Translating Natural Language Specifications into
Access Control Policies by
Leveraging Large Language Models

Sherifdeen Lawal
Institute for Cyber Security (ICS)

University of Texas at San Antonio, Texas, United States

sherifdeen.lawal@utsa.edu
Anthony Rios
Department of Information Systems and Cyber Security

University of Texas at San Antonio, Texas, United States

anthony.rios@utsa.edu

Xingmeng Zhao
Department of Information Systems and Cyber Security
University of Texas at San Antonio, Texas, United States
xingmeng.zhao@utsa.edu

Ram Krishnan

Department of Electrical & Computer Engineering

Institute for Cyber Security (ICS)

University of Texas at San Antonio, Texas, United States

ram.krishnan@utsa.edu

David Ferraiolo
National Institute of Standards and Technology, Gaithersburg,
Maryland, United States
dferraiolo@nist.gov

Abstract—This paper investigates the application of large lan-
guage models (LLMs) for the automated translation and informa-
tion extraction of access control policies from a natural language
source. Prior research in this domain have predominantly relied
on manual methods, traditional natural language processing
(NLP), or a hybrid approach involving machine learning and
artificial neural networks combined with NLP techniques. We
demonstrate a significant advancement by leveraging the power of
LLMs to achieve improved efficiency and accuracy in these tasks.
Our study focuses on applying cutting-edge prompt engi- neering
techniques designed to optimize LLM performance in the specific
context of access control policy information extraction. The
findings highlight the potential of LLMs to streamline the process
of converting human-readable requirements into formal,
machine-interpretable policies, ultimately contributing to the
automation and security of access control systems.

Index Terms—Natural Language Specification, Access Control
Policies, Large Language Models (LLMs), Prompt Engineering,
Attribute-Based Access Control (ABAC)

I. INTRODUCTION

Translating NLACPs to formal models presents challenges,
primarily due to the ambiguity and variability inherent in
natural language. Central to this translation is extracting ACP
entities, such as subjects, objects, actions, and conditions.

Historically, approaches to address these challenges have in-
cluded manual extraction methods [1], the application of Nat-
ural Language Processing (NLP) techniques for named entity

recognition (NER) and relationship extraction (RE) [2]-[4],

and advanced methods combining NLP with machine learning

or deep learning to enhance accuracy and scalability [5], [6].
This study aims to extend the body of work on automating
the extraction of access control policy entities [2], [3], [S}-

[9] in natural language specification by leveraging Large
Language Models (LLMs) to translate policies explicitly or
implicitly stated in natural language text documents. These
policies are often found across a myriad of documents, includ-
ing but not limited to agile user stories, configuration manage-
ment documentation, compliance documents, data classifica-
tion policies, security policies, and standard operating proce-
dures (SOPs). These documents collectively articulate access
control policies necessary to maintain robust security systems.
However, the traditional manual process of sifting through
these diverse sources to extract relevant policy information is
laborious, inefficient, and error-prone. As organizations strive
for better governance and quicker responsiveness in a highly
regulated environment, there is a pressing need to streamline
this process.

Herein lies the potential of leveraging large language models
(LLMs) to automate the extraction and translation of access
control policy expressions embedded within these disparate
documents. This approach represents a paradigm shift that
promises enhanced efficiency and accuracy over previous
methodologies that heavily relied on manual efforts coupled
with traditional Natural Language Processing (NLP) techniques
and Deep Neural Networks (DNNs). The shift towards
employing LLMs can significantly reduce the limi- tations
encountered in earlier methodologies, paving the way for more
intelligent and reliable access control mechanisms. Emerging
advancements in artificial intelligence, particularly large
language models (LLMs) such as OpenAl’s GPT, offer a
transformative solution to this problem. Capable of un-
derstanding and generating human-like text, LLMs present

an unprecedented opportunity to automate the extraction and
translation of natural language access control policies. These
models can parse diverse document types swiftly, discerning
contextual cues and translating them into structured access
control rules with remarkable precision.

This work investigates the use of in-context learning, specif-
ically prompting, for the translation of Access Control Policies
(ACPs) from natural language text documents. In-context
training involves providing a few examples (the “prompt”)
alongside the input text to guide the large language model
(LLM) towards the desired output. This contrasts with fine-
tuning, where the LLM’s weights are adjusted on a large dataset
of labeled examples, improving its performance on a specific
task.

For instance, a prompt such as, “Given the policy statement,
extract subjects and actions,” can effectively direct the LLM to
identify and contextualize critical entities and relationships
within natural language text. Prompting is particularly advan-
tageous in this context because it allows for rapid adaptation to
new document formats and terminologies without the extensive
data requirements and computational costs associated with
fine-tuning. This makes it an efficient approach for dynam-
ically extracting entities and relation that we studied.

This study proposes the use of state-of-the-art large language
model (LLM) prompting techniques, specifically Program-of-
Thought (PoT), to efficiently extract policy enti- ties and
relations from natural language specifications to an Attribute-
Based Access Control. Program-of-Thought incorpo- rates
programming logic paradigms directly into the prompting
process, allowing the LLM to interpret and manipulate the text
with an understanding akin to computer programming. These
methodologies offer significant advantages in understanding
complex dependencies and relationships within policy texts,
making them ideal for extracting detailed entities and their
interrelations.

The Program-of-Thought prompting technique can be read-
ily adapted for other access control models like Role-Based
Access Control (RBAC) and Resource-Based Access Control
(ReBAC). For RBAC, the prompts can be modified to focus on
extracting roles, permissions, and their assignments. Similarly,
in ReBAC, the prompts can be adapted to extract resources,
actions, and their associated permissions.

