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A Cell Cycle-Aware Network for Data Integration and Label
Transferring of Single-Cell RNA-Seq and ATAC-Seq

Jiajia Liu, Jian Ma, Jianguo Wen, and Xiaobo Zhou*

In recent years, the integration of single-cell multi-omics data has provided a
more comprehensive understanding of cell functions and internal regulatory
mechanisms from a non-single omics perspective, but it still suffers many
challenges, such as omics-variance, sparsity, cell heterogeneity, and
confounding factors. As it is known, the cell cycle is regarded as a confounder
when analyzing other factors in single-cell RNA-seq data, but it is not clear
how it will work on the integrated single-cell multi-omics data. Here, a cell
cycle-aware network (CCAN) is developed to remove cell cycle effects from the
integrated single-cell multi-omics data while keeping the cell type-specific
variations. This is the first computational model to study the cell-cycle effects
in the integration of single-cell multi-omics data. Validations on several
benchmark datasets show the outstanding performance of CCAN in a variety

1. Introduction

In recent years, advances in single-cell RNA
sequencing (scRNA-seq) technology have
enabled us to generate high-throughput
gene expression data through differ-
ent sequencing methods at single-cell
resolution.!) The evolution of these tech-
nologies has significantly expanded the
adoption of single-cell RNA sequencing
across diverse fields, furnishing a more
comprehensive and profound perspective
on the comprehension of cell heterogeneity
and functions.l'*?] There exists a multitude
of methods for generating scRNA-seq

of downstream analyses and applications, including removing cell cycle
effects and batch effects of scRNA-seq datasets from different protocols,
integrating paired and unpaired scRNA-seq and scATAC-seq data, accurately
transferring cell type labels from scRNA-seq to scATAC-seq data, and
characterizing the differentiation process from hematopoietic stem cells to

different lineages in the integration of differentiation data.
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data, with over a dozen most commonly
used scRNA-seq protocols accessible.l®]
These technologies generate scRNA-seq
data derived from distinct experiments,
encompassing variations in capture timing,
handlers, reagent batches, equipment, and
even technological platforms.?* These
inherent dissimilarities engender batch
effects within scRNA-seq data,?»>] which
become the priority and grand challenges in single-cell RNA-seq
data analysis.[®]

In addition, the emergence of single-cell multi-omics tech-
nologies has enabled insights into complex cellular microen-
vironments and biological processes, offering many excit-
ing Dbiological opportunities from perspectives other than
transcriptomics, such as genomics, epigenomics, proteomics,
metabolomics, spatial transcriptomics, etc.l”) Particularly, single-
cell Assay for Transposase-Accessible Chromatin using sequenc-
ing (scATAC-seq) is an epigenomic profiling technology for
studying the chromatin accessibility of individual cells.¥] It pro-
vides the ability to examine the openness of chromatin regions
in the nucleus at the single-cell level, which is unavailable in
single-cell RNA-sequencing data.®¥ This enhances our compre-
hension of the epigenetic state, cell-type heterogeneity, and cell
state.’) However, scATAC-seq data has more extreme sparsity
than scRNA-seq data, which also increases the difficulty of analy-
sis based on scATAC-seq data.[®®1%] Meanwhile, cell type annota-
tion for scATAC-seq data is challenging due to lack of specifically
designed tools and use of unintuitive cis- and trans-regulatory el-
ements in single-cell ATAC-seq data.!!) In recent years, advanced
technologies have made it possible to simultaneously charac-
terize gene expression and chromatin accessibility in the same
cell, which we call the generated data paired data.l'?l These tech-
niques provide tools for the integrated analysis of scRNA-seq and
SCATAC-seq data, which can apply the information obtained from
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the large amount of annotated scRNA-seq data for the cell type
annotation of scATAC-seq data.l’! However, single-omics data
are more readily available than paired scRNA-seq and scATAC-
seq data. That is, we can generate scRNA-seq and scATAC-seq
data of different single-cell experimental samples separately, but
they are from the same organ or tissue, which we refer to as
unpaired data in this study.!'®! Therefore, in cases where paired
data are not abundant, integrating these unpaired data is a better
option for researchers to conduct broader studies. However, un-
paired data frequently introduce complexity to subsequent analy-
ses due to differences in features and sparsity level, so it is impor-
tant to develop novel data integration methods that can be applied
to unpaired scRNA-seq and scATAC-seq data.

