This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

TWINN: Training-Free Weight-Input Flipping for
Mitigating Crossbar Non-Idealities in Binary
Neural Network Accelerators

Akul Malhotra

Abstract— Compute-in-memory (CiM)-based binary neural
network (CiM-BNN) accelerators marry the benefits of CiM and
ultra-low precision quantization, making them highly suitable for
edge computing. However, CiM-enabled crossbar (Xbar) arrays
are plagued with hardware non-idealities like parasitic resis-
tances and device non-linearities that impair inference accuracy,
especially in scaled technologies. In this work, we first analyze
the impact of Xbar non-idealities on the inference accuracy of
various CiM-BNNs, establishing that the unique properties of
CiM-BNNs make them more prone to hardware non-idealities
compared to higher precision deep neural networks (DNNs).
To address this issue, we propose TWINN, a training-free
technique that mitigates non-idealities in CiM-BNNs. TWINN
utilizes the distinct attributes of BNNs to reduce the average
current generated during the CiM operations in Xbar arrays.
This is achieved by statically and dynamically flipping the
BNN weights and activations, respectively. This minimizes the
IR drops across the parasitic resistances, drastically mitigating
their impact on inference accuracy. To evaluate our technique,
we conduct experiments on ResNet-18 and VGG-small CiM-
BNNs designed at the 7nm technology node using 8T-SRAM
and 1T-1ReRAM. Our results show that TWINN is highly
effective in alleviating the impact of non-idealities, recouping the
inference accuracy to near-ideal (software) levels in some cases
and providing accuracy boost of up to 77.25%. These benefits
are accompanied by energy reduction, albeit at the cost of mild
latency/area increase.

Index Terms— Binary neural networks, computing-in-memory,
hardware non-idealities, IR drop, technology scaling.

I. INTRODUCTION

ECENTLY, there has been an immense interest in design

techniques that can enhance the energy efficiency of
deep neural networks (DNNs) and enable their deployment
on the edge [1]. From the algorithmic side, reducing the bit
precision of DNN parameters via quantization lowers their
energy, latency and storage demands, with minimal impact
on accuracy [2]. Binary neural networks (BNNs) represent
an extreme form of quantization wherein 1-bit weights and
activations (€ {—1, +1}) are utilized, drastically improving
the energy/area efficiencies [3].

Received 9 December 2024; revised 24 April 2025; accepted 7 May 2025.
This work was supported in part by the Center for the Co-Design of Cognitive
Systems (COCOSYS), one of Seven Centers in Joint University Microelec-
tronics Program (JUMP) 2.0, funded by Semiconductor Research Corporation
(SRC) and Defense Advanced Research Projects Agency (DARPA), Raytheon,
and NSF. This article was recommended by Associate Editor X. Zhang.
(Corresponding author: Akul Malhotra.)

The authors are with the Elmore Family School of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail:
malhot23 @purdue.edu).

Digital Object Identifier 10.1109/TCSI1.2025.3570193

and Sumeet Kumar Gupta

From the hardware perspective, computing-in-memory
(CiM), in which operations such as vector-matrix multipli-
cations (VMMs) are performed within a crossbar (Xbar)
memory array, is a promising direction [4]. CiM allevi-
ates the massive data movement costs that plague standard
von-Neumann-based DNN accelerators, leading to large
energy and latency reduction. Another hardware aspect that
is particularly important to meet the needs of growing
DNN model sizes is technology scaling, which reduces the
area and energy consumption, facilitating further efficiency
gains [5].

Utilizing binary quantization in conjunction with CiM
combines the benefits of both the techniques and is highly
suitable for edge computing. Several CiM-based BNN
hardware designs (CiM-BNNs) have been developed utilizing
CMOS as well as various non-volatile memory (NVM)
technologies, showcasing substantial energy-latency-area
benefits [6], [7], [8].

Although CiM offers a significant energy/latency bene-
fits, Xbar non-idealities due to wire resistance, driver/sink
resistance and device non-linearities afflict the computational
robustness [16], [17], [18], leading to inaccurate VMM com-
putations and degraded DNN accuracy. This issue is even more
concerning in deeply scaled technologies, due to an increase in
the wire resistivity and resistance [19]. To address the issue of
Xbar non-idealities, various technological and design solutions
have been proposed [9], [10], [12], [13], [14], [20], [21].
On the technology side, new interconnect materials/processes
could potentially mitigate the Xbar non-idealities, but need
more investigation [19]. At the circuit/algorithmic levels, vari-
ous techniques are being explored to improve CiM robustness,
but most of them incur high training/finetuning costs [9], [14],
[20] or a large performance penalty [22]. More importantly,
most of these works focus on higher-precision DNNSs, leaving
the analysis of Xbar non-idealities in CiM-BNNs largely
unexplored.

In this work, we demonstrate that the impact of par-
asitic resistances on CiM robustness is significantly more
pronounced in binary neural networks (BNNs) compared to
high-precision DNNs, primarily due to the inherent char-
acteristics of BNNs-an effect that is further intensified in
CiM-BNNs implemented using the NAND-Net architecture
(details later). Thus, to harness the benefits of CiM-BNNs,
especially in scaled technologies, there is a pressing need
to develop techniques that can pointedly mitigate this
issue.

1549-8328 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6152-2377
https://orcid.org/0000-0001-5609-9722

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

To that end, we propose TWINN, a training-free technique
that alleviates the impact of Xbar non-idealities on CiM-BNN
accuracy. TWINN reduces the magnitude of the CiM outputs
of Xbar arrays by statically and dynamically flipping the BNN
weights and activations, respectively. The flips are strategically
selected to reduce the average output current of the crossbar,
thereby minimizing IR drops across the parasitic resistances.
The key contributions of our work include:

o We show that the unique attributes of CiM-BNNs make
them highly prone to Xbar non-idealities, resulting in
huge accuracy loss, especially in scaled technologies.

e We propose TWINN, a training-free non-ideality-
mitigating technique tailored for CiM-BNNs.

o We demonstrate the effectiveness of TWINN by applying
it on 8T-SRAM and 1T-1ReRAM (resistive RAM) based
CiM-BNNs designed in the 7nm technology node.

« We evaluate the hardware implications of TWINN at the
macro level, showing energy benefits accompanied with
mild latency/area overheads.

The remainder of this paper is organized as follows.
Section II presents the necessary background on CiM-BNNs
and prior techniques to mitigate crossbar non-idealities.
Section III describes the simulation framework developed
to evaluate Xbar non-idealities and leverages it to analyze
their effects on CiM-BNN inference accuracy. Section IV
introduces our proposed solution, TWINN, detailing its static
and dynamic flipping as well as hardware implementation.
Section V presents experimental results, including partial-
sum reduction, accuracy gains, hardware overheads, and
comparisons with enhanced baseline configurations. Finally,
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORKS
A. CiM-Based BNN Hardware (CiM-BNNs)

CiM-BNNs derive their high energy efficiency by
(i) restricting the weights and activations to 1 bit each with
values of +1 or —1 and (ii) performing in-memory VMM. The
signed binary representation maps the scalar multiplication
between weights and activations to an XNOR operation.
To enable XNOR-based CiM, previous works have introduced
customized bitcells [6], [7], albeit at significant area and
energy costs compared to standard bitcells. To avert these
costs, recent works, such as NAND-Net [23], have shown
that by applying linear transformations to activations and
weights, the XNOR operation can be converted into an AND
operation, which can be implemented using standard memory
bitcells. These transformations map the original weights (W)
and activations (I) to W’ and I’, respectively, translating
from {"—1°1’} to {’0’,)1’} domain. These transformations
are given by: I =2I' — 1 and W = 2W’ — 1. Hence, the new
weights and activations are represented with high/low resis-
tance state (HRS/LRS) of the memory and binary voltages,
respectively, leading to seamless AND-CiM with standard
memories. Using these transformations, the dot product can
be written as:

n n n n
DLW =4 LW 2> 1 =2> W +n (1)
i=1 i=1 i=1 i=1

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Here, n is the length of the W and I vectors. While >/, IW/
can be efficiently computed with AND-CiM macros, some
pre- and post-processing is needed to obtain »;_, I; W;. First,
a near-memory adder tree is needed to compute » 7, I].
Note that since >/ | W/ and n in (1) are fixed, they can
be pre-computed and stored. Also, since an activation vector
is shared by many weight vectors spread across multiple
Xbar arrays, the cost of the adder tree is amortized [23].
Second, some arithmetic circuitry is needed to add/subtract
the second, third and fourth terms in (1) from > i, I'W/
(CiM output). These additional circuitry generally incur much
lower cost compared to customized bitcells. Given the multiple
benefits of NAND-Net over customized bit-cells, in this work,
we focus on NAND-Net based CiM-BNNs. Further details on
the advantages of NAND-Net-based CiM-BNNs over XNOR-
based CiM-BNNs can be found in [23].