To present the contributions of this work, we outline the key
advancements as follows:

1) We pioneer the application of large language models
(LLMs) to extract access control policies articulated in
natural language and convert them into formal access
policy specifications.

2) We employ cutting-edge prompting techniques to ef-
fectively identify and extract entities and relationships
within policy texts.

3) We develop a synthesized access control corpus gener-
ated by LLMs.

II. RELATED WORK

This related work section is divided into two parts: one re-
viewing earlier studies that use previous approaches to extract
access control policy information (entities and relationships),
and the other examining research inspired by large language
models to extract entities and relationships.

A. Pre-LLMs: Extracting Entities and Relations

Slankas et al. [7] introduced Access Control Relation Ex-
traction (ACRE), a machine learning approach designed to ex-
tract elements of Access Control Policies (ACP) from natural
language documents. The ACRE process can be divided into
two main phases: identifying ACP sentences and extracting
ACP elements. In the identification phase, the authors ex-
plored the potential of using words, their synonyms, parts of
speech (POS), and named entities as markers to detect ACP
sentences. For the elements extraction phase, they employed a
bootstrapping method that relies on patterns derived from the
dependency tree representation of sentences to extract instances
of ACP accurately. An extension of the previous study, Slankas
et al. [8] have tested the suggested method on extensive
datasets gathered from five different policy data sources that
have been referenced in earlier studies. During the identification
phase, they utilized the K-nearest neighbor (K- NN) learning
algorithm to distinguish between ACP sentences and other
forms of sentences.

Turner et al. [1] developed an assistance tool for authoring
Attribute-Based Access Control (ABAC) policies that enables
a security architect to set up an ABAC expression using a series
of fields such as subject, subject attributes, object, and object
attributes, among others. The tool accepts natural lan- guage
ABAC policies that conform to these predefined fields. The
goal is to offer a user-friendly, business-level environment for
writing ABAC policies, while the application handles the
conversion of these inputs into machine-readable ABAC rules.
In contrast to our proposal, the authors method requires the
manual extraction of information relevant to the ABAC rule
from the natural language access control policy (NLACP).
They took a manual approach and noted that automation of this
task is possible.

Narouei et al. [2] proposed a top-down role engineering
approach to extract access control policies from unrestricted
natural language requirements documents. They leverage nat-
ural language processing techniques, specifically Semantic
Role Labeling (SRL), to automate the extraction of these
policies. This method aims to define roles and build a Role-
Based Access Control (RBAC) system effect. Further study by
Narouei et al. [5] present a policy development framework for
Attribute-Based Access Control (ABAC) designed to automat-
ically derive policies from freely structured natural language
texts. Their approach involves a method for extracting policy-
specific information using advanced deep neural networks,
deep recurrent neural network (RNN), on a compilation of
annotated dataset containing sentences sourced from actual
policy documents. The trained deep recurrent neural network

(RNN) distinguishes between sentences that include access
control policies (ACP) and those that do not.

Abdelgawad et al. [4] approach includes algorithms that
utilize spaCy, a natural language processing library, to identify
and extract entities and relationships from Access Control
Policy (ACP) sentences, subsequently transforming them into
the Next Generation Access Control (NGAC) model. For
analysis purposes, they further translate this NGAC model into
a Neo4j representation.

B. Code-LLMs: Extracting Entities and Relations

A Large Language Model (LLM) trained on extensive
datasets of code and natural language documents can convert
natural language instructions into structured code [10]-[12].
[13] shows that this ability to translate between language and
code can serve as a bridge to connect language and semantic
structure, which is crucial for tasks like semantic parsing
and information extraction in NLP. Intuitively, mapping a
semantic relation structure to code is more straightforward
compared to natural language, which often requires careful
prompt engineering [13]-[17]. Programming languages inher-
ently represent complex and interdependent structures more
effectively [18]. [19] propose CodeKGC, a type of Code- LLM
that leverages code language models for generating Knowledge
Graphs, to obtain better performance.

In our CODE4POLICY prompt, we first translate the entities
and relations into Python class definitions. Conditioned on
these class definitions and the input sentence, we prompt LLMs
to generate an instance of the relation class. From this
instance, we can extract the predicted relation node in JSON
format. This allows CODE4POLICY to handle multiple
relationships between the same pair of entities as well as
multiple entities within a single sentence.

III. APPROACH

Processing Access Control Policy expressions start with
identifying relationships between core entities and extracting
these entities. Relationships expressed in Access Control Pol-
icy can be direct relationship such as ownership or parent- child
(e.g., an employee can view their own payroll record) or
indirect relationship such as through common attribute or role
(e.g., a user is permitted to view a document if they belong
to the same department as the document).

Our research shows that using prompt methods, without al-
tering parameters or retraining large language models (LLMs),
is effective in recognizing and extracting entities and their re-
lationships as described in an access control policy. This study
employs zero-shot and few-shot prompt strategies, guided by a
framework inspired by Wang et al. [13], and supplemented with
guidelines adapted from the work of Sainz et al. [11]. Large
language models (LLMs) have significantly improved the
precision of information extracted from natural language
documents. Nonetheless, it is imperative that we do not depend
exclusively on these models’ outputs. It remains essential for a
security administrator or another domain expert to validate the
predictions made by the LLMs.

I @Qdataclass

2> class CyberEvent:
rrr

4 Defines a general entity within the
cybersecurity context and categorizes entities

based on their roles within relationships.
rrr

6 Attributes:
s

8 input text: str - Textual description or
identification of the cybersecurity event.