In summary, the current integration of scRNA-seq and
SCATAC-seq data can be divided into three types: ['* 1) intra-
modality integration, the integration of the same omics data
(scRNA-seq data) measured from different cells and different ex-
periments; 2) paired inter-modality integration, that is, the inte-
gration of scRNA-seq and scATAC-seq data measured from the
same cell; and 3) unpaired inter-modality integration, that is, the
integration of scRNA-seq and scATAC-seq data generated from
different cells, samples or experiments. Corresponding integra-
tion methods have also been developed for different integration
types: 1) methods for intra-modality integration employ dimen-
sionality reduction algorithms to reduce the complexity of the
data and identify the common biological signal across datasets
to align cells or cell populations to integrate scRNA-seq datasets
from different sources or experiments, but most of them struggle
with excessive data scale, run time or resource requirements.[*’]
2) methods for paired inter-modality integration apply matrix
factorization,'®! weighted nearest neighbor algorithm,!*”] and
neural networks ('] to integrate scRNA-seq and scATAC-seq data
measured within a cell and to obtain a joint profile of cellular
state. These methods are specially designed for paired data, mak-
ing their application to other unpaired data challenging. 3) un-
paired data not only have different features but also frequently
exhibit significant variations in cell count, thus giving rise to a
distinct category of integration methods for unpaired data. Meth-
ods for unpaired inter-modality integration focus on finding so-
lutions for the manifold learning and cell alignment in the em-
bedding space using neural networks.[?] There is also a non-
neural network approach that uses the non-negative matrix fac-
torization approach and online learning algorithm to incorporate
new data without recalculating from scratch.?*) However, despite
the aforementioned approaches, most of them are specialized to
address specific challenges within particular integration type of
single-cell data. Currently, there is a lack of a comprehensive ap-
proach capable of simultaneously addressing all three types of
integration issues outlined above. The single-cell data integra-
tion method to be developed needs to consider the sparsity, data
scale, feature difference, high dimensionality, and other inherent
disparities of scRNA-seq and scATAC-seq data. In addition, the
cell cycle is often considered a confounding factor in the study of
cell population and cell heterogeneity based on single-cell RNA-
sequencing data.”!] How it will work in the integrated analysis of
scRNA-seq and scATAC-seq data is still unknown.

To address such concerns, we developed an advanced Cell
Cycle-Aware Network (CCAN) with the aim of extracting intrin-
sic biological signals masked by context-specific patterns (i.e., cell
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type-specific heterogeneity) and confounding factors (i.e., cell cy-
cle effects, batch effects, and noise). Notably, CCAN can integrate
single-cell multi-omics data and remove cell cycle effects from
the integrated data while maintaining heterogeneity between cell
types. CCAN is based on a domain separation network, adding
a periodic activation function to the private decoder to simulate
the dynamic process of the cell cycle, and projecting single-cell
data from different platforms or modalities into a common low-
dimensional space through shared projection. The distribution
constraint function and the class alignment loss function are
added to the shared embedding space to make the distribution of
different data as similar as possible and the difference between
different types of data to be maximized. In addition to single-cell
data integration, CCAN enables cell type prediction of scATAC-
seq data via transferring the cell type annotation information of
scRNA-seq data to sScATAC-seq data. Validations based on multi-
ple sets of data prove that CCAN can not only eliminate the batch
effect between scRNA-seq data from different platforms, but also
integrate paired and unpaired scRNA-seq data and scATAC-seq
data well in the embedding space. Integration of unpaired data
enables accurate cell type prediction for scATAC-seq data. Fur-
thermore, CCAN can maintain cell differentiation trajectories
when integrating single-cell differentiation data.

