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Abstract—This paper investigates the application of large lan- 
guage models (LLMs) for the automated translation and informa- 
tion extraction of access control policies from a natural language 
source. Prior research in this domain have predominantly relied 
on manual methods, traditional natural language processing 
(NLP), or a hybrid approach involving machine learning and 
artificial neural networks combined with NLP techniques. We 
demonstrate a significant advancement by leveraging the power of 
LLMs to achieve improved efficiency and accuracy in these tasks. 
Our study focuses on applying cutting-edge prompt engi- neering 
techniques designed to optimize LLM performance in the specific 
context of access control policy information extraction. The 
findings highlight the potential of LLMs to streamline the process 
of converting human-readable requirements into formal, 
machine-interpretable policies, ultimately contributing to the 
automation and security of access control systems. 

Index Terms—Natural Language Specification, Access Control 
Policies, Large Language Models (LLMs), Prompt Engineering, 
Attribute-Based Access Control (ABAC) 

I. INTRODUCTION 

Translating NLACPs to formal models presents challenges, 
primarily due to the ambiguity and variability inherent in 
natural language. Central to this translation is extracting ACP 
entities, such as subjects, objects, actions, and conditions. 

Historically, approaches to address these challenges have in- 
cluded manual extraction methods [1], the application of Nat- 
ural Language Processing (NLP) techniques for named entity 

recognition (NER) and relationship extraction (RE) [2]–[4], 
and advanced methods combining NLP with machine learning 

or deep learning to enhance accuracy and scalability [5], [6]. 
This study aims to extend the body of work on automating 
the extraction of access control policy entities [2], [3], [5]– 

[9] in natural language specification by leveraging Large 
Language Models (LLMs) to translate policies explicitly or 
implicitly stated in natural language text documents. These 
policies are often found across a myriad of documents, includ- 
ing but not limited to agile user stories, configuration manage- 
ment documentation, compliance documents, data classifica- 
tion policies, security policies, and standard operating proce- 
dures (SOPs). These documents collectively articulate access 
control policies necessary to maintain robust security systems. 
However, the traditional manual process of sifting through 
these diverse sources to extract relevant policy information is 
laborious, inefficient, and error-prone. As organizations strive 
for better governance and quicker responsiveness in a highly 
regulated environment, there is a pressing need to streamline 
this process. 

Herein lies the potential of leveraging large language models 
(LLMs) to automate the extraction and translation of access 
control policy expressions embedded within these disparate 
documents. This approach represents a paradigm shift that 
promises enhanced efficiency and accuracy over previous 
methodologies that heavily relied on manual efforts coupled 
with traditional Natural Language Processing (NLP) techniques 
and Deep Neural Networks (DNNs). The shift towards 
employing LLMs can significantly reduce the limi- tations 
encountered in earlier methodologies, paving the way for more 
intelligent and reliable access control mechanisms. Emerging 
advancements in artificial intelligence, particularly large 
language models (LLMs) such as OpenAI’s GPT, offer a 
transformative solution to this problem. Capable of un- 
derstanding and generating human-like text, LLMs present 



an unprecedented opportunity to automate the extraction and 
translation of natural language access control policies. These 
models can parse diverse document types swiftly, discerning 
contextual cues and translating them into structured access 
control rules with remarkable precision. 

This work investigates the use of in-context learning, specif- 
ically prompting, for the translation of Access Control Policies 
(ACPs) from natural language text documents. In-context 
training involves providing a few examples (the “prompt”) 
alongside the input text to guide the large language model 
(LLM) towards the desired output. This contrasts with fine- 
tuning, where the LLM’s weights are adjusted on a large dataset 
of labeled examples, improving its performance on a specific 
task. 

For instance, a prompt such as, “Given the policy statement, 
extract subjects and actions,” can effectively direct the LLM to 
identify and contextualize critical entities and relationships 
within natural language text. Prompting is particularly advan- 
tageous in this context because it allows for rapid adaptation to 
new document formats and terminologies without the extensive 
data requirements and computational costs associated with 
fine-tuning. This makes it an efficient approach for dynam- 
ically extracting entities and relation that we studied. 

This study proposes the use of state-of-the-art large language 
model (LLM) prompting techniques, specifically Program-of-
Thought (PoT), to efficiently extract policy enti- ties and 
relations from natural language specifications to an Attribute-
Based Access Control. Program-of-Thought incorpo- rates 
programming logic paradigms directly into the prompting 
process, allowing the LLM to interpret and manipulate the text 
with an understanding akin to computer programming. These 
methodologies offer significant advantages in understanding 
complex dependencies and relationships within policy texts, 
making them ideal for extracting detailed entities and their 
interrelations. 

The Program-of-Thought prompting technique can be read- 
ily adapted for other access control models like Role-Based 
Access Control (RBAC) and Resource-Based Access Control 
(ReBAC). For RBAC, the prompts can be modified to focus on 
extracting roles, permissions, and their assignments. Similarly, 
in ReBAC, the prompts can be adapted to extract resources, 
actions, and their associated permissions. 