9 user attributes: List[str] - Roles or titles

of users involved in the event.

10 object attributes: List[str] -
Characteristics of data or objects involved.

11 individual users: List[str] - Identifiers or
names of individual users mentioned in the
context of the event.

12 individual objects: List([str] - Identifiers
or names of individual objects or resources
mentioned.

13 rre

14

15 input_text: str

16 user_attributes: List[str]
17 object attributes: List([str]
18 individual users: List[str]
19 individual objects: List[str]

Listing 1. Prompt Pattern for Extracting Access Control Policy Entities

This method adopts a Python code-based format for both the
input and output of the model. This technique offers a clear and
human-readable structure while addressing many common
challenges associated with natural language instructions. It
allows any information extraction task to be represented in
a consistent format. Inputs can be automatically standardized
using Python code formatters like Black, resulting in well-
organized output that is easy to parse. Additionally, most
modern LLMs have been pre-trained on datasets that include
code, indicating that these models are already familiar with this
form of representation.

Although for simplicity we have segmented the code4policy
prompt into two sections corresponding to the Python classes
for policy entities and relations, these two program fragments
are combined into a single prompt payload for the model
API call. The code listing 1 illustrates the three principal
components of this format: schema definition, input text, and
output annotations.

The schema definition encompasses labels depicted as
Python class (CyberEvent line 2), guidelines articulated within
docstrings (line 4), and representative class member that
includes the input are annotated as Python string (lines 8 - 12).
Output is generated by the model and annotations are
represented as a list (lines 15 - 19) of instances of the class
defined on the schema definition part.

The guidelines for the CyberRelation class provide an
overview of the task, which involves identifying various types
of relationships between policy elements (entities) within the
context of a CyberEvent. These guidelines also list a predefined
set of relationships between these policy elements. In
accordance with the access control model, compliant class

| @dataclass

2 class CyberRelation:
rrr

4 Defines relationships between two entities
within the cybersecurity event context by
leveraging the detailed context provided by the
associated CyberEvent class.

5 Each relationship is categorized based on
predefined interaction types, which include:

7 - ‘r’ for read: Accessing information without
modification.
8 - ‘!r’ for deny read: Prohibiting read access to
information.

9 - ‘w’ for write:

Modifying or adding information

‘lw/ for deny write: prohibiting the right to
write operation

11 - Yx’ for execute: Performing operations or
executing commands.

12 - ‘!x’ for deny execute: Disallowing the
permission to execute a resource or an entity

13 - ‘¢’ for create: Creating new entities or
resources.

14 - ‘!¢’ for deny create: denying the authority to

create new entities or resources

15 - ‘d’ for delete: Removing or deleting entities
or resources.

‘1d’ for prohibiting delete: Revoking the

right to delete an entity or a resource.

17 rrr

18 Attributes:

19 rrr

10 =

’

’

16 -

20 cyber event: CyberEvent - Instance of CyberEvent
from which this relation inherits context.
21 relations: List[Dict[str, str]] - List of
dictionaries, each representing a specific
relationship instance:

2 - ‘subject’ (str): Entity initiating the
interaction.

bx] - ‘subject type’ (str): Type of the subject
entity (e.g., ‘user attribute’).

24 - ‘relationship’ (str): The type of interaction

(characterized by the codes ‘r’, ‘w’, ‘x’, ‘c’,
©\dr, M, Mw/, MxZ, VId7).

25 - ‘object’ (str): Entity that receives the
action.

26 - ‘object type’ (str): Type of the object entity

(e.g., 'object attribute’).

27 rrr

29 cyber event: CyberEvent

30 relations: List[Dict[str, str]]

Listing 2. Prompt Pattern for Extracting Access Control Policy Relations

members are formatted as strings, and the model’s output is
presented as lists of relationships.

The schema definition guidelines for the CyberRelation
class, as detailed in listing 2, guide the model by specifying
how to determine authorization and prohibition of CRUD op-
erations through relationships extracted between policy entities
(lines 7 - 16). Within this context, class members defined under
CyberRelation are linked to instances of the CyberEvent class,
from which CyberRelation inherits entities relevant to a
particular relationship (lines 20 - 26). The outputs delineated by
the CyberRelation class encompass the lists of entities sourced
from the CyberEvent class and a list of dictionary

NGAC Po Icy ChatBot Archltecture

Real-time

queryand
>q update

Display

Neodj
Broliser

Update
alidator

Graph ’7 Predicted
S Display PE&

Relations

Policy Graph

Policy Expression

==}
P, Pre-Trained [EE=)
FompE TS
o I e —"
Arguments —
LLM

ChatBot Logic
Database

Fig. 1. An Architecture for Translating Natural Language Policy Expressions
to NGAC Specification

of relations generated by the CyberRelation class (lines 30
& 29).

The prompt structures showcased in listings 1 and 2 follow a
zero-shot approach. This means no illustrative examples of
policy expressions and expected results were provided to
further guide the language model in identifying entities and
relations. This initial prompt pattern will serve as a baseline for
comparison, while a scaled version incorporating illustrative
examples will be developed in our implementation.

IV. IMPLEMENTATION

In the previous section, we introduced our proposed prompt
technique, Code4Policy, to extract access control policy en-
tities and relations. This section details our implementation
process for translating these natural language expressions into
National Institute of Standards and Technology (NIST) Next
Generation Access Control (NGAC) policy specification. Our
implementation focuses on utilizing a chatbot’s capabilities
within a use case scenario, allowing an administrator to input
natural language policy expressions into a web-based GUI.
These inputs are then translated directly into NGAC policy
specification.

