multiparticle and multimode correlations leads only to
small modifications.
This question was first addressed for the density expan-

sion beyond the Boltzmann equation describing binary
collisions [1–6]. The higher-order terms involve sub-
sequent collisions of the same particles and contain spatial
integrals over their positions. The integrals have infrared
(IR) divergences starting from the second order (in 2D) or
from the third order (in 3D), reflecting long-distance
multiparticle correlations. In thermal equilibrium, such

divergences are canceled due to detailed balance, and
the correlations are short so that the equations of state
have a regular virial expansion. Spatial nonequilibrium
prevents cancellation in transport states. Of course, the
divergences appear because the “naive” virial expansion
allows particles to travel arbitrarily long distances between
collisions. Accounting for the collective effects imposes the
mean free path as an IR cutoff. The renormalized expansion
is singular as it involves noninteger powers of density.
The corrections are small in dimensions exceeding 2. The
divergences lead to logarithmic renormalization of the
kinetic coefficients in 2D and to anomalous kinetics in 1D.
In contrast to transport states, turbulent states create

fluxes (cascades) in momentum space rather than in real
space. The cascade distributions were found as exact
(Zakharov) solutions of the kinetic equations both for
particles and waves assuming locality of interactions,
which is the convergence of the collision integrals [7].
This means that the contribution of the lowest-order
collisions and interactions is predominantly given by
comparable momenta of colliding particles or wave num-
bers of interacting waves. The question is whether locality
also holds in the higher-order corrections [8,9], which
describe multiparticle collisions and multiwave inter-
actions. Here, we answer this question in the negative,
finding k-space divergences that bring a new four-wave
coupling renormalized by multiwave interactions.
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We consider quasiparticles interacting via four-wave
scattering described by the Hamiltonian [7,12,13,23]

H ¼
X

p

ωpjapj2 þ
X

p1;p2;p3;p4

λ1234a#p1
a#p2

ap3
ap4

: ð1Þ

A single wave propagating in an undisturbed medium has
the frequency ωk, and λ1234 defines the interaction energy of
four waves without any other waves present. Both ωk and
λ1234 are renormalized in a multimode turbulence state,
which is the subject of this work. Renormalization in
turbulence theory is quite different from that in quantum
field theory. There, one always deals with effective large-
scale theories, describing how a (generally unknown) bare
value at UV scale (Planck scale or lattice spacing) is getting
renormalized as one increases the scale of measurements.
In quantum field theory, one cannot switch off quantum
fluctuations, so the meaning of renormalization is different.
The model—We assume ωk ¼ kα with 0 < α ≤ 2. The

real vertex λ1234 ≡ λp1p2p3p4
(which is nonvanishing only

for p1 þ p2 ¼ p3 þ p4) can be of either sign and is a
homogeneous function of degree β∶ λap1ap2ap3ap4

¼
aβλp1p2p3p4

. From the equations of motion on the complex
amplitudes, idak=dt ¼ ∂H=∂a#k, we derive that for the
occupation numbers nk ¼ hjakj2i,

∂nk
∂t

¼ 4

Z
dp2dp3dp4λk234Imha#ka#p2

ap3
ap4

i: ð2Þ

The fourth moment in (2) can be found as a series in λ,
assuming closeness to the Gaussian statistics of noncorre-
lated waves, Pfakg ∝ exp½−

P
k jakj2=nk', completely

determined by nk. The standard perturbation theory is
described in the Supplemental Material [37]. It gives
in the first nonvanishing order the Peierls kinetic equa-
tion (KE):

∂nk
∂t

¼ Ik ¼ 16π
Z

dp2dp3dp4λ2k234nkn2n3n4

× δðkþ p2 − p3 − p4Þδðωk2;34Þ

×
!
1

nk
þ 1

n2
−

1

n3
−

1

n4

"
; ð3Þ

where we defined ωk2;34 ≡ ωk þ ωp2
− ωp3

− ωp4
. What is

traditionally required for the validity of (3) is to provide a
dense enough set of such resonances, which requires taking
the limit kL0 → ∞ (apart from λ1234 → 0), where L0 is the
box size, see, e.g., [14–16]. This already requires a careful
analysis of divergences in the kinetic equation and in the
corrections to it.
The leading-order kinetic equation (3) conserves energyR
ωknkdk⃗ and wave action