To present the contributions of this work, we outline the key 
advancements as follows: 

 
1) We pioneer the application of large language models 

(LLMs) to extract access control policies articulated in 
natural language and convert them into formal access 
policy specifications. 

2) We employ cutting-edge prompting techniques to ef- 
fectively identify and extract entities and relationships 
within policy texts. 

3) We develop a synthesized access control corpus gener- 
ated by LLMs. 

II. RELATED WORK 

This related work section is divided into two parts: one re- 
viewing earlier studies that use previous approaches to extract 
access control policy information (entities and relationships), 
and the other examining research inspired by large language 
models to extract entities and relationships. 

A. Pre-LLMs: Extracting Entities and Relations 

Slankas et al. [7] introduced Access Control Relation Ex- 
traction (ACRE), a machine learning approach designed to ex- 
tract elements of Access Control Policies (ACP) from natural 
language documents. The ACRE process can be divided into 
two main phases: identifying ACP sentences and extracting 
ACP elements. In the identification phase, the authors ex- 
plored the potential of using words, their synonyms, parts of 
speech (POS), and named entities as markers to detect ACP 
sentences. For the elements extraction phase, they employed a 
bootstrapping method that relies on patterns derived from the 
dependency tree representation of sentences to extract instances 
of ACP accurately. An extension of the previous study, Slankas 
et al. [8] have tested the suggested method on extensive 
datasets gathered from five different policy data sources that 
have been referenced in earlier studies. During the identification 
phase, they utilized the K-nearest neighbor (K- NN) learning 
algorithm to distinguish between ACP sentences and other 
forms of sentences. 

Turner et al. [1] developed an assistance tool for authoring 
Attribute-Based Access Control (ABAC) policies that enables 
a security architect to set up an ABAC expression using a series 
of fields such as subject, subject attributes, object, and object 
attributes, among others. The tool accepts natural lan- guage 
ABAC policies that conform to these predefined fields. The 
goal is to offer a user-friendly, business-level environment for 
writing ABAC policies, while the application handles the 
conversion of these inputs into machine-readable ABAC rules. 
In contrast to our proposal, the authors method requires the 
manual extraction of information relevant to the ABAC rule 
from the natural language access control policy (NLACP). 
They took a manual approach and noted that automation of this 
task is possible. 

Narouei et al. [2] proposed a top-down role engineering 
approach to extract access control policies from unrestricted 
natural language requirements documents. They leverage nat- 
ural language processing techniques, specifically Semantic 
Role Labeling (SRL), to automate the extraction of these 
policies. This method aims to define roles and build a Role- 
Based Access Control (RBAC) system effect. Further study by 
Narouei et al. [5] present a policy development framework for 
Attribute-Based Access Control (ABAC) designed to automat- 
ically derive policies from freely structured natural language 
texts. Their approach involves a method for extracting policy- 
specific information using advanced deep neural networks, 
deep recurrent neural network (RNN), on a compilation of 
annotated dataset containing sentences sourced from actual 
policy documents. The trained deep recurrent neural network 



(RNN) distinguishes between sentences that include access 
control policies (ACP) and those that do not. 

Abdelgawad et al. [4] approach includes algorithms that 
utilize spaCy, a natural language processing library, to identify 
and extract entities and relationships from Access Control 
Policy (ACP) sentences, subsequently transforming them into 
the Next Generation Access Control (NGAC) model. For 
analysis purposes, they further translate this NGAC model into 
a Neo4j representation. 

B. Code-LLMs: Extracting Entities and Relations 

A Large Language Model (LLM) trained on extensive 
datasets of code and natural language documents can convert 
natural language instructions into structured code [10]–[12]. 
[13] shows that this ability to translate between language and 
code can serve as a bridge to connect language and semantic 
structure, which is crucial for tasks like semantic parsing 
and information extraction in NLP. Intuitively, mapping a 
semantic relation structure to code is more straightforward 
compared to natural language, which often requires careful 
prompt engineering [13]–[17]. Programming languages inher- 
ently represent complex and interdependent structures more 
effectively [18]. [19] propose CodeKGC, a type of Code- LLM 
that leverages code language models for generating Knowledge 
Graphs, to obtain better performance. 

In our CODE4POLICY prompt, we first translate the entities 
and relations into Python class definitions. Conditioned on 
these class definitions and the input sentence, we prompt LLMs 
to generate an instance of the relation class. From this 
instance, we can extract the predicted relation node in JSON 
format. This allows CODE4POLICY to handle multiple 
relationships between the same pair of entities as well as 
multiple entities within a single sentence. 

III. APPROACH 

Processing Access Control Policy expressions start with 
identifying relationships between core entities and extracting 
these entities. Relationships expressed in Access Control Pol- 
icy can be direct relationship such as ownership or parent- child 
(e.g., an employee can view their own payroll record) or 
indirect relationship such as through common attribute or role 
(e.g., a user is permitted to view a document if they belong 
to the same department as the document). 

