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Abstract—The increasing pervasiveness of artificial intelligence
(AI), particularly deep learning demands high-performing yet
efficient hardware resources at the edge. Analog compute-in-
memory (CiM) architectures have tremendous potential to ac-
celerate Al at the edge by reducing data movement between
memory and compute units and exploiting parallelism. However,
to fully reap the benefits of analog CiM, it is imperative to
deal with the area, latency, and power overheads introduced
by high-precision analog-to-digital converters (ADCs). In this
work, we propose a hardware-algorithm co-design approach to
reduce ADC overhead in analog CiM architectures. We designed
a deep neural network (DNN) quantization framework tailored to
analog CiM hardware architectures, integrating essential features
such as tiling, bit-slicing, and layer mapping. Moreover, we also
developed an ADC-Less hybrid analog-digital CiM hardware
architecture HCiM that can efficiently process the DNNs trained
using our framework. Additionally, we studied the effects of non-
idealities in analog CiM on DNN accuracy. Using our hardware-
aware training methodology, we can perform extremely low
precision quantization and reduce the required ADC precision
to binary (1-bit) or termary (1.5-bit). Compared to an analog
CiM baseline architecture using 7 and 4-bit ADC, HCiM achieves
energy reductions up to 28 X and 12X, respectively. Furthermore,
in the presence of analog non-idealities, DNN mapped to HCiM
exhibits a minimal drop in accuracy.

Index Terms—Analog compute-in-memory (CiM), quanti-
zation-aware training, ADC-less design, binary and ternary
quantization.

I. INTRODUCTION

HE relentless pursuit of greater performance and
functionality in artificial intelligence (AI) has fueled
the development of increasingly complex neural network
architectures [1], [2]. This growth in model size and complexity
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significantly increases the demand for powerful hardware
resources for both cloud and edge applications [1]. However,
it is challenging to meet this demand at the edge, where
the hardware is constrained by a stringent power and area
budget. Additionally, the increasing disparity between data
movement and computation energy in modern technology
nodes makes data movement a bottleneck operation in von
Neumann architectures [3], [4]. Analog compute-in-memory
(CiM) offers a compelling solution to this problem by directly
embedding computation within memory elements [5], [6].
It reduces the data movement bottleneck and exploits the
inherent parallelism of the memory array to efficiently perform
the fundamental DNN operation — matrix-vector multiplication
(MVM).

Although CiM accelerators exhibit excellent performance at
the array level, these advantages often do not extend to the sys-
tem level, primarily due to the peripheral overhead. Researchers
have shown that peripheral circuits, particularly analog-to-
digital converters (ADCs) consume significant area/power in
CiM designs [6], [7], [8]. Moreover, to maximize the paral-
lelism of matrix-vector multiplications in CiM, ideally, each
column of the memory array requires a dedicated ADC; how-
ever, high ADC area creates area/layout challenges, necessitat-
ing column multiplexing which reduces overall throughput [6],
[91, [10]. Therefore, there is a need to reduce the ADC overhead
to leverage the full potential of analog CiM architectures.

A direct approach to reducing ADC overhead is to reduce its
precision, leading to improvements in area, power, and latency.
The required ADC precision depends on the desired precision
of partial sums from the memory subarray, which is influenced
by the number of simultaneously active rows and the precision
of individual memory cells. While reducing the number of
active rows in a crossbar array can lower the ADC precision
requirements [11], such an approach sacrifices parallelism and
ultimately impacts system throughput. Prior efforts to reduce
ADC precision in CiM hardware have explored techniques such
as exploiting input sparsity [9], [12] and quantizing partial sums
using non-linear quantization [13], [14] or linear quantization
with a smaller dynamic range [15]. However, these hardware-
only approaches face limitations in how aggressively they can
reduce ADC precision without compromising DNN accuracy.

Consequently, there has been a growing interest in training
the neural network with partial sum quantization (PSQ) [16],
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Overview of ADC-Less CiM design. (a) Baseline with high precision ADC has low energy efficiency, latency, throughput and high power consumption.

(b) ADC-Less design with binary partial sum quantization requires only a sense amplifier for analog to digital conversion and (c) ADC-Less design with
ternary partial sums require two comparators for the conversion. ADC-Less CiM hardware alleviates the ADC bottleneck leading to improvements in hardware

performance.

[17], [18], [19]. DNNs trained with partial sum quantization
are inherently robust to the reduction in ADC precision in CiM
hardware. We take this idea to the extreme level where we
develop PSQ-aware training techniques for extremely low par-
tial sum precision to Binary (1-bit) and Ternary (1.5-bit) levels
[20]. ADC-Less' DNNs with binary partial sums require just
a sense amplifier for analog to digital conversion in hardware
while ADC-Less DNNs with ternary partial sums require two
comparators for the conversion.

An artifact of partial sum quantization is the introduction
of scale factors. The scaling factors are essential to align the
range of quantized partial sums with the actual floating point
data. While employing scale factors at a finer granularity results
in better accuracy, it increases the number of scale factors
required and their storage and management complexity. Addi-
tionally, these scale factors are typically floating-point values
[16], [17], [18], [20], and processing them requires complex
floating-point operations in hardware, which increases compu-
tational overhead. These considerations underscore the need
for careful management and optimization of scale factors to
balance accuracy, efficiency, and computational complexity in
PSQ techniques.

We adopted a two-part strategy to address the challenges
of scale factor processing. First, we quantize the scale factors
to a few bits during training. Second, we propose a digital
CiM (DCiM) array to process these quantized scale factors effi-
ciently. Moreover, we developed an ADC-Less hybrid analog-
digital CiM accelerator architecture HCiM [21]. This design
integrates an analog CiM crossbar that performs the MVM
operation between inputs and weights, generating quantized
partial sums that are then processed by the DCiM array for scale
factor multiplication.

In this work, we propose a full-stack approach to ADC-
Less DNN implementation, spanning from quantization-aware

! ADC-Less term means that our approach relies on sense amplifiers instead
of conventional ADCs.

training to customized hardware architecture design, ensuring
accuracy and efficiency. The overview of our hardware-software
co-design approach is depicted in Fig. 1. We make the following
contributions in this work:

* We developed a DNN quantization framework tailored to
analog CiM hardware architectures, integrating essential
features like tiling, bit-slicing, and layer mapping.