B. Techniques to Mitigate Xbar Non-Idealities

While Xbar arrays seamlessly facilitate the CiM of VMM,
they suffer from various non-idealities such as IR drops in the
parasitic resistances, device non-linearities etc., which lead to
CiM errors, impairing the inference accuracy.

Several previous works have explored the impact of Xbar
non-idealities on DNN accuracy and have proposed techniques
to alleviate their impact on CiM-based DNNs, red summarized
in Table I. On the algorithmic side, non-ideality aware train-
ing has been explored [9], [14], [20]. Although non-ideality
aware training is very effective in mitigating the impact of
Xbar non-idealities, it requires access to large computational
resources as well as labelled training data, which may not
always be available. To bypass the prohibitive cost of training,
some works utilize non-ideality aware finetuning to regain
the accuracy lost due to non-idealities [10], [21]. However,
these solutions still require access to labelled training data/data
statistics, which can be challenging to obtain due to data
privacy constraints. Additionally, training/fine-tuning methods
will need to re-applied every time a technology parameter is
changed, further complicating the hardware design cycle.

From the hardware perspective, novel write schemes,
redundancy, non-ideality-aware weight mapping and partial
wordline activation (PWA) are commonly used non-ideality-
mitigating strategies [12], [13], [21]. For example, [11]
and [21] use a redundant row per array to enhance CiM
robustness, albeit at the cost of area [21]. Works based
on non-ideality-aware mapping [12], [15] reduce IR drops
via row/column re-arrangement but have applicability lim-
ited to only certain Xbar designs or memory technologies.
PWA reduces the current in Xbar arrays, but at the cost of
latency [22].

Furthermore, two important points should be noted. First,
most of the aforementioned works have been evaluated for
pre-45nm technology nodes and their effectiveness in deeply
scaled technologies, where the parasitic resistance based
non-idealities are aggravated, requires further study. Second,
these works focus primarily on high-precision DNNs, leaving
the impact of Xbar non-idealities in BNNs and their mitigation
unaddressed. In this work, we fill this gap by evaluating the

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALHOTRA AND GUPTA: TWINN: TRAINING-FREE WEIGHT-INPUT FLIPPING

TABLE I
COMPARISON OF PREVIOUS WORKS

Criteria [9] [10] [11] [12] [13] [14] [15] This Work
No training needed X v v v v X v v
No training data/statistics needed X X v X 4 X v 4
Technology node used - 45nm - 65nm 40nm 45nm 7nm Tnm
Studies BNNs v X X X X X X v
Memory technology agnostic v v v X 4 X X v
Xbar non-idealities in CiM-BNNs at the 7nm technology node - 3 (a) Average VMM output | —~ || (b) Average VMM output
and proposing TWINN to enhance CiM-BNN accuracy. g4 =19.03 3?3 =412
X x
> 3 E 2
ITII. BNNS AND XBAR NON-IDEALITIES g, 9
. . . . 5 g1
In this section, we describe the issue of aggravated Xbar &1 2
non-idealities in CiM-BNNs that stems from the distinct o 0 .
attributes of BNNs. For this, we take ResNet-18 BNN as a o 10 |d2eoa| pioﬂiai%unfo o o 1 |dioa| pzoniaﬁ%urﬁo o0
case study, and analyze the Xbar outputs, current deviations
Fig. 1. Histograms showing the frequency of ideal partial-sums in a

due to Xbar non-idealities and their impact on BNN accuracy.

A. Partial Sum Analysis for CiM-BNNs

We start by profiling the expected CiM output of the Xbar
arrays (3_;_; I = W), which we refer to as the ideal partial
sums. Note, DNN weight matrices are typically partitioned
and mapped onto multiple Xbars. The partial-sums produced
by these Xbars are combined to obtain the VMM output.

For our partial sum analysis, we map a ResNet-18 BNN
trained on CIFAR-10 on Nand-Net-based 64 x 64 size Xbar
arrays. For comparison, we also map a ResNet-18 4-bit DNN
on 64 x 64 Xbar arrays. For this, we store the 4-bit weights in
their 2’s-complement form with each of their bits stored in a
binary memory element (to be compatible with designs such
as SRAMs). The 4-bit activations (which are non-negative due
to ReLU activation in high precision DNNs) are bit-streamed
using binary voltages (0 and Vpp). We profile the distribution
of the ideal partial sums (values ranging between 0 and 64)
by performing inference using the entire CIFAR-10 test set.

It can be observed from the y-axes of Fig. 1 that the roral
number of partial-sum computations is significantly higher for
the 4-bit W/A DNN compared to the BNN. This is due to its
bit-sliced weight storage and bit-streamed activation inputs.
Specifically, the number of partial-sums is 16x higher in the
4-bit DNN, as each dot product requires 4 cycles for activation
streaming and 4 partial-sum computations per cycle for the
weight bits.

Our analysis (Fig. 1) also shows that BNNs produce sub-
stantially larger partial-sums on average than the 4-bit DNNs.
The average 4-bit DNN partial-sum is ~ 4, whereas that for the
BNN is ~ 19, 4.6X larger. We attribute this to two distinct
properties of BNNs. First, due to only two possible values
(+1 and —1) of weights and activations, the distribution of
1’s and —1’s (0’s in Xbars) in BNNs is more or less uniform.
This is also true for other BNNs used in our work (Fig. 6).
In contrast, the higher precision DNNs have a zero state and
exhibit an approximately normal distribution of DNN weights
(and in some cases, activations) centered around that zero state.

(a) ResNet-18 BNN and (b) ResNet-18 with 4-bit weights and activations.
The Xbar array size is 64 x 64. We observe that the BNN produces larger
partial-sums on average than the 4-bit DNN.

Additionally, quantization, even to standard 4-8 bits, collapses
close-to-0 values to 0. As a result, high precision DNNs exhibit
larger input/weight sparsity compared to BNNs. Bit-streaming
of activations, combined with the ReLLU activation function,
enhances sparsity in higher-precision DNNs. However, this
benefit does not extend to BNNSs, as their activations are lim-
ited to a single bit. Furthermore, BNNs typically employ Tanh
or HardTanh activation functions, which do not increase the
number of zeros in activations as ReL.U does. These two dis-
tinctions between BNNs and higher precision DNNs culminate
in substantially higher partial-sums in CiM-BNNs. It is worth
noting that while our focus is on convolutional DNNs, other
architectures, such as transformers and LLMs, also leverage
sparsity-enhancing activation functions like GeLU [24]. As a
result, these architectures are similarly expected to exhibit
reduced partial sums.

The inherently high partial sums in BNNs imply large
currents in the Xbar columns, which are expected to severely
worsen the hardware non-idealities (such as IR drops).
To understand this, we evaluate the Xbar non-idealities and
their impact on inference accuracy of ResNet-18 BNN. Before
we discuss this, let us describe our evaluation framework.

B. Simulation Framework for Evaluating Xbar Non-Idealities

Our simulation framework is based on a customized Xbar
simulator, which exactly and self-consistently solves the Kir-
choff’s current/voltage laws in conjunction with the memory
device models to produce the output currents of the Xbar.
Fig. 3(a) shows a column of the Xbar array, which our
simulator models and Fig. 2 details the functioning of our
simulator. Our framework captures non-idealities such as wire
resistance (Ryire), driver resistance (R yiyper), Sink resistance
(Rsink) and device non-linearities. In this work, we utilize the
design where the activations () are applied on the gates of the

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
DNN Xbar Arrays
Conv1
3 5
®© .
o e
25
S G
4 a i
x 4
Non-ideal
Inference @ PyTorch based
Accuracy Xbar solver
Obtain Bitcell Current
from Look Up Table (LUT) Calculate IR drop
Ipitcen = f VL, Vwr, Vi) Until convergence 1
| Recalculate bitcell Vg, Vi, Vs,
incorporating IR drop

Fig. 2. The custom Xbar simulator used in this work.

access transistors (as it has been shown to be more resilient
to hardware non-idealities than other design options [25]).
As a result, there is negligible steady-state IR drop along
the row. Hence, we can analyze the impact of non-idealities
on each Xbar column independently [26]. Note that we use
an op-amp to sense the output current before feeding it into
an analog-to-digital converter (ADC), mitigating the effects
of sink resistance, as proposed in [27]. Such choices enable
us to analyze baseline BNNs designed for improved CiM
robustness. We show that despite these choices, the inherently
high partial sum leads to unacceptably low accuracy in BNNs.