2. Results
2.1. Overview of CCAN Approach

Asillustrated in Figure 1, CCAN is a self-supervised approach us-
ing the labeled transcriptomic profile of scRNA-seq data (source
domain) and unlabeled profile from same/different omics data
(target domain), such as gene expression of scRNA-seq data and
chromatin accessibility of scATAC-seq data. CCAN uses a do-
main separation network (DSN) to integrate data from source
and target domains and transfer the annotations from source do-
main to target domain. Shared encoders and private encoders in
DSN are three-layer perceptrons to learn noncircular and circu-
lar embeddings of both domains, separately. The shared embed-
ding function projects a high-dimensional profile of each cell to
a low-dimensional vector, which distinguishes biological mean-
ingful signals from circular confounding factors (private embed-
ding) and transforms the embeddings of cells from different do-
mains into a similar distribution. In the decoder, we use sine
and cosine as the activation functions specific for private embed-
dings, followed by a two-layer perceptron performing noncircu-
lar transformations mapping the embedded data to the original
space. The training of CCAN has four main steps: 1) pretrain-
ing of the cell cycle-aware domain separation network; 2) label
transferring from source domain to target domain; 3) refining
CCAN Dby introducing a cluster alignment loss and 4) finalization
and applications of CCAN model. We assessed CCAN using sev-
eral real single-cell datasets, including two scRNA-seq datasets
from different protocols,>] paired and unpaired scRNA-seq and
SCATAC-seq datasets,!2%2%] and single-cell differentiated datasets
from different modalities,?] etc. Evaluation results indicate that
CCAN is a versatile method that can be used for multi-tasks,
including single-cell multi-omics data integration, batch effect
removal, cell cycle effects removal, label transferring, and cell
type prediction (Figure 1). CCAN is an effective method and
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Figure 1. Overview of CCAN approach. CCAN is based on a domain separation network, taking labeled scRNA-seq data as source domain and unlabeled
scRNA-seq or scATAC-seq data as target domain. Both source and target domain are fed into a shared encoder and two private encoders. The shared
encoder learns the common information from both domains and employs an alignment loss to constrain the distribution of source and target domain to
be similar in the shared embedding space. Private encoders are specific to source or target domain to extract periodic information of the cell cycle effect.
An orthogonal difference loss between the shared embedding and private embedding enforces features learned by the shared encoder and the private
encoder to be as different as possible in the low-dimensional space. Both source and target domain have the same structure of decoder by contacting
the shared embedding and private embedding to reconstruct the original data. A supervised classifier is trained on the labeled scRNA-seq data and can
be used to predict the label of target domain. CCAN has four main training steps and can be applied to multi-tasks, including batch effect removal,
single-cell multi-omics data integration, cell cycle effect removal, cell cycle prediction, label transferring and trajectory analysis, etc.
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competitive in various applications compared with other existing
methods.

2.2. Batch Effect Removal of scRNA-Seq Datasets from Different
Protocols

The emergence of advanced technologies enabled comprehen-
sive transcriptional characterization of cell-type heterogeneity
across a variety of biological and clinical conditions, integrat-
ing these scRNA-seq datasets from different protocols while
maintaining cell-type heterogeneity has become very challeng-
ing. To benchmark the performance of CCAN against other ex-
isting methods for scRNA-seq data integration, we applied two
scRNA-seq datasets of human Peripheral Blood Mononuclear
Cells (PBMC), each assayed on the Chromium 10X platform
but prepared with different protocols: 3’ end v1 and 3’ end v2
chemistries.!'>] We denoted them as pbmc_6k and pbmc_8k re-
spectively in this study. We first clustered the two scRNA-seq
datasets separately using the Louvain clustering algorithm,!**!
resulting 10 clusters of the pbmc_6k data and 13 clusters of
the pbmc_8k data (Figure 2a). Then we used canonical cell
type marker genes to annotate PBMC clusters before integra-
tion (Figure 2b; Figures S1 and S2, Supporting Information).
The annotation resulted six major cell populations (Figure 2c):
monocytes (CD14+/FCGR3A+/MS4A7+/LYZ+), dendritic cells
(FCER1A+), B cells (MS4A1+), T cells (CD3D+), megakaryocytes
(PPBP+), and natural killer (NK) cells (CD3D-/GNLY+).[77:2]
These marker genes were significantly expressed in the cor-
responding annotated cell types (Figure 2d). We compared
CCAN with six existing methods for scRNA-seq integration, in-
cluding Harmony,[">°! Seurat V4,1 online iNMF,[2%l Conos, /13!
Scanorama,!'*®! and BBKNN.["54] As illustrated in Figure 2e, the
two PBMC data were completely separated before integration,
which showed the confident existence of the batch effect. These
batch effects significantly impeded the accurate classification of
cell types. Evidently, the same cell types were subdivided into
two distinct categories prior to integration, including B cells, T
cells, and monocytes. CCAN outperformed other methods by ac-
complishing a perfect integration, effectively eliminating dataset-
specific variations and mixing all cells within each cluster in
the projected space. The projection distribution on the two co-
ordinate axes of UMAP (Uniform Manifold Approximation and
Projection for Dimension Reduction) 12! visualization also illus-
trated that the distributions of pbmc_6k and pbmc_8k exhib-
ited near-complete overlap, further affirming the successful in-
tegration of PBMCs using CCAN. To quantitatively measure the
performance of CCAN, we calculated kBET (k-nearest neighbor
Batch Effect Test),[?”] a metric used to assess the batch effects in
single-cell RNA sequencing data by comparing the distribution
of nearest neighbors between cells from different batches. Com-
pared to other methods, CCAN had the lowest kBET score when
choosing different numbers of nearest neighbors (Figure 2f), in-
dicating that cells from different batches had more similar near-
est neighbors after integration using CCAN. What’s more, a per-
fect integration not only required no significant variability be-
tween the two scRNA-seq data, but also needed to enhance the
differences between cell types, which was valuable for subse-
quent downstream analyses. We applied k-means clustering to
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the integrated data, and compared the clustering results with the
annotated cell types. By calculating the three clustering evalu-
ation metrics of Rand Index (RI), Adjusted Rand Index (ARI),
and Normalized Mutual Information (NMI), we observed that
the results of CCAN were slightly inferior to those of BBKNN
and Seurat V4, but always higher than Harmony, online iNMF,
Conos and Scanorama (Figure 2g). However, considering the per-
formance of both data mixing and cell type separation, CCAN was
still a better choice for integration that had less impact by batch
effects and was more reliable for downstream analyses. Details
in the calculation of three clustering evaluation metrics are pre-
sented in Text S1 (Supporting Information).

