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Abstract—Deep learning-based RF fingerprinting
(DRFF) systems have gained prominence for their
effectiveness in wireless device authentication based
on unique RF hardware features in wireless signals.
However, the inherent vulnerabilities of deep learning
(DL) models make DRFF systems susceptible to DL
attacks tailored for RF fingerprinting. In this paper, we
present W-MIA, the first practical label-only member-
ship inference attack (MIA) against DRFF systems. W-
MIA can passively eavesdrop on RF signals to construct
a shadow model and perform MIA covertly. Addi-
tionally, it can enhance attack efficacy through low-
rate tailored active interactions with DRFF systems.
We also propose a simple yet effective countermea-
sure against W-MIA. Extensive experiments confirm
W-MIA’s high attack efficacy in a label-only setting,
achieving a maximum AUC of 0.81, comparable to
the latest MIA against DRFF, which assumes a more
knowledgeable adversary. Furthermore, our proposed
defense matches the performance of existing defenses
while minimizing usability loss in DRFF systems.

Index Terms—RF fingerprinting, deep learning,
membership inference attack, wireless security.

I. INTRODUCTION

Deep Learning-based RF Fingerprinting (DRFF) [1]-[4]
is promising for wireless device authentication by utilizing
unique signal distortions caused by on-device RF chip
imperfections. Fig. 1 shows a typical DRFF system that
comprises two phases. In the enrollment phase, a system
server collects RF Fingerprinting (RFF) samples from
each legitimate device to form a training dataset. These
samples are then used to train a DRFF-DNN model, which
is a multi-class classifier with each class corresponding to a
unique device. In the authentication phase, a verifier em-
ploys the DRFF-DNN model to classify the RFF samples
emitted by a claimant, determining whether they match
the alleged device. Only upon successful authentication
can the claimant gain access to protected system resources
or engage in subsequent communications with the verifier.
The verifier can take various forms in different application
contexts, such as an access point, gate-control device, or
even a regular device similar to the claimant. Since RFF
samples are extracted from standard wireless transmis-
sions, the DRFF-based authentication process can be one-
time or continuous, and one-way or bidirectional.

In this paper, we investigate the vulnerability of DRFF
to the Membership Inference Attack (MIA) [5]-[8], a
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Fig. 1: DRFF-based wireless authentication.

known privacy threat against deep learning (DL) models.
In the DRFF context, an adversary launches the MIA to
determine if an RFF sample, captured from a legitimate
device during the authentication phase, is present in the
training dataset of the target DRFF-DNN model. During
authentication, legitimate devices emit RFF samples that
include both training and non-training samples, hereafter
referred to as “member” and “non-member” samples of
the training dataset, respectively. These samples can vary
due to factors such as channel conditions, device locations,
and measurement time. However, all can be classified into
the same legitimate device by the well-trained DRFF-
DNN model. The MIA is feasible because the DRFF-
DNN model tends to overfit member RFF samples, re-
sulting in observable classification outcomes visible to the
adversarial sniffer. A successful MIA poses two primary
threats to DRFF-based wireless authentication: 1) en-
abling attackers to mimic member RFF samples to bypass
the authentication system [3], [9], and 2) significantly
improving the success rate of other attacks [10]-[13]. For
example, since member samples are farther away from
the decision boundary than non-member samples in the
DRFF-DNN model, the adversary has a higher chance of
successfully impersonating a legitimate device by mim-
icking its member RFF sample inferred under the MIA.
This is because the adversary’s well-crafted mimicry of a
member RFF sample is more likely to remain within the
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victim device’s decision region in the DRFF-DNN model,
even when influenced by dynamic wireless channels.

Implementing a practical MIA against DRFF is notably
challenging due to three factors. Firstly, attackers often
lack comprehensive knowledge of the DRFF-DNN model’s
architecture and parameters. Secondly, to avoid detection,
attackers must limit their forged inquiries to the DRFF
system. Thirdly, such requests typically yield basic “label-
only” information, indicating merely the (il)legitimacy of
the claimant. The attack reported in [14] is the only MIA
targeting DRFF. However, this attack assumes that the
adversary knows the classification scores output by the
DRFF-DNN model for each claimant under sniffing,
rendering it ineffective when this assumption does not hold.