In this work, we analyze Xbars using two memory tech-
nologies: 8T-SRAM and 1T-1ReRAM (Fig. 3(b) and (c)).
We use 7nm predictive models [28] for the transistors and the
experimentally calibrated model in [29] for ReRAMs. For wire
resistivity (both line metals and vias), we use models (and their
validated parameters) from [30], which capture surface scatter-
ing, grain-boundary scattering, and the effect of liner/barrier
layers. For an optimistic baseline, we choose interconnects
with scaled liners (lower resistance than standard). The wire
resistance per bitcell is calculated by multiplying the bitcell
height (Fig. 3(c)) with the resistance per unit length of the
bitline (BL) and sense-line (SL).

By virtue of the models discussed above, our framework
seamlessly captures the non-idealities due to finite current
Iggrs and Ippp produced by bitcells when I = 1 and
W =0and I =0and W = 0/1, respectively. Note that for 8T-
SRAM, the ratio of /gy (current produced when I = W = 1)
to Iorr/HRrs is large (> 10%). However, for 1T-1ReRAM,

III-IOIIQVS is in the range of 10-50 [26], leading to CiM errors

under certain scenarios. To mitigate the impact of /g rs in 1T-
IReRAM Xbar, we use a dummy column, as in [26] and [31].

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

BL (a) (b) 8T-SRAM 1T-1ReRAM {BL
WWL WWL WL
T L WBLB L
Rdriver WL.
v T \wsL BL wiH
N Q
Y AW, sL sL
NS ASL [0 8T-SRAM 1T-IReRAM M Fin
Rwire -"WBL = sL M Gate,
EIN+
\,“\sz .
e 2 M
. l\[l_n % X]Contact
~ Gate Pitch (GP) = 54 nm Metal Pitch (MP) =36 nm Fin Pitch (FP) =27 nm
NG s e . 8T-SRAM
In \ wire | ©
2
n g %3
=
L Rwire o (Uz
= £
x=1 C o
o O
R ££l —— 8T-SRAM
sink p-amp| 3 o —— 1T-1ReRAM
0 10 20 30 40
(d) Ideal partial-sum

Fig. 3. (a) Xbar array column with non-idealities. (b-c) schematics and
layout of 8T-SRAM and 1T-1ReRAM bitcells. (d) average current deviation
(normalized to current quantum between adjacent ADC levels) versus par-
tial-sum. The inset shows the range of current deviations for each partial
sum corresponding to different input-weight combinations. Current deviation
increases superlinearly with rising partial-sum.

Our simulator (Fig 2) calculates the non-ideal Xbar column
(Fig 3(a)) currents as follows: at each iteration, the simulator
first calculates the terminal voltages—word-line (WL - V),
bit-line (BL- Vp1), and sense-line (SL - Vg)—for each bitcell
in the Xbar array (starting from the ideal voltages in the first
iteration). It then uses these voltages to look up corresponding
bitcell currents from precomputed lookup tables (LUTSs). The
LUTs are obtained from SPICE simulations of the bit-cells
by sweeping Vi sz and Vpp s (where V,p = V, — Vp)
and obtaining the corresponding bit-cell current. This use of
LUTs enables our simulator to flexibly capture both linear
and non-linear current-voltage behavior, thereby supporting a
broader range of memory technologies. Next, these current
values are used to recalculate terminal voltages, refining
their estimates by incorporating IR drop across the parasitic
resistances. This voltage-current update loop repeats iteratively
until convergence (defined by negligible differences in bitcell
currents between successive iterations) is achieved. Thus, the
simulator rigorously calculates the non-ideal output current
produced by each Xbar column.

We implement our simulator in Pytorch, facilitating its
seamless and efficient integration into DNN workloads. The
customized simulator has been extensively validated with
SPICE simulations of Xbar arrays, showing a maximum error
of 0.3%.

This general rigorous modeling capability distinguishes our
framework from prior works like [14], (which assume ohmic
bitcells) or [32] and [33] (which is based on approximate
non-ideal Xbar model).

C. Impact of Large Partial-Sums on Xbar Non-Idealities

In this subsection, we evaluate 1) the current deviation (the
difference between ideal and non-ideal output current) as a
function of expected partial sum output and 2) the non-ideal

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALHOTRA AND GUPTA: TWINN: TRAINING-FREE WEIGHT-INPUT FLIPPING

inference accuracies for both the ResNet-18 CiM-BNN and the
4-bit DNN (discussed in Section III-A). For this, we utilize the
simulation framework described above. We substantiate our
findings with an approximate analytical study establishing the
relationship between partial-sum and current deviation.

For the analysis in this section, we choose the design points
(such as routing metal layer M6 for BL/SL, 1xA ON current
etc. - more details later) that minimize the Xbar non-idealities.
In Section V, we will carry out a more comprehensive discus-
sion for different design points. For each ideal partial-sum x,
we obtain the non-ideal currents from our simulator for 10,000
unique weight-activation pairs. It can be seen in Fig. 3(d) that
the average current deviation for both memory technologies
not only increases with an increase in x, but grows at a
superlinear rate. As x increases, there are more ‘ON’ bitcells
in a column, leading to higher BL/SL current and larger IR
drops.

As discussed in Section III-A, BNNs inherently produce
higher partial sums (average value ~19) compared to higher-
precision DNNs. This results in significantly more severe
current deviations due to the superlinear trend, causing a larger
number of CiM errors and degraded inference accuracy. From
Fig. 3(d), it is evident that increasing the partial sum from ~4
to ~19 leads to approximately an 18-fold and 10-fold rise in
normalized current deviation for 8T-SRAM and 1R-1ReRAM,
respectively. Fig. 4 shows the impact of Xbar non-idealities on
both the ResNet-18 CiM-BNN and the 4-bit DNN accuracy
on the CIFARI10 dataset. Our results show that the accuracy
of the CiM-BNN designed with 8T-SRAM and 1T-1ReRAM
Xbars drops from 88.50% (software accuracy) to 52.09% and
18.08%, respectively. In contrast, the accuracy of the 4-bit
DNN only drops by 0.10% and 0.28% 8T-SRAM and 1T-
1ReRAM, respectively. These drastic accuracy drops, due to
the large partial sums in BNNs, deem the CiM-BNN unusable,
especially in deeply scaled technologies. As discussed later,
other design configurations yield even lower accuracy values.
Keep in mind that we use binary memory elements for both
the BNN and the 4-bit DNN (each 4-bit weight represented
using four binary devices). This ensures compatibility with
memory technologies like SRAM. However, an alternative
approach using multi-level memory cells for the 4-bit DNN
would reduce the number of Xbars required to store the DNN.
However, this would also reduce current margins between
adjacent output states, thereby increasing susceptibility to non-
idealities [26].

Thus, while the accuracy of 4-bit DNNs are minimally
affected by the Xbar non-idealities, BNN accuracies are
significantly impacted due to much larger partial sums.
To understand this phenomenon further, let us explore the
relationship between partial-sum and current deviation (which
leads to CiM error) for an Xbar column utilizing a simplified
analytical approach. To illustrate our point, we consider an
optimistic scenario by including the effect of the Rg;jyer only
i.e. neglecting Ry, and Rg;ni. (Note, the inclusion of these
effects is expected to further worsen the current deviations).
Additionally, to simplify our analysis, we neglect the current
for the OFF bitcells (as the bit-cells considered in our work
produce low OFF currents). Due to Rjyiver, €ach ON bitcell

3 .

4-bit DNN

Fig. 4. Inference accuracies of the BNN and 4-bit DNN evaluated on the
same Xbars.

produces a current / instead of Ipy. For a partial-sum of n
(column current is n* I), the current deviation is nx (Ipy — 1)
and the IR drop across Rgyiver iS:

AV = Rgriver * I xn 2

AV drop on the bitline is responsible for the reduction of
bitcell current from Iy to I. This can be written as:

Al oy —1
AV AV

Since our analysis only considers Rgyiyer, G here refers

to the large-signal conductance of the bitcell with respect to

BL. In general, G could be a function of the bias voltages
(especially for non-ohmic entities). Using Eq. 2 and 3:

=G 3)

Ion—1 =n-G-I-Ryriver 4
1
I ON 5)
14+n-G - Rariver
1
- (1 —0N=n-1 {1-
n-(loy —1)=n-Ion (l+n'G‘Rdriver)
_ n2 : ION -G - Rdriver (6)

L+n-G- Rariver

Thus, we see that the current deviation is a superlinear
function of the partial-sum 7, with a linear asymptote. This
phenomenon arises because each individual ON current con-
tributes to an IR drop, which in turn influences all other ON
currents, resulting in a quadratic behavior in the numerator.
However, the IR drop simultaneously reduces the ON current,
thereby diminishing the IR drop itself-essentially creating a
negative feedback loop. This interplay is effectively captured
by the denominator.

The analytical results further back the experimental results
in Fig. 3(d). It is important to note that our analysis was an
optimistic one, neglecting Ry and Rsiux, Whose inclusion
would further increase the impact of Xbar non-idealities.
Additionally, R, brings a positional dependency to the
current deviation, since different input-weight combinations
corresponding to the same partial-sum will produce different
current values, as shown in the inset of Fig. 3(d).