Our research shows that using prompt methods, without al- 
tering parameters or retraining large language models (LLMs), 
is effective in recognizing and extracting entities and their re- 
lationships as described in an access control policy. This study 
employs zero-shot and few-shot prompt strategies, guided by a 
framework inspired by Wang et al. [13], and supplemented with 
guidelines adapted from the work of Sainz et al. [11]. Large 
language models (LLMs) have significantly improved the 
precision of information extracted from natural language 
documents. Nonetheless, it is imperative that we do not depend 
exclusively on these models’ outputs. It remains essential for a 
security administrator or another domain expert to validate the 
predictions made by the LLMs. 

 

 
Listing 1. Prompt Pattern for Extracting Access Control Policy Entities 

 
 
 

This method adopts a Python code-based format for both the 
input and output of the model. This technique offers a clear and 
human-readable structure while addressing many common 
challenges associated with natural language instructions. It 
allows any information extraction task to be represented in 
a consistent format. Inputs can be automatically standardized 
using Python code formatters like Black, resulting in well- 
organized output that is easy to parse. Additionally, most 
modern LLMs have been pre-trained on datasets that include 
code, indicating that these models are already familiar with this 
form of representation. 

Although for simplicity we have segmented the code4policy 
prompt into two sections corresponding to the Python classes 
for policy entities and relations, these two program fragments 
are combined into a single prompt payload for the model 
API call. The code listing 1 illustrates the three principal 
components of this format: schema definition, input text, and 
output annotations. 

The schema definition encompasses labels depicted as 
Python class (CyberEvent line 2), guidelines articulated within 
docstrings (line 4), and representative class member that 
includes the input are annotated as Python string (lines 8 - 12). 
Output is generated by the model and annotations are 
represented as a list (lines 15 - 19) of instances of the class 
defined on the schema definition part. 

The guidelines for the CyberRelation class provide an 
overview of the task, which involves identifying various types 
of relationships between policy elements (entities) within the 
context of a CyberEvent. These guidelines also list a predefined 
set of relationships between these policy elements. In 
accordance with the access control model, compliant class 

1 @dataclass 
2 class CyberEvent: 
3 

4 
 
 

 
5 

6 

7 
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11 
 
 

 
12 
 
 

 
13 

14 

15 

16 

17 

18 

19 

’’’ 
Defines a general entity within the 
cybersecurity context and categorizes entities 
based on their roles within relationships. 
’’’ 
Attributes: 
’’’ 

input_text: str - Textual description or 
identification of the cybersecurity event. 

user_attributes: List[str] - Roles or titles 
of users involved in the event. 

object_attributes: List[str] - 
Characteristics of data or objects involved. 

individual_users: List[str] - Identifiers or 
names of individual users mentioned in the 
context of the event. 

individual_objects: List[str] - Identifiers 
or names of individual objects or resources 
mentioned. 
’’’ 

input_text: str 
user_attributes: List[str] 
object_attributes: List[str] 
individual_users: List[str] 
individual_objects: List[str] 
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Fig. 1. An Architecture for Translating Natural Language Policy Expressions 
to NGAC Specification 

 

 
of relations generated by the CyberRelation class (lines 30 
& 29). 

The prompt structures showcased in listings 1 and 2 follow a 
zero-shot approach. This means no illustrative examples of 
policy expressions and expected results were provided to 
further guide the language model in identifying entities and 
relations. This initial prompt pattern will serve as a baseline for 
comparison, while a scaled version incorporating illustrative 
examples will be developed in our implementation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Listing 2. Prompt Pattern for Extracting Access Control Policy Relations 

 
 

 
members are formatted as strings, and the model’s output is 
presented as lists of relationships. 

The schema definition guidelines for the CyberRelation 
class, as detailed in listing 2, guide the model by specifying 
how to determine authorization and prohibition of CRUD op- 
erations through relationships extracted between policy entities 
(lines 7 - 16). Within this context, class members defined under 
CyberRelation are linked to instances of the CyberEvent class, 
from which CyberRelation inherits entities relevant to a 
particular relationship (lines 20 - 26). The outputs delineated by 
the CyberRelation class encompass the lists of entities sourced 
from the CyberEvent class and a list of dictionary 

IV. IMPLEMENTATION 

In the previous section, we introduced our proposed prompt 
technique, Code4Policy, to extract access control policy en- 
tities and relations. This section details our implementation 
process for translating these natural language expressions into 
National Institute of Standards and Technology (NIST) Next 
Generation Access Control (NGAC) policy specification. Our 
implementation focuses on utilizing a chatbot’s capabilities 
within a use case scenario, allowing an administrator to input 
natural language policy expressions into a web-based GUI. 
These inputs are then translated directly into NGAC policy 
specification. 