To address these challenges, we propose W-MIA, a
practical MIA against DRFF systems. W-MIA creates an
imitation of the target DRFF-DNN model, referred to as a
shadow model, which is used with classic MIA techniques to
infer membership information. The attacker obtains the
shadow model through two steps: Passive W-MIA (Step 1)
and Active W-MIA (Step 2). Initially, the attacker
passively observes the verifier’s responses to authentication
requests and trains a preliminary shadow model
accordingly. Then, the attacker actively forges re- quests to
the verifier to gather additional information for refining the
shadow model. Active W-MIA involves adver- sarial
perturbation generation for request forgery, allowing the
attacker to obtain comprehensive information on the
DRFF-DNN model from each authentication request. This
approach results in a high-quality shadow model with
minimal requests, making the MIA more stealthy. In
contrast to the state of the art [14], W-MIA only assumes
that the adversary can passively observe the (il)legitimacy
of a claimant given by the DRFF-DNN model, based on
subsequent communications between the verifier and the
claimant. This assumption is relatively easy to satisfy,
making W-MIA a more practical threat against DRFF.

We evaluate W-MIA using a simulated DRFF system
and a public RF fingerprint dataset. W-MIA achieves AUC
scores of 0.75 and 0.81 in passive and active modes, respec-
tively. These scores are comparable to the AUC score of
0.83 achieved by the prior work [14], which nevertheless
assumes a much more informed attacker.

We propose selective response as a simple yet highly
effective countermeasure against W-MIA. It functions by
allowing the verifier to selectively ignore requests from
enrolled devices. This disrupts the attacker’s information
gathering in both steps of W-MIA, thereby preventing the
training of a high-quality shadow model. Additionally, we
analyze the outputs of the DRFF-DNN model to identify
requests with minimal impact on system usability. Our
evaluation confirms the effectiveness of selective response.
It successfully reduces the AUC of active W-MIA from 0.81
to 0.69, accompanied by only a slight increase in the
false-negative rate (FNR) from 2% to 9%. In contrast,

some known MIA defenses, such as adversarial regular-
ization (AR) [15], increase the FNR to 21% or more to
mitigate W-MIA.

The paper is structured as follows. §II presents sys- tem
and adversary models. §III and §IV detail passive and
active W-MIA designs, respectively. §V presents our
countermeasures against W-MIA. §VI demonstrates ex-
perimental results. §VII discusses related studies. §VIII
concludes this work.

II. SYSTEM AND ADVERSARY MODELS
A. System Model

W-MIA targets a general DRFF-based wireless authen-
tication system, as depicted in Fig. 1. This system consists
of an enrollment phase, where the RF fingerprints of
legitimate devices are registered, followed by an authen-
tication phase, where a device’s RF fingerprint is verified to
confirm its alleged identity. While W-MIA can work with
arbitrary RF fingerprints, for ease of illustration, we
assume WiFi-based RF fingerprints in this paper.

Enrollment Phase. This phase occurs in a controlled and
secure environment without potential attackers. Let’s
assume that N legitimate devices are enrolled in the
system. Each device, denoted by i € [1, N], transmits a
specified number of regular WiFi packets from different
locations and at various times to the system server. In
existing DRFF systems [1], [3], [9], [16], the server com-
monly extracts the complex-valued I/Q data containing
the preamble of each captured WiFi packet and tags them
with the device ID (MAC address). Either the raw I/Q
data or their enhancements to minimize channel-
dependent features [1], [3], [9] carry the unique RF fin-
gerprint of the corresponding device and are referred to as
an RFF sample for DRFF systems Let D, denote the set of
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where each RFF sample is called a member sample

The server then uses the training dataset 2 to train a
DRFF-DNN model, denoted as M, employing any feasible
DNN architecture such as those used in [1], [3], [9], [16].
M operates as a multi-class classification system, which
provides either an enrolled device ID or “unknown” as
output for any input RFF sample.
Authentication Phase. Each authentication session
involves a verifier and a claimant, where the claimant’s
alleged device ID needs verification. The claimant can
be any WiFi device, while the verifier may be an access
point, gate-control device, or a WiFi device similar to
the claimant. It is assumed that the verifier has securely
acquired the DRFF-DNN model M from the server. From
each WiFi packet sent by the claimant, the verifier extracts
one RFF sample, which is then processed by M. If M
outputs a device ID that matches the alleged one, the
claimant passes the authentication; otherwise, it is con-
sidered illegitimate. Only legitimate claimants are allowed
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Fig. 2: Two-stage W-MIA diagram.

to enter a gated facility, access network resources, or
engage in subsequent communications with the verifier. An
authentication session may fail due to signal distortions or
model classification errors, in which case the claimant typ-
ically resubmits its authentication request up to a certain
threshold. Since RFF samples can be verified on a per-
packet basis, the authentication session can be one-time
or continuous. Authentication can also be bidirectional,
with the verifier and claimant switching roles. For clarity,
we assume a very useful scenario where the verifier acts as
an access point, continuously authenticating RFF samples
from the claimant throughout the communication session.

