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Abstract— We study sim-to-real skill transfer and discovery

in the context of robotics control using representation learning.

We draw inspiration from spectral decomposition of Markov

decision processes. The spectral decomposition brings about

representation that can linearly represent the state-action value

function induced by any policies, thus can be regarded as skills.

The skill representations are transferable across arbitrary tasks

with the same transition dynamics. Moreover, to handle the

sim-to-real gap in the dynamics, we propose a skill discovery

algorithm that learns new skills caused by the sim-to-real gap

from real-world data. We promote the discovery of new skills

by enforcing orthogonal constraints between the skills to learn

and the skills from simulators, and then synthesize the policy

using the enlarged skill sets. We demonstrate our method-

ology by transferring quadrotor controllers from simulators

to Crazyflie 2.1 quadrotors. We show that we can learn the

skill representations from a single simulator task and transfer

these to multiple different real-world tasks including hovering,

taking off, landing and trajectory tracking. Our skill discovery

approach helps narrow the sim-to-real gap and improve the

real-world controller performance by up to 30.2%.

I. INTRODUCTION

Reinforcement learning (RL) has demonstrated superior
performance in many robotic simulators [1], [2]. However,
transferring the controllers learned in simulators to real
robots has long been a very challenging question in the RL
community. One difficulty of sim-to-real transfer is that the
learned policies are highly specific to the dynamics and tasks
in the simulators [3]–[6], making them difficult to generalize
to many real-world tasks, in which sim-to-real gaps exist.

Recent studies in the theoretical RL community on
the spectral decomposition of Markov decision processes
(MDPs) [7]–[10] reveal the idea of task-independent rep-
resentations for RL. The results of spectral decomposition
are the spectral functions of the transition dynamics in
MDPs. The spectral functions can linearly represent the
state-action value function, i.e., the Q-function, induced by

any policy. Therefore, we say the spectral functions are task-
independent representations of skills, because the spectral
functions include information needed to accomplish any
tasks. These task-independent skill representations are shared
across arbitrary tasks, thus are reusable and transferable.
Meanwhile, the representation can also be used to synthesize
policies.
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Given the representation-based skill sets and a specific
task, we can perform sample-efficient planning upon the skill
sets to synthesize the optimal policy. When the represen-
tations are unknown, sample-efficient algorithms have been
proposed to learn the representations from data [10], [11].

Nevertheless, these representation-based skill learning are
still designed for specific transition dynamics. When it ap-
plies to sim-to-real transfer, the sim-to-real gap, which will
induce new skills different from the simulator skill sets, has
not been investigated yet. Learning the sim-to-real gap from
real-world data, also called residual dynamics learning [4],
[12]–[14], naturally aligns with our representation learning
viewpoint. However, naively learning the representations of
residual dynamics might lead us to relearn redundant skills
that are linearly dependent with the existing simulator skill
sets. Therefore, we need additional incentives to discover

new skills that enable us to bridge the sim-to-real gap.
To further leverage the transferability of the

representation-based skill sets and discover new skills
induced by the sim-to-real gap, we proposed the Skill
TransfEr And DiscoverY (STEADY) for sim-to-real
representation learning algorithm. We show that recent
theoretical representation learning algorithms for spectral
decomposition of MDPs, such as [10], [15], can apply to
learning transferable representations of real-world robots.
Moreover, we handle the sim-to-real gap by augmenting
distinct representation-based skills learned from the sim-
to-real gap, which we refer to as skill discovery. During
the learning process, orthogonal constraints between the
newly discovered skill sets and the simulator skill sets are
enforced to fill the sim-to-real gap. In this way, we ensure
that the skills necessary for the real robots are also included
in our augmented skill sets, upon which the planning can
be handled in a more complete space efficiently.

We demonstrate our proposed algorithm by transferring
the learned quadrotor control policies to Crazyflie 2.1
quadrotors. First, we learn the representations and train a
tracking controller on the simulator. Then, we collect task-
specific data, including hovering, taking-off, landing, and
trajectory tracking in the real world for skill transfer and dis-
covery. The results show that our representation-based skills
are easily transferred to the real world and generalizable to
different tasks, and that our method has improved the real-
world tracking performance by up to 30.2%.