2.3. Cell Cycle Identification and Cell Cycle Effect Removal of the
Integrated Data

To evaluate the CCAN’s performance in cell cycle identification,
we utilized a mouse embryonic dataset [?*! with known ground
truth cell cycle information as one batch. Gaussian noise was
added to simulate another batch.[**] Subsequently, CCAN was
applied to integrate two batches and estimate cell cycle pseudo-
time from cell cycle-specific variations. We leveraged a Gaussian
Mixture Model (GMM) with three components (Figure S3, Sup-
porting Information) to discretize the continuous pseudotime
generated by CCAN into discrete cell cycle stages. In our compar-
ison, CCAN was benchmarked against two marker gene-based
methods: Seurat [l and reCAT 3% and one deep learning-based
method: Cyclum.?!¢] Seurat employs 43 S phase marker genes
and 54 G2M phase marker genes to delineate cell cycle stages,[*]
while reCAT utilizes 378 cell cycle genes from Cyclebase3 Pl to
estimate cell cycle stages.>" To evaluate the performance of these
models, we employed four classification metrics: Accuracy, Rand
Index (RI), Adjusted Rand Index (ARI), and Normalized Mutual
Information (NMI). As illustrated in Figure 3a, CCAN demon-
strated outstanding performance in identifying cell cycle stages
compared with marker gene-based methods.

Cell cycle dysregulation presents as changes in cell distribu-
tion across different stages of the cell cycle and variations in
the expression of cell cycle regulatory genes.®?! To further assess
the CCAN’s performance in identifying cell cycles from different
conditions. We used scRNA-seq tumor data of 176644 cells from
breast cancer patients.’*] CCAN was utilized to integrat data with
two conditions (letrozole alone and intermittent high-dose ribo-
ciclib) and predict cancer cell cycle transitions. We calculated the
proportion of cancer cells in the mitotic (S/G2) phase in biopsies
from each patient (Figure S4a, Supporting Information). During
the combination therapy, there was an increase in the propor-
tion of cancer cells in the mitotic and growth (S/G2) phases. We
studied the expression fluctuations of CDK6 and CDKN2A genes
throughout the cell cycle under combination therapy, a reduction
in CDK inhibitor 2A and an increase in CDK6 expression from
G1 to S/G2 phase were observed (Figure S4b, Supporting Infor-
mation). In conclusion, CCAN accurately estimates cancer cell
cycle transitions.

In addition to the impact of data batches on cell type hetero-
geneity, cell cycle is often seen as a confounding factor when
studying differences between cell types. Due to the lack of real
data with both cell cycle and cell type labels as ground truth,
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Figure 2. Annotation of PBMCs and batch effect removal of scRNA-seq datasets from different protocols. a) UMAP visualization of two single-cell PBMC
data from different protocols. Different colors represent different clusters using Louvain clustering method. b) Annotation of different clusters of two
PBMC data. Different cell clusters were annotated into six major cell types using marker genes. c) UMAP visualization of two single-cell PBMC data
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we use the simulated data in Cyclum (21 to characterize the
cell cycle effect in virtual samples. The simulated dataset com-
prises two subclones. The first subclone, designated as subclone
1, consists of samples from the mESC data,[?] which includes
experimental cell cycle labels serving as ground truth. The sec-
ond subclone is generated by doubling the expression levels of a
randomly selected set of genes, encompassing varying numbers
of known cell-cycle and non-cell-cycle genes. Cells from these
two subclones are amalgamated into a virtual tumor sample. To
simulate batch effects in our data, we randomly partitioned all
merged samples into two groups and introduced Gaussian noise
to one of them.[*?° This process was repeated 10 times, generat-
ing 10 sets of simulated data. We then assessed the effectiveness
of CCAN alongside Cyclum, Seurat, and ccRemover in removing
the cell cycle effect. Figure 3b presents UMAP visualizations of
a representative sampled dataset. CCAN successfully segregates
two subclones accurately, with a noticeable distinction between
phenotypes compared to the data before removing the cell cycle
effect. Cyclum separates cells into two groups, but they do not
correspond to the expected subclones. Seurat and ccRemover fail
to distinguish between the two subclones. Figures S5-S9 (Sup-
porting Information) illustrate the UMAP visualizations of 10
simulated datasets before and after removing the cell cycle effect
using four methods. To quantify the effectiveness of cell cycle
effect removal, we employ the metric of separability to measure
the degree to which the data points in different classes can be cor-
rectly separated or discriminated by the provided subclone clus-
ters. A higher separability value indicates better discrimination
between subclones. Figure 3c highlights CCAN’s superior sepa-
rability, underscoring its prowess in removing the cell cycle effect
from integrated data.