B. Adversary Model

W-MIA aims to determine whether an RFF sample
belongs to the training dataset 2. We make the following
assumptions about the attacker’s capabilities. First, the
attacker can place a spy RF monitor near the verifier
to intercept WiFi packets during authentication. This is
feasible because, unlike the enrollment phase which occurs
in a controlled and secure environment, the authentica-
tion phase typically takes place in an open and insecure
wireless environment, providing ample opportunities for
adversarial packet interception and injection. Second, the
attacker can decode and access unencrypted data, espe-
cially the device ID, exchanged between the verifier and
the claimant. Third, the attacker can generate arbitrary
WiFi packets with minimal distortion using software-
defined radios [3]. Additionally, the attacker has label-
only access to M: they can impersonate legitimate devices
to submit forged authentication requests encompassing
various RFF samples to the verifier and observe their
responses. However, the attacker lacks knowledge of M’s
architecture and internal parameters, thus implementing
a label-only black-box MIA [5]-[8].

I1I. PassivE W-MIA

In this section, we present the design of passive W-
MIA, the initial phase of W-MIA. Passive W-MIA in-
volves compiling a shadow dataset 27 to train a shadow
model M’, which mimics the target DRFF-DNN model
M. Subsequently, the attacker may optionally perform
membership inference to gain knowledge about M.

A. Shadow Dataset Generation

We employ a passive, query-free method to generate
D’ Our method capitalizes on the fact that the verifier

typically responds only when M successfully validates the
association of the embedded RFF sample in the claimant’s
message with the alleged device ID. Consider an arbitrary
claimant, say the enrolled device 7, whose ID is denoted by
l;. Assume that the attacker can deploy a passive sniffer
near the verifier to intercept all the packets between the
verifier and claimant 7. Since the packet preamble and [;
are usually unencrypted, the attacker can easily extract
one RSS sample, denoted by f;, from each packet arriving
from device i. If the verifier responds to claimant i’s
packets, the attacker adds (f;,[,) to D.. Otherwise, the
attacker discerns that the DRFF-DNN model M classifies
f; as “unknown” or associates it with an enrolled device
other than [;. Without further information, the attacker
simply adds (f;, “unknown”) to D..

There are two important points to note. First, the at-
tacker only needs to sniff RSS samples from the legitimate
devices they are interested in targeting with the MIA. In
other words, 2 does not need to include RSS samples
from all legitimate devices. Second, 2D’ may contain both
member and non-member RSS samples of the targeted
legitimate devices. Our evaluations in §VI show that the
attacker only needs to sniff a small percentage of member
RSS samples from a legitimate device, or even only its
non-member samples, for a sufficiently effective MIA.

B. Shadow Model Training

The attacker proceeds to build the shadow model M’
using 2. Despite being unaware of the exact architecture
of the target model M, the attacker can still utilize DNN
architectures proven effective in RF fingerprinting. In this
study, we assume that the attacker uses D’ to train three
candidate shadow models based on Homegrown [1], Oracle
[3], and ResNet [1], respectively. The candidate model with
the highest accuracy is chosen as M’.

C. Membership Inference on M’

The attacker can perform membership inference with
M’ to gain insights into M. This process is akin to a white-
box W-MIA because the attacker has complete knowledge
of M’. In W-MIA, the attacker uses the cross-entropy loss
[6] to distinguish between member and non-member RSS
samples for M with M’ instead. Typically, M exhibits
higher confidence in classifying member RSS samples,
resulting in lower cross-entropy loss values. Conversely,
the loss is higher for non-member RSS samples. We expect
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the same result with its close imitation, M’. To determine
if a newly sniffed RSS sample (f,,[,) is a member sample of
M, the attacker inputs f, into M’ and calculates its
cross-entropy loss. (f;,1,) is classified as a member sample if
its cross-entropy loss value is below a predetermined
threshold, and as a non-member sample otherwise.

IV. ActivE W-MIA

Active W-MIA involves refining the shadow model M" to
reduce its differences from M, thereby enhancing the
accuracy of membership inference. In this process, the
attacker actively submits fabricated packets containing
specially crafted RFF samples to the verifier and adjusts
M’ based on the verifier’s responses. The refined shadow
model is still referred to as M’ for simplicity. Active W-
MIA involves three main steps illustrated below.