II. RELATED WORKS

A. Sim-to-Real Transfer

Sim-to-real transfer aims to transfer knowledge from sim-
ulator to real-world robots and overcome the sim-to-real gap.
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We focus on sim-to-real gaps in terms of the dynamics. Rep-
resentative sim-to-real transfer techniques include domain
randomization and residual dynamics learning.

1) Domain randomization: Domain randomization in RL
refers to randomly perturbing the physical parameters of the
simulators [3]–[5], [16]–[18]. Then the RL agents aim to
learn a policy performing well under a distribution of transi-
tion dynamics. The trained policies are directly applied to the
real world and no knowledge will be learned from real-world
data. These methods are convenient since simulator data are
usually cheap to sample. However, domain randomization
cannot handle other sim-to-real gaps like aerodynamics,
contact effects, response delays, etc.

2) Residual dynamics learning: Learning the sim-to-real
gap, or the residual dynamics, appears in many recent sim-
to-real transfer studies [4], [12]–[14], [19], [20]. Real-world
data are collected to learn the sim-to-real gap and improve
the policies. Existing practices have considered different
models, including Gaussian mixture model [19], Gaussian
process [12], [21], k-nearest neighbors [4], or deep neural
networks [13], [14], [20]. Then the learned sim-to-real gap
is integrated with the prior simulator knowledge as external
disturbance [14], [20], [21] or additive controllers [13].

We also follow the residual dynamics learning idea to
fill the sim-to-real gap, but through a novel representation
view. We use the knowledge of the simulator skill sets
in the residual dynamics learning process in the way that
enforces orthogonal constraints between simulator skill sets
and the new skill sets, expanding skill sets while preventing
redundancy of learning skills that are already in the simulator
skill sets.

B. Representation-Based Knowledge Transfer

Representation-based knowledge transfer is commonly
seen for computer vision models and visual-input control
tasks [22], [23]. For dynamics control tasks, [24] decom-
posed the policy networks into task-specific and robot-
specific modules and show that the modules are transferable.
[25] proposed transfer learning by matching the transfer
functions, where transfer functions can be regarded as an-
other type of representation but limited to single-input-
single-output dynamical systems. Our approach applies to
general nonlinear dynamical systems and the transferability
is justified rigorously by theoretical analysis. For theoreti-
cal representation learning, [26] has proved that there are
provable benefits on sampling complexity for transferring
the representations. However, no experimental results on
simulators or in the real world have been reported.

III. PRELIMINARIES

A. Notations and Sim-to-Real Problem Setting

Markov Decision Processes (MDPs) are a standard se-
quential decision-making model for RL, and can be described
as a tuple M = (S,A, r, P, ω, ε), where S is the state space,
A is the action space, r : S→A ↑ R is the reward function,
P : S → A ↑ !(S) is the transition operator with !(S)
as the family of distributions over S, ω ↓ !(S) is the initial
distribution and ε ↓ (0, 1) is the discount factor. The goal

of RL is to find a policy ϑ : S ↑ !(A) that maximizes the
infinite-horizon cumulative discounted reward

Es0→ω,ε

[ ↑∑

i=0

εir (si, ai) | s0

]

by interacting with the MDP. The value function under
transition dynamics P and policy ϑ is defined as V ε

P (s) =
Eε

[∑↑
i=0 ε

ir (si, ai) | s0 = s
]
, and the state-action value

function under transition dynamics P is Qε
P (s, a) =

Eε

[∑↑
i=0 ε

ir (si, ai) | s0 = s, a0 = a
]
. When doing off-

policy learning we slightly abuse the notation of B to denote
any data distribution sampled from the off-policy data set of
replay buffer.

The sim-to-real problem indicates that we have a simulator
of the real-world MDP M, which is also an MDP M↓ =
(S,A, r↓, P ↓, ω↓, ε). Notations with superscript ↓ means
they are related to the simulator. The two MDPs might differ
in the transition dynamics, P ↓ and P , initial distributions
ω↓, ω and rewards r↓, r. The simulator is cheap to query and
the real world is expensive. Therefore, we split the learning
procedure into the simulator stage and the real-world transfer
stage. In the simulator stage, the agent interacts with M↓ for
sufficiently many transitions to obtain knowledge from the
simulators. Then in the real-world stage, the agent transfers
knowledge learned in the simulator to solve the optimal
policy of M, while only collecting a limited number of
transitions by interacting with M.