The chatbot representation for translating natural language 
policy expressions into NGAC specification was inspired by 
the Neo4j GraphAcademy [20], providing a robust foundation 
for our system’s architecture. To implement the graphical user 
interface (GUI), we leveraged Streamlit, an open-source 
Python framework tailored for data scientists and AI/ML 
engineers to craft dynamic data applications with minimal de- 
velopment overhead. Within this interface, users input Natural 
Language Access Control Policy text, and the system outputs 
an NGAC specification graph in the form of a Python Dictio- 
nary and Neo4j browser graphical dashboard. The extraction of 
NGAC policy elements and their relationships is handled by 
utilizing the OpenAI API. Once extracted, the information is 
translated into a policy graph, which is stored in a Neo4j 
database and simultaneously displayed on the chatbot interface 
as shown in figure 1. The following subsections presents a 
brief overview of NIST Next Generation Access Control, 

1 @dataclass 
2 class CyberRelation: 
3 ’’’ 
4 Defines relationships between two entities 

within the cybersecurity event context by 
leveraging the detailed context provided by the 
associated CyberEvent class. 

5 Each relationship is categorized based on 
predefined interaction types, which include: 
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25 
 
 
26 
 
 
27 

28 

29 

30 

‘r’ for read: Accessing information without 
modification. 
 ‘!r’ for deny read: Prohibiting read access to 
information. 
‘w’ for write: Modifying or adding information 

. 
‘!w’ for deny write: prohibiting the right to 

write operation 
‘x’ for execute: Performing operations or 

executing commands. 
‘!x’ for deny execute: Disallowing the 

permission to execute a resource or an entity 
‘c’ for create: Creating new entities or 

resources. 
 ‘!c’ for deny create: denying the authority to 
create new entities or resources 
‘d’ for delete: Removing or deleting entities 

or resources. 
‘!d’ for prohibiting delete: Revoking the 

right to delete an entity or a resource. 
’’’ 
Attributes: 
’’’ 
cyber_event: CyberEvent - Instance of CyberEvent 
from which this relation inherits context. 

relations: List[Dict[str, str]] - List of 
dictionaries, each representing a specific 
relationship instance: 
‘subject’ (str): Entity initiating the 

interaction. 
‘subject_type’ (str): Type of the subject 

entity (e.g., ‘user_attribute’). 
‘relationship’ (str): The type of interaction 

(characterized by the codes ‘r’, ‘w’, ‘x’, ‘c’, 
‘d’,‘!r’, ‘!w’, ‘!x’, ‘!d’). 
‘object’ (str): Entity that receives the 

action. 
 ‘object_type’ (str): Type of the object entity 
(e.g., ’object_attribute’). 

’’’ 

cyber_event: CyberEvent 
relations: List[Dict[str, str]] 
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delves into the Neo4j integration and chatbot logic used in 
this implementation. 

 
A. NIST Next Generation Access Control 

The NIST Next Generation Access Control (NGAC) frame- 
work, an instantiation of the Attribute-Based Access Control 
(ABAC) model, utilizes a Directed Acyclic Graph (DAG) 
to represent system authorization states. This DAG, referred to 
as the authorization graph, consists of five node types 
representing different access control policy entities: Users (U), 
User Attributes (UA), Objects (O), Object Attributes (OA), and 
Policy Classes (PC). These entities, collectively known as 
Policy Elements (PE), are connected through directed edges 
representing relationships defined by the access control policy 
expressions. These edges, termed Assignment, Association, 
and Prohibition, establish the logical connections between PEs, 
thereby defining the authorization state within the NGAC 
framework. 

Assignment relations provide a hierarchical structure by 
connecting these entities through conforming ordered pairs, 
establishing relationships like user to user attribute, object 
to object attribute, and attribute to policy class. Association 
relations, represented as weighted edges, define permissions, 
specifying which actions a user attribute can perform on an 
object attribute based on the assigned weight. Prohibition 
relations, also weighted edges, express denials by specifying 
which actions are forbidden from a user attribute on an object 
attribute. Finally, obligation relations, unlike other relations, 
are not part of the authorization graph but are dynamically 
triggered upon specific events, requiring actions to be per- 
formed. 

 
B. Neo4j Graph Database 

Neo4j is a graph database that stores and manages data 
in a natural, connected state. It utilizes a property graph 
approach, which optimizes both data traversal speed and 
operational efficiency. Beyond being a core database, Neo4j 
has evolved into a comprehensive ecosystem encompassing 
tools, applications, and libraries, enabling seamless integration 
of graph technologies within various working environments. 

Neo4j Cypher is a graph query language designed for modi- 
fying and retrieving data from Neo4j graphs. Inspired by SQL, 
Cypher emphasizes clarity and ease of use, allowing users to 
focus on what data they want rather than the technical details 
of retrieval. Users employ Cypher for all CRUD operations on 
their graphs, making it the primary interface for Neo4j. 