* We proposed scale factor quantization-aware training and
integrated it with our framework to reduce the complexity
of processing scale factors.

* We achieve state-of-the-art accuracy at extreme (1-bit and
1.5-bit) partial sum quantization using our proposed train-
ing framework.

* We designed an ADC-Less hybrid analog-digital CiM ac-
celerator HCiM which uses an analog CiM array for MVM
operations and a digital-CiM array with a novel in-memory
subtraction technique for scale factor multiplication.

* We achieve a 15% reduction in energy through clock gat-
ing in the proposed DCiM peripherals by utilizing the
inherent sparsity in ternary quantized partial sums.

* We evaluate HCiM using a cycle-accurate DNN simula-
tor across multiple workloads, demonstrating its efficacy
against baselines.

* We evaluate the impact of crossbar non-idealities on our
proposed ADC-Less hardware architecture.

The remainder of this paper is organized as follows.
Section II provides the necessary background information. Sec-
tion III presents a comprehensive review of related works. Sec-
tion IV details our proposed hardware and algorithm co-design
approach for ADC-Less CiM designs. Evaluation results are
discussed in Section V, and we conclude in Section VI.

1I. BACKGROUND

A. Matrix Multiplication Using Analog Crossbar Array

Matrix multiplication serves as a fundamental operation in
DNNSs. An effective and common method of accelerating matrix
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Fig. 2. (a) Typical structure of analog CiM crossbar with non-idealities (b)
Output currents at the column of the crossbar obtained for 32 nm SRAM
technology.

multiplication is to utilize analog crossbar arrays. Weights are
stored within the memory array as the conductance of memris-
tive devices or the voltage of the SRAM cells. Input vectors
are then applied as voltages across the rows of the crossbar
following a digital-to-analog converter (DAC). The resulting
current passing through each crossbar element depends on the
stored weight value. These currents are accumulated at the bit
lines or crossbar columns, and the value is sensed using ADCs.
However, the precision of memory devices and DACs is usu-
ally lower than the precision required by weights and activations
in DNNs. To accommodate the higher precision requirements,
techniques like bit-slicing and bit-streaming are employed [10],
[22]. The high-precision MVM operation is decomposed into
multiple bit-wise MVM operations that the crossbar can sup-
port. Weight values are divided into smaller bits and distributed
across different memory subarrays or crossbars, whereas in-
put activation bit-slices are streamed in at the crossbar rows
over multiple cycles. The required high-precision output val-
ues are accumulated by appropriately shifting and adding the
low-precision partial outputs. The ADC precision required to
capture the entire dynamic range of analog signals using bit-
slicing and bit-streaming is determined by the equation:

Bapc =1log(N) + sy + 55 — 1, (1)

Here, s,, and s, represent the bit-slice precision of weights
and activations, respectively, and N denotes the crossbar size.
Although bit-slicing reduces the required precision for ADCs,
further reducing ADC precision below B4pc (Eq. 1) results
in inaccuracies in capturing the entire dynamic range of analog
signals, leading to quantization of partial sums.

B. Non-Idealities in Analog CiM

Analog non-idealities present in analog CiM hardware im-
pact the fidelity of compute operation leading to degradation
in workload accuracy [23]. Fig. 2(a) shows a 32nm SRAM-
based crossbar array including parasitic resistances: wire resis-
tance (RW), driver resistance (RD), and sink resistance (RS).
The presence of these non-idealities causes IR drops along the
current-carrying lines (BL and SL) leading to deviations in out-
put currents from its ideal values as shown in Fig. 2(b). These
deviations cause the ADC to sense incorrect analog current val-
ues, thereby injecting errors into the partial sums. These errors
accumulate across each column of every crossbar, ultimately

K

Fig. 3. Convolution layer mapping for crossbar based CiM accelerators.

leading to a degradation in the DNN inference accuracy. The
severity of degradation in inference accuracy is impacted by
several factors including, crossbar size, device technology, bit-
slice, and bit-stream precision.

C. Mapping Convolution Layer to CiM Hardware

Convolution (Conv) operation between layer inputs and
weights is converted to MVM operation for execution on
crossbar-based CiM accelerators as shown in Fig. 3. It involves
flattening the 4-dimensional weight kernel along height, width,
and channel dimensions to generate the weight matrix. Simi-
larly, each activation window is flattened to form the activation
vector. Since flattened tensors are much larger than a single
crossbar, the activation vectors and weight matrix are tiled
according to the crossbar size. Further, each tiled tensor is bit-
sliced according to the precision supported by the hardware.
Each crossbar generates a partial sum for bitwise MVM opera-
tion which is scaled and accumulated spatially and temporally
to generate the layer output. While we show results for the layer
mapping described here, our methodology is flexible and can
support other layer mappings.

III. RELATED WORKS

Finding optimal bit precision for the various data structures in
deep learning is an active area of research. For instance, authors
in [24] use reinforcement learning to reduce the precision of
weights, activations, and partial sums while maintaining high
accuracy. However, they do not incorporate quantization dur-
ing training and thus require high precision for partial sums,
which in turn requires high precision ADCs. Authors in BNN-
RRAM [25] and BinaryResnet [26] reduce the required ADC
precision to just 1-bit, but they only show results for Binary
Neural Networks (BNNs). Moreover, BNN-RRAM [25] also
requires batch normalization in the analog domain, potentially
increasing non-idealities. The authors in [19] extend the training
method proposed in BinaryResnet [26] to maintain 1-bit partial
sums while supporting high precision for weights and activa-
tions. However, the results in [19], [25], [26] are only limited
to small-scale datasets (CIFAR-10).

Several works have demonstrated the efficacy of ADC-Less
architectures for large-scale datasets such as ImageNet [16],
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[17], [18]. Although these works offer valuable insights, several
key limitations remain. BitSplitNet [16] suffers a significant
accuracy drop (6%) with 1-bit partial sum quantization and
its modified bit-wise MVM execution model demands special-
ized hardware for deployment. Quarry [17], while achieving
impressive ImageNet results with low ADC precision, lacks bit-
slicing, a crucial technique to adapt the methodology to differ-
ent memory devices with variable DAC and storage precision.
EPSQ [18] incorporates bit-slicing, but both quarry [17] and
EPSQ [18] suffer accuracy degradation under very aggressive
partial sum quantization. In contrast, our work achieves the
highest ImageNet accuracy with the lowest ADC precision
(1.5-bits) reported to date.