A. Adversarial RFF Sample Generation

Effective model tuning requires RFF samples that ex-
hibit different classifications between M’ and M and are
near the decision boundaries of both models. We first
obtain some candidate samples through the Basic Iterative
Method (BIM) [17], a popular method for adversarial
perturbation generation that demonstrates superior per-
formance in our evaluations compared to other methods.

For each RFF sample f € D’ the attacker aims to gen-
erate a minimal perturbation e such that M’ (f +¢) =1,
where I = M’(f), and [, represents every legitimate device
class other than [. We refer to f+ € as an adversarial RFF
sample, denoted as f,. Specifically, the attacker iteratively
adjusts € until f + € is classified as the target class [, by
M’. In each iteration, the attacker updates € as follows:

€:=¢e—a- sign(VL(f +¢l,)). (1)

Here, £(-) represents the loss function used in training
M’. The term V. L(f + ¢€,1,) computes the gradient of
the loss function with respect to the input to M’. The
sign(-) function creates a matrix with elements set to 1 or
-1, corresponding to the signs of the elements in the input
matrix. The scaling factor « is fixed at 0.0001, an empir-
ical value found to be very effective in our evaluations.
Importantly, if the attacker cannot achieve an effective
perturbation within a threshold number of iterations (40
in our evaluations), they consider the attempt unsuccessful
and proceed to the next instance, where another legitimate
device class other than [ becomes the target class for .
Given N legitimate devices in the system, the adversary
can generate up to N —1 adversarial RFF samples for each
RFF sample in the shadow dataset D7.

B. Tuning Dataset Generation

We then employ a two-step process to generate a tuning
dataset, denoted by D;, by selecting adversarial samples
classified differently by M’ and M. First, the attacker
estimates the channel condition, denoted as H, to the
verifier by collaborating with their spy monitor near the

verifier. This step is crucial to mitigate the channel impact
on the RFF sample extracted by the verifier. Second, for
each adversarial sample (f,,[,), the attacker impersonates
device [ to submit an authentication request, embedding
f./H as the RFF sample, where | denotes the original
device ID (as classified by M) used to generate (f,,(,). If
the verifier responds as if receiving a legitimate request,

the attacker can infer that M associates f, with the alleged
device [, thus adding (f,,l) to Dj. Otherwise, M either
associates f, with devices other than [ or classifies it as
“unknown”, in which case f,is excluded from D;.

C. Shadow-Model Tuning

Finally, the attacker fine-tunes the shadow model M’
using D; to further reduce its dissimilarity from M. The
model-tuning process consists of multiple epochs. Within
each epoch, the attacker iteratively employs every data
record in 2; to adjust the parameters of M”. Specifically,

for a data record (f,, l,), the internal parameters of M’ are
updated as follows:

0p =0, + XV L0, fos i) (2)

Here, 0; represents the internal parameters of M.
Vg £(04, fo:1;) computes the gradients of #; with respect
to the loss value. The learning rate A and the total number
of epochs are empirically determined through experiments,
as detailed in §VI.

V. COUNTERMEASURE

We propose selective response to defend against W-
MIA. The core idea is simple yet effective: the verifier
deliberately responds oppositely to certain RFF samples,
introducing confusion for potential attackers. Specifically,
the verifier ignores some valid RFF samples to induce
noise in the attacker’s shadow and tuning datasets, thus
hindering the development of an accurate shadow model.

To minimize disruption to the normal wireless authenti-
cation process, our system only rejects RFF samples that
incur high-loss values upon validation by the target DRFF-
DNN model M. Prior research indicates that RF finger-
prints validated by M with low loss values typically occur
in stable, low-noise settings [3]. Rejecting such requests
could lead to the immediate resubmission of a very similar
RFF sample from the same authorized device. Since the
subsequent RFF sample provides comparable data for
membership inference, it too should be rejected. If this
process continues, it might result in the unjustified denial
of access to the enrolled device for a prolonged duration.
To mitigate this, we propose discarding only those valid
requests whose RFF samples achieve a loss value exceeding
a predefined threshold 7. In deep learning, these high-loss
RFF samples are often indicative of outliers, mislabeled
data, or particularly challenging cases for the model to
learn. It is thus more difficult for the adversary to distin-
guish those deliberately rejected legitimate high-loss RFF
samples from truly illegitimate ones. The determination of
7 is based on an experiment demonstrated in §VI.
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VI. PERFORMANCE EVALUATION