R
nkdk⃗, and has two stationary

solutions describing turbulent cascades. Here we focus on
the direct energy cascade (to large wave numbers). Writing

(3) as the energy continuity equation, kd−1ωk∂nk=∂t ¼
−∂Pk=∂k, requiring the energy flux over wave numbers,
Pk ¼ kdωkIk ¼ P, to be k independent, and taking for the
sake of power counting λkkkk ≃ λkβ, we obtain

P ≃ λ2k2βþ3dn3k ⇒ nk ≃ P1=3λ−2=3k−d−2β=3: ð4Þ

One can also obtain (4) estimating P as the energy density
ωknkkd divided by the nonlinear interaction time 1=ωkϵ2k,
where we introduced the dimensionless parameter of non-
linearity (coupling) at a given k:

ϵk ¼ λnkkβþd=ωk ¼ ϵ0ðk=kpÞβ=3−α: ð5Þ

The standard claim is that (3) is valid and (4) is its solution
for those k where ϵk ≪ 1 and under the conditions of
convergence of the integrals in (3) upon substituting (4)
[7,12,17]). That depends on the asymptotics:

limp1;p3≪p2;p4
λ1234 ¼ λðp2p4Þβ1=2ðp1p3Þðβ−β1Þ=2; ð6Þ

limp1;p2;p3≫p4
λ1234 ¼ λ12;1þ2p

β3
4 : ð7Þ

In some cases, β1 ¼ β=2, as for spin waves, where
2β1 ¼ β ¼ 2, α ¼ 2 so that limp2→0ðp⃗3 · p⃗4Þ ∝ p2 and
β3 ¼ 1. In some cases, β1 ≤ β=2 provides stronger con-
vergence than might be expected on dimensional grounds.
Consider (3) with nk ¼ k−γ when p2; p4 → ∞

while q ¼ k − p3 remains finite. Then, jλ1234j2 ∼ p2β1
2

and the UV behavior is determined by the integral
Ik ∝

R
dp2p

2β1
2 δðω12;34Þðn4 − n2Þ, where p4 ¼ jp2 þ qj.

Expanding n4 − n2 ¼ q · ∇n2 and accounting for the
angular dependence in δðω12;34Þ we obtain

Ik ∝ p2β1þd−γ−α−1
2 : ð8Þ

Setting γ ¼ dþ 2β=3 gives the UV convergence if 2β1 −
2β=3 < αþ 1 [17].
IR convergence depends on α − 1. If α > 1, then a three-

wave resonance is possible, and the main IR contribution isR
kp
dp2p

2β3−γ
2 ∝ k2β3−2β=3p . It converges for spin waves. The

nonlinear Schrödinger equation (NSE) and plasmons in a
nonisothermal plasma (α ¼ 2, β ¼ 0) are IR borderline. For
α < 1, no three-wave resonance is possible and we must
take both p2, p3 → 0. Expanding δðω12;34Þ up to jp2 − p3j2
we obtain

Z

kp
dp2 p

β=2−γ
2

Z

kp
dp3 p

β=2−γ
3 δðωk2;34Þ

× ½ðωk þ ω2 − ω3Þγ=α − kγ' ∝ k2β=3−2β1−αþ2
p :

For α < 1, the combination of the IR and UV conditions
gives 2β1 − α − 1þ d < γ < dþ β − β1 þ 1 − α=2 or
β1 − β=3 − 1 < α=2 for γ ¼ dþ 2β=3.
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The kinetic equation thus gives two cancellations in the
IR and one in the UV, which provide a locality window for
γ [7]. The locality is expected to guarantee that the solution
does not depend on kp (the IR cutoff) and km (the
UV cutoff) in the limits kp=k → 0 and k=km → 0. When
β > 3α and ϵk grows along the cascade, on dimensional
grounds one might have expected strong turbulence to
appear at the k for which ϵk ≃ 1.
Let us show that the locality window is generally absent

for higher-order scattering processes and the effective
dimensionless coupling parametrically exceeds ϵk, so that
strong turbulence must start earlier than had been expected.
For that we need to account for the renormalization of ωk
and λ1234 and the respective modification of the kinetic
equation and its turbulence solution.
Next-to-leading order—The first correction renormalizes