Authors in [27] use a weight/input sparsity-aware CiM macro
to reduce the ADC precision to 2 or 4 bits. However, they use
an over-parameterized ResNet-18 model to achieve comparable
accuracy with our approach. The work in [28] introduces a hier-
archical in-memory ADC to reduce area overhead in eDRAM-
based CiM macros by reconfiguring eDRAM cells as unit
capacitors for a SAR ADC. However, this approach is limited
to eDRAM and not applicable to other CiM technologies like
8T-SRAM or ReRAM. In contrast, our technology-agnostic
hardware-software co-design methodology is applicable across
various analog CiM technologies. Other works [29], [30] have
proposed low power time domain ADCs. However, some of
these works accumulate outputs in analog domain [30] or only
show results on small scale datasets like CIFAR-10 [29].

Another way to eliminate ADC overhead in analog CiM
designs is to perform maximum computations in the analog
domain [31], [32], [33], [34]. In addition to using analog cross-
bars to perform MVM operations, these designs perform other
operations such as accumulating partial sums from different
crossbars [34] or caching data [31] in the analog domain. These
analog domain computations are more susceptible to errors
due to non-idealities. Moreover, Neuro-CIM [33] and [32] are
specifically targeted at Spiking Neural Networks (SNNs) and
BNNS, respectively.

Compared to the prior works discussed above, our approach
provides a hardware algorithm co-design approach to mitigate
the ADC overhead in CiM designs. We develop a quantiza-
tion framework that is scalable to any weight, activation, and
ADC precision. Additionally, we develop an optimized hard-
ware macro for processing scale factors induced by partial sum
quantization.

Table I summarizes the above discussion by showing a qual-
itative comparison of our work with previous works in the
field of ADC-Less analog CiM designs. Our work is the first
to provide high accuracy with ADC-Less CiM design (binary
and ternary partial sums) complete with an optimized hardware
implementation.

IV. ALGORITHM HARDWARE CO-DESIGN

In this section, we introduce our algorithm hardware co-
design approach for developing ADC-Less CiM hardware.
From the algorithm side, we develop a quantization framework
tailored for ADC-Less CiM design with binary and ternary

TABLE I
RELATED WORKS ON PARTIAL SUM QUANTIZATION
o High accuracy
Moultibit AT Large < Hardware
wia | Bitslicing | poocrs | With low ADC o mentation
precision

X X 7 X
Saxena et al. [19] v v X

Kim et al. [26] X X X X

Bit-SphitNet [16] ' 7 7 X 7

[17] ' X v X X

7 7 7 X X

This work v i v ' v

partial sums. DNNs trained with this quantization technique
require partial sums to be multiplied by scale factors. To ef-
ficiently process the scaling factors introduced by partial sum
quantization, we propose an optimized hybrid analog digital
CiM macro.

A. Quantization-Aware Training

Quantization focuses on optimizing DNNs for efficient
deployment on resource-constrained hardware. Weight and acti-
vation quantization are among the most widely employed tech-
niques to increase DNN efficiency. Quantized DNNs require
fewer bits to represent these data structures, leading to a reduc-
tion in the compute and memory access cost during execution.
While weight and activation quantization is highly popular for
conventional DNN accelerators, CiM hardware architectures
have an additional data structure for quantization: partial sums.
Quantizing partial sums to low precision directly translates to a
reduction in ADC precision, enabling a considerable improve-
ment in the efficiency of analog CiM hardware.

To accurately simulate partial sum quantization effects dur-
ing training, it is necessary to emulate the computational char-
acteristics of analog CiM hardware. This involves the following
steps:

* Quantizing weights and activations: Reducing weights

and activations to low-precision integers.

» Bit-slicing: Dividing weight and activation tensors into
bit-slices compatible with the CiM hardware. SRAM-
based CiM only works with 1-bit weight slices, while
various post-CMOS technologies may support multiple
bits per weight bit-slice [10].

* Im2Col for convolution: Transforming convolutions into
matrix-vector multiplications using the Im2Col operation
[10], [22] shown in Fig. 3. This step is only required for
convolutional layers.

» Tiling: Dividing the resulting matrix multiplication into
appropriately sized blocks to match the physical dimen-
sions of the CiM crossbar.

* Emulating ADC quantization: Quantizing the partial
sums generated at crossbar columns to emulate the ADC
precision.

* Accumulating partial sums: Accumulating the quantized
partial sum values across different crossbars and bit-slices.

This section outlines our quantization framework, beginning
with weight and activation quantization and then focusing on
partial sum quantization.
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Algorithm 1 Bit-Slicing Algorithm

Input: Integer matrix vine, precision By, bit-slice precision s
Output: Bit-sliced matrix v,
n, + [By/sy]
for i € [0,n;p) do
Vp,  floor(vine/(25v)%)
end for
Vp  remainder(vp, 25v)

1) Weight and Activation Quantization: For integer quan-
tization of weights and activations, we implement Learned
Step Size Quantization (LSQ) [35]. LSQ methodology performs
quantization via scale factor learned using gradient descent
during training. Given a full precision value v, scaling factor s
and positive and negative quantization levels Q p, @, respec-
tively, the scaled integer representation v;,,; and the quantized
representation v, are given by,

2)

For signed weights : Qu : 28»-1 | Qp : 2Bw-1 — 1 while for
unsigned activations : Q : 0, Qp : 28+ — 1 where B,, and B,
are the weight and the activation precision, respectively.