Thus, Xbar non-idealities are further aggravated in
CiM-BNNs due to their large average partial-sums and the
superlinear relation between partial sums and current devia-
tion. It is important to emphasize that the robustness trends we

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

observe in CiM-BNNs versus higher-precision DNNs are influ-
enced by our specific architectural and technological design
choices. This work adopts the NAND-Net-based CiM archi-
tecture, which leverages single-ended bitcells, and a deeply
scaled 7nm technology node. These choices are motivated by
their advantages in area, energy, and latency efficiency—making
them particularly attractive for edge deployments. However,
these choices also amplify the impact of Xbar non-idealities
on CiM-BNNs.

For instance, the NAND-Net architecture enables the use
of single-ended bitcells (e.g., I'T-1ReRAM) for BNNs, which
reduces array footprint and peripheral overhead by requiring
only one ADC per weight column. In contrast, differential
bitcell configurations (e.g., 2T-2ReRAM) inherently consume
more area and require two ADCs per weight column but offer
improved tolerance to non-idealities due to common-mode
noise cancellation [34], [35].

Additionally, the use of the 7nm technology node intro-
duces pronounced interconnect non-idealities due to increased
resistivity of copper wires. As scaling progresses, the barrier
and liner layers required to mitigate reliability issues such
as electromigration do not scale proportionally, leading to a
reduced effective conduction area. Combined with enhanced
sidewall electron scattering, this results in significantly higher
wire resistivity and, consequently, more severe IR drops [19],
[36]. Since our analysis shows that BNNs are particularly
sensitive to IR drop due to their large average partial sums,
the 7nm node presents an especially demanding challenge.

Thus, the aim of this work is to be able to get the
best of both worlds: to benefit from the resource efficiency
of the NAND-Net architecture as well the the 7nm tech-
nology node without compromising on robustness against
Xbar non-idealities. In the next section, we propose TWINN,
a training-free technique that tackles this issue.

IV. TWINN: THE PROPOSED SOLUTION

TWINN reduces the partial sums in BNN Xbar arrays
by simultaneously employing two (twin) operations, namely
static weight flipping and dynamic activation flipping. Both
these operations capitalize on the binary-valued weights and
activations in BNNs that facilitate some partial-sum reduc-
ing transformations while ensuring no effect on the VMM
functionality.

A. Static Weight and Dynamic Activation Flipping

Recall, in the NAND-Net architecture (described in
Section II-A), —1 and +1 weights are mapped to 0 (HRS)
and 1 (LRS), respectively in the Xbar arrays. Similarly, —1
and +1 activations are mapped to 0 and Vpp, respectively.
Therefore, if the number of —1’s in the weight matrix or
activation vectors are increased, it would imply increasing
the zero weight bits stored in the Xbar or the zero input
activation voltages applied to the wordlines (WL). In this
section, we define weight and activation sparsification in this
context i.e. reducing the number of +1’s (or increasing the
number of —1’s) so that the Xbar array or the WL voltage
vectors are sparsified. Such a weight/activation sparsification

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

(a) No.of1s=4 0 _ Xbar Array (b)
1 = XOR
BNN weight ol & g D_ n
column (W) R rmiE s : :
< 1|5 2 . :
P EH e = -
+ ‘OQ T g n e e .
n W\ 2 7—|Comparator Post-
A7 1 oo processing
M| er
S 0
'00@ —— Tree
O’9 1
s L
sl? o
- n
10|
No.of1s=2| 0 Output

Fig. 5. (a) Static weight flipping being applied on a BNN weight column.
(b) Hardware implementation of TWINN.

would naturally reduce the partial sums and reduce the impact
of non-idealities.

Fig 5(a) illustrates the proposed static weight flipping oper-
ation utilized by TWINN for an Xbar column. The key role of
this operation is to minimize the number of 1s in each column
of the weight sub-matrix (W) before they are mapped onto an
Xbar column. We achieve this by first calculating > W and
checking whether it is > 0. If yes, then there are more +1s
than —1s in W. In that case, we multiply all elements in W
by —1 (flip). If > W < 0, we keep W unchanged. We also
keep track of whether or not a flip has been performed in a
column using a column_ flip vector. If the i’" weight column
is stored as —W (W), column_flip[i] is equal to 1 (0).
Once applied, the modified weights are deployed on the Xbar
arrays and the column_flip vector is stored in a peripheral
register. For an Xbar with n columns, column_flip is of
size n bits. The column_flip vector is used to maintain the
correct VMM functionality. If column_ flip[i] is equal to 1,
the corresponding VMM output of the column is multiplied
by —1 (since D> I %« W = —1-> I x (—W)). Otherwise, the
VMM output is used as it is.

Thus, by choosing between storing W or —W based on
> W, we enhance the sparsity in the Xbar weights. Note that
we refer to the weight sparsification operation as static. This
is because the BNN weights are constant during inference,
enabling us to perform this step in advance (i.e. in software)
rather than during inference.

Similar to the weight flipping, activation flipping is per-
formed by selecting between activation sub-vectors I or —/
based on > I. Here, I is the sub-vector that is applied as
an input to an Xbar array and has the size equal to the
number of rows of the Xbar array (n). It is important to
note that unlike weights, activations are dynamic and vary
with each input, requiring flipping during inference. Thus, the
selection between I or —/ must be performed in the hardware
before the modified activation vectors can be applied as WL
voltages. Recall, the NAND-Net hardware utilizes / in the
[0,1] domain. Therefore, we compare > I to 5. If = %
there are more 1s than Os (equivalent to —1s) in /, and we
flip every element of I. Otherwise, I is unchanged. We name
the output signal of the comparator activation_flip. If an
activation sub-vector is flipped, activation_flip is 1; else it
is 0. activation_flip is utilized to ensure the correct VMM

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALHOTRA AND GUPTA: TWINN: TRAINING-FREE WEIGHT-INPUT FLIPPING

functionality. If activation_flip is 1, we negate the partial
sums obtained from all the columns of the corresponding
Xbar array (i.e. on which the flipped input is applied). This is
because > I« W = —1-> (—1I)* (W). Else, the partial sums
of the Xbar are used as they are.

B. Hardware Implementation of TWINN

Fig 5(b) provides an overview of a CiM-BNN memory array
utilizing TWINN. There are four key hardware modifications
to implement TWINN. First, to support static weight flipping,
an additional register (1 bit per Xbar column) is required for
the storage of column_flip.

Second, for dynamic activation flipping, computing > I
requires an adder tree near-memory. Interestingly, the
NAND-Net architecture already includes an adder tree for
computing >_ I for the post-processing, allowing us to utilize
the existing hardware without significant hardware overheads.
The additional circuitry needed includes a digital comparator
(to compare > I to %) and XOR gates (1 per row) to flip
I or not, depending on activation_flip. Additionally, when
flipping 7, the > I required for post-processing (Equation 1)
becomes n — DI due to the flip. To provide the correct
value for post-processing, we incorporate a subtractor and a
multiplexer to switch between > 1 and n — > I based on
the value of activation_flip. The subtraction is implemented
using a ripple-carry adder in two’s complement form: n— > [
is computed as n + ones_complement (D I) + 1. The ones’
complement is obtained by passing > I through a bank of
inverters, and the carry-in for the adder is set to 1.

Third, TWINN needs some additional circuitry to
post-process the partial sums. Recall, NAND-Net requires the
VMM output to undergo some post-processing to obtain the
final VMM output (equation 1). On top of that, TWINN
requires selective negation of partial sums based on the values
of activation_flip and column_flip. If column_flipli]
is 1 and activation_flip is 0 or vice versa, then the
post-processed VMM output must be further multiplied by
—1. However, if both activation_flip and column_flip
are 1 or 0, then no further processing is needed, since
STxW = > (—1I)* (—W). Thus, the VMM output has to
be multlphed with (— l)(activutionfflip@columnfflip). We imple-
ment this using a XOR gate to calculate activation_flip &
column_flip, 2’s complement circuitry to perform multipli-
cation with —1, and a multiplexer to choose the final VMM
output, with activation_flip @ column_flip as the select
signal.

Fourth, TWINN, interestingly, offers an opportunity to
offset some of the overheads of the additional hardware
discussed above. Typically for an Xbar where n rows are
asserted in parallel, log(n) bit analog to digital converters
(ADCs) are required to digitize the analog current/voltage.
However, static weight and dynamic activation sparsification
ensure that Xbar weight columns and activations have < 5 1’s,
respectively. As a result, the VMM outputs are guaranteed to
be < ’% This allows the use of a log(n) — 1 bit ADC for
digitization without introducing any errors, leading to some
energy, latency, and area savings. We will quantify the overall
hardware benefits/overheads of TWINN in Section V-C.