For the PBMC data before integration, we meticulously se-
lected a subset of variable genes from the PBMCs and proceeded
to conduct Principal Component Analysis (PCA) based on these
selected genes. Notably, some genes associated with the cell cycle
prominently featured among the top 10 principal components.
For instance, in the pbmc_6k dataset, genes such as TYMS,
RRM2, BIRC5, PCNA, and HMGB2 displayed significant asso-
ciations with principal components 7, 8, 9, and 10 (PC_7, PC_8,
PC_9, and PC_10). Similarly, within the pbmc_8k dataset, genes
TYMS, BIRCS5, and MKI67 were prominent in principal compo-
nent 10 (PC_10) (Figure 3d). Despite their minimal or low expres-
sion in the majority of cells, several cell cycle-related genes (such
as PCNA and HMGB2 in pbmc_6k and BIRCS5 in pbmc_8k) ex-
hibited normal expression patterns, thereby corroborating the
presence of cell cycle effects. Inspired by Cyclum,!?'l we devel-
oped a cell-cycle aware module in CCAN to remove cell cycle ef-
fects in the integration of scRNA-seq data. CCAN employed a
distinct sinusoidal component in the private autoencoder to ef-
fectively capture the circular trajectory in the high-dimensional
gene expression space. The private embedding space was formed

www.advancedscience.com

by single cells sampled at various stages of a periodic process.
In essence, the private encoder in CCAN was dedicated to pin-
pointing an optimal cell embedding within this circular space,
which we denoted as cell cycle pseudotime. We compared the per-
formance of CCAN with other existing cell cycle effect removal
methods, including Seurat, Cyclum, and ccRemover. Before inte-
gration, we used the cell cycle marker genes in Seurat ['7] to iden-
tify the cell cycle phases of cells in the two scRNA-seq datasets,
and used the identified cell cycle as a benchmark label to evaluate
the effectiveness of cell cycle effects removal. UMAP visualiza-
tion of the integrated data after cell cycle effects removal showed
that integration using CCAN was unable to clearly distinguish
the three annotated cell cycle phases, as did Seurat, Cyclum, and
ccRemover. However, the advantage of CCAN over other methods
was that only CCAN did not introduce extra noise to the down-
stream analysis based on cell types after removing the cell cy-
cle effects, which was reflected in the fact that CCAN can accu-
rately distinguish six different cell types after removing the cell
cycle effects (Figure 3e). We calculated the metric of separability
to quantitatively measure the discrimination between cell types
after removing the cell cycle effect using CCAN, Seurat, Cyclum,
and ccRemover (Figure S10, Supporting Information). This also
demonstrated the effectiveness and reliability of CCAN in remov-
ing cell cycle effects.

2.4. Integration of Joint Profiling of scRNA-Seq Data and
scATAC-Seq Data

Advanced technologies make it possible to simultaneously
measure gene expression and chromatin accessibility in the
same cell, such as SNARE-seq.'*] We applied CCAN to the
paired single-cell dataset, including joint profiling of scRNA-
seq data and scATAC-seq data from adult mouse brain us-
ing SNARE-seq technology.l'’] We compared the performance
of CCAN with eight existing integration methods, contain-
ing scMVP,!18] scAL1%] scMVAE,!'8] Seurat v4,'7] scJoint,!!°"]
GLUE,™] SCALEX,[" and online_iNMF.?"! Among these
methods, scMVP, scAl, and scMVAE are specifically designed
only for integrating paired data, so their generation of the inte-
grated data is based on concatenation of features in the latent
dimension (Figure S11, Supporting Information). While Seurat
v4, scJoint, GIUE, SCALEX, and online_iNMF have the capability
to integrate both paired and unpaired datasets. Their integration
strategy for paired datasets in the comparison is to treat differ-
ent modalities as two datasets from different experiments and
integrate them together, so their integration is based on concate-
nation of cells (Figure S11, Supporting Information). The paired
datasets are measured in the same cells, which provides ground
truth labels that allow CCAN to integrate without predicting
the pseudo label of the scATAC-seq data first (see Experimental