Cypher’s unique visual aspect allows users to match patterns 
and relationships through an ASCII-art-inspired syntax, where 
nodes are represented by rounded brackets and relationships by 
arrows labelled with squared brackets. This visual approach 
enables users to effectively draw graph patterns within their 
data. For example, the cypher command: 
CREATE (uai:admin)–[:{r, w}]–>(oaj:backupfiles), 
creates the nodes admin (user attributes) and backup files 
(object attribute), and an association relation between them 

with the read (r) and write (w) permissions are the weight of 
the relation. 

 
C. Chatbot Logic 

The chatbot’s core functionality revolves around translating 
natural language specifications into formal access control 
policies. This process utilizes a carefully crafted pipeline that 
leverages the power of large language models (LLMs) and 
integrates it with our own domain-specific knowledge. 

The chatbot acts as a wrapper for the OpenAI API, pro- 
viding a seamless interface for users. When a user enters a 
policy specification in natural language, the chatbot combines 
this input with a specially designed in-context learning prompt. 
This combined input serves as the argument for the OpenAI 
API call. The prompt is crafted using techniques aimed at 
guiding the LLM to extract relevant policy entities and their 
relationships. These entities correspond to the four NIST 
NGAC relations – Assignments, Associations, Prohibitions, 
and Obligations. 

The API call returns predicted entities and their relation- 
ships extracted from the user’s input. These predictions are then 
subjected to a rigorous validation process by an NGAC 
specification-checker within the chatbot logic. This checker 
ensures that extracted entities conform to the formal definitions 
of each relation. For instance, if the predicted relation is an 
association and the entities forming this relation are a pair 
of object attributes, the checker would flag a specification 
violation. Such violations are communicated back to the user 
through an informative exception message on the chatbot GUI. 

Upon successful validation, the predicted policy entities are 
integrated into the system. This integration occurs on two 
levels: an in-memory authorization graph is updated using 
Python modules, and concurrently, the Neo4j database graph is 
updated using Cypher queries. This simultaneous update 
ensures consistency and allows for real-time visualization. 
Users can observe the updated authorization graph directly 
on the chatbot GUI and can access the Neo4j database graph 
through the Neo4j browser. This visual feedback provides a 
clear and intuitive representation of the evolving access control 
policy, empowering users to understand and manage their 
security configurations. 

 

 
TABLE I 

SELF-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY 
DATASET 

 

Dataset  Relations  

 Assignment Association Prohibition Obligation  

Finance 32 26 11 8  

&  Policy Elements   

Human U UA OA PC  

Resources 12 17 33 2  



 
 

Fig. 2. A Sequence Diagram for a Large Language Model Synthesized Natural Language Policy Expressions 

 

V. EXPERIMENTAL SETUP 

In the previous section, we discussed the architectural 
components designed for translating natural language policies 
into NIST Next Generation Access Control (NGAC) speci- 
fications using a chatbot user interface. However, a notable 
challenge in this domain is the scarcity of publicly available 
natural language policy datasets. Such datasets are often 
kept proprietary due to the sensitive nature of authorization 
requirements. Moreover, existing datasets frequently require 
significant augmentation to form valid Attribute-Based Access 
Control policy expressions. Additionally, we compared our 
method with traditional plain language prompting, which 
simply converts the CyberEvent and CyberRelation classes into 
plain language descriptions and definitions. 

Previous studies [4], [6] have consistently highlighted these 
challenges and have resorted to augmenting existing datasets or 
creating self-synthesized datasets. In this work, we tested our 
proposed implementation on self-synthesized datasets and 
further evaluated its performance using datasets synthesized by 
large language models (LLMs). The following subsections de- 
tail our process for generating both self-synthesized and LLM- 
synthesized datasets, offering insights into our methodology 
and the specific considerations undertaken to ensure robust 
experimental evaluation. 

 
A. Self-Synthesized Dataset 

The basis of our self-synthesized dataset is an organization 
chart, closely resembling the hierarchical structure of the NIST 
authorization graph, which is articulated through as- signment 
relations. To streamline this corpus, we concentrated on 
synthesizing access policy expressions specifically for two 
departments commonly found in any organization: the Legal 
and Finance Departments. 

To construct meaningful policy expressions, we inferred user 
and resource attributes from job descriptions associated with 
each hierarchical position within the two departments. These 
attributes include roles, responsibilities, and resources specific 
to each job function. 

By decoding these attributes and considering the routine 
activities performed by individuals in given roles, we were able 
to generate precise policy expressions. These expressions 
systematically encapsulate the NIST relations - Assignment, 
Association, Prohibition, Permission, and Obligation. 

A precise breakdown of policy entities and relations derived 
from 45 policy expressions in our synthesized dataset is 
presented in Table I. This table illustrates the distribution 
and intricacies of each relation type, providing an empirical 
foundation for further exploration into synthesizing policy 
expressions using Large Language Models (LLMs). 