A. Experimental Setup

1) Datasets: We use two datasets to evaluate W-MIA:

a MATLAB-simulated dataset denoted by D, and a public
dataset denoted by D, [1].
MATLAB-simulated Dataset D;. We simulate a
DRFF-based wireless authentication system using the
MATLAB Communication Toolbox. Our simulation in-
volves 21 virtual RF devices: one designated as the verifier,
19 as legitimate devices, and an additional one that mimics
an illegitimate device generating a substantial number
of negative RFF samples. Each virtual device, except
the verifier, is configured with a unique RF fingerprint,
represented by its phase shift, carrier frequency offset, and
DC offset. These parameters for each virtual device are
randomly sampled from [0.01°, 0.3°] for phase shift, [-4
ppm, 4 ppm] for carrier frequency offset, and [-50 dBc, -
32 dBc] for DC offset. We use the Rayleigh channel model
to simulate the multipath channel between each device
and the verifier. Our simulations involve one Line-of-Sight
(LOS) path and two Non-Line-of-Sight (NLOS) paths.
FEach path is assigned specific propagation delays and path
gains. To create a dynamic environment, we randomly
select the path delays and gains for each transmission
between each device and the verifier.

Using this MATLAB simulator, we collect 5,000 RSS

samples from each non-verifier virtual device and 100,000
in total, corresponding to their member samples. These
100,000 samples constitute the dataset used to train the
target DRFF-DNN model M. Furthermore, we employ the
same simulator for the authentication phase of the wireless
authentication system for passive W-MIA evaluation. For
the evaluation of active W-MIA, we also use this simulator
to simulate the request-forgery process.
Public Dataset D,. We also evaluate W-MIA with a
public dataset [1], collected in a real RFF system based
on USRP devices. From this dataset, we select 21 devices:
one serving as the verifier, 19 as legitimate devices, and
the last one as an unknown device that generates negative
RFF samples. During data collection, each non-verifier
device transmits the same WiFi frame containing 288 I/Q
samples, which form one RFF sample of the device when
received by the verifier. The dataset for 20 non-verifier
devices comprises 8.05 x 10° RFF samples collected in var-
ious environmental settings. We randomly select 100,000
samples for training the target model M, including 5,000
from each device. It’s important to note that this dataset
is suitable only for passive W-MIA evaluation.

2) Target DRFF-DNN models: Our evaluation uses
three DRFF-DNN model architectures that have been
proven effective: Homegrown [1] (C;), modified Oracle [3]
(C5), and ResNet [1] (C5). We use datasets D; and D, to
train these models, generating six target models in total.
The model training is performed using TensorFlow and
involves cross-validation to prevent overfitting.

3) Performance metric: The main performance metric
we use is the AUC score, commonly employed in member-
ship inference assessment. It measures the area under the
ROC curve, depicting the relationship between the true
positive rate (TPR) and the false positive rate (FPR). The
AUC score ranges from 0.5 to 1, with higher scores
indicating better performance.

We follow the following steps to calculate the AUC
scores. For the evaluation of W-MIA on a target model, we
generate an evaluation dataset comprising 1,000 mem- ber
RFF samples of the model and 500 non-member RFF
samples. W-MIA utilizes cross-entropy for mem- bership
inference. Consequently, we examine various en- tropy
threshold values and compute the corresponding true
positive rate (TPR) and false positive rate (FPR),
defined as TPR = de FPR = F%Nwec— tively.
Here TP represents the number of member samples
correctly identified; FP represents the number of non-
member samples incorrectly identified as members; TN
represents the number of non-member samples correctly
identified as non-members; and FN represents the number
of member samples incorrectly identified as non-members.
Subsequently, we use the scikit-learn Python package to
derive the AUC score.

B. General Ezperimental Process

This section outlines a general process for implementing
and evaluating W-MIA. We apply W-MIA to different

settings, encompassing both passive and active W-MIA.
1) Passive W-MIA evaluation: Given a target model

M, we collect the shadow dataset as follows. For M
trained on dataset D, we utilize the MATLAB simulator
to simulate authentication phases using 20 virtual devices,
generating RFF samples under varying channel conditions.
For M trained on dataset D,, we randomly select RFF
samples for each device from the original dataset [1], which
are not part of D,. In both cases, only RFF samples
that pass M’s classification are considered non-member
samples of the corresponding device and are consequently
added to the shadow dataset. Since the shadow dataset
does not include any member samples, it amounts to
evaluating the worst-case performance of W-MIA.

We then train two candidate shadow models using
different DNN architectures from the target model M. For
example, if M uses architecture C;, we create candidate
shadow models based on C, and Cj. This aligns with the
assumption that a label-only attacker is unlikely to know
M’s exact architecture. The candidate model with the best
accuracy on the shadow dataset is selected as the final
shadow model. Finally, we perform a white-box MIA on
the shadow model and calculate its AUC score.