The chatbot representation for translating natural language
policy expressions into NGAC specification was inspired by
the Neo4j GraphAcademy [20], providing a robust foundation
for our system’s architecture. To implement the graphical user
interface (GUI), we leveraged Streamlit, an open-source
Python framework tailored for data scientists and AI/ML
engineers to craft dynamic data applications with minimal de-
velopment overhead. Within this interface, users input Natural
Language Access Control Policy text, and the system outputs
an NGAC specification graph in the form of a Python Dictio-
nary and Neo4j browser graphical dashboard. The extraction of
NGAC policy elements and their relationships is handled by
utilizing the OpenAl API. Once extracted, the information is
translated into a policy graph, which is stored in a Neo4j
database and simultaneously displayed on the chatbot interface
as shown in figure 1. The following subsections presents a
brief overview of NIST Next Generation Access Control,

delves into the Neo4j integration and chatbot logic used in
this implementation.

A. NIST Next Generation Access Control

The NIST Next Generation Access Control (NGAC) frame-
work, an instantiation of the Attribute-Based Access Control
(ABAC) model, utilizes a Directed Acyclic Graph (DAG)
to represent system authorization states. This DAG, referred to
as the authorization graph, consists of five node types
representing different access control policy entities: Users (U),
User Attributes (UA), Objects (O), Object Attributes (OA), and
Policy Classes (PC). These entities, collectively known as
Policy Elements (PE), are connected through directed edges
representing relationships defined by the access control policy
expressions. These edges, termed Assignment, Association,
and Prohibition, establish the logical connections between PEs,
thereby defining the authorization state within the NGAC
framework.

Assignment relations provide a hierarchical structure by
connecting these entities through conforming ordered pairs,
establishing relationships like user to user attribute, object
to object attribute, and attribute to policy class. Association
relations, represented as weighted edges, define permissions,
specifying which actions a user attribute can perform on an
object attribute based on the assigned weight. Prohibition
relations, also weighted edges, express denials by specifying
which actions are forbidden from a user attribute on an object
attribute. Finally, obligation relations, unlike other relations,
are not part of the authorization graph but are dynamically
triggered upon specific events, requiring actions to be per-
formed.

B. Neo4j Graph Database

Neo4j is a graph database that stores and manages data
in a natural, connected state. It utilizes a property graph
approach, which optimizes both data traversal speed and
operational efficiency. Beyond being a core database, Neo4j
has evolved into a comprehensive ecosystem encompassing
tools, applications, and libraries, enabling seamless integration
of graph technologies within various working environments.

Neo4j Cypher is a graph query language designed for modi-
fying and retrieving data from Neo4j graphs. Inspired by SQL,
Cypher emphasizes clarity and ease of use, allowing users to
focus on what data they want rather than the technical details
of retrieval. Users employ Cypher for all CRUD operations on
their graphs, making it the primary interface for Neo4;.

Cypher’s unique visual aspect allows users to match patterns
and relationships through an ASCII-art-inspired syntax, where
nodes are represented by rounded brackets and relationships by
arrows labelled with squared brackets. This visual approach
enables users to effectively draw graph patterns within their
data. For example, the cypher command:

CREATE (uaiadmin)-{:{r, w}->(oa;backupfiles),
creates the nodes admin (user attributes) and backup files
(object attribute), and an association relation between them

with the read (r) and write (w) permissions are the weight of
the relation.

C. Chatbot Logic

The chatbot’s core functionality revolves around translating
natural language specifications into formal access control
policies. This process utilizes a carefully crafted pipeline that
leverages the power of large language models (LLMs) and
integrates it with our own domain-specific knowledge.

The chatbot acts as a wrapper for the OpenAl API, pro-
viding a seamless interface for users. When a user enters a
policy specification in natural language, the chatbot combines
this input with a specially designed in-context learning prompt.
This combined input serves as the argument for the OpenAl
API call. The prompt is crafted using techniques aimed at
guiding the LLM to extract relevant policy entities and their
relationships. These entities correspond to the four NIST
NGAC relations — Assignments, Associations, Prohibitions,
and Obligations.

The API call returns predicted entities and their relation-
ships extracted from the user’s input. These predictions are then
subjected to a rigorous validation process by an NGAC
specification-checker within the chatbot logic. This checker
ensures that extracted entities conform to the formal definitions
of each relation. For instance, if the predicted relation is an
association and the entities forming this relation are a pair
of object attributes, the checker would flag a specification
violation. Such violations are communicated back to the user
through an informative exception message on the chatbot GUIL.

Upon successful validation, the predicted policy entities are
integrated into the system. This integration occurs on two
levels: an in-memory authorization graph is updated using
Python modules, and concurrently, the Neo4j database graph is
updated using Cypher queries. This simultaneous update
ensures consistency and allows for real-time visualization.
Users can observe the updated authorization graph directly
on the chatbot GUI and can access the Neo4j database graph
through the Neo4j browser. This visual feedback provides a
clear and intuitive representation of the evolving access control
policy, empowering users to understand and manage their
security configurations.

TABLE 1

SELF-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY
DATASET

Dataset Relations

Assignment Association Prohibition Obligation

Finance 32 26 11 8

& Policy Elements

Human U U4 0A PC

Resources 12 17 33 2

| 1: Open -

f—

! 2: Launch

I
3: Give general instructions

2: Launch

1

1

4: Describe specific task I
I

' 1

| 2: Launch
1

1
and persona 1 l
]
1
1

1 I7: Org. tree hierarchy
hasNextSubtree |

)
8: getNextSubtree

L
9: Describe spegific task

b]
—Run i q; Send .