B. Spectral Decomposition and Skills in Markov Decision

Processes

The formal definition of spectral decomposition of MDPs
refers to the following structures on the transition dynamics
and rewards,

Definition 1 (Spectral decomposition of MDPs, [7], [9]).
The spectral decomposition of an MDP M↓ with transition
dynamics P ↓ (s↔ | s, a) means there exists representations
ϖ↓ : S →A ↑ Rd and µ↓ : S ↑ Rd such that

P ↓ (s↔ | s, a) = ↔ϖ↓(s, a), µ↓ (s↔)↗ , r(s, a) = ↔ϖ↓(s, a), ϱr↗
where ϱr ↓ Rd and ↔·, ·↗ denotes the vector inner product.

The spectral decomposition enables that the representation
ϖ can linearly represent the state-action value function Qε

P→

for any policy ϑ,

Qε
P→(s, a) = ↔ϖ↓(s, a), wε↗ (1)

where wε = ϱr+ε
∫
S V ε

P→ (s↔)µ (s↔) ds↔. The linear structure
can be obtained by the recursive relationship between the
Qε

P→ and V ε
P→ ,

Qε
P→(s, a) =r(s, a) + ε

∫

S
P ↓(s↔|s, a)V ε

P→(s↔)ds↔

=

〈
ϖ↓(s, a), ϱr + ε

∫

S
V ε
P→ (s↔)µ↓ (s↔) ds↔

︸ ︷︷ ︸
wω

〉
.

Representation-based skills. Note that the linear structure
of Q-function holds for any policies under dynamics P ↓. We
argue that ϖ↓ can be regarded as the skill sets under dynamics
P ↓, since it includes the information of constructing arbitrary
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policy. Therefore, we interpret the representation ϖ↓ as the
task-independent skill sets, which includes the information
of all the skills needed for the model P ↓. Formally, given a
Q-function, it induces the max-entropy policy as

ϑQ(a | s) := exp (Q(s, a)/ς)∑
a↗A exp (Q(s, a)/ς)

(2)

= argmax
ε(·|s)↗!(A)

Eε[Q(s, a)] + ςH(ϑ) (3)

where ϑQ is the greedy max-entropy policy given a Q-
function, H(ϑ) :=

∑
a↗A ϑ(a | s) log ϑ(a | s). Therefore, if

we know the skill sets ϖ↓, we can construct the max-entropy
policies ϑ(a | s) ↘ exp(w↘ϖ↓(s, a)) from skills ϖ↓(s, a).

Practical Implementations. For practical implementations,
the policy evaluation can be conducted by minimizing the
temporal-difference error w.r.t. the parameter w, i.e.,

min
w

E(s,a,r,s↑)→B,a↑→ε(·|s↑)[(r + εQ(s↔, a↔)≃ w↘ϖ↓(s, a))2]

(4)
where B is the data distribution in the replay buffer, and
Q is the target Q-function commonly used in the target
network trick. We emphasize that compared to the deep Q-
learning [27], the policy evaluation optimization is in the
linear space spanned by the learned skill sets, therefore,
is more stable. The policy improvement is the same as
in other off-policy algorithms that optimize (3) by policy
gradient. Practical implementations like soft actor-critic uses
the reparameterization trick to simplify the calculations of
(3) [2]. We will discuss our policy parameterization in the
experimental setup in Section V-A.