from different protocols with annotated cell types. d) UMAP visualization of marker expression in pbmc_6k and pbmc_8k data, respectively. e) UMAP
visualization of scRNA-seq datasets before integration and after integration using CCAN, Harmony, Seurat V4, online iNMF, Conos, Scanorama and
BBKNN, respectively. The upper panel was colored by different data batches and the bottom panel colored by annotated cell types. f) Line plot of kBET
scores of integrated data using different methods when choosing different numbers of nearest neighbors. k is neighborhood size. g) scatter plot of
kBET score and three clustering metrics including RI, ARI, and NMI of different methods. Different methods were represented using different colors and
different shapes. RI, Rand Index; ARI, Adjusted Rand Index; NMI, Normalized Mutual Information.
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Figure 3. Cell cycle identification and cell cycle effect removal of virtual mESC data and single-cell PBMC data. a) Bar plot of four clustering metrics
including Accuracy RI, ARl and NMI of different methods in evaluating the performance of cell cycle identification. Different methods were represented
using different colors. RI, Rand Index; ARI, Adjusted Rand Index; NMI, Normalized Mutual Information. b) UMAP visualization of integrated mESC
data before and after removing cell cycle effects using CCAN, Seurat, Cyclum and ccRemover. Top panels are colored by subclones and bottom panels
are colored by cell cycle groundtruth. c) The separability of mESC data before and after removing cell cycle effect using CCAN, Seurat, Cyclum and
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Section). In addition, CCAN’s integration for paired data is also
the concatenation of learned features of scRNA-seq and scATAC-
seq data in the latent space. UMAP visualization of the integrated
data shows the excellent integration ability of CCAN, which en-
ables the integrated data to distinguish 13 different cell types
Dbetter than other methods. Following CCAN, GLUE exhibits the
second-best performance. Notably, CCAN’s integrated data show-
cases a tighter aggregation of cells of the same type, with cells
of different types are more dispersed. Although scAl, scMVAE,
Seurat V4, and SCALEX can also clearly distinguish the large
clusters such as L2 /3T, L4, L5CT, and L6IT, different cell types
are not far away from each other (Figure 4a). The results from
three clustering evaluation metrics, including Rand Index (RI),
Adjusted Rand Index (ARI), and Normalized Mutual Informa-
tion (NMI), computed based on k-means clusters and ground
truth, further corroborate that CCAN outperforms other meth-
ods in both integrating cells and accurately separating different
cell types (Figure 4D).

2.5. Integration of Unpaired Datasets and Label Transferring
from scRNA-Seq Data to scATAC-Seq Data

Although more and more technologies are able to measure gene
expression and chromatin accessibility in the same cell, there are
still unpaired datasets from the same tissue. There is no corre-
spondence between cells in scRNA-seq data and cells in scATAC-
seq data. The integration of unpaired datasets maps both modali-
ties to a common space, which allows tools and analyses designed
for scRNA-seq data to have the potential to be applied to scATAC-
seq data. Variations between different modalities are different
from batch effects between scRNA-seq datasets from different
protocols, since scATAC-seq data characterize the chromatin ac-
cessibility instead of transcriptome profile and have more spar-
sity than scRNA-seq data. Even though the integration of un-
paired datasets from different modalities has many challenges,
CCAN still has excellent performance compared with other exist-
ing methods (Figure 5a). We assessed the performance of CCAN
using scRNA-seq data from CITE-seq and scATAC-seq data from
ASAP-seq. The CITE-seq generates filtered scRNA-seq data based
on the condition of mitochondrial reads greater than 10%, a num-
ber of expressed genes fewer than 500, and total number of UMI
fewer than 1000. For the scATAC-seq data from ASAP-seq, we
filtered out cells with a number of peaks more than 1 00 000
and calculated the gene activity matrices for scATAC-seq data us-
ing Signac.**l After that, 17668 overlapped genes are selected as
the input features of CCAN. In comparison to the state before
integration, CCAN effectively integrates data from two distinct
modalities, leading to the clear identification of seven cell types in
the integrated dataset. CCAN is comparable to Seurat v4, GLUE,
SCALEX, and online_iNMF (Figure 5a). Although the integra-
tion performance of CCAN is slightly inferior to scjoint, its label
transferring exhibits higher accuracy in identifying cell types in
SCATAC-seq data when compared to scjoint and Seurat v4. This

www.advancedscience.com

is evident in the superior accuracy, F1 score, precision, and recall
values of CCAN (Figure 5b; Text S1, Supporting Information). In
terms of predicted cell types for scATAC-seq data, CCAN’s results
closely align with the golden standard, indicating a high level of
accuracy (Figure 5c). This suggests that CCAN achieves a well-
balanced integration of data and label transferring, allowing it to
accurately predict cell types for scATAC-seq data without compro-
mising the performance of data integration for both modalities.