M !

13: gctSubt}cePolichIauscs
1

1
I
1
] 12:jsubtree Policy Clauses 1

I
|
1
i 14: Describe specific task
: -

I 15: Run 1
N 1 11|)
i 15: Send

N !

1
17: getSubtree Policy Expreskions

I
I
I
|

]]

. 16: subtree Policy Expressions 1
1
1

Fig. 2. A Sequence Diagram for a Large Language Model Synthesized Natural Language Policy Expressions

V. EXPERIMENTAL SETUP

In the previous section, we discussed the architectural
components designed for translating natural language policies
into NIST Next Generation Access Control (NGAC) speci-
fications using a chatbot user interface. However, a notable
challenge in this domain is the scarcity of publicly available
natural language policy datasets. Such datasets are often
kept proprietary due to the sensitive nature of authorization
requirements. Moreover, existing datasets frequently require
significant augmentation to form valid Attribute-Based Access
Control policy expressions. Additionally, we compared our
method with traditional plain language prompting, which
simply converts the CyberEvent and CyberRelation classes into
plain language descriptions and definitions.

Previous studies [4], [6] have consistently highlighted these
challenges and have resorted to augmenting existing datasets or
creating self-synthesized datasets. In this work, we tested our
proposed implementation on self-synthesized datasets and
further evaluated its performance using datasets synthesized by
large language models (LLMs). The following subsections de-
tail our process for generating both self-synthesized and LLM-
synthesized datasets, offering insights into our methodology
and the specific considerations undertaken to ensure robust
experimental evaluation.

A. Self-Synthesized Dataset

The basis of our self-synthesized dataset is an organization
chart, closely resembling the hierarchical structure of the NIST
authorization graph, which is articulated through as- signment
relations. To streamline this corpus, we concentrated on
synthesizing access policy expressions specifically for two
departments commonly found in any organization: the Legal
and Finance Departments.

To construct meaningful policy expressions, we inferred user
and resource attributes from job descriptions associated with
each hierarchical position within the two departments. These
attributes include roles, responsibilities, and resources specific
to each job function.

By decoding these attributes and considering the routine
activities performed by individuals in given roles, we were able
to generate precise policy expressions. These expressions
systematically encapsulate the NIST relations - Assignment,
Association, Prohibition, Permission, and Obligation.

A precise breakdown of policy entities and relations derived
from 45 policy expressions in our synthesized dataset is
presented in Table I. This table illustrates the distribution
and intricacies of each relation type, providing an empirical
foundation for further exploration into synthesizing policy
expressions using Large Language Models (LLMs).

B. LLM-Synthesized Dataset

The primary advantage of using an automated approach with
LLMs is twofold. Firstly, it generates policy expressions that
are free from the biases introduced by human authorship. By
utilizing the expansive datasets on which LLMs are trained, we
ensure that the synthesized policies contain natural context and
relevant policy entities of interest. Secondly, it obviates the
necessity of recruiting domain experts for manual creation of
an extensive dataset of natural language policy expressions,
thereby saving both time and resources.

For this study, we have utilized the ChatGPT Playground to
generate policy expressions. Notably, similar outcomes were
observed when employing Google Gemini via Vertex Al
Studio, underscoring the robustness and reliability of LLMs
across different platforms. The sequence diagram in Figure 2
encapsulates the comprehensive process for generating this
LLM-synthesized natural language policy expressions dataset.

Academic Affairs
t:Provost
Vice Provosts
L_Colleges
Deans
Faculty

Administrative Staff
Students

Fig. 3. Academic Affairs: A Sub-tree of LLM Generated University of Texas
at San Antonio, Texas, Employee Tree Hierarchy

In the sequence diagram, interactions amongst three
primary objects—client, GPT Playground, and OpenAl
API—culminate in the creation of the LLM-synthesized
dataset. A User (client) commence by accessing the web-based
GPT Playground interface. Upon accessing it, the Playground
provides three text fields: system prompt and user prompt
fields for input instructions, and an assistant message field dis-
playing the LLM-generated response. Through these editable
prompts, clients can precisely guide the output of the large
language model API call to obtain desired policy expressions.
To illustrate the sequential process of using GPT Playground
to generate natural language access control policy sentences,
we outline the following steps:

We first configured the large language model (LLM) with a

system prompt to establish its role and context. The provided
text was: You are a Senior database and security administrator

for the University of Texas at San Antonio (UTSA). You
will assist in the process of writing access control policy
expressions for various units and departments the Institution

The initial user prompt tasked the LLM with creating an
organizational hierarchy for employees across all the depart-
ments at UTSA. The text of the user prompt was: Create a tree
hierarchy of the University of Texas at San Antonio employees
across all departments/units. In response, OpenAl produced
a simplified organizational tree hierarchy divided into major
functional units. A subtree for the Academic Affairs Unit
demonstrates this structure shown in figure 3.

Next, we used iterative inputs for each subtree, directing the
LLM to generate access control policies. The user prompt
included instructions such as: For each employee position in
the given unit tree hierarchy, write access control policy in
terms of allowed and denied access to resources. The LLM
responded with policy clauses formatted under headings for
each employee position, listing specific allowed and denied
resources.

In the final step, we requested that the LLM generate co-
herent sentences integrating both policy expression fragments
and employee positions. The user prompt was structured to
elicit this output: For each policy expression fragment and
corresponding employee position, create a sentence.