2) Bit-Slicing: CiM accelerators perform bit-serial and bit-
parallel execution where bit-slicing determines the computa-
tion granularity. The weight matrix is bit-sliced and stored in
multiple crossbars while activations are bit-sliced and streamed
serially on word lines. The bit-slicing function divides integer
values into multiple low precision bit-slices (Algorithm 1).
The bit-slicing function utilizes the floor function which is
not amenable to gradient descent because it has zero gradients
everywhere. Therefore, the floor function is approximated using
straight through estimator. Consequently, the gradient output
through the bit-slicing function (V,,,,) is given by,

. [
Vint = [CIEP (;a_QN': QP)—‘, Vg = Vint X 8

np—1

Vo,
vy = BitSlice(ving) Vo, t:i X Z %
T nb %I:O

@)

3)

3) Partial Sum Quantization: We consider extremely low
precision partial sums, binary (1-bit) and ternary (1.5-bit). par-
tial sums quantized to a binary value require only a sense
amplifier for analog-to-digital conversion. While partial sums
quantized to a ternary value require two comparators offering
notable efficiency gains compared to traditional high precision
ADCs. Given the high precision partial sums ps and scaling
factor c, the binary partial sums psy, is given by,

ps = Qu(ps) = - sign (£) @

The scaling factor is learned during training. The backward pass
through the quantization function involves deriving gradients
for full-precision partial sums and the scaling factor. This is
obtained by introducing the following differentials,

if—1<ps<1

Opsp 1
— 5
Ops {0 otherwise, ©)

s & 5 30000

-é- 3‘;: E 25000 /

D £ 20000

E 87.5 2 isea / 7

o E:: = 10000 / /

E a;s 2 so00 / /

E 85.5 =} o J

2 o, %, 7 [ 5 4 3 2
Q,%’ e%% %% ("Jg, ADC Precision

Scale Factor Granularity wwsigned ss=sunsigned

(a) (b)

Fig. 4. (a) Impact of scale factor granularity on accuracy (finer scale factor
granularity gives higher accuracy). (b) Quantization error induced by ADC
precision reduction in crossbars storing signed and unsigned weights (signed
weights incur lower quantization error).

Opsy _ .
5o = sign(ps)

(6)

For ternary quantization of partial sums, we introduce a com-
parison threshold 3. The ternary partial sum ps; is given by,

pst = Qi(ps) = a - clamp ([p—;—‘ ,—1, 1)

Similarly, the backward pass through the ternary quantization
function is given by introducing the following differentials,

)

o if— P&
dps: _Jl3 if 1_5 7 < 1 @®
Ops 0 otherwise,
Ops; ps

= —|,-1,1

e amp ( L 7| b 9)
Bpst: —a*gL; if—1$%§1 (10)
aB 0 otherwise,

4) Quantization Granularity: The granularity of quantiza-
tion of partial sums impacts the quantization error. Quantization
at a finer granularity captures the distribution of partial sums
with higher fidelity and leads to less quantization error. We ex-
perimented with different quantization granularities for partial
sum quantization, as shown in Fig. 4(a). We experiment with
per-layer, per-crossbar column, per output channel and per bit-
slice granularity of scaling factors. For a convolution layer with
K output channels mapped on N crossbars with n, activation
bit-slices and n,, weight bit slices, the number of scale factors
in a layer at per bit-slice granularity is given by,

# scale factors (bit-slice granularity) = N * K % ng * ng,
(1)

Per column granularity has NV * K scaling factors, Per channel
granularity has K scaling factors while per Layer granularity
has only 1 scaling factor per layer. As expected, the finest quan-
tization granularity (per bit-slice) leads to the highest accuracy.
However, per bit-slice quantization of partial sums introduces
many scale factors that incur a non-negligible overhead. This
includes parameter overhead as well as compute overhead of
processing the scaling factors. Additionally, for ternary partial
sum quantization, per bit-slice quantization also involves fine
grain comparison thresholds which means that processing each
bit-slice requires changing the threshold value used by the
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(a) Hybrid Analog-Digital CiM macro. (b) Architecture of digital CiM array, incorporating column peripherals with a chain of 1-bit adder/subtractor

at each column to enable full-adder/subtractor functionality. (c) Read Bit lines (RBL, RBLB) of scale factor and partial sum memories are connected to realize
CiM operation. Write Bit line (W BL ) of scale factor memory helps to perform both read and write operations. (d) Detailed view of the column peripheral,
illustrating the implementation of in-memory subtraction and addition operations. C' Bgy: represents the final carry/borrow output from the column peripheral.

comparators. Keeping in mind the overheads associated with
fine grained quantization, we introduce an efficient variant of
partial sum quantization Q°/7. For efficient binary quantization
(sz Ty, we quantize the per bit-slice scale factors while for
efficient ternary quantization (fo f ), we use per layer granu-
larity of comparison threshold and quantize per bit-slice scaling
factors.

5) Handling Signed Weights: Handling positive (4ve) and
negative weights (—ve) in CiM hardware is a design choice
with both hardware and software implications. PUMA [10]
stores weights in separate crossbars dedicated to +ve and —ve
values and correspondingly subtracts the +ve and —ve partial
sums after ADC conversion. ISAAC [22] stores both unsigned
+ve and —ve weights in the same crossbars with an additional
dummy column subtracting the bias corresponding to negative
weight values post adc conversion. XNOR-SRAM [13] utilizes
a pull-up and pull-down bit cell design to store +ve and —ve
weights in the same crossbar. From the perspective of partial
sum quantization, storing +ve and —ve weights in separate
crossbars entails that the partial sums are first quantized and
then subtracted as shown below,

psq=Q(ps™) — Q(ps™)

On the other hand, storing positive and negative weights in
the same crossbar ensures that partial sum subtraction happens
before quantization as shown below,

(12)

psq=Q(ps™ —ps™) (13)

Storing +ve and —ve weights in the same crossbar requires
signed computation to be implemented within the crossbar. This
allows positive and negative products to negate each other,
reducing the range of partial sums. This enables better quan-
tization and helps us achieve higher accuracy after training.
To quantitatively evaluate the impact of these design choices
of handling signed weights on partial sum quantization, we
evaluated the error between quantized and full-precision partial

sums at different ADC precisions. The quantization error is
given by,

error = ||psq — ps||? (14)

The errors at different ADC precision are shown in Fig 4(b).
We observe that performing signed operations within crossbars
leads to lower quantization error compared to storing +-ve and
—ve weights in separate crossbars. This error reduction is cru-
cial when training with partial sum quantization, as it allows
us to achieve high accuracy even with extremely low-precision
partial sums.