the frequency ω̃k ¼ ωk þ
P

q λkqkqnq. It is zero for spin
waves. For NSE, β ¼ 0, nq ¼ q−d, the sum diverges
logarithmically; this case will be analyzed elsewhere.
For the rest of the cases, the sum always converges in
the UV. For water waves, λkqkq ∝ qðk⃗ · q⃗Þ for q ≪ k—
angular integration cancels the IR divergence. A power-law
IR divergence takes place for plasma turbulence with β ¼
2 ¼ α but the frequency renormalization grows slower with
k. Even when the one-loop frequency renormalization is
comparable to ωk, the replacement ωk → ω̃k does not
change the energy cascade spectrum. Higher-order correc-
tions are complex and have increasingly higher powers of
divergence, which will be addressed elsewhere. Here we
conclude that the lowest-order frequency renormalization
does not substantially change the weak-turbulence spectra.
The next-order renormalization of the quartic interaction

gives the contribution to ∂nk=∂t which is KE (3) multiplied
by the sum of two loop integrals La þ Lb [8,9]:

La ¼ 4
X

p5;p6

ðn5 þ n6Þλk256λ5634=λk234ωk256; ð9Þ

Lb ¼ 16
X

p5;p6

ðn6 − n5Þλk635λ2546=λk234ω4625: ð10Þ

The integrals of 1=ω are the principal value part. For
thermal equilibrium, nk ∼ 1=ðωk þ μÞ, the corrections van-
ish, at all orders. Let us now substitute the weak-turbulence
spectrum nk ¼ k−d−2β=3 into the new equation and compare
convergence with that of (3). There are two issues here: an
extra (loop) integration over p5 and extra powers of p2, p3,
p4 in the external integration. UV convergence of the loop
integration is the same as for the bare KE (except for spin
waves described in the Supplemental Material [37], which
includes [10,11]). Here we assume the loop integration is
UV convergent.
IR divergence of the loop integration is determined by

one wave number going to zero, which gives k2β3þd−γ
p for

any α since p5 is not bound to the resonance surface. Since

in all cases (except spin waves) β3 ¼ β=4, the divergence
scales as k−β=6p for the direct cascade with γ ¼ dþ 2β=3.
Setting in (9), (10) p5 ¼ kp and p6 ¼ k1 þ k2, we obtain
the addition to the vertex λ1234:

δλ1234 ¼ λ1234ðLa þ LbÞ ¼
96Ωdk

−β=6
p

βð2πÞd

!
λ1;2;1þ2λ3;4;3þ4

ω1 þ ω2 − ω1þ2

þ
2λ1;4−1;4λ2;3;2−3
ω4 þ ω4−1 − ω1

þ
2λ4;1−4;1λ3;2;3−2
ω4 þ ω1−4 − ω1

"
: ð11Þ

We see that the corrections to the vertex are determined
not by ϵk from (5) but by the loop integrals (9), (10), (11)
(the true dimensionless couplings) estimated as

La ≃ Lb ≃ ϵ0ðk=kpÞβ=2−α ¼ ϵkðk=kpÞβ=6 ≫ ϵk; ð12Þ

This is the main result of our work: Deviations from weak
turbulence are ≃L, which grows faster (or decay slower)
along the direct cascade. When we keep ϵk small and fixed,
decreasing kp eventually violates the validity of the kinetic
equation (3) and its Zakharov solution. For the inverse
cascade, γ ¼ dþ 2β=3 − α=3 and the divergence condi-
tion, β ≥ 2α, is more restrictive than β ≥ 0 yet still admits
physical systems of interest.
In addition, the new effective vertex affects the integra-

tion over p2, p3, p4. We denote κ ¼ maxf0; α − 1g ≥ 0.
When p2; p4; p6 → ∞ we have ωk2;56 ∼ p−κ

2 , λ1256λ5634=
λ1234 ∼ pβ1

2 , and similarly for the b term. Thus the extra
factor relative to (3) brings an extra pβ1−κ