C. Skill Learning by Spectral Conditional Density Estima-

tion

If the representation ϖ↓, µ↓ is unknown, we need to learn
these representations from data. The objective is to make
↔ϖ↓(s, a), µ↓(s↔)↗ as close as P ↓(s↔ | s, a) as possible.
There are multiple statistical learning methods to solve the
problem [10], [11], [28]. We follow the spectral conditional
density estimation method, which optimizes the following
loss function,

min
ϑ→,µ→

E(s,a)→B,s↑→P→(·|s,a)

[
⇐P ↓(s↔ | s, a)≃↔ϖ↓(s, a), µ↓(s↔)↗⇐22



(5)
where B denotes the offline dataset distribution. However, (5)
is usually intractable since we usually do not know the exact
value of P ↓(s↔ | s, a). This necessitates the use of sampling-
based algorithms. For example, [10] uses a surrogate loss
function that is equivalent with (5):

Lfeat(ϖ
↓, µ↓) :=C ≃ 2E(s,a)→B,s↑→P (s↑|s,a)

[
ϖ(s, a)↘µ (s↔)

]

+ E(s,a)→B

∫

S


ϖ(s, a)↘µ (s↔)

2
ds↔


,

(6)
where C is a constant independent of ϖ↓, µ↓. For practical
implementations, we can parameterize the ϖ↓, µ↓ both as
neural networks (with matching output layer dimensions) and
doing gradient descent on Lfeat.

IV. STEADY: SKILL TRANSFER AND DISCOVERY FOR
SIM-TO-REAL LEARNING

In the following two sections, we introduce our methodol-
ogy of skill transfer and discovery (STEADY) for sim-to-real
learning. The whole process includes the following steps:

(i) Learning skill sets and policy in the simulator;
(ii) Discovery of new skills from real-world data;

(iii) Policy synthesis from skill sets.
An overview of the whole framework is shown in Figure 1.

A. Learning Skill Sets in the Simulator

We can leverage the previously mentioned representation
learning techniques to learn the simulator skill sets ϖ↓ and
µ↓, as well as policy upon the skill sets. In this paper, we
follow a similar procedure to the spectral decomposition
representation learning (SPEDER) algorithm in [10], which
is summarized in Algorithm 1.

Algorithm 1 Spectral Decomposition Representation
(SPEDER) for reinforcement learning [10]
Input: simulator MDP M↓

1: for episode n = 1, 2, . . . , N do

2: Collect transitions (s, a, r, s↔) and updates buffer B
3: Learn representation ϖ↓ by minimizing (6)
4: Update Q function by equation (4)
5: Update policy by (3)
6: end for

Output: simulator policy ϑ↓, representations ϖ↓, µ↓, param-
eters wε→

B. Skill Discovery from Real-World Data

After the simulator stage, we transfer learned simulator
representations/skill sets, namely ϖ↓, to real robots. However,
simply applying the policies ϑ↓ learned from the simulator
to the real world, like in zero-shot sim-to-real transfer, might
lead to problems due to the sim-to-real gap. Therefore, the
major motivation for skill discovery is learning new skills
induced by the sim-to-real gap.

Following a similar procedure of assuming the decompo-
sition structure on P ↓, we can assume that the sim-to-real
gap also admits a spectral decomposition.

Assumption 1 (Spectral decomposition of sim-to-real gap).
There exists ϖ : S →A ↑ Rs and µ : S ↑ Rs such that

P (s↔|s, a)≃ P ↓(s↔|s, a) = ↔ϖ(s, a), µ(s↔)↗ .

The spectral decomposition allows us to efficiently learn
the gap from expensive real-world data, and then a good
policy (and potentially more realistic simulators) given cur-
rent knowledge of the existing simulator. We then learn the
residual dynamics by formulating and solving the following
least-square style optimization problem.

min
ϑ,µ

E(s,a)→ω0
⇐P (· | s, a)≃ P ↓(s↔ | s, a)≃ ↔ϖ(s, a), µ(s↔)↗⇐22 .

(7)
Enforce Skill Discovery by Constraints. Before we proceed
to solve the (7), we need to make sure that we are discovering
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Fig. 1: Overview of the STEADY framework for sim-to-real learning. More information can be found on our project website.

new skills, which means that the skills learned from the real-
world data are different from the previous simulator skills.
In mathematical terms, having different skills means that the
newly learned representations must be linearly independent

with all the previous representations. Otherwise, we could
simply represent the new skills by a linear combination of
the previous skills. In such an undesirable case, the new skills
will be redundant when we use the representations to linearly
represent the Q-function in (1). To prevent this and enforce
linear independence between the new and simulator skill sets,
we add the orthogonal constraints to (7)

min
ϑ,µ

E(s,a)→ω0

P (· | s, a)≃ P ↓(· | s, a)≃ ϖ(s, a)↘µ(·)
2
2

s.t. ↔ϖ↓
i ,ϖj↗ = 0, ⇒i ↓ {1, 2, . . . , d}, ⇒j ↓ {1, 2, . . . , s}.