B. Proposed Hardware

The proposed quantization framework introduces several
scale factors for achieving high accuracy with binary and
ternary partial sums. To efficiently incorporate partial sum
quantization, we developed HCiM, an ADC-Less hybrid
analog-digital CiM architecture. The principal design of the
HCiM macro [21] is shown in Fig. 5(a). It consists of an analog
CiM crossbar designed for performing the MVM operations
between inputs and weights and a digital CiM (DCiM) array
to perform the scale factor operations.

In the Analog CiM array, the weights of the DNN are stored
in a current-based dual 8T-SRAM crossbar, while input ac-
tivations are fed through the word line decoder. The bitcell
(Fig. 6(a)) consists of two 8T-SRAM cells (M1 and M2). BL
and BLB are biased at VDD and ground respectively while SL
is biased at VDD/2. M1 conducts current from SL into BLB
while M2 conducts current from BL into SL. Consequently,
the overall SL current is the subtraction of M1’s current from
that of M2’s. Inputs for the MVM operation are applied along
RWL as voltages, following the input encoding in Fig. 6(b).
Weights of the MVM operation are stored in cells following the
weight encoding in Fig. 6(c). The output of the MVM operation
is encoded in the SL current, following the output encoding in
Fig. 6(d). It is important to note that the currents for outputs 1
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and -1 have the same magnitude but flow in opposite directions.
This facilitates the cancellation of currents from different rows
of the crossbar, resulting in a reduction in the magnitude of
the SL current. Consequently, this leads to fewer IR drops and
thus lesser deviation of SL currents from their ideal values,
ultimately enhancing the DNN’s inference accuracy as shown in
[36] with a 2T2R-based cell. Note that M2 incorporates PMOS
read-access transistors instead of NMOS to ensure the Vgg
biasing of its access transistors matches that of M1. To enable
PMOS read-access transistors to utilize the weight encoding
in Fig. 6(c), they are connected to the internal node of the 6T
SRAM, which stores the complement of the stored data. The
input bits are streamed over multiple cycles. The MVM output
corresponding to every input bit at the column of the crossbar is
processed through a sense amplifier or comparator. We require
one comparator in the case of binary PSQ and two comparators
in the case of ternary PSQ [20]. The output of the comparator
is a set of binary or ternary values represented as p(—1,0,1). To
accommodate negative values of p, we use 2-bit numbers: 00
for 0,01 for 1, and 11 for —1.

The DCiM array stores the quantized scale factors associated
with a PSQ-trained DNN. Outputs from the comparator are used
in this array to perform the scale factor computation from Eq. 7.
During training the shift operation (27) is integrated with the
scale factor values. While the DCiM array draws inspiration
from previous work [37], which was limited to vector-vector ad-
dition operations, our system requires additional functionalities
for effective scale factor computation (s*p). Specifically, our
system requires the capability to perform addition, subtraction,
or no operation based on whether p is 1, —1, or 0. Hence, a
significant contribution of our work lies in adapting the DCiM
array to efficiently execute these specific operations. Further
details regarding the DCiM array are provided below.

1) CiM Full Subtractor: To explain how a subtraction op-
eration is carried out in the DCiM array, we first describe how
an addition operation can be performed. Adding a scale factor
row to a partial sum row requires two cycles due to the higher
precision of partial sums compared to scale factors [37]. This
involves processing odd columns in one cycle and even columns
in the next. For better throughput, the addition operation is
pipelined into 3 cycles as depicted in Fig. 7.

Initially, to add row j of the scale factor memory to row
1 of the partial sum memory, RWL;; are activated. Then,
binary/ternary values p control the bit-line switch signal block
(Fig. 5(b), (c)), generating transmission gate (I'G5 ) signals.
For example, when p = 00, T'G'1 3 3 is turned OFF, while p=01
activates T'G'z 3.

(a) Dual BT-SRAM based bit-cell (b) input and (c) weight mapping (d) truth table showing MVM operation between input and weight.

0DD Columns
Roo | Riz | Ras | Rag | Roz | Ryz | Ras | Rag
Coo | Cia | Coa | Coo | Coa | Cus | Cos | Gy
Soo | S12 | Sza | Sa0 | So1 | Siz | Sz5 [ S:

Fig. 7. Read Compute Store pipeline of DCiM array. H;; represents the
addition or subtraction operation between row j and i of scale factor and
partial sum memory.

TABLE II
BITWISE OPERATION ON READ BIT LINES
Q. | Qp:= | RBL (NOR) | RBLB (AND)
0 0 VDD GND
] 1 GND GND
1 0 GND GND
1 T GND VDD

To add row j of scale factor memory to row i of the partial
sum memory, bit lines are precharged to Vpp, and RW L, ;
are activated. Suppose scale factor and partial sums for each
analog cim crossbar column are 4-bit and 8-bit, respectively.
Assume that each scale factor and partial sum bit (Qsr, Qps)
is zero. In this case, these values will not discharge the RBL,
and the signal on the RBL will remain at Vpp. However, Q¢
and (Qp. values are one, the RBLB will discharge, resulting in a
final value of zero on the RBLB. Similarly, we can derive other
values on RBL and RBLB for different combinations of Q¢
and )y, enabling the realization of NOR and AND operations
on the bit lines as shown in Table II.

These NOR and AND values are latched during the read
cycle, facilitating parallel processing of multiple columns of the
analog CiM crossbar. During the Compute cycle, these latched
values are used by the chain of column peripherals (Fig 5(d)) to
get the final Sum and Carry bits which is the result of adding
scale factor value to partial sum value. Finally, the computed
sum output is stored in the partial sum memory during the Store
cycle.

Implementing subtraction alongside addition involves storing
the 2’s complement of scale factors and retrieving these values
when subtraction is needed. However, this approach requires
2x memory since the same scale factor value can be added to
or subtracted from the partial sum value depending on p. The
logical expression for the Difference (D) and Borrow (Boy:)
bits of a full subtractor is shown below. Here, A and B are two
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input bits, and B;,, is the input borrow bit.