2 into the integrand.
The power β1 − κ is non-negative for all cases with α < 1
and for some cases with α > 1 (plasma turbulence). This
power counting suggests that if β1 − κ ≥ 0, then starting
from the mth order, where m is such that β=3 − α − κþ
mðβ1 − κÞ ≥ 0, the perturbation theory brings terms whose
degrees of UV divergences grow linearly with m.
This is supported by a lengthy computation of the two-

loop contributions is presented in the Supplemental
Material [37]. All diagrams, as expected, have doubled
IR divergence k−β=3p . Yet the power of the UV divergences
allows us to sort the two-loop diagrams. Each one adds to
the vertex schematically λ12ijλijklλkl34ðni þ njÞðnk þ nlÞ=
ω12ijωkl34. When pi; pk → ∞ the vertices give the power
2β1, while every ωk is expected to give −κ as in the KE and
one-loop above. This is indeed so for the bubble diagrams
adding to KE the UV factor k2β1−2κm . They are the squares of
the first two terms from the last bracket in (11), so they add
rather than cancel. Nor are they canceled by the nonbubbles
(mixtures of a and b terms) which are subleading due to
internal cancellations similar to (8); they add to KE factors
like k2β1−α−κm , k2β1−2αm . That means that UV divergences at
higher orders are real and need to be taken care of.
Since we cannot yet sum all the most UV divergent

diagrams, we sum the bubble diagrams to all orders (which
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are iterations of the one loop diagram). This will cure the
UV divergence, but may not give a quantitatively correct
answer in general. The sum satisfies an integral Schwinger-
Dyson equation in the momentum-frequency domain, see
the Supplemental Material [37], which includes [18–24].
We were able to solve this equation explicitly for two
particular classes of the bare vertex. The simplest case is
when the ratio λ1256λ5634=λ1234 is only a function of p5 and
p6. The sum of bubble diagrams then turns into a geometric
series, allowing us to write the “renormalized” kinetic
equation as the sum of two terms, with L ¼ La and
L ¼ Lb:

∂nk
∂t

¼ −16Im
X

a;b

X

p2;p3;p4

λ2k234

#
ω̂½34; k2'

$
ðnk þ n2Þn3n4

1 − L

− ðn3 þ n4Þnkn2
1 − L#

%
þM

ðnk þ n2Þðn3 þ n4Þ
j1 − Lj2

&
¼ Ĩk;

M ¼ 2
X

p5

λk256λ5634
λk234

n5n6ω̂½12; 56'ω̂½34; 56': ð13Þ

where ω̂½ij;mn'≡ limϵ→0ðωij;mn þ iϵÞ−1. The equation
allows one to obtain several fundamental conclusions
and far-reaching assumptions about weak and strong wave
turbulence. It is UV convergent, that is valid at arbitrary km.
Generally, corrections of higher orders have UV divergen-
ces cut off by the denominators j1 − Laj−2 and j1 − Lbj−1.
The cutoff then depends on λ, which will generally make
the corrections proportional to noninteger power of λ,
signaling singular renormalized perturbation theory, like
for transport states. In any case, the cascade solution is
independent of km when km → ∞. This conclusion is
supported by numerics, [25,26].
Let us now use (13) to discuss strong turbulence. The

most salient issue is whether the spectrum is getting more
or less steep when the direct cascade turns from weak to
strong at large k. Two alternative scenarios of strong
turbulence are often discussed (without any criterion for
choosing between them for a given system). The first is a
qualitatively similar cascade, just with the weak-turbulence
time, 1=ωkϵ2k replaced by the nonlinear time 1=ωkϵk ¼
1=λknkkd, so that the spectral energy flux P is estimated as
the spectral density ω̃knkkd divided by the nonlinear time,
P ≃ ω̃knkkdλknkkd, which gives nk ≃ ðP=λkω̃kÞ1=2k−d. We
shall show below that the true answer is different since it is
independent of λ. The second scenario is the hypothesis of
critical balance ϵk ¼ const, which gives the universal (flux-
independent) spectrum nk ≃ k−dωk=λk, see, e.g., [27–30].
From the below consideration, we will see that the critical
balance is LðkÞ ¼ const instead.
Let us now apply the renormalized kinetic equation (13)

to the classes of turbulence with β ≥ 2α, where the effective
coupling grows along the energy cascade. Now, instead of
(4), the flux constancy requires kdω̃kĨk ¼ P, where L must

be determined self-consistently by the new nk. The factor
j1 − Lj−2 determines the deviations from weak turbulence
and the character of strong turbulence. Like in the field
theory, the sign of L chooses the scenario.
Negative L means that the multimode correlations