The resulting output transformed technical policy fragments

Students (All Colleges)
Access to their own academic
records, course
Access to other students’
records
Access to faculty or
administrative

academic

Fig. 4. LLM-Synthesized Access Control Policy Fragments For A User
Attribute

into natural language statements, rendering them more acces-
sible for human review and implementation. This methodical
approach ensures that access control policies are precisely
articulated while leveraging advanced language model capa-
bilities for clarity and cohesion.

Some may suggest that instead of using a series of steps, we
could combine everything into one comprehensive prompt to
achieve similar outcomes. However, it has been observed that
this approach significantly reduces the number of policy
expressions generated, and those that are produced tend to be
excessively generalized. Rather than utilizing a programmatic
method to execute the full sequence of LLM-Synthesized
access control policies directly via the OpenAl developer
interface, we opted to use the GPT Playground. This approach
enables a user (client) to validate the LLM’s response at each
step in the sequence for creating synthesized access control
policies. Even with meticulously designed prompt messages,
the LLM can occasionally produce suboptimal results. By
involving a user mediator in this process, we can ensure
that our evaluation of prompt techniques for extracting policy
entities and relationships isn’t compromised by faulty data.

C. NIST NGAC Prompt Constructs

In Section V, we discussed adaptable, generic prompts for
CoT and PoT approaches, applicable to any security model.
The prompt constructs for these approaches include specific
definitions to identify NGAC policy elements and extract their
relationships. For example, the prompt pattern detailed in

Students (All Colleges) cannot access other students’
academic records.

Faculty or administrative staff personal records or internal
decision-making documents cannot be accessed by Stu-
dents (All Colleges).

Students (All Colleges) can access their own academic
records, course materials, schedules, and grading infor-
mation.

Fig. 5. LLM-Synthesized Access Control Policy Expressions After Integrating
User Attribute and Policy Fragments

w®

o
ign

&

K
%
L
o
K
o
2
%QH

8
|3
g

Fig. 6. Graphical Representation of Self-Synthesized Natural Language
Access Control Policy Translated to NIST Next Generation Access Control
Specification

Section V is sufficient to extract an association relationship
and its entities, such as user and object/resource attributes.

Moreover, the prompt pattern was adapted to define prohi-
bitions explicitly: a prohibited or disallowed action between
two entities (user and object attributes), instructing the LLM
to prefix the prohibited relation with an exclamation mark
(1. Consequently, prohibitions like reading, writing, creating,
deleting, and executing are represented as !r, !w, !c, Id, and !x,
respectively. An obligation relation is defined as a conditional
clause that triggers an event response, consisting of an event
pattern followed by an independent clause. These definitions
help the LLM accurately extract entities and relationships,
which Neo4j then uses to translate natural language access
control policy expressions into NGAC specifications.

VI. RESULTS

An implementation of the proposed architecture to translate
a self-synthesized dataset into access control policies adhering
to the NIST Next Generation Access Control (NGAC) spec-
ification has been visualized using the neo4j browser, as dis-
played in Figure 6. This visualization offers a clear graphical
representation of the authorization state and structured policy

TABLE Il
LLM-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY
DATASET FOR THE EXPERIMENT

Attributes

Dataset NLACP Associations Prohibitions ~ Obligations
User Object

BoA, NA 220 70 359 127 46 47

NHS 323 90 369 196 104 23

UTSA 374 76 579 210 134 30

Total 917 236 1,307 533 284 100

expressions, stored within a graph database via neo4j. The two
lower nodes in the graph represent the policy classes for the
Legal and Finance departments, with assignment relations from
user attributes depicted by greenish cyan nodes and gray nodes
for object attributes. The user nodes are the upper shade of pink
assigned to user attributes.

We conducted an evaluation focused on extracting en-
tities—user attributes and object attributes—and relations,
including association, prohibition, and obligation, from the
LLM-synthesized dataset using our proposed approach. It’s
notable that the assignment relation was deliberately excluded
from this evaluation, as it is inherently established through the
tree hierarchy while synthesizing the dataset.

TABLE III
RESULTS OF THE PROPOSED (SCALED) CODE-OF-THOUGHT POLICY

ENTITIES AND RELATIONS EXTRACTION APPROACH ON THE
LLM-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY

DATASET
Dataset Model
Relations
Association Prohibition Obligatior
P R F1 P R F1 P R F1
Bank Baseline 000 0.00 000 000 000 000 000 000 000
of codedpolicy 100 098 099 100 100 100 100 09 099
America, NA Attributes
User Object
Bascline
codedpolicy 1.00 1.00 1.00 1.00 1.00 1.00
Relations
Association Prohibition Obligation

P R F1 P R F1 P R F1
Basline 000 000 000 000 000 000 000 000 000
codedpolicy 098 098 098 099 099 099 100 100 100
Attributes

National

Health

Service

User Object
P R F1 P R F1
Baseline 0.88 0.86 0.87 0.32 027 029
codedpolicy ~ 1.00 1.00 1.00 0.9 0.99 0.99
Relations
Association Prohibition Obligation
P R F1 P R F1 P R F1
University of Texas Baseline 000 000 000 000 000 000 000 000 000
at codedpolicy 099 098 098 100 1.00 1.00 100 100 100
San Antonio Attributes
User Object
P R F1 P R Fl1
Baseline 0.94 0.92 0.92 034 0.28 030
codedpolicy 1.00 0.99 0.99 0.99 0.99 0.99

P, R, F1 represent precision, recall and Fl-score, respectively

In evaluating the zero-shot baseline prompt for translating
natural language specifications into access control policies, our
observations yielded notable contrasts in performance metrics
across different categories of entities and relations. Specifi-
cally, the prompt demonstrated commendable proficiency in
extracting user attribute entities, with an accuracy rate averag-
ing over 90% as shown in Table III . This high success rate
reflects the model’s robust capability in identifying user-related
information within policy statements without prior training or

contextual fine-tuning.