B. LLM-Synthesized Dataset 

The primary advantage of using an automated approach with 
LLMs is twofold. Firstly, it generates policy expressions that 
are free from the biases introduced by human authorship. By 
utilizing the expansive datasets on which LLMs are trained, we 
ensure that the synthesized policies contain natural context and 
relevant policy entities of interest. Secondly, it obviates the 
necessity of recruiting domain experts for manual creation of 
an extensive dataset of natural language policy expressions, 
thereby saving both time and resources. 

For this study, we have utilized the ChatGPT Playground to 
generate policy expressions. Notably, similar outcomes were 
observed when employing Google Gemini via Vertex AI 
Studio, underscoring the robustness and reliability of LLMs 
across different platforms. The sequence diagram in Figure 2 
encapsulates the comprehensive process for generating this 
LLM-synthesized natural language policy expressions dataset. 



  
 

Fig. 3. Academic Affairs: A Sub-tree of LLM Generated University of Texas 
at San Antonio, Texas, Employee Tree Hierarchy 

 

 
In the sequence diagram, interactions amongst three 

primary objects—client, GPT Playground, and OpenAI 
API—culminate in the creation of the LLM-synthesized 
dataset. A User (client) commence by accessing the web-based 
GPT Playground interface. Upon accessing it, the Playground 
provides three text fields: system prompt and user prompt 
fields for input instructions, and an assistant message field dis- 
playing the LLM-generated response. Through these editable 

prompts, clients can precisely guide the output of the large 
language model API call to obtain desired policy expressions. 
To illustrate the sequential process of using GPT Playground 

to generate natural language access control policy sentences, 
we outline the following steps: 

We first configured the large language model (LLM) with a 
system prompt to establish its role and context. The provided 

text was: You are a Senior database and security administrator 
for the University of Texas at San Antonio (UTSA). You 

will assist in the process of writing access control policy 
expressions for various units and departments the Institution 
The initial user prompt tasked the LLM with creating an 

organizational hierarchy for employees across all the depart- 
ments at UTSA. The text of the user prompt was: Create a tree 
hierarchy of the University of Texas at San Antonio employees 
across all departments/units. In response, OpenAI produced 
a simplified organizational tree hierarchy divided into major 
functional units. A subtree for the Academic Affairs Unit 
demonstrates this structure shown in figure 3. 

Next, we used iterative inputs for each subtree, directing the 
LLM to generate access control policies. The user prompt 
included instructions such as: For each employee position in 
the given unit tree hierarchy, write access control policy in 
terms of allowed and denied access to resources. The LLM 
responded with policy clauses formatted under headings for 
each employee position, listing specific allowed and denied 
resources. 

In the final step, we requested that the LLM generate co- 
herent sentences integrating both policy expression fragments 
and employee positions. The user prompt was structured to 
elicit this output: For each policy expression fragment and 
corresponding employee position, create a sentence. 

The resulting output transformed technical policy fragments 

Fig. 4. LLM-Synthesized Access Control Policy Fragments For A User 
Attribute 

 

 
into natural language statements, rendering them more acces- 
sible for human review and implementation. This methodical 
approach ensures that access control policies are precisely 
articulated while leveraging advanced language model capa- 
bilities for clarity and cohesion. 

Some may suggest that instead of using a series of steps, we 
could combine everything into one comprehensive prompt to 
achieve similar outcomes. However, it has been observed that 
this approach significantly reduces the number of policy 
expressions generated, and those that are produced tend to be 
excessively generalized. Rather than utilizing a programmatic 
method to execute the full sequence of LLM-Synthesized 
access control policies directly via the OpenAI developer 
interface, we opted to use the GPT Playground. This approach 
enables a user (client) to validate the LLM’s response at each 
step in the sequence for creating synthesized access control 
policies. Even with meticulously designed prompt messages, 
the LLM can occasionally produce suboptimal results. By 
involving a user mediator in this process, we can ensure 
that our evaluation of prompt techniques for extracting policy 
entities and relationships isn’t compromised by faulty data. 

 
C. NIST NGAC Prompt Constructs 

In Section V, we discussed adaptable, generic prompts for 
CoT and PoT approaches, applicable to any security model. 
The prompt constructs for these approaches include specific 
definitions to identify NGAC policy elements and extract their 
relationships. For example, the prompt pattern detailed in 

 

 
Fig. 5. LLM-Synthesized Access Control Policy Expressions After Integrating 
User Attribute and Policy Fragments 

Academic Affairs 
Provost 
Vice Provosts 

Colleges 
Deans 
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Students 

Students (All Colleges) 
Access to their own academic 
records, course ... 
Access to other students’ academic 
records 
Access to faculty or 
administrative ... 

Students (All Colleges) cannot access other students’ 
academic records. 
Faculty or administrative staff personal records or internal 
decision-making documents cannot be accessed by Stu- 
dents (All Colleges). 
Students (All Colleges) can access their own academic 
records, course materials, schedules, and grading infor- 
mation. 