18
44.2%

Average partial-sum

ResNet-18
CIFAR-10

CIFAR-100

Fig. 6. Average partial-sum reduction using TWINN.

Finally, it is worth highlighting other works that utilize
‘flipped” states in Xbars for various purposes. In [37], row
and column flipping in DNN weight matrices are employed
to reduce model storage requirements in ReRAM Xbar-based
DNN accelerators. Similarly, [38] leverages row and column
flipping in BNN weight matrices to improve resilience against
stuck-at faults. Additionally, the ISAAC accelerator [39],
like our work, utilizes the ‘flipped’ state for the weights to
lower ADC precision by one bit, providing hardware benefits.
TWINN extends these findings for BNNs by demonstrating
that the benefits of ‘flipped’ weight encoding go beyond
ADC precision reduction, also addressing the impact of non-
idealities effectively. The non-ideality mitigation provided by
TWINN is further strengthened by the proposed dynamic
activation flipping.

V. RESULTS

In this section, we evaluate the efficacy of TWINN by
testing it on various BNNs across multiple datasets. We also
evaluate the hardware overhead of TWINN across multiple
design points.

A. Partial-Sum Reduction

First, we examine the partial-sum reduction achieved by
TWINN for the above-mentioned workloads. For this evalu-
ation, we apply the methodology outlined in Section III-A.
Fig. 6 presents the average partial-sums for various work-
loads with and without TWINN (baseline). Our results show
that TWINN reduces the average partial-sum magnitude by
43.1% - 49.8%. This sizeable reduction can be attributed
to the multiplicative interaction between activations (/) and
weights (W) in the Xbar. Since a bitcell is ‘ON’ only when
both I and W are 1, transforming either / or W to O reduces
the number of ‘ON’ bitcells. Consequently, the combined
effects of static weight and dynamic activation flipping lead
to a large reduction in partial-sum magnitude.

B. Accuracy Analysis

Next, we examine the accuracy of BNNs when deployed on
NAND-Net based non-ideal Xbars, and quantify the accuracy
improvements provided by TWINN. We utilize the framework
described in Section III-B for our analysis. We perform a
comprehensive analysis across multiple datasets—CIFAR-10

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

it Baseline VATWINN Software Accuracy | Resistance parameters: M3 =182 Q/um M4 =68 Q/um M6=27 Q/um Ryriver = 250 Q Rgink =250 Q

ResNet-18 — CIFAR-10 VGG-small — CIFAR-10 ResNet-18 — CIFAR-100 VGG-small — CIFAR-100

___________________________________ 0 - e et — ;
¥/ 7 7 P 7 P ™

.80 % % | ~80| 2 % | 60| % 7| 60 Z %
3 % 72 712 | % é 7 | €50 7 . 7 Ss0 7 % 4
e 8. 7 7 718, 7 7 7180 % 7% 7 7180 72 % 7 7
& a0l 7 s 5 7 Sao 7 7 7|t 7 7 7 7 %30 7 7 7 7
237 BRI BRIECERE BRI 7
b S50 7 7 7 7% 7 y 7 71582 7 7 7 71580 7 7 7 7
<20 7 7 7 /<20 7 72 7 7|< 72 7 7z 71< Z 7 7 %
7 B 7 o B | wZ 7w o 10 7 7 B 7z Z|1510 72 7 2 % %
¥ ¥ Yy w Y e w Wy |7 78 4 5 5 |7 7 % 7 7
(M3 M4 M6, M3 M4 6] ~M3 M4 MGJ \M3 M4 MGI 1M3 M4 MGJ \M3 M4 M6} \M3 M4 MG} \M3 M4 MGJ

1pA 2pA 1A 2VA TyA 2pA TyA 2 A

ResNet-18 — CIFAR-10 VGG-small — CIFAR-10 ResNet-18 — CIFAR-100 VGG-small — CIFAR-100
o = e e L ettt oS e s

. I 601

80 v 7%12% 2 7 4| =% 7 . | =& P "
2207 BRIEDR BRI 1E-ER 4 7
< T600 7 7 71980 7 7 % 0 z 7 % Z|1>a0 7 % 7 7
e Z vy % 7| 7 72 7| 3% Z 7 72 718 72 7 7 7
S3 | 7 7 7 713_| 7 7 7 7|32 7 7 7 71320 7 7 % 7 7
e 8y 7 7 7 7182 7 7 7 7/8»® 7 7 BESE R 2 7 7
a < 7 Z 7 Z|< 7 7 72 7 <10 % 7% 72 71<10 7 % 72 % 7
¥V e ww| e wwwww| |7 7Y% 745 i 7 7 5 7
\M3 M4 MG} \M3 M M | \M3 M4 M6] \M3 M4 MGJ \M3 M4 MG} \M3 4 M6f \M3 M4 MGJ \M3 M4 M6f

TpA 2pA TpA 2pA TpA 2pA TpA 2pA

Fig. 7. Non-ideal inference accuracy for ResNet-18 and VGG-small CiM-BNNs across various hardware design points. Baseline CiM-BNN accuracy is

g y gn p! y

severely degraded due to Xbar non-idealities, due to the large partial-sums. TWINN is able to significantly improve accuracy, even bringing to near-ideal
values for some cases. M3, M4 and M6 refer to the BL/SL routing metal layers, and 1 1A and 2 A refer to the ON currents of the bit-cell. The 1T-ReRAM
HRS current is ~ 0.1 uA. We modulate the gap length in 1T-1IReRAM and the terminal voltages in 8T-SRAM to achieve the two different on-currents.

[40], CIFAR-100 [40], SVHN [41], and FashionMNIST [42],
two memory technologies (§T-SRAM and 1T-1ReRAM), and
two BNNs: ResNet-18 [43] and VGG-small [44].

We evaluate the accuracies for two bitcell ‘ON’ currents:
1 wA and 2 puA. The ON currents are controlled via Vpp
tuning in 8T-SRAM and filament tunneling gap tuning in
ReRAMs. While designs with higher ‘ON current’ offer larger
distinguishability of output states and mitigate the effect of
Inrs/orrF (especially in ReRAM), they also suffer from larger
IR drops in the parasitic resistances. Further, we assess the
accuracies for BL/SL routed in M3, M4, and M6 metal layers.
Higher metal layers, such as M6, have larger width and height,
leading to lower wire resistance and reduced non-idealities,
albeit at the cost of array area, higher capacitance (energy)
and lower porosity. We evaluate TWINN across these design
points to shows its efficacy for various design choices.

Fig.7 summarizes the comparisons for CIFAR-10 and
CIFAR-100. The baseline accuracy (without TWINN) is
severely degraded by Xbar non-idealities, with maximum accu-
racies of 52.09% for CIFAR-10 and 18.08% for CIFAR-100
(for favorable design points such as M6 - 1 nA). For several
other design points, near random-guess accuracies (10% for
CIFAR-10 and 1% for CIFAR-100) are observed. On the other
hand, TWINN provides significant accuracy improvements.
For the M6 - 11 A case, TWINN helps attain accuracies within
0.5% of the ideal accuracies for all CiM-BNNs. Even for
M6 - 2 uA and M4 - 1uA, the accuracies are increased to
within 10% of the ideal values. Thus, the partial-sum reduction
(Fig. 6) translates to significant accuracy gains. However,
we observe that for the cases with larger non-idealities, e.g.
M3 - 2 A, the accuracy improvements may not be sufficient
(but are still larger than the baseline). For such cases, TWINN
needs to be used in conjunction with with other non-ideality
mitigation solutions.

As discussed in Section III-C, our choice of the NAND-
Net architecture—motivated by its hardware efficiency through
the use of single-ended bitcells—does result in heightened

vulnerability to Xbar non-idealities as compared to deploy-
ment on differential Xbars. To contextualize the impact,
we also deploy BNNs on differential 8T-SRAM based Xbars
for two design points: M6-14A and M3-11A. As expected, the
differential configuration shows stronger resilience, yielding
87.05% accuracy for M6-1uA—substantially higher than the
NAND-Net baseline. However, for more aggressive design
points, even differential arrays exhibit severe accuracy degra-
dation, with accuracy dropping to 20.92% for M3-1uA.
These results highlight the general sensitivity of BNNs
to Xbar non-idealities, regardless of the type of bitcell.
Importantly, TWINN substantially enhances the robustness
of NAND-Net based Xbars—achieving higher accuracy than
differential configurations—while preserving the hardware effi-
ciency benefits of single-ended bitcells and incurring only
minor overheads, as discussed in Section V-C.

To broaden our analysis, we further evaluate ResNet-18
BNNs trained on the SVHN and FashionMNIST datasets
across three hardware design points: 1) M6 - 1uA (low
non-idealities), 2) M3 - 1uA (moderate non-idealities), and
3) M3 - 21 A (severe non-idealities). These design points were
selected to represent varying degrees of Xbar non-idealities as
well as energy/area trade-offs, as detailed previously. These
simpler datasets are included to investigate whether baseline
BNNs can achieve higher accuracy under non-ideal conditions
in less complex workloads, and to assess the effectiveness of
TWINN in mitigating non-idealities in such scenarios.