2.6. Trajectory Inference and Pseudotime Analysis on the
Integrated scRNA-Seq Data and scATAC-Seq Data

We used the human hematopoiesis dataset 23 to evaluate the per-
formance of the integration of differentiated datasets. The hu-
man hematopoiesis dataset profiles the chromatin accessibility
and gene-expression data of single cells that undergo a differen-
tiation path from hematopoietic stem cells (HSC) dividing into
branches. One branch differentiates into plasmacytoid dendritic
cells (pDC), the other goes through common myeloid progeni-
tor (CMP) and differentiates into megakaryocyte erythroid pro-
genitor (MEP) and granulocyte—-monocyte progenitors (GMP).
Granulocyte-monocyte progenitors (GMP) can further differen-
tiate into Monocyte (mono) cells (Figure 6a). The integration of
CCAN effectively merged the majority of cells from both scRNA-
seq and scATAC-seq data within the embedding space. How-
ever, a small subset of cells from the scATAC-seq data remained
distinct. This observation shows CCAN’s capability to mitigate
modality-specific variations (Figure 6b). Figure 6¢ shows the vi-
sualization of inferred trajectories of the hematopoiesis stem cell
differentiation process based on the joint embedding of scRNA-
seq and scATAC-seq data. Cells are colored with ground-truth cell
types. Lineage 1 and Lineage 2 were inferred and smoothed us-
ing Slingshot.®) In the inferred Lineage 1 of the hematopoiesis
dataset, a clear trajectory emerges, with hematopoietic stem cells
(HSC) transitioning through the common myeloid progenitor
(CMP) stage and further differentiating into megakaryocyte ery-
throid progenitor (MEP) cells. Along Lineage 2, HSCs follow
a similar path through the CMP stage, eventually leading to
a mixed cluster comprising granulocyte—-monocyte progenitors
(GMP) and Monocyte (mono) cells. Notably, toward the end of
Lineage 2, we observe a trend wherein GMP cells transition to-
ward plasmacytoid dendritic cell (pDC) differentiation in the in-
tegrated data. The literature 3¢l provides evidence suggesting that
GMP cells undergo a series of differentiation steps, including dif-
ferentiation into earlier progenitor cells, followed by further dif-
ferentiation into various types of immune cells such as dendritic
cells. This finding potentially elucidates the observed trajectory
from GMP cells to pDC cells. Based on the cell type annotations
on the integrated HSC dataset, we can distinctly observe a lin-
eage progression from hematopoietic stem cells (HSC) to plas-
macytoid dendritic cells (pDC), a trajectory that is not readily in-
ferred by Slingshot. For a more intuitive representation, we man-
ually added this lineage (referred to as Lineage 3) to highlight this

ccRemover. d) Heatmap of variable genes in principle components of PBMCs in two scRNA-seq data. Only the principal components related to cell cycle
genes among the top ten principal components are shown. Cell-cycle genes are marked in red boxes. ) UMAP visualization of integrated PBMC data
after removal of cell cycle effects using CCAN, Seurat, Cyclum, and ccRemover. Top panels are colored by annotated cell cycle and bottom panels are

colored by annotated cell types.
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Figure 4. Data integration of paired datasets of scRNA-seq data and scATAC-seq data from adult mouse brain using SNARE-seq technology. a) UMAP
visualization of integrated SNARE-seq data using CCAN, scMVP, scAl, scMVAE, Seurat v4, scjoint, GLUE, SCALEX, and online_iNMF, respectively.
Different colors represent different cell types annotated by Seurat. b) Bar plot of three clustering metrics including RI, ARI, and NMI of different methods.
Different metrics were represented using different colors. RI, Rand Index; ARI, Adjusted Rand Index; NMI, Normalized Mutual Information.

developmental pathway. Pseudotime analysis [3”] based on the in-
ferred trajectories confirms the ability of our model to integrate
differentiated scRNA-seq data and scATAC-seq data (Figure 6d).