 

 
 

Fig. 6. Graphical Representation of Self-Synthesized Natural Language 
Access Control Policy Translated to NIST Next Generation Access Control 
Specification 

expressions, stored within a graph database via neo4j. The two 
lower nodes in the graph represent the policy classes for the 
Legal and Finance departments, with assignment relations from 
user attributes depicted by greenish cyan nodes and gray nodes 
for object attributes. The user nodes are the upper shade of pink 
assigned to user attributes. 

We conducted an evaluation focused on extracting en- 
tities—user attributes and object attributes—and relations, 
including association, prohibition, and obligation, from the 
LLM-synthesized dataset using our proposed approach. It’s 
notable that the assignment relation was deliberately excluded 
from this evaluation, as it is inherently established through the 
tree hierarchy while synthesizing the dataset. 

 
TABLE III 

RESULTS OF THE PROPOSED (SCALED) CODE-OF-THOUGHT POLICY 

ENTITIES AND RELATIONS EXTRACTION APPROACH ON THE 
LLM-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY 

DATASET 

 
Dataset Model 

 
 

Relations 

 

 

 
 

two entities (user and object attributes), instructing the LLM 
to prefix the prohibited relation with an exclamation mark 

 
 

Baseline 

  

(!). Consequently, prohibitions like reading, writing, creating, code4policy  1.00 1.00 1.00 1.00 1.00 1.00 

deleting, and executing are represented as !r, !w, !c, !d, and !x, Relations 
Association Prohibition Obligation 

respectively. An obligation relation is defined as a conditional P R F1 P R F1 P R F1 

 
help the LLM accurately extract entities and relationships, 
which Neo4j then uses to translate natural language access 
control policy expressions into NGAC specifications. 

VI. RESULTS 

An implementation of the proposed architecture to translate 
a self-synthesized dataset into access control policies adhering 
to the NIST Next Generation Access Control (NGAC) spec- 
ification has been visualized using the neo4j browser, as dis- 
played in Figure 6. This visualization offers a clear graphical 
representation of the authorization state and structured policy 

 
 

TABLE II 
LLM-SYNTHESIZED NATURAL LANGUAGE ACCESS CONTROL POLICY 

DATASET FOR THE EXPERIMENT 

 
 

Dataset NLACP  
Attributes 

Associations Prohibitions Obligations 
User Object 

BoA, NA 220 70 359 127 46 47 

NHS 323 90 369 196 104 23 

UTSA 374 76 579 210 134 30 

Total 917 236 1,307 533 284 100 
 

 

P, R, F1 represent precision, recall and F1-score, respectively 
 

 

In evaluating the zero-shot baseline prompt for translating 
natural language specifications into access control policies, our 
observations yielded notable contrasts in performance metrics 
across different categories of entities and relations. Specifi- 
cally, the prompt demonstrated commendable proficiency in 
extracting user attribute entities, with an accuracy rate averag- 
ing over 90% as shown in Table III . This high success rate 
reflects the model’s robust capability in identifying user-related 
information within policy statements without prior training or 

clause that triggers an event response, consisting of an event 
 

National 
 

Basline 
 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

pattern followed by an independent clause. These definitions Health code4policy 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00 

Service     Attributes  

   User  Object   

  P R F1 P R F1  

 Baseline 0.88 0.86 0.87 0.32 0.27 0.29  

 code4policy 1.00 1.00 1.00 0.99 0.99 0.99  

     Relations    

Association Prohibition Obligation  

P R F1 P R F1 P R F1  

University of Texas Baseline 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  

at code4policy 0.99 0.98 0.98 1.00 1.00 1.00 1.00 1.00 1.00  

San Antonio      Attributes      

   User     Object    

  P R  F1 P  R F1   

 Baseline 0.94 0.92  0.92 0.34 0.28 0.30   

 code4policy 1.00 0.99  0.99 0.99 0.99 0.99   

Section V is sufficient to extract an association relationship 
Association 

P R F1 
 

P 

Prohibition 

R 
 
F1 

Obligation

P R 
 

F1 

and its entities, such as user and object/resource attributes. Bank Baseline 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moreover, the prompt pattern was adapted to define prohi- of code4policy 
bitions explicitly: a prohibited or disallowed action between America, NA 

1.00 0.98  0.99 
 
 

User 

1.00 1.00 

Attributes 

1.00 1.00 
 
 

Object 

0.99 0.99 



contextual fine-tuning. 
However, the model’s performance markedly declined in the 

extraction of object attribute entities and the delineation of the 
three critical relations (Associations, prohibitions, and 
obligations). Analysis revealed that this discrepancy largely 
arises from the inherent complexity and structure of object 
attribute expressions within policy language. 

A significant portion of these expressions includes qualifiers 
and descriptors that provide contextual nuances to the object 
attributes. For instance, a natural language policy might de- 
scribe an object with elaborate compound phrases such as 
“Financial records unrelated to medical treatments” where 
”unrelated to medical treatments” functions as a descriptor and 
“Financial records” as the core object attribute. The zero-
shot model, however, frequently misinterprets these com- 
pound phrases, often extracting unexpected text fragments that 
amalgamate both qualifiers and descriptors as singular object 
attributes. This leads to a proliferation of inaccurate and 
semantically inappropriate object entities in the output. 