suppress interactions like screening in quantum electrody-
namics. Increase of jLj (with increasing k or decreasing kp)
must lead to an increase of nk relative to (4) to keep the
same flux. When jLj > 1, we put kdω̃kĨk ≃ λ2k2βþ3dn3k=
jLj2 ¼ P, which predicts the strong-turbulence spectrum
independent of λ. If the integral for L converges with the
new spectrum, then L ≃ λnkkβþd=ω̃k and nk ≃ Pk−d=ω̃k.
Positive effective coupling L corresponds to interaction

enhancement like in quantum chromodynamics. Similarly,
we expect no smooth passing through L ≃ 1, but a
(confinement) transition to strong turbulence dominated
by bound states. Formally, the equation kdω̃kĨk ¼ P could
have a solution approaching at large k the critical balance
jLj ¼ 1. Finding such solutions for specific systems will be
attempted elsewhere.
The above picture with a single sign of L is the simplest

case; (11) shows that the loop integral may have different
signs for different configurations, depending on the product
of the bare vertex and the frequency difference. As was
noticed in [31], it is a turbulent analog of the Lighthill
criterium for modulational instability λd2ωk=dk2 < 0. For
example, all the denominators in (11) are positive for α < 1
when d2ωk=dk2 < 0. For α > 1, the correction changes
sign at the resonant surfaces ωðk⃗iÞ þ ωðk⃗jÞ ¼ ωðk⃗i þ k⃗jÞ.
Dependence on ωk is in stark contrast with thermal
equilibrium being determined by the sign of λ alone—
the Gibbs state is non-normalizable for attraction between
waves when λ < 0. Our derivation shows that the bound
states in turbulence could dominate not when there is
attraction but when the signs of nonlinearity and dispersion
are opposite, which is also the condition for solitons and
collapses. When the interaction is enhanced, one may
expect turbulence dominated by solitons or collapse events.
The analysis of specific configurations and of the integral
effect of the vertex renormalization needs to be done for
each system specifically. Such analysis must also account
for higher-order terms in the Hamiltonian whose contribu-
tions must be compared with (9), (10), this is beyond the
general approach accepted here and will be attempted
elsewhere.
Discussion—Here we described how nonlocality enhan-

ces or suppresses nonlinearity in nonequilibrium: devia-
tions from weak turbulence are magnified by IR
divergences. The main technical result is the renormalized
kinetic equation (13) where effective couplings are (9),
(10). Their signs determine enhancement or suppression of
four-wave scattering by multiwave correlations and the
character of the transition from weak to strong turbulence.
It is likely that universal (flux-independent) spectra domi-
nated by bound states are possible when there is an
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enhancement. The hypothesis of structure-dominated uni-
versal spectra has, up to the present work, remained generic
speculation, with neither a proof nor any criteria specifying
when it is possible. The interaction renormalization sug-
gests such a criterium, which is an important step towards
identifying universality classes of turbulence. Even more
fascinating is the hypothetic possibility that the new kinetic
equation (13) could describe both weak and strong turbu-
lence (for instance, Zakharov and Phillips spectra of sea
turbulence) as two opposite asymptotics of the steady
cascade solution.
In any turbulence, scale invariance is broken both by the

pumping kp ¼ 2π=L and dissipation km. In incompressible
fluid turbulence, the velocity moments are finite when
km → ∞. We identified here wide classes of wave turbu-
lence with the spectrum independent of km (the example of
spin waves in the Supplemental Material [37] shows that
wave turbulence allows for richer opportunities). The
anomalous scaling in fluid turbulence makes the effect
of the pumping scale felt at arbitrarily short scales [32–34]:
When one fixes the energy flux (the third velocity moment
in incompressible fluid turbulence) at a given k, the spectral
energy (the second moment) at that scale goes to zero when
kL → ∞, while the moments higher than the third diverge.
Similarly, our IR divergence makes the deviations from
weak turbulence to grow with the pumping scale which is a
direct analog of intermittency and anomalous scaling. Even
when naive ϵk is small, one makes turbulence strong by
increasing L.
Recall that rigorous proofs of the validity of the kinetic

equation (3) are done in the double scaling limit λ → 0 and the
box size L0 → ∞, while keeping some combination finite
[14–16]. Our work shows which combination of λ and kp ¼
2π=L defines corrections to the weak-turbulence spectra
where L is the pumping scale for a direct cascade or sink
scale for an inverse cascade. One should also bear in mind
possible influence of condensation at the box size [35,36].
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