Fig. 8 presents the results for these datasets. Although
SVHN and FashionMNIST are comparatively simpler datasets
than CIFAR-10 and CIFAR-100-as evidenced by their higher
software accuracies—they still exhibit severe accuracy degrada-
tion under baseline conditions. This degradation is especially
pronounced for the M3 configurations, where accuracy falls
sharply to near random-guess levels (~10%), mirroring the
performance observed in the CIFAR benchmarks. For the rel-
atively favorable M6 - 1A case, baseline accuracies also see
a reduction from the software accuracy levels: from 95.35%

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALHOTRA AND GUPTA: TWINN: TRAINING-FREE WEIGHT-INPUT FLIPPING 9
FashionMNIST FashionMNIST SVHN SVHN
100 8T-SRAM 1T-1ReRAM 8T-SRAM 1T-1ReRAM
T oTTTTTTTTTTYL Y ZmTTTTTTTT o TTTTTTTY [T ZT T z T T ZTTTTTTTTT T
57 Z Z 7 g B Z Z Z Z
7 7 | 7 7 27 7 7 Z 7
501 7 Z B Z Z 7z 7 7z Z B g
7 Z 7 Z Z Z L7z Z 7 7 Z 7z
w7z g Z 7 Z g k7 Z Z 7 7 Z
7 7 z 7 Z Z 57z z Z Z Z Z
| 7 | Z | 7 Z | | | 7 7 Z 7 Z 7
o I | 2 | 7 7 | | | 7 | 7 | 7 57 | 7
M6-1pA M3-1pA M3-2uA M6-1uA M3-1pA M3-2pA M6-1pA M3-1pA M3-2pA M6-1uA M3-1pA M3-2pA
""" Baseline vz TWINN ---- Software Acc.
Fig. 8. Accuracy of ResNet-18 BNN on FashionMNIST and SVHN datasets.
TABLE II

HARDWARE METRICS OF TWINN RELATIVE TO BASELINE (OVERHEAD % ON TOP, ABSOLUTE VALUES FOR TWINN IN PARENTHESES BELOW). ENERGY
AND LATENCY FIGURES CORRESPOND TO A SINGLE VECTOR-MATRIX MULTIPLICATION-I.E., ONE INPUT VECTOR PROCESSED BY A 64x64
CROSSBAR ARRAY TO GENERATE 64 DOT PRODUCTS. AREA VALUES REPRESENT THE FOOTPRINT
OF A SINGLE MEMORY MACRO, AS ILLUSTRATED IN FIG. 5 (B)

Memor Energy Latency (%) Area (%) EDAP (%)
y (%) TADC | 8 ADCs | 64 ADCs | T ADC g ADCs 64 ADCs | TADC | 8 ADCs | 64 ADCs
9.0 118 83 148 77 39 34
ST-SRAM | (189 pJ) | (4402 ns) | (569 ns) | (9.0 ns) | (212.9 um?) | (5243 um?) | (30149 ym?) | 126 | 129 8.0
04 130 97 16.3 14.8 6.0 36
IT-IRERAM | 17113y | (3961 ns) | (514 ms) | 83 ms) | (117.4 um?) | (4287 um?) | (29194 ym?) | >0 -133 92

Note: Negative overhead indicates improvement compared to baseline. Absolute values reflect the actual metric values for TWINN.

down to 73.17% (8T-SRAM) and 11.07% (1T-1ReRAM) for
SVHN, and from 94.19% down to 76.13% (8T-SRAM) and
37.13% (1T-1ReRAM) for FashionMNIST. However, TWINN
dramatically improves accuracy, nearly restoring software
accuracy for the M6 - 1uA case. Even for moderate non-
idealities (M3 - 1uA), TWINN achieves accuracy within
~ 5% of the ideal for both datasets and memory technologies.
Although the most severe scenario (M3 - 2i4A) continues to
present substantial challenges, TWINN’s accuracy improve-
ments remain significant over the baseline suggesting its utility
as a foundational mitigation strategy that can enhance the
effectiveness or reduce the overheads of other mitigation
solutions.

C. Hardware Overhead

We evaluate the hardware implications of TWINN at the
memory macro level (Xbar + peripheral circuits). The actual
impact may be lower once other components of the system
are included. We evaluate the energy, latency and area of
64 x 64 Xbar arrays based on 8T-SRAM and 1T-1ReRAM
using SPICE simulations and custom layout [26]. Note that
the BL and SL of the Xbars are routed in M3 for the hardware
evaluation. We obtain the energy-latency-area of the Xbar
peripherals in the 7nm technology node based on the circuit
modules from Neurosim [25]. For the baseline and TWINN,
we utilize 6-bit and 5-bit SAR-ADCs, respectively, based on
our discussion in Section IV-B. We conduct our hardware
evaluation for three cases: 1) each Xbar column is equipped
with a dedicated ADC (64 ADCs), resulting in reduced latency
but larger area, 2) 8 Xbar columns share a single ADC
(8 ADCs), leading to a smaller area but higher latency and
3) each Xbar has a single ADC (1 ADC), leading to the
smallest area but largest latency.

Baseline Adder Tree

Ex® Xbar
ESN Post-processing

S
elololedetelolelets ololetelololels!oledeetololete

SR
SXRRRXRRRRRXXRKY

R LR LI LIELR
B R8RS
RRERXRHARHRRRXHAXICAXACALLKXA

t 2t
Time

TWINN

............................. S —
. B s

N

T
tL+nt+ts

T
t+26
Time

Fig. 9. Timing diagram showing that in the baseline, adder tree latency is
masked by the Xbar operation, while in TWINN, it lies on the critical path and
increases total latency. The number of Xbar operations depends on the degree
of ADC sharing within the array. The exact latency (as shown in Table II)
is affected by this as well as by the underlying memory technology and the
specific design point.

Table II summarizes the results. We observe that despite
the additional hardware (See Section 1V), TWINN offers
2 9-9.4% reduction in energy. This is because of the SAR-ADC
bit precision reduction that offsets the effect of added
peripherals.

The latency is governed by two opposing factors. First,
there is an improvement in latency due to the reduced ADC
precision. However, in the baseline, the output of the adder
tree is only needed for post-processing, allowing its latency to
be masked by the CiM latency. In contrast, TWINN needs
the adder tree output for dynamic activation sparsification,
adding the adder tree latency to the critical path (as shown
in Fig. 9). For the design with 64 ADCs per array, the adder
tree latency dominates, leading to a 14.8-16.3% increase in
latency. Conversely, when 8 ADCs are used per array, the

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ADC latency becomes the bottleneck, resulting in a latency
reduction of 8.8-9.7%.

The area overhead of TWINN mainly arises from the
extra register for storing the column_flip vector, is minimal,
ranging from 3.4%-7.7% and 3.6%-14.8% for 8T-SRAM and
1T-1ReRAM,respectively, across all evaluated design points.

Lastly, to consolidate our results, we calculate the energy-
delay-area product (EDAP) change caused by TWINN. We see
that EDAP change ranges from —13.6% - 8.0% for 8T-SRAM
and —13.3% - 9.2% for 1T-1ReRAM. Thus, TWINN offers
significant accuracy improvements in CiM-BNNs with only
minor hardware overhead.

D. Baseline Enhancement: ADC Reference Optimization and
Partial Wordline Activation (PWA)

Our accuracy results discussed previously show that the
baseline design is severely impacted by the Xbar non-
idealities. To boost the baseline accuracy and assess the
effectiveness of TWINN in comparison to an enhanced base-
line design, we investigate two techniques—ADC reference
optimization and partial wordline activation (PWA). These
techniques are chosen for their compatibility with CiM-BNNSs,
training-free nature, and applicability across different memory
technologies, much like the proposed TWINN technique.

1) ADC Reference Optimization: In conventional CiM
designs, the ADC quantization step size ({guans), Which is
the difference between successive ADC reference currents,
is typically set to match the ON current of the bitcell (I1gs),
assuming ideal behavior [45], [46]. However, due to Xbar
non-idealities such as parasitic resistances and current leakage,
the actual column currents deviate from ideal values, causing
inaccurate dot-product outputs. ADC reference optimization
mitigates this by determining a workload-specific Ij,qn; that
minimizes the weighted average error of Xbar outputs. This
error metric is computed by multiplying the average deviation
for each partial-sum value with its probability of occurrence,
derived from inference distributions over 10,000 training
samples.