15)
(16)

D= A& B ® B,
Bou.t :ZB < BBm. ¥ Binz

While the Difference bit aligns with the Sum bit of a
full adder, realizing the Borrow output via OR/NOR and
NAND/AND operations is not feasible. Previous methods,
such as those outlined in [38], employed a two-cycle process for
in-memory subtraction, reading one input in the first cycle and
performing a bitwise operation between two inputs in the next.
This approach, however, increases the latency of subtraction
(4 cycles). To address this, our proposed architecture achieves
subtraction in 3 cycles, similar to an addition operation. During
the read cycle, when the write bit lines and word lines of the
scale factor memory are inactive (as depicted in Fig. 5(c)), we
read the scale factor value in parallel for columns requiring sub-
traction (p = 11) by activating T'G;. This value is then utilized
in the Compute cycle to determine the B, bit, as illustrated
in Fig. 5(d). Finally, the binary/ternary value p acts as a select
bit to MUX in Fig. 5(d) to decide if the output is a carry or
borrow bit.

2) Sparsity Control: At least 50% of ternary values p are
zero [21]. Consequently, a notable portion of the scale factor
computation (p * s) can be skipped. During the Read cycle,
when a specific p value is zero, the bit-line switch signal de-
activates the corresponding column by keeping T'G 5 3 turned
OFF. This action prevents the discharge of bit-lines, thereby
conserving dynamic energy. Furthermore, we integrate clock
gating into the column peripherals, enabling us to bypass com-
putations for columns where p = 0 during the Compute cycle.
The sparsity control block generates the enable signal for this
clock-gating logic. Moreover, in the Store cycle, no value is
written to the columns where p =0, resulting in additional
energy savings during the write operation.

V. EVALUATION RESULTS
A. Experimental Setup

DNN Training Methodology: We adopt a two-stage train-
ing approach to obtain the final DNN model with quantized
weights, activations, and partial sums. The first step involves,
training the DNN model with only weight and activation quanti-
zation. In the second step, we introduce partial sum quantization
in the training loop. We employ the following training protocol:

* Datasets: CIFAR-10, ImageNet.

e Models: Resnet-20 and Wide-Resnet20 (CIFAR-10),

Resnet-18 (ImageNet).

* Optimizer: SGD with momentum.

* Epochs per training stage: 100 (CIFAR-10), 60 (Ima-

geNet).

* Learning Rate: 0.01 initial, cosine decay scheduler.

Non-ideality Evaluation Methodology: To evaluate the im-
pact of non-idealities on DNN’s inference accuracy, we utilize
Geniex [23]. Geniex efficiently models the non-ideal currents of
crossbars taking data dependencies into account. The parame-
ters of the 32 nm crossbar arrays used are shown in Table ITI. We

TABLE III
KEY PARAMETERS OF 32 NM
CROSSBAR ARRAYS

Gate Pitch 112.5 nm
Fin Pitch 112.5 nm
Wire Resistance 6.5 Q/pm
Via Resistance 8 {2
Driver Resistance 500 Q2
Sink Resistance 100 €2
VDD 08V
Bits per Input Signal 1b
Bits per Device 1b
TABLE IV

HCIM CONFIGURATIONS FOR 4-BIT WEIGHT AND ACTIVATIONS.
#SCALE FACTORS AND #PARTIAL SUMS ARE REPORTED PER
CROSSBAR (EQ. 11)

Config- | Analog CIM | #Scale | #Partial DCIM
uration | Crossbar Size | Factors Sums Array Size
A 128x128 4*¥128 1*#128 24x128
B 64x64 4*%64 1#64 24x64

use 32 nm Predictive Technology model for the bit-cells [39].
Our wire resistance is 6.5 {¥/pm and via resistance is 8 2. Our
wire and via resistance and layout rules are consistent with an
Intel technology [40], [41].

Performance Evaluation: The DCiM array depicted in
Fig. 5(b), is designed using 65nm technology. The energy,
latency, and area results of the DCiM array are obtained from
schematic-level simulations. The 10T-SRAM array is designed
using cadence virtuoso, and the control logic is implemented
using synopsis design compiler. The supply voltage is set to
1V, and the operating frequency is 500 MHz. We compare the
macro-level results of our DCiM array with various types of
ADCs [42], [43], [44] for processing all the columns of the
analog CiM crossbar. To ensure a fair comparison, we selected
ADCs designed in 65nm technology based on the ADC sur-
vey [45]. For system-level comparisons, we utilize the cycle-
accurate simulator from PUMA [10], replacing the ADCs with
our DCiM array. Since other components in the system are
designed using 32nm technology, we scale the metrics of ADCs
and our DCiM array to 32nm using predictive technology mod-
els [46]. Consistent with prior CiM approaches, we assume
that weights and scale factors, once trained, are pre-loaded
into the memory arrays and can be reused across different
inputs. We present accuracy and performance results for two
configurations of HCiM as shown in Table IV. The memory
sizes for scale factor and partial sum in configuration A are
specified as 4*128*4 and 1*128*8 bits, respectively, requiring
a 24x128 DCiM array per analog crossbar. For benchmarking
HCiM, we present results on the CIFAR-10 dataset using var-
ious models such as ResNet-20,32,44, Wide ResNet-20, and
VGG-9,11.

B. Accuracy Evaluation Results

1) CIFAR-10 Results: The accuracy of neural networks
trained with PSQ training is presented in Table V. We observe a
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TABLE V
ACCURACY WITH VARYING ADC PRECISION AND CROSSBAR SIZES
Model ADC Precision (bits)

(Crossbar Size) 7 6 4 [15@Qn) [ 153@Q:7H [ 1@p [ 1(@s"7)

ResNet-20 (128) 92.26 | 91.27 | 60.20 89.0 88.80 86.8 86.30

ResNet-20 (64) z 91.93 | 91.00 89.8 89.80 88.3 88.20
Wide ResNet-20 (128) | 93.80 | 93.70 | 92.90 92.1 52.03 91.90 51.90
Wide ResNet-20 (64) E 93.91 | 93.10 924 92.24 91.93 91.89

minimal drop in accuracy with the reduction of ADC precision, TABLE VI

attributable to quantization-aware training. Interestingly, when
partial sums are quantized to ternary values, the accuracy is
comparable (within 1.5%) to that achieved with 4-bit ADC
precision. This can be credited to the fine granularity of scale
factors, which effectively enhances the representation ability
of the quantized partial sums. The accuracy drops ~2% as we
go from 1.5 to 1-bit ADC in the ResNet-20 model which is
due to the extreme quantization of partial sums. However, the
drop in accuracy when moving from 1.5-bit to 1-bit ADC is
less than 0.5% for Wide Resnet-20 model. Additionally, we
present results using a 64x64 analog CiM crossbar, which ide-
ally requires only 6-bit ADCs. It is observed that the accuracy
drop with 1,1.5-bit ADC is less pronounced compared to a
128x128 crossbar. This is because, in a 64x64 crossbar, the
partial sums undergo less severe quantization from only 6 to
1.5-bits.