However, the model’s performance markedly declined in the
extraction of object attribute entities and the delineation of the
three critical relations (Associations, prohibitions, and
obligations). Analysis revealed that this discrepancy largely
arises from the inherent complexity and structure of object
attribute expressions within policy language.

A significant portion of these expressions includes qualifiers
and descriptors that provide contextual nuances to the object
attributes. For instance, a natural language policy might de-
scribe an object with elaborate compound phrases such as
“Financial records unrelated to medical treatments” where
“unrelated to medical treatments” functions as a descriptor and
“Financial records” as the core object attribute. The zero-
shot model, however, frequently misinterprets these com-
pound phrases, often extracting unexpected text fragments that
amalgamate both qualifiers and descriptors as singular object
attributes. This leads to a proliferation of inaccurate and
semantically inappropriate object entities in the output.

Furthermore, the complexities inherent in relational con-
structs within natural language policies exacerbated the
model’s challenges. Relations among entities are dependent on
subtle syntactic and contextual indicators. The zero-shot
prompt failed to make any correct predictions for these three
relations. The model not only struggled to reliably identify and
categorize these relations but also produced inconsistent and
incorrect extractions. As a result, this significantly compro-
mised the overall reliability of the zero-shot approach when
applied to the task of translating comprehensive access control
policies.

The zero-shot performance results were extremely poor, but
when employing the scaled version of the model (code4policy)
with a few-shot learning approach that included three illustra-
tive examples of prohibition relations, we observed significant
improvements across all three types of policy relations. This
nearly flawless performance of the scaled model can likely
be attributed to the fact that the datasets were synthesized by a
large language model (LLM), while the in-context training
examples were drawn from our self-synthesized dataset.

VII. LIMITATIONS

While this study represents a significant step towards devel-
oping a robust chatbot for translating natural language access
control policies through the use of large language models
(LLMs), several limitations must be acknowledged.

Firstly, the architecture proposed in this work supports only
single-turn tasks. This means it focuses on translating one
or more natural language access control policy expressions
in a single interaction to the NIST Next Generation Access
Control (NGAC) specification. Single-turn interactions are less
dynamic and do not capture the iterative nature of real-world
policy management scenarios. Future iterations need to exploit
the multi-turn dialogue capabilities of platforms like the Ope-
nAl API. This would enable more complex interactions such as
refining initial translations, handling follow-up questions, and
managing iterative updates based on historical context.

Another limitation is the current approach’s restriction to
translating policies with distinct relations among policy el-
ements. Attribute-Based Access Control (ABAC) is highly
expressive and often involves complex policy expressions that
embed multiple types of relations within a sentence, such as
assignments and associations among policy elements. Although
our proposed method offers a foundation for trans- lating these
relationships, it does not fully accommodate the interwoven
and multifaceted relations described in more complex access
control policies. This constraint could limit its applicability in
more sophisticated or nuanced scenarios.

Moreover, there is a necessity to enhance the mechanism for
real-time policy queries and updates. The future work aims to
leverage chat history for maintaining context across multiple
interactions, which would facilitate real-time adjust- ments and
queries concerning policy statuses. However, the current
system lacks this dynamic adaptability, potentially constraining
its effectiveness in environments where policy conditions
frequently change or need real-time verification.

Finally, another important limitation is the comprehensive-
ness of failure handling mechanisms. When policy translations
fail or produce ambiguous results, there is currently no robust
system to manage these exceptions autonomously. Future work
would need to incorporate algorithms that not only identify
failed translations but also attempt automated corrections or
seek clarifications from users to ensure higher accuracy and
reliability.

VIII. CONCLUSION

This paper investigates the application of Large Language
Models (LLMs) in translating Natural Language Access Con-
trol Policies (NLACPs) into formal access control specifi-
cations. The inherent ambiguities and variability of natural
language have historically posed significant challenges in
accurately extracting ACP entities.

Through our study, we make notable contributions to this
domain by pioneering an advanced automated method
leveraging LLMs. We implemented state-of-the-art prompting
techniques tailored to effectively parse policy texts for en- tity
and relationship extraction. Furthermore, we developed a
synthesized access control corpus generated through LLMs to
support our approach. Our empirical results reveal that the
codedpolicy (scaled) models achieve remarkable precision in
entity prediction within policy expressions—each attaining an
accuracy of 99.9%. However, differences emerge when evalu-
ating relationships between entities. Specifically, the baseline
model underperformed in zero-shot settings for association,
prohibition, and obligation due to insufficient context within
prompts.

Remarkably, enhancing the baseline model with few-shot
learning by incorporating illustrative examples substantially
improved relationship extraction accuracy across all pol- icy
types. This improvement underscores the importance of
context-rich prompts when dealing with complex natural lan-
guage expressions, particularly those related to prohibitions

that exhibit conflicting segments suggesting both access denial
and conditional approvals.

Our findings highlight the efficacy of LLMs in navigating
the intricacies of NLACPs and present a significant step toward
fully automating the translation of natural language policies
into formal access control models. Future research should focus
on refining contextual understanding within these models to
further enhance relationship extraction accuracy and address
lingering issues of ambiguity in complex policy expressions.