Note that employing ADC reference optimization makes
the ADC references dependent on the specific workload
and dataset, thereby necessitating additional on-chip circuitry
capable of reconfiguring the reference currents for multi-
workload scenarios. In this study, we focus on accelerators
designed for a single workload—a common configuration for
edge devices—which avoids the additional overhead associated
with adaptive ADC reference optimization circuitry. However,
for a more general purpose platform, the technique considered
here to boost the baseline accuracy will have overheads.

Since our analysis has established that the general accuracy
trends for the baseline and TWINN hold across various
datasets, we focus on evaluating the impact of ADC reference
optimization using the ResNet-18 BNN trained on CIFAR-10
dataset. The analysis is performed for both 8T-SRAM and 1T-
1ReRAM-based Xbars across three hardware configurations:
M6-11A (low non-ideality), M3-1u A (moderate non-ideality),
and M3-2uA (severe non-ideality). Accuracy results, pre-
sented in Fig. 10, highlight several key findings. First, strong
improvements in the optimized baseline are seen in low and

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

1T-1ReRAM

80
9
<60
> .
9 |
540/ |
] |
S |
<y f

0" M6-1uA M3-1pA M3-2uA M6-1pA M3-1pA M3-2pA
a%a%%| 222 _y -——-
Baseline (BL) BL (opt.) TWINN TWINN (opt.) Software Acc.

Fig. 10. Accuracy of ResNet-18 on the CIFAR-10 dataset with optimized

ADC references.

moderate scenarios (e.g., M6-1pA: from 52.1% to 87.8% in
8T-SRAM, and from 18.1% to 87.5% in 1T-1ReRAM), but
no improvements are observed in the M3-2uA case due to
overwhelming non-idealities. Second, TWINN without ADC
optimization still outperforms the optimized baseline in all
scenarios, emphasizing its efficacy. Third, integrating ADC
reference optimization with TWINN consistently achieves sub-
stantial accuracy improvements across all hardware scenarios,
bringing accuracy levels very close to the ideal software
accuracy (88.5%).

2) Partial Wordline Activation (PWA): PWA is a common
non-ideality mitigation strategy in CiM designs, where only
a subset of wordlines is activated per cycle—effectively parti-
tioning the dot-product computation [22], [47]. This reduces
both the average and maximum partial-sum values per CiM
operation, thereby lowering the impact of current deviation,
which increases superlinearly with partial-sum magnitude.
Additionally, PWA reduces ADC bit-precision requirements,
enabling energy, latency, and area savings per cycle. However,
since a full dot-product now spans multiple CiM cycles, total
energy and latency increase.

We evaluate PWA using the same ResNet-18/CIFAR-10
setup and hardware configurations as ADC reference opti-
mization. We specifically select a PWA value of 32, meaning
that 32 out of the 64 rows in the 64x64 Xbar array are
activated during each CiM cycle. This choice limits the max-
imum partial-sum to 32, thereby reducing the required ADC
precision from 6 bits to 5 bits. We make this choice since it
is consistent with TWINN, which also limits the partial-sum
at 32 to achieve the same reduction in ADC precision.

Our findings, which are summarized in Fig. 11, reveal
that PWA significantly boosts baseline accuracy under mild
non-idealities (e.g., M6-1uA: 52.1% to 87.4% in 8T-SRAM
and 18.1% to 71.9% in 1T-1ReRAM). However, it also is
ineffective under severe conditions (e.g., M3-2uA: baseline
remains at 10%).

TWINN again outperforms the PWA-enhanced baseline
across all configurations. For example, in the M3-1uA
case, TWINN achieves 73.1% (8T-SRAM) and 76.0%
(1T-1ReRAM), compared to PWA-enhanced accuracies of
just 16.0% and 13.1%, respectively. Unlike PWA, which
incurs cumulative errors from multiple CiM cycles, TWINN
completes each dot-product in a single cycle, avoiding com-
pounded errors and the near 2x latency and energy overheads

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MALHOTRA AND GUPTA: TWINN: TRAINING-FREE WEIGHT-INPUT FLIPPING

8T-SRAM 1T-1ReRAM
80 Z ,
g % 7
<60 7 7
% 7
9 7 7 %
® 7 7 %
g 7 7 /
540 % P 7 %
3 7 Z % %
9 7 7 % /
<20 Z é 7 Z
K7 - % -
0 e EX. i
-1pA M3-1pA M3-2UA M6-1uA M3-1pA M3-2uA
baratete! 2, — ‘
Baseline Baseline (PWA) TWINN Software Acc.
Fig. 11. Accuracy of ResNet-18 on the CIFAR-10 dataset with partial

wordline activation (PWA).

associated with multiple CiM operations. This highlights the
superiority of TWINN as a robust and efficient mitigation
strategy for Xbar non-idealities.

VI. CONCLUSION

In this work, we examined the impact of Xbar non-idealities
on the accuracy of CiM-BNN accelerators designed in scaled
technology nodes. We showed that inherently, BNNs produce
larger partial sums compared to higher precision DNNs, due
to which the influence of Xbar non-idealities in CiM-BNNs
is more pronounced. To address this challenge, we pro-
posed TWINN-a training-free technique designed to mitigate
the Xbar non-idealities specifically for CiM-BNNs. TWINN
reduces partial sums and, consequently, the non-idealities
in BNN Xbar arrays by employing two key operations:
static weight flipping and dynamic activation flipping. Our
experiments conducted on ResNet-18 and VGG-small BNNs
demonstrate that TWINN achieves a 43.1% to 49.8% reduction
in average partial-sum magnitudes. This leads to substantial
accuracy improvements over a standard BNN, with accu-
racy gains reaching up to 77.25%. Furthermore, we assessed
the hardware implications of TWINN and showed that the
accuracy improvements are accompanied by a 9.0% to 9.4%
reduction in energy consumption compared to the baseline.
These benefits come at the cost of up to a 16.3% and 6.0%
increase in latency and area, respectively. We also compared
TWINN to other non-ideality mitigation techniques like ADC
reference optimization and partial wordline activation, and
found that TWINN outperforms them over a range of hardware
design points, establishing it as a robust and low-overhead
solution for mitigating Xbar non-idealities in CiM-BNNs.

ACKNOWLEDGMENT

The authors would like to thank Chunguang Wang for his
help with the hardware evaluation.

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655-1674, Aug. 2019.

[2] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869-6898, Jan. 2016.

[3]

[4]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 29, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., 2016. [Online]. Available: https://proceedings.neurips.
cc/paper_files/paper/2016/file/d8330£857a17c¢53d217014ee776bfd50-
Paper.pdf

N. Verma et al., “In-memory computing: Advances and prospects,” [EEE
Solid-State Circuits Mag., vol. 11, no. 3, pp. 43-55, Aug. 2019.

J. Lee, A. Lu, W. Li, and S. Yu, “NeuroSim V1.4: Extending technology
support for digital compute-in-memory toward 1nm node,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 71, no. 4, pp. 1733-1744, Apr. 2024.
S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” IEEE
J. Solid-State Circuits, vol. 55, no. 6, pp. 1733-1743, Jun. 2020.

R. Liu et al., “Parallelizing SRAM arrays with customized bit-cell for
binary neural networks,” in Proc. 55th ACM/ESDA/IEEE Design Autom.
Conf. (DAC), Jun. 2018, pp. 1-6, doi: 10.1109/DAC.2018.8465935.

K. Cho, A. Malhotra, and S. K. Gupta, “XNOR-VSH: A valley-spin Hall
effect-based compact and energy-efficient synaptic crossbar array for
binary neural networks,” IEEE J. Explor. Solid-State Comput. Devices
Circuits, vol. 9, pp. 99-107, 2023.

S. Lee, G. Jung, M. E. Fouda, J. Lee, A. Eltawil, and F. Kurdahi,
“Learning to predict IR drop with effective training for ReRAM-based
neural network hardware,” in Proc. 57th Annu. ACM/IEEE Design
Autom. Conf. (DAC), Jul. 2020, pp. 1-6.

S. Jain and A. Raghunathan, “CxDNN: Hardware—Software compensa-
tion methods for deep neural networks on resistive crossbar systems,”
ACM Trans. Embedded Comput. Syst., vol. 18, no. 6, pp. 1-23,
Nov. 2019, doi: 10.1145/3362035.

C. Huang, N. Xu, K. Qiu, Y. Zhu, D. Ma, and L. Fang, “Efficient and
optimized methods for alleviating the impacts of IR-drop and fault in
RRAM based neural computing systems,” IEEE J. Electron Devices Soc.,
vol. 9, pp. 645-652, 2021.

A. Agrawal, C. Lee, and K. Roy, “X-CHANGR: Changing memristive
crossbar mapping for mitigating line-resistance induced accuracy degra-
dation in deep neural networks,” 2019, arXiv:1907.00285.

B. Crafton, C. Talley, S. Spetalnick, J.-H. Yoon, and A. Raychowdhury,
“Characterization and mitigation of IR-drop in RRAM-based compute
in-memory,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2022,
pp. 70-74.