2) ImageNet Results: Table VI contains the results obtained
on Imagenet and a comparison with related works. Following
Quarry [17], the partial sums of the first and last layer are not
quantized. With a ternary partial sum quantization, we get no
accuracy loss compared to the baseline. Getting higher accuracy
than the baseline can be attributed to more training effort in-
troduced by the two-stage training methodology of partial sum
quantization. With the efficient version of ternary quantization,
there is 4% accuracy drop.

Quarry [17] does not consider bit-slicing in their training
methodology and suffers from high accuracy degradation with
heavy partial sum quantization (1-bit). By incorporating bit-
slicing in our training, we achieve no accuracy loss with ternary
partial sums. Bit-split-Net [16] considers bit-slicing of activa-
tions but still suffers from high accuracy loss. Bit-Split-Net
modifies the bit-wise execution within CiM hardware by con-
sidering each bit-path separately for parallel execution. Since
accumulation across bit-slices does not occur until the final
layer of DNN model, there is a considerable information loss
which manifests as a large accuracy degradation. Our approach
is based on conventional CiM hardware which performs ac-
cumulation across bit-slices after every MVM operation [10],
[22]. EPSQ [18] considers bit-slicing of both weights and acti-
vations yet achieves substantial accuracy degradation with 3-bit
ADCs (2%). This can be attributed to the shortcomings of their
training methodology, particularly, the partial sum quantization
function. EPSQ uses heuristic based optimization for evaluating
scaling factors for their partial sum quantization, while in our
methodology, the scaling factors are optimized using gradient
descent during training.

ACCURACY RESULTS ON IMAGENET. (CROSSBAR SIZE 128)

ImageNet

[ WA | sw/sqs | ADC Precision | Baseline [ Accuracy | Gap

o d R n ls
Bit-Split-Net 33 371 1 67.6 61.2 6.4
Juarry 313 373 1 6/./3 62.93 4.5
Quarry 313 373 4 67.73 67.93 -0.2

4/4 171 3 BO.TT 6/.45 736 |

EPSQ 4/4 1/1 4 69.71 69.06 0.65
ADC-Less ((J;) 33 1/1 1.5 69.4 70.1 -0.7
ADC-Less (Q77) | 33 | 11 15 69.4 65.4 1.0

s3388

CIFAR-10 Accuracy (%)
8888

=
o

7 [ 5 4 3 2 1.5 1

ADC Precision

B No training ™ Partial-sum quantization aware training

Fig. 8. Impact of partial sum quantization-aware training over static ADC
precision reduction.

3) Impact of Partial Sum Quantization-Aware Train-
ing: Several approaches attempt to reduce ADC precision
post-hoc [9], [22]. Such approaches fundamentally rely on
inherent bit level sparsity abundant in modern DNNs. We
observe that reducing ADC precision by 3-bits (from 7-bit
to 4-bit) has a minimal impact on CIFAR-10 accuracy. This
implies that there is enough bit-level sparsity to restrict the
dynamic range of partial sums such that even 4-bit ADC is
enough to accurately capture the partial sums. However, if
ADC precision is reduced further, there is a catastrophic de-
cline in accuracy as shown in Fig. 8. With the partial sum
quantization-aware approach described in this paper, we are
able to push the frontier of accuracy to much lower ADC
precision.

4) Impact of Non-Idealities on Accuracy: Computation
errors induced by analog non-idealities is a challenge in ana-
log CiM accelerators. From the perspective of ADC-Less CiM
hardware, the impact of non-ideality on compute accuracy is
influenced by two factors,
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Fig. 9. Impact of Non-Idealities on inference accuracy of (a) ResNet-20

and (b) Wide-ResNet-20. ADC-Less hardware has partial sums with ternary
quantization.

1) High sense margin offered by ADC-Less CiM makes it

resilient to small perturbations in analog signals.

2) Switching in output states caused by non-idealities causes

a larger error in output value in ADC-Less CiM compared
to a baseline with high precision ADC. For example, in
ADC-Less CiM with ternary PSQ, the output state may
switch from +1 to 0 in the presence of non-idealities while
the error will be lower in high-precision ADCs.

Based on the two above factors, it is non-trivial to state how
ADC-Less CiM hardware performs in the presence of analog
non-idealities. To answer this question, we analyze the effect of
non-idealities on both full-precision and ADC-Less networks
for two crossbar array sizes (64x64 and 128x128) for Resnet-
20 and Wide-Resnet-20 on the CIFAR-10 dataset (Fig. 9). Our
analysis reveals that the impact of non-idealities on both types
of networks is similar. Both ADC-Less and high precision ADC
baseline observer similar degradation in workload accuracy in
the presence of non-idealities. Additionally, for both baseline
and ADC-Less CiM the drop in accuracy is fairly low. This
robustness is attributed to two key factors. Firstly, the utilization
of the dual 8T-SRAM cell, which facilitates a reduction in
the current magnitude along SL and consequently mitigates IR
drops. Secondly, the wire resistance and via resistance encoun-
tered at the 32 nm technology node are relatively modest and
thereby do not introduce a significant IR drop.