2) Active W-MIA evaluation: We evaluate active W-
MIA using a MATLAB simulator, excluding the public
dataset because it cannot support request forgery. We ini-
tiate the process by generating adversarial perturbations
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on RFF samples within the shadow dataset, resulting in a
collection of adversarial RFF samples.

Next, we simulate the RF channel between the attacker
and verifier to enable request forgery. For each adversarial
RFF sample, we simulate a channel using six randomly
selected parameters, including delays and gains for the
three communication paths, to model the interaction be-
tween the attacker and verifier. The resulting channel state
serves as the outcome of the channel sounding process. To
introduce channel variations, we perturb the six channel
parameters, obtaining the actual channel state when the
adversarial RFF sample is transmitted. Each parameter is
scaled by a factor of 1 + r, where r is a random value
within the range [-b, b]. We explore different values of b to
simulate various levels of environmental variation. The
collected adversarial RFF samples, along with their
corresponding device classes classified by M, compose the
tuning dataset. Finally, we fine-tune the shadow model
using this dataset and conduct the white-box MIA to
calculate its AUC score.

C. Evaluation Results for Passive W-MIA

This section evaluates the impact of shadow datasets on
passive  W-MIA and experimentally demonstrates the
significance of shadow model selection.

1) Impact of shadow dataset size: The size of the shadow
dataset is critical for W-MIA performance, so we assess its
impact through experiments. Specifically, we conduct pas-
sive W-MIA on six target models, corresponding to the two
datasets and three architectures. For each target model, we
collect shadow datasets of varying sizes to perform the
attack, and the corresponding AUC scores are shown in
Fig. 3. Generally, a larger shadow dataset results in a
higher AUC score. Notably, a shadow dataset comprising
20,000 RSS samples can achieve an AUC score higher than
0.7, a commonly used threshold to indicate effective
membership inference [6]. Moreover, further increasing the
shadow dataset size beyond a certain point (50,000 for D,
and 35,000 for D,) does not yield significant improvement.
Therefore, we have chosen to use a shadow dataset size of
35,000 for all the subsequent experiments in this section.

We also highlight the practicality of sniffing enough RSS
samples for passive W-MIA. Take 802.11n as an example. A
normal WiFi transmission speed typically ranges from
about 6,250 to 25,000 frames per second. In our target
scenario, where the verifier continuously verifies the RFF of
an alleged device on a per-frame basis or every few frames,
it would take the adversary well below one second to
overhear enough RFF samples from any target victim
device to establish the shadow dataset.

2) Impact of shadow model selection: This experiment
aims to confirm the significance of shadow model selection.
We conduct passive W-MIA on six target models and
evaluate the AUC scores and classification accuracy with
their respective shadow dataset. In addition, we evaluate
MLP and Random Forest as candidate shadow models

for comparison, denoted as C, and Cj, respectively. The
results are presented in Fig. 4. As expected, shadow mod-
els designed specifically for RFF significantly outperform
those based on general ML architectures. Furthermore,
there is a strong correlation between the candidate shadow
model’s accuracy and its AUC score. Specifically, candi-
date models with the highest accuracy also achieve the best
AUC scores, supporting our selection principle.

D. Evaluation Results for Active W-MIA

1) BIM vs. FGSM for adversarial perturbation: The most
popular methods for adversarial perturbation gen- eration
include the Fast Gradient Sign Method (FGSM) [18] and
BIM [17]. We conduct an experiment to justify our choice of
BIM over FGSM for generating adversarial RFF samples in
active W-MIA. Specifically, we select the model
trained on dataset D, with architecture C; as the target
model and employ FGSM and BIM with different con-
figurations to implement active W-MIA. We test FGSM
with three scaling factor values: 0.0001, 0.001, and 0.01,
while for BIM, we evaluate three step sizes: 0.0001, 0.001,
and 0.01. In all evaluated settings, we maintain a constant
number of requests at 5,000. The resulting number of data
records collected for model tuning and the corresponding
AUC scores for these settings are presented in Table I. BIM
outperforms FGSM in terms of both collecting more tuning
data records and achieving superior AUC scores.
Remarkably, BIM with a step size of 0.0001 achieved the
highest AUC scores. Therefore, we choose BIM with a step
size of 0.0001 for active W-MIA implementation and
explore it in subsequent experiments.