Furthermore, the complexities inherent in relational con- 
structs within natural language policies exacerbated the 
model’s challenges. Relations among entities are dependent on 
subtle syntactic and contextual indicators. The zero-shot 
prompt failed to make any correct predictions for these three 
relations. The model not only struggled to reliably identify and 
categorize these relations but also produced inconsistent and 
incorrect extractions. As a result, this significantly compro- 
mised the overall reliability of the zero-shot approach when 
applied to the task of translating comprehensive access control 
policies. 

The zero-shot performance results were extremely poor, but 
when employing the scaled version of the model (code4policy) 
with a few-shot learning approach that included three illustra- 
tive examples of prohibition relations, we observed significant 
improvements across all three types of policy relations. This 
nearly flawless performance of the scaled model can likely 
be attributed to the fact that the datasets were synthesized by a 
large language model (LLM), while the in-context training 
examples were drawn from our self-synthesized dataset. 

VII. LIMITATIONS 

While this study represents a significant step towards devel- 
oping a robust chatbot for translating natural language access 
control policies through the use of large language models 
(LLMs), several limitations must be acknowledged. 

Firstly, the architecture proposed in this work supports only 
single-turn tasks. This means it focuses on translating one 
or more natural language access control policy expressions 
in a single interaction to the NIST Next Generation Access 
Control (NGAC) specification. Single-turn interactions are less 
dynamic and do not capture the iterative nature of real-world 
policy management scenarios. Future iterations need to exploit 
the multi-turn dialogue capabilities of platforms like the Ope- 
nAI API. This would enable more complex interactions such as 
refining initial translations, handling follow-up questions, and 
managing iterative updates based on historical context. 

Another limitation is the current approach’s restriction to 
translating policies with distinct relations among policy el- 
ements. Attribute-Based Access Control (ABAC) is highly 
expressive and often involves complex policy expressions that 
embed multiple types of relations within a sentence, such as 
assignments and associations among policy elements. Although 
our proposed method offers a foundation for trans- lating these 
relationships, it does not fully accommodate the interwoven 
and multifaceted relations described in more complex access 
control policies. This constraint could limit its applicability in 
more sophisticated or nuanced scenarios. 

Moreover, there is a necessity to enhance the mechanism for 
real-time policy queries and updates. The future work aims to 
leverage chat history for maintaining context across multiple 
interactions, which would facilitate real-time adjust- ments and 
queries concerning policy statuses. However, the current 
system lacks this dynamic adaptability, potentially constraining 
its effectiveness in environments where policy conditions 
frequently change or need real-time verification. 

Finally, another important limitation is the comprehensive- 
ness of failure handling mechanisms. When policy translations 
fail or produce ambiguous results, there is currently no robust 
system to manage these exceptions autonomously. Future work 
would need to incorporate algorithms that not only identify 
failed translations but also attempt automated corrections or 
seek clarifications from users to ensure higher accuracy and 
reliability. 

 
VIII. CONCLUSION 

This paper investigates the application of Large Language 
Models (LLMs) in translating Natural Language Access Con- 
trol Policies (NLACPs) into formal access control specifi- 
cations. The inherent ambiguities and variability of natural 
language have historically posed significant challenges in 
accurately extracting ACP entities. 

Through our study, we make notable contributions to this 
domain by pioneering an advanced automated method 
leveraging LLMs. We implemented state-of-the-art prompting 
techniques tailored to effectively parse policy texts for en- tity 
and relationship extraction. Furthermore, we developed a 
synthesized access control corpus generated through LLMs to 
support our approach. Our empirical results reveal that the 
code4policy (scaled) models achieve remarkable precision in 
entity prediction within policy expressions—each attaining an 
accuracy of 99.9%. However, differences emerge when evalu- 
ating relationships between entities. Specifically, the baseline 
model underperformed in zero-shot settings for association, 
prohibition, and obligation due to insufficient context within 
prompts. 

Remarkably, enhancing the baseline model with few-shot 
learning by incorporating illustrative examples substantially 
improved relationship extraction accuracy across all pol- icy 
types. This improvement underscores the importance of 
context-rich prompts when dealing with complex natural lan- 
guage expressions, particularly those related to prohibitions 



that exhibit conflicting segments suggesting both access denial 
and conditional approvals. 

Our findings highlight the efficacy of LLMs in navigating 
the intricacies of NLACPs and present a significant step toward 
fully automating the translation of natural language policies 
into formal access control models. Future research should focus 
on refining contextual understanding within these models to 
further enhance relationship extraction accuracy and address 
lingering issues of ambiguity in complex policy expressions. 

Through continued advancements in this field, we aim to 
equip organizations with robust tools for more efficient 
governance and regulatory compliance in managing access 
control policies articulated in everyday language. 
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