(8)
where the inner product is defined as ↔ϖ↓

i ,ϖj↗ =
E(s,a)→B [ϖ↓

i (s, a)ϖj(s, a)]. The orthogonal constraints en-
force the linear independence between simulator skill sets
ϖ↓ and newly learned skill sets ϖ.
Practical Implementations of Skill Discovery. For the
practical implementation of the skill discovery in (8), the
minimization problem (ignoring the constraints) is similar to
the problem in (5). We don’t know the exact value of P ↓,
so we use the learned representation ↔ϖ↓, µ↓↗ to replace P ↓.
Then we follow a similar idea in (6) to minimize

Ldisc(ϖ, µ) = ≃2E(s,a)→B,s↑→P (s↑|s,a)

[
ϖ↓(s, a)
ϖ(s, a)

↘ 
µ↓(·)
µ(·)

]

+E(s,a)→B




∫

S


ϖ↓(s, a)
ϖ(s, a)

↘ 
µ↓(·)
µ(·)

2

ds↔



 ,

(9)
where the simulator skill sets ϖ↓, µ↓ are fixed in the skill

discovery stage. We transfer the constraints in (9) to soft
constraints by penalty methods for training stability, which
leads to the following empirical loss function,

min
ϑ,µ

Ldisc(ϖ, µ) + φ
∑

i,j

|↔ϖ↓
i ,ϖj↗| , (10)

where φ is a hyperparameter penalizing the constraint viola-
tions.

C. Policy Synthesis for Real-World Tasks

Real-world Policy Evaluation. After we learn the repre-
sentations ϖ, µ, we can leverage the augmented skill sets,
[ϖ↓,ϖ], to synthesize the policies for specific real-world tasks
by the MDP planning algorithm such as policy iteration.
Here, we also follow a similar policy iteration algorithm
to the one used in the simulator stage, while changing the
skill sets/representations to be [ϖ↓,ϖ]. Similarly, in the policy
evaluation stage, we parameterize the Q-function by a linear
combination of the enlarged skill sets [ϖ↓,ϖ], Q(s, a;w) =
w↘

1 ϖ
↓(s, a) + w↘

2 ϖ(s, a). We can minimize the TD error,

min
w1,w2

E(s,a,r,s↑)→B,a↑→ε(·|s↑)[(r + εQ(s↔, a↔)

≃ w↘
1 ϖ

↓(s, a)≃ w↘
2 ϖ(s, a))

2]
(11)

Then we can optimize the policy similar to (3) with the new
linear parameterization of Q-function.
Policy Synthesis. When initializing the real-world stage, we
initialize the policy by simulator policy ϑ↓ and weights w1

by the simulator learned weights wε→
so that we do not need

to learn the Q-function from scratch. The skill discovery
and policy synthesis are conducted simultaneously, and the
algorithm is listed in Algorithm 2. To avoid the instability
caused by changing from the simulator to the real world, we
penalize the KL-divergence between the simulator policy
and the updated policy to (3) when solving the real-world
policy improvement,

max
ε

Es→B,a→ε(·|s)[Q(s, a)]≃ ςεD̄KL (ϑ⇐ϑ↓) (12)

where D̄KL (ϑ⇐ϑ↓) = Es [DKL (ϑ(· | s)⇐ϑ↓(· | s))], ςε is a
hyperparameter penalizing policy update.
Practical Implementations of Policy Synthesis. In practical
implementations, we add several modifications to the soft
actor-critic (SAC) [2] algorithm. We change the Q-function
parameterization to the linear representation w↘

1 ϖ
↓(s, a) +

w↘
2 ϖ(s, a). The representations ϖ, µ,ϖ↓, µ↓ are all param-

eterized by fully connected neural networks. The proposed
framework is compatible to any policy parametrizations.