Through continued advancements in this field, we aim to
equip organizations with robust tools for more efficient
governance and regulatory compliance in managing access
control policies articulated in everyday language.

(1]

(2]

(3]

[4

—_

(5]

[6

[t}

[7

—

[8

—_—

191

[10]

(11]

[12]

REFERENCES

R. C. Turner, “Proposed model for natural language abac authoring,”
in Proceedings of the 2nd ACM Workshop on Attribute-Based Access
Control, ser. ABAC ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 61-72. [Online]. Available:
https://doi.org/10.1145/3041048.3041054

M. Narouei and H. Takabi, “Automatic top-down role engineering
framework using natural language processing techniques,” in IFIP
International Conference on Information Security Theory and Practice.
Springer, 2015, pp. 137-152.

, “Towards an automatic top-down role engineering approach using
natural language processing techniques,” in Proceedings of the
20th ACM Symposium on Access Control Models and Technologies, ser.
SACMAT ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 157-160. [Online]. Available: https:/doi-
org.libweb.lib.utsa.edu/10.1145/2752952.2752958

M. Abdelgawad, 1. Ray, S. Alqurashi, V. Venkatesha, and H. Shirazi,
“Synthesizing and analyzing attribute-based access control model gener-
ated from natural language policy statements,” in Proceedings of the 28th
ACM Symposium on Access Control Models and Technologies, 2023, pp.
91-98.

M. Narouei, H. Khanpour, H. Takabi, N. Parde, and R. Nielsen,
“Towards a top-down policy engineering framework for attribute-based
access control,” in proceedings of the 22nd ACM on Symposium on
Access Control Models and Technologies, 2017, pp. 103—114.

M. Alohaly, H. Takabi, and E. Blanco, “A deep learning approach for
extracting attributes of abac policies,” in Proceedings of the 23nd ACM
on Symposium on Access Control Models and Technologies, 2018, pp.
137-148.

J. Slankas and L. Williams, “Access control policy identification and
extraction from project documentation,” Science, vol. 2, no. 3, pp. 145—
159, 2013.

J. Slankas, X. Xiao, L. Williams, and T. Xie, “Relation extraction for
inferring access control rules from natural language artifacts,” in Pro-
ceedings of the 30th annual computer security applications conference,
2014, pp. 366-375.

M. Narouei, H. Khanpour, and H. Takabi, “Identification of access
control policy sentences from natural language policy documents,” in
Data and Applications Security and Privacy XXXI: 31st Annual [FIP WG
11.3 Conference, DBSec 2017, Philadelphia, PA, USA, July 19-21, 2017,
Proceedings 31. Springer, 2017, pp. 82—100.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

O. Sainz, 1. Garcia-Ferrero, R. Agerri, O. L. de Lacalle, G. Rigau,
and E. Agirre, “Gollie: Annotation guidelines improve zero-shot
information-extraction,” in The Twelfth International Conference on
Learning Representations.

J. Gao, H. Zhao, W. Wang, C. Yu, and R. Xu, “Eventrl: Enhancing event
extraction with outcome supervision for large language models,” arXiv
preprint arXiv:2402.11430,2024.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

X. Wang, S. Li, and H. Ji, “Code4struct: Code generation for few-shot
event structure prediction,” in Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2023, pp. 3640-3663.

L-H. Hsu, K.-H. Huang, E. Boschee, S. Miller, P. Natarajan, K.-W.
Chang, and N. Peng, “Degree: A data-efficient generation-based event
extraction model,” in Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2022, pp. 1890—1908.

X. Xu, Y. Zhu, X. Wang, and N. Zhang, “How to unleash the power of
large language models for few-shot relation extraction?” in Proceedings
of The Fourth Workshop on Simple and Efficient Natural Language
Processing (SustaiNLP), N. Sadat Moosavi, 1. Gurevych, Y. Hou,
G. Kim, Y. J. Kim, T. Schuster, and A. Agrawal, Eds. Toronto, Canada
(Hybrid): Association for Computational Linguistics, Jul. 2023, pp. 190—
200. [Online]. Available: https://aclanthology.org/2023.sustainlp- 1.13
Z. Wan, F. Cheng, Z. Mao, Q. Liu, H. Song, J. Li, and S. Kurohashi,
“Gpt-re: In-context learing for relation extraction using large language
models,” in Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, 2023, pp. 3534-3547.

S. Wadhwa, S. Amir, and B. Wallace, “Revisiting relation extraction
in the era of large language models,” in Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), A. Rogers, J. Boyd- Graber, and N.
Okazaki, Eds. Toronto, Canada: Association for Computational
Linguistics, Jul. 2023, pp. 15566—15589. [Online].

Available: https://aclanthology.org/2023.acl-long.868

“Natural language programming: Styles, strategies, and contrasts,” /BM
Systems Journal, vol. 20, no. 2, pp. 184-215, 1981.

Z. Bi, J. Chen, Y. Jiang, F. Xiong, W. Guo, H. Chen, and N. Zhang,
“Codekgc: Code language model for generative knowledge graph con-
struction,” ACM Transactions on Asian and Low-Resource Language
Information Processing, vol. 23, no. 3, pp. 1-16, 2024.

Neo4j GraphAcademy. (2024, Jul.) Neo4j GraphAcademy - Build a
Neo4j-backed Chatbot using Python. Accessed jul. 26, 2024. [Online].
Available: https://graphacademy.neo4j.com/courses/llm-chatbot-python/