C. Performance Results

Energy vs Sparsity: Skipping the scale factor computation for
columns of the analog CiM crossbar where p = 0 (for ternary
partial sum quantization) leads to a substantial reduction in
energy consumption, as depicted in Fig. 12. Specifically, going
from 0% sparsity (binary quantization) to 50% sparsity results
in a 24% reduction in energy. This reduction in energy results
from various factors: there is no precharge of bit-lines for these
columns, adder/subtractor circuits are clock-gated, and no store
operation is performed in the store cycle. However, it is impor-
tant to note that while sparsity helps to reduce energy, it does not
affect latency. This is because multiple columns are processed
in parallel in each cycle; thus, even with 50% sparsity, there
may still be columns with non-zero p values.

DCiM array vs ADCs: Table VII presents a comparison
of the DCiM array in HCiM with various types of ADCs.

TABLE VII
DCIM ARRAY COMPARISON WITH ADC TO PROCESS ONE COLUMN OF
ANALOG CIM CROSSBAR. A&B ARE CONFIGS FROM TABLE IV

Analog CiM ADC Latency | Energy Area
Column Peripheral Precision (ns) pl) (mm?2)
Area Optimized SAR [42] 7 1.52 4.1 0.004
Energy Efficient SAR [43] 6 0.15 0.59 0.027
Latency Efficient Flash [44] 4 0.05 1.86 0.003
DCiM Array (A) - 0.06 022 0.009
DCiM Array (B) - 0.1 0.22 0.005

Since the DCiM array can handle multiple columns in parallel,
the latency is averaged over columns. Compared to 6 or 7-bit
ADCs, DCiM (A, B) exhibits significantly lower latency due
to its ability to process multiple columns of the analog CiM
crossbar simultaneously. Regarding energy efficiency, DCiM
(A, B) consumes 12 x less energy than the 4-bit ADC. However,
DCiM (A) demonstrates a 3.6 x higher area-normalized latency
compared to 4-bit ADC. Furthermore, comparing the latency
of DCiM (A) with DCiM (B), it’s evident that configuration
A has twice lower latency as it can process twice the number
of columns in parallel. For all system-level simulations in the
next section, only one ADC and DCiM array are considered per
analog CiM crossbar.

System Level Comparison: HCiM is compared to analog
CiM accelerators employing low precision ADCs. HCiM (bi-
nary, ternary) shows lower energy consumption compared to
the baseline analog CiM accelerator using low precision ADCs
as shown in Fig. 10(a). On average across all models, HCiM
exhibits at least 3x lower energy compared to all the base-
lines. Additionally, HCiM (ternary) achieves at least 15% lower
energy compared to HCiM (binary), attributed to the sparsity
support in HCiM. HCiM also demonstrates significantly lower
latency, ranging from 3 to 12x lower compared to baselines
using SAR ADCs as shown in Fig. 10(b). This improvement can
be attributed to the low energy and latency of DCiM compared
to SAR ADCs. However, compared to the analog CiM baseline
using 4-bit Flash ADC, HCiM shows 11% higher latency due
to the very low latency and area of the Flash ADC.

We also considered HCiM configuration B with a 64x64
crossbar size. In this configuration, as we reduce the crossbar
size in PUMA, we increase the number of physical crossbars in
the PUMA core to maintain the same number of multiplication
units as in the 128x128 crossbar size. However, increasing
the number of analog crossbars may lead to increased data
movement of partial sums across the crossbars compared to
configuration A. Therefore, the advantage of reducing the ADC
overhead might decrease. Nevertheless, even in this scenario,
HCiM demonstrates at least 2.5x lower energy consumption
compared to baselines that use 6-bit and 4-bit ADCs as shown
in Fig. 11(a). However, HCiM exhibits 1.4x higher latency
compared to the 4-bit ADC (Fig. 11(b)), which can be attributed
to the low area and latency overhead of the Flash ADC.
HCIM vs Related works: The accuracy vs energy-delay-area-
product (EDAP) for HCiM compared to related works is shown
in Fig. 12(b). Quarry [17] and BitSplitNet [16] did not report
the performance results, we get their performance results using
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Fig. 12. (a) Energy to process all the columns of analog CiM crossbar

with ternary quantization. (b) Accuracy vs EDAP comparison of HCiM with
baselines on ImageNet dataset.

cycle-accurate simulator in [10]. Quarry uses analog and digital
multipliers to implement scale factors. The energy and area
for 1-bit ADC in [17] is estimated as 1/16 of 4-bit flash ADC
[44]. The energy for the digital multiplier is obtained from [10].
Therefore, compared to Quarry with 1-bit ADC, HCiM achieves
2.5% higher accuracy with 3.8 x lower EDAP. Moreover, com-
pared to Quarry (4-bit), HCiM has 2.3% lower accuracy with
10.4 < lower EDAP. Compared to BitSplitNet, HCiM has 4.2%
higher accuracy with 4.2 lower EDAP. BitSplitNet uses in-
dependent paths to process each input and weight bit. Hence,
energy and area for ResNet-18 with 4-bit inputs and weights
are obtained by scaling 1-bit energy and area by 4.

VI. CONCLUSION

In this work, we propose an algorithm-hardware co-design
approach to develop ADC-Less CiM accelerators. We introduce
a quantization framework to train DNNs with extremely low

precision partial sums. DNNs with binary partial sums require
just a sense amplifier for analog to digital conversion while
DNNs with ternary partial sums require 2 comparators for the
conversion. We propose an efficient version of quantization
functions with quantized scale factors and shared comparator
thresholds. Our training methodology achieves accuracy within
1.5% of baseline with ternary partial sums. We provide analysis
into the impact of weight mapping and the impact of non-
idealities on the inference performance of trained DNNs. Ad-
ditionally, to efficiently process the scale factors introduced by
partial sum quantization, we develop an optimized hardware
macro. The proposed hardware HCiM integrates an analog
CiM crossbar to perform MVM operation between input and
weights, alongside a digital CiM array optimized for scale factor
processing. The analog CiM crossbar is based on current-based
dual 8T-SRAM technology. We also introduce an innovative
method for performing in-memory subtraction and addition
within the digital CiM array. Our system-level evaluation using
a cycle-accurate simulator shows up to 28 x and 12 reduction
in energy compared to the baseline that uses 7-bit and 4-bit
ADC:s respectively.
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