V. EXPERIMENTS

A. Experimental Setup

We conduct experiments on the quadrotors. Quadrotor is
a representative agile and safety-critical dynamical system,
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(a) Simulator policy.

(b) Policy improved by STEADY after training with 20 taking-off and landing trajectories.

Fig. 2: Snapshots of taking-off, hovering 7 seconds then landing with the simulator policy and policy improved by . Yellow dash lines
indicate the target hovering height (1m). The Crazyflies are highlighted with red boxes. The snapshots are taken every 0.8 seconds. Figure
2(a) shows the simulator policy and Figure 2(b) shows the policy learned by the proposed STEADY algorithm.

Algorithm 2 STEADY: Skill Transfer and Discovery for
Sim-to-Real Learning
Input: Simulator MDP M↓, real world MDP M

1: # Simulator stage.
2: ϖ↓, µ↓,ϑ↓, wε→

= SPEDER(M↓) (See Algorithm 1)
3: # Real-world stage.
4: Initialization: ϑ0 = ϑ↓, w0

1 = wε→

5: for episode k = 1, 2, . . . , N do

6: Collect trajectory of (s, a, s↔) in real world, following
current policy ϑk≃1.

7: Skill discovery to learn ϖ, µ by optimizing (10), given
simulator skills ϖ↓, µ↓.

8: Policy evaluation by solving Eq. (11).
9: Policy improvement by doing policy gradient with

respect to (12).
10: end for

Output: Final policy ϑN

which is sensitive to controller malfunctions. Controller
failure will immediately cause noticeable oscillations or even
falling from the air. Moreover, there are multiple sim-to-real
gaps in the quadrotor dynamics that are difficult to model,
like motor response [5], [29] and aerodynamics including
ground effect and downwash [14], [20].

Policy Parameterization. Our transfer learning ap-
proaches focus on representing the value function, which
supports arbitrary policy parameterization. Although neural-
network-based controllers have been implemented on the
Crazyflies [5], [6], [29], we found that they are usually
unstable and not robust to external disturbance such as
observation noise, response delays, motor dynamics, etc. To
improve controller stability and make the experiments more
reproducible, we use a differentiable version of Mellinger
controller [30] as our policy parameterization. THe differ-
entiable version means that the controller parameters are
updated through policy gradient.

Simulator and real-word tasks. We first train the policies
in the simulator for general trajectory tracking tasks. We

(a) Motion capture system. (b) Data recording setup.

(c) LED highlight setup. (d) Motor PWM inputs during hov-
ering.

Fig. 3: The experiment setup.

fix a goal position and randomly initialize the drone states
(position, rotation, velocity, angular and positional velocity,
propeller rpm) to track the reference. Then for the down-
stream real-world transfer stage, we consider three different
tasks, (1) taking off, hovering, and landing; (2) following a
trajectory in the shape of “8”. We will show that the skill
sets learned from the general trajectory tracking tasks are
transferable to these specific tasks, and the skill discovery
will improve the real-world controller performance. For
detailed simulator setup please refer to Section C-A in our
online report [31].

Baselines and ablation studies. To demonstrate the ef-
fectiveness of the proposed controller, we show the com-
parison between the controller learned by the Algorithm
2 and baselines and ablations. The baseline is the built-
in controller in the Crazyflie firmware (labeled as “Built-
in”). Ablation studies including simulator policy (labeled
as “Simulator”) and skill transfer policy (labeled as “Skill
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Transfer”). Simulator policy means that we directly use the
controller learned in the simulator by Algorithm 1. For the
skill transfer policy, we only synthesize policies from the
simulator skill sets. The skill discovery in line 7 of Algorithm
2 is skipped, and the Q-function parameterization is the same
as the simulator stage.

B. Real-World Robots Setup

We show the effectiveness of our sim-to-real learning on
the Crazyflie 2.1 Quadrotor with an STM32F405 microcon-
troller clocked at 168 MHz. We transfer the learned controller
parameters to Crazyflie and handle the communication using
Crazyswarm [32]. We use the Optitrack motion capture
system with single-marker configuration to provide location
information for the Crazyflie, shown in Figure 3(a). The
Crazyflie carries an additional micro SD card deck to record
data or a LED ring deck to highlight itself shown in Figure
3(b) and 3(c), respectively. Additional explanation of the sim-
to-real gap can be found in Appendix C-B in our online
report [31].