S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “RxNN: A frame-
work for evaluating deep neural networks on resistive crossbars,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 2,
pp. 326-338, Feb. 2021.

J. Victor, D. Eun Kim, C. Wang, K. Roy, and S. Gupta, “WAG-
ONN: Weight bit agglomeration in crossbar arrays for reduced
impact of interconnect resistance on DNN inference accuracy,” 2024,
arXiv:2406.14706.

Z. He, J. Lin, R. Ewetz, J. Yuan, and D. Fan, “Noise injection
adaption: End-to-end ReRAM crossbar non-ideal effect adaption for
neural network mapping,” in Proc. 56th ACM/IEEE Design Autom. Conf.
(DAC), Jun. 2019, pp. 1-6.

M.-G. Lin et al., “D-NAT: Data-driven non-ideality aware training frame-
work for fabricated computing-in-memory macros,” IEEE J. Emerg. Sel.
Topics Circuits Syst., vol. 12, no. 2, pp. 381-392, Jun. 2022.

X. Sun et al., “PCM-based analog compute-in-memory: Impact of device
non-idealities on inference accuracy,” IEEE Trans. Electron Devices,
vol. 68, no. 11, pp. 5585-5591, Nov. 2021.

G. Bonilla, N. Lanzillo, C.-K. Hu, C. J. Penny, and A. Kumar, “Inter-
connect scaling challenges, and opportunities to enable system-level
performance beyond 30 nm pitch,” in IEDM Tech. Dig., Dec. 2020,
pp. 20.4.1-20.4.4.

M. J. Rasch et al., “Hardware-aware training for large-scale and diverse
deep learning inference workloads using in-memory computing-based
accelerators,” Nature Commun., vol. 14, no. 1, p. 5282, Aug. 2023.
[Online]. Available: https://api.semanticscholar.org/CorpusID

N. Lepri, M. Baldo, P. Mannocci, A. Glukhov, V. Milo, and D. Ielmini,
“Modeling and compensation of IR drop in crosspoint accelerators
of neural networks,” IEEE Trans. Electron Devices, vol. 69, no. 3,
pp. 1575-1581, Mar. 2022.

Y. Park, S. Y. Lee, H. Shin, J. Heo, T. J. Ham, and J. W. Lee,
“Unlocking wordline-level parallelism for fast inference on RRAM-
based DNN accelerator,” in Proc. IEEE/ACM Int. Conf. Comput. Aided
Design (ICCAD), Nov. 2020, pp. 1-9.

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/DAC.2018.8465935
http://dx.doi.org/10.1145/3362035

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

H. Kim, J. Sim, Y. Choi, and L.-S. Kim, “NAND-Net: Minimizing
computational complexity of in-memory processing for binary neural
networks,” in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Feb. 2019, pp. 661-673.

D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

X. Peng, S. Huang, Y. Luo, X. Sun, and S. Yu, “DNN+NeuroSim: An
end-to-end benchmarking framework for compute-in-memory accelera-
tors with versatile device technologies,” in IEDM Tech. Dig., Dec. 2019,
p. 32.

C. Wang, J. Victor, and S. K. Gupta, “Comparative evaluation
of memory technologies for synaptic crossbar arrays— Part I:
Robustness-driven device-circuit co-design and system implications,”
2023, arXiv:2307.04261.

A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8T SRAM cell as
a multibit dot-product engine for beyond von Neumann computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 11,
pp. 25562567, Nov. 2019.

ASAP 7nm Predictive PDK. Accessed: Aug. 2024. [Online]. Available:
https://asap.asu.edu/

Z. Jiang et al., “A compact model for metal-oxide resistive random
access memory with experiment verification,” IEEE Trans. Electron
Devices, vol. 63, no. 5, pp. 1884-1892, May 2016.

X. Chen, C.-L. Lo, M. C. Johnson, Z. Chen, and S. K. Gupta, “Modeling
and circuit analysis of interconnects with TaS2 Barrier/Liner,” in Proc.
Device Res. Conf. (DRC), Jun. 2021, pp. 1-2.

S. Yu, P-Y. Chen, Y. Cao, L. Xia, Y. Wang, and H. Wu, “Scaling-up
resistive synaptic arrays for neuro-inspired architecture: Challenges and
prospect,” in IEDM Tech. Dig., Dec. 2015, p. 17.

I. Chakraborty, M. Fayez Ali, D. Eun Kim, A. Ankit, and K. Roy,
“GENIEx: A generalized approach to emulating non-ideality in mem-
ristive xbars using neural networks,” in Proc. 57th ACM/IEEE Design
Autom. Conf. (DAC), Jul. 2020, pp. 1-6.

A. S. Rekhi et al., “Analog/mixed-signal hardware error modeling for
deep learning inference,” in Proc. 56th ACM/IEEE Design Autom. Conf.
(DAC), Jun. 2019, pp. 1-6.

J. Park et al., “Multi-level, forming and filament free, bulk switching
trilayer RRAM for neuromorphic computing at the edge,” Nature
Commun., vol. 15, no. 1, p. 3492, Apr. 2024, doi: 10.1038/s41467-024-
46682-1.

S. K. Roy et al., “Compute SNDR-boosted 22-nm MRAM-based in-
memory computing macro using statistical error compensation,” /[EEE
J. Solid-State Circuits, vol. 60, no. 3, pp. 1092-1102, Mar. 2025.

Y. Emma Wang, G.-Y. Wei, and D. Brooks, “Benchmarking TPU, GPU,
and CPU platforms for deep learning,” 2019, arXiv:1907.10701.

L. Zhao, Y. Zhang, and J. Yang, “Flipping bits to share crossbars
in reram-based dnn accelerator,” in Proc. 2021 IEEE 39th Int. Conf.
Comput. Design (ICCD), 2021, pp. 17-24.

A. Malhotra, C. Wang, and S. K. Gupta, “BNN-flip: Enhancing the fault
tolerance and security of Compute-in-Memory enabled binary neural
network accelerators,” in Proc. 29th Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2024, pp. 146-152.

A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. Int. Symp. Comput.
Archit. (ISCA), Seoul, South Korea, 2016, pp. 14-26.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009. [Online]. Avail-
able: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” in Proc. NIPS, Jan. 2011, pp. 1-13. [Online]. Available:
http://ufidl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[42] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015, arXiv:1512.03385.

[44] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-nets: Learned quantization
for highly accurate and compact deep neural networks,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), Jan. 2018, pp. 373-390.

[45] L. Chakraborty et al., “Resistive crossbars as approximate hardware
building blocks for machine learning: Opportunities and challenges,”
Proc. IEEE, vol. 108, no. 12, pp. 2276-2310, Dec. 2020.

[46] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, “A programmable
heterogeneous microprocessor based on bit-scalable in-memory com-
puting,” IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609-2621,
Sep. 2020.

[47] T.-H. Yang et al., “Sparse ReRAM engine: Joint exploration of activation
and weight sparsity in compressed neural networks,” in Proc. ACM/IEEE
46th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2019, pp. 236-249.

Akul Malhotra received the B.E. degree in elec-
trical and electronics engineering from the Birla
Institute of Technology and Science, Pilani, India.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineer-
ing, Purdue University, advised by Prof. Sumeet
Gupta. During the Ph.D. degree, he interned with
MediaTek in 2023 and IBM in 2024. His research
focuses on improving the robustness of compute-in-
memory-based hardware accelerators through circuit
and system design techniques.

Sumeet Kumar Gupta received the B.Tech. degree
in electrical engineering from Indian Institute of
Technology, Delhi, India, in 2006, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from Purdue University, West Lafayette, IN, USA,
in 2008 and 2012, respectively. He is currently
an Elmore Associate Professor in electrical and
computer engineering with Purdue University. Prior
to this, he was an Assistant Professor in electrical
engineering with The Pennsylvania State University
from 2014 to 2017 and a Senior Engineer with
Qualcomm Inc., from 2012 to 2014. His research interests include low
power VLSI circuit design, in-memory computing, Al hardware design, nano-
electronics and spintronics, device-circuit co-design, and nano-scale device
modeling and simulations. He has published over 150 articles in refereed
journals and conferences and is a Senior Member of EDS. He was a recipient
of DARPA Young Faculty Award in 2016, Early Career Professorships by
Purdue and Penn State in 2021 and 2014, respectively, and the Sixth TSMC
Outstanding Student Research Bronze Award in 2012. He has also received
Magoon Award and the Outstanding Teaching Assistant Award from Purdue
University in 2007 and Intel Ph.D. Fellowship in 2009.

Authorized licensed use limited to: Purdue University. Downloaded on July 01,2025 at 22:46:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1038/s41467-024-46682-1
http://dx.doi.org/10.1038/s41467-024-46682-1