2) Impact of authentication-request quantity: We con-
duct an experiment with varying quanities of adversarial
authentication requests. Specifically, we iteratively imple-
ment active W-MIA on three target models trained on
dataset D,. For each target model, we assess W-MIA’s
performance with 1,000, 2,000, 3,000, 4,000, 5,000, 6,000,
and 7,000 requests. The corresponding AUC scores for
these different request counts are illustrated in Fig. 5.

Our results indicate that model fine-tuning in active
W-MIA can significantly enhance membership inference
performance. Furthermore, the efficacy of active W-MIA
improves as the number of adversarial authentication
requests increases. However, the benefits of additional
authentication requests become less significant after the
initial 5,000 requests. Consider 802.11n as an example for
the target WiFi system, which has a normal transmission
speed from about 6,250 to 25,000 frames per second for
legitimate devices. Assume that the attacker forges 10
authentication requests per second to the verifier, a
relatively stealthy approach that is difficult to detect. At
this rate, the attack would require less than 10 minutes to
complete 5,000 requests, highlighting its practicality.

3) Impact of channels: It is crucial to assess the ro-
bustness of active W-MIA under different channel states.
In this experiment, we simulate RF channels in static,
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Fig. 4: Passive W-MIA AUC scores and classification accuracy for various shadow model architectures.

TABLE I: The performance of FGSM v.s. BIM for active W-MIA.

FGSM (0.0001) FGSM FGSM (0.01) | BIM (0.0001) BIM BIM (0.01)
(0.001) (0.001)
# of responses 431 956 51 1335 1099 185
AUC score 0.76 0.79 0.75 0.81 0.79 0.75

normal, and dynamic environments by configuring the
scale factor r within [-0.01, 0.01], [-0.05, 0.05], and [
0.1, 0.1], respectively. These three settings are denoted
as state, state;, and state,, respectively. Active W-MIA
is implemented on the three target models under these
conditions, and the results are presented in Table II. Our
findings indicate that channel variation does impact active
W-MIA, but it still achieves an average AUC of 0.75 even
in a highly dynamic environment.

TABLE II: AUC scores of active W-MIA corresponding to
different channel variations.

stateg stateq stateq
Cy 0.80 0.76 0.76
Cy 0.81 0.76 0.75
Cy 0.81 0.75 0.75

E. Owerall Performance

W-MIA demonstrates remarkable efficacy in both pas-
sive and active implementations. In particular, using a
shadow dataset of 35,000 samples and our shadow-model
selection strategy, passive W-MIA achieves an average
AUC score of 0.75. Furthermore, active W-MIA signifi-
cantly enhances membership inference performance across
all evaluated settings, achieving an average AUC of 0.81.

F. Comparison with Related Work

We also compare the performance of W-MIA with state-
of-the-art studies. To the best of our knowledge, W-MIA
is the first label-only MIA attack on DRFF-based wireless
authentication systems. Therefore, we compare it with the
black-box MIA against DRFF proposed in [14], which is
the most relevant study to our work. This prior work as-
sumes that the attacker is capable of obtaining (1) a subset
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different numbers of authentication requests.

of the member RFF samples used in training the target
DRFF model, (2) a significant number of non-member
RFF samples, and (3) the confidence scores of these RFF
samples as determined by the target model. In contrast to
our label-only approach, this attack requires considerably
more information about the target model, rendering it less
practical for wireless authentication systems.

We implement the black-box MIA [14] using the fol-
lowing steps. First, we train a target DRFF model with

architecture C, using 100,000 RFF samples from D,
with 1,000 of these samples assumed to be known to the

attacker. Second, we select another set of 35,000 RFF
samples from D, to serve as the non-member RFF samples
for this black-box MIA implementation. Third, we collect
the confidence scores assigned to these RFF samples by the
target DRFF-DNN model and train a CNN model follow-
ing the implementation in [14] to classify these samples as
member or non-member based on their confidence scores.

Next, we implement W-MIA using the same set of 35,000
RFF samples as the shadow dataset and collect an
evaluation dataset of 500 member samples and 500 non-
member samples to measure the AUCs of the implemented
attacks. The active W-MIA implementation adopts BIM
with a step size of 0.0001 for adversarial RFF generation
and employs 5,000 authentication requests to fine-tune the
shadow model. The average AUCs of passive W-MIA,
active W-MIA, and the black-box MIA are 0.75, 0.81, and
0.83, respectively. This result highlights that W-MIA,
despite operating in a much more challenging label-only
setting, manages to achieve comparable performance to the
state-of-the-art MIA against DRFF.