C. Experimental Results

1) Simulation Stage: The features ϖ↓,ϖ, µ↓, µ are pa-
rameterized by fully connected neural networks with two
hidden layers with 256 neurons. The dimensions of all the
representations are 256. For the simulation stage, we train the
algorithm with 1.6→106 transitions and the expected return
during the training process are shown in Figure 4.

Fig. 4: Episodic return to training samples during the training
process with 5 random seeds. The shaded region implies 95%
confidential interval over 10 evaluation episodes for every 2000
samples of the five random seeds.

2) Real-world Stage: Taking off, hovering and landing.

First we show the experimental results on the real-world task
of taking off, hovering for 7 seconds at 1m and landing. We
compare the 3D trajectories in Figure 5 with skill transfer
and discovery policy (labeled as “STEADY”), skill transfer
policy (labeled as “Skill Tranfer”) and simulator policy
(labeled as “Simulator Zero-Shot”, Zero-Shot means that
no learning from real-world data is implemented.). Two
sequences of snapshots comparing Simulator policy and the
policy improved by STEADY are also shown in Figure 2,
and the full video can be found at our project page. Results
show that after learning from the real-world data using the
STEADY framework, the controller can maintain at the target
height very stably without oscillations even with a defective
motor and extra weight carried. For the controllers from
ablation studies, the simulator policy oscillates heavily and
cannot maintain the height. The skill transfer policy stay
in the air longer than the simulator policy but still fails to
maintain stably at the target position.
Robustness under External Disturbance. We tried learning

to hover with external wind to show the robustness and the
adaptive capability of the proposed framework, and the video
can be found on our project page.

Fig. 5: Trajectories of taking-off, hovering and landing trajectories.
Trajectory tracking. For the trajectory tracking task, the
drone needs to follow a trajectory in the shape of the number
“8”, which is commonly seen in related studies [29], [33].
The trajectories is (x(t), y(t), z(t)) = (sin(t), 1

2 sin(2t), 1.0)
and the shape is shown as orange dash lines in Figure 6.
Figure 6 shows the trajectory tracking results with different
controllers compared to reference trajectories. The perfor-
mance is compared in Table I. We calculate two metrics for
the tracking error, the average position tracking error and
the cumulative rewards. The average position tracking error
averages ⇐p≃ pgoal⇐ over the trajectory. The cumulative
rewards sums up rewards defined in (13) over the trajectory
(removing the initial constant term of 2). Table I shows
that the STEADY controller achieves the smallest trajec-
tory tracking error and highest accumulative rewards. The
tracking error is comparable to the built-in controllers and
improved by 11.9% and 30.2% compared to ablation skill
transfer controller and ablation simulator controller, respec-
tively. For the cumulative reward, the STEADY controller
outperforms all three baseline controllers, improving on the
ablation skill transfer controller by 9.1%, the Built-in PID
controller by 10.9%, and the ablation simulator controller
by 22.7%.

Fig. 6: Trajectory tracking visualization.
TABLE I: Tracking performance comparison.

Average Tracking Cumulative
Controller Error (→10→1m) Rewards

STEADY 0.982 -1241

Skill Transfer 1.115 -1365
Simulator 1.406 -1584
Built-in PID 0.983 -1392

VI. CONCLUDING REMARKS

In this paper, we proposed the STEADY framework, which
utilizes skill transfer and discovery for sim-to-real learning.
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Inspired by the concept of representations as skill sets when
considering the spectral decompositions of MDPs, we show
that we can learn the skill sets from simulators and then
transfer them to the real world. The representation-based
skill sets can also help sim-to-real transfer. By enforcing
orthogonal constraints between the simulator skill sets and
the skill sets induced by the sim-to-real gap, we promote
the discovery of useful and distinct new skills. Building on
the enlarged skill sets comprising these new skill sets and
the existing simulator skill sets, STEADY facilitates more
efficient and effective sim-to-real transfer smoothly.
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