G. Evaluation of W-MIA Countermeasures

We first assess how well Adversarial regularization (AR)
[15], a known MIA defense, can mitigate W-MIA. AR
is implemented during model training to mitigate the
potential leakage of membership information. The mem-
bership inference performance is integrated into the loss
function formulated as £ = £,.. + A - L. Here, Lacc
measures the classification error, while \ - £sec quantifies
the extent of membership information leakage. By jointly
minimizing these two terms during the training process,

the model achieves both high classification accuracy and
robust resilience against MIA.

We implement AR using a CNN model designed to
classify records as members or non-members based on their
confidence scores, whose cross-entropy loss served as the
term L. We test AR with four different A values and show
the corresponding W-MIA AUC scores in Table III. Our
evaluation confirms that AR is an effective defense against
W-MIA for both passive and active implemen-
tations. Increasing the factor A emphasizes robustness
against membership inference, significantly reducing the
AUC scores for both passive and active W-MIA. How- ever,
this also leads to high false-negative rates (FNR) of 21%
and 25% to alleviate passive and active W-MIA,
respectively, when the average AUC score drops below 0.7.
Therefore, AR is not a viable defense against W-MIA.

TABLE III: Average AUC scores with AR.

L Passive Active .
regeion [ [ whm [ e
(AUC) (AUC)
0 (no defense) 0.75 0.81 2%
2 0.74 0.78 6%
3 0.74 0.77 10%
7 0.69 0.70 21%
10 0.67 0.68 25%

Then we evaluate our selective response (SR) coun-
termeasure against W-MIA. SR involves intentionally ig-
noring a subset of requests from enrolled devices, which
inevitably increases the system’s FNR and thus impacts
usability. We compare SR with AR by configuring the
ratio of intentionally ignored requests to match the FNR
values resulting from different AR implementations listed
in Table III. We then measure the AUC scores of W-MIA
with these SR implementations, as shown in Table IV.

The results show that SR is highly effective in coun-
teracting W-MIA. To reduce the average AUC score of
passive W-MIA to below 0.7, SR results in an FNR of 9%,
compared to AR’s FNR of 21%. Additionally, SR almost
completely invalidates active W-MIA, as evidenced by the
identical AUC scores for passive and active W-MIA in all
evaluated settings. This occurs because adversarial RFF
samples typically yield very high entropy-loss values and
are thus ignored with SR. Therefore, the attacker cannot
gather sufficient data for fine-tuning the shadow model.

TABLE IV: Average AUC scores with selective response.

Ratio of Passive W-MIA| Active W-MIA|  Verifier
ignored requests (AUC) (AUC) (FNR)
0% (no
defense) 0.75 0.81 2%
6% 0.72 0.72 %
8% 0.69 0.69 9%
10% 0.67 0.67 10%
21% 0.60 0.60 17%
25% 0.57 0.57 22%
30% 0.57 0.57 26%
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VII. RELATED WORK

DRFF systems. There are significant efforts exploring
DL techniques for RFF. Sankhe et al. [3], [9] explore
a CNN to fingerprint radio devices on their I/Q data
and propose a feature engineering method to improve
identification accuracy. Jian et al. [19] apply constructed
pruning on RFF models to reduce the computational
overhead of device identification for resource-constrained
edge devices. Li et al. [20] explore the adversarial domain
adaptation method to significantly improve the robustness
of DRFF against cross-day channel variations. These ef-
forts substantially improve the accuracy and robustness
of DRFF and lead to its increasing popularity in wireless
authentication.

Attacks on DRFF-based wireless authentication.
The inherent vulnerability of DL techniques against vari-
ous attacks raises a significant concern about incorporat-
ing DRFF into wireless authentication. Restuccia et al.
[11] and Shi et al. [10] implement adversarial attacks on
DRFF-based device authentication systems, where attack-
ers generate radio perturbations to mislead the classifica-
tion results of fingerprinting models. Black-box member-
ship inference attack, which requires access to the DRFF-
DNN model’s confidence scores, is proposed and assessed
in [14]. These studies highlight the need for more research
on the security of DRFF-based device authentication. Our
work differs from the study in [14], which holds the most
relevance, in that W-MIA makes inference on the DRFF-
DNN model’s output based on the easy-to-observe actions
of the verifier, making it more practical in the wireless
authentication context.

VIII. CONCLUSION

In this paper, we introduce W-MIA, a novel label-only
MIA against DRFF-based authentication systems. Our
design enables an attacker to stealthily execute label-only
MIA against DRFF systems, enhancing the attack per-
formance through querying the DRFF system. Extensive
experiments confirm W-MIA’s efficacy in both passive and
active settings. We also propose selective response as an
effective countermeasure against W-MIA and demonstrate
its high efficacy.
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