Differential gene analysis can identify differences in gene ex-
pression between different cell types during the differentiation
process. By calculating the Pearson correlation between gene
expression and the inferred cell differentiation pseudotime, we
found the nine genes most related to pseudotime, are KLFI,
IRFS8, SPIB, IRF7, IRF4, ZNF683, STAT2, PRDM]1, and BLC11A
(Figure 6e). These genes are called transition genes.[® They
are highly expressed in leaf node cells on the cell differentia-
tion trajectory (Figure S12, Supporting Information). According
to some published literature studies, the expression of KLF1 is
limited to erythrocytes and megakaryocytic-erythroid progenitor
cells MEP;1*! IRFS8, IRF7, IRF4, STAT2, PRDM1, and BLC11A
are all marker genes for plasmacytoid dendritic cells and are
highly expressed in pDCs.l*! In addition, we also used DESeq2
("] to identify differentially expressed genes between different
cell types. As shown in Figure S13 (Supporting Information),
HOXAG6, PRDM16, IRF8, GATA1, CEBPD, and CEBPE are dif-
ferentially expressed genes in hematopoietic stem cells, common
myeloid progenitor cells, common myeloid progenitors, plas-
macytoid dendritic cells, megakaryocyte-erythroid progenitors,
monocytes, and granulocyte-monocyte progenitors, respectively.
They are marker genes of different cell types.[*°**2] Enrichment
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analysis based on differential genes across all cell types showed
that these differential genes were concentrated in pathways re-
lated to hematopoietic stem cell differentiation (Figure 6h). Dif-
ferential gene analysis further confirmed the effectiveness and
accuracy of CCAN in integrating differentiation data with multi-
modalities.

3. Discussion

Data integration of single-cell multi-omics has enhanced our
investigation of cell functions and internal regulatory mech-
anisms beyond single omics viewpoints. However, single-cell
multi-omics integration has numerous challenges, including is-
sues such as omics-variance, sparsity, cell heterogeneity, and con-
founding factors. The cell cycle confounders in scRNA-seq data
inspired us to think about the cell cycle effects in the integra-
tion of multi-omics data of cells, especially the integration of
scRNA-seq and scATAC-seq data. In this study, we developed
CCAN, a cell cycle-aware network for data integration of scRNA-
seq and scATAC-seq data and label transferring from scRNA-seq
to scATAC-seq. CCAN is based on a domain separation network,
which includes periodic activation functions (sine and cosine) in
the private autoencoder to simulate and remove cell cycle effects
from the integrated single-cell multi-omics data, and projects
single-cell data from different platforms or different omics into

© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH
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Figure 5. Integration of unpaired datasets and label transferring from scRNA-seq data to scATAC-seq data. a) UMAP visualization of unpaired scRNA-seq
data and scATAC-seq data before and after integration using CCAN, Seurat V4, scjJoint, GLUE, SCALEX, and online_iNMF, respectively. Different colors
in the upper panel represent different modalities and different colors in the lower panel represent different cell types. b) Label prediction comparison of
CCAN with scjoint and Seurat V4 using four clustering metrics including Accuracy, F1 score, Precision and Recall. In multi-class prediction evaluation,
Precision, Recall and F1 score represent Macro-Precision, Macro-Recall and Macro-F1 score, separately. Different methods are represented using different
colors. ¢) UMAP visualization of scATAC-seq data labeled with ground-truth cell types and CCAN-predicted cell types, respectively. Different colors

represent different cell types.

a common low-dimensional space through shared autoencoder
to integrate while maintaining heterogeneity between cell types.
The domain adaptive network solves the problem of inconsistent
distribution between single-cell data from different platforms or
different omics. The class alignment loss is added to the hidden
layer of the domain adaptive network to enhance the differences
between different cell types in the integrated data. At the same
time, by introducing sine and cosine activation functions into the
network, the impact of the cell cycle on cell type heterogeneity
can be eliminated while effectively integrating single-cell multi-
omics data, further improving the performance of data integra-
tion.

The design of the cell cycle-aware module within CCAN was
inspired by Cyclum. The cell cycle-aware module within CCAN
shares similarities with Cyclum’s circular component. Both mod-
ules leverage nonlinear periodic functions to emulate the circu-
lar trajectory of the cell cycle. However, a key distinction lies in
CCAN’s integration of an orthogonal loss, absent in Cyclum. This
additional loss function facilitates the separation of features be-
tween the private and shared embeddings, a crucial factor con-
tributing to CCAN’s superior performance in cell cycle effect re-
moval. Furthermore, CCAN integrates the cell cycle module into
the private decoder of a domain separation network, enhancing

Adv. Sci. 2024, 11, 2401815 2401815 (10 of 16)

its adaptability to multi-omics data integration tasks. Conversely,
Cyclum embeds the circular component within an autoencoder
framework, thereby limiting its use in the integration of single-
cell multi-omics data.

Through comprehensive downstream analyses across diverse
data integration scenarios, it has been demonstrated that CCAN
(Cell Cycle-Aware Network) possesses the capability to not only
mitigate batch effects and cell cycle effects in single-cell RNA se-
quencing (scRNA-seq) data originating from different platforms
but also seamlessly integrate both paired and unpaired scRNA-
seq data and single-cell ATAC-seq (scATAC-seq) data. The inte-
gration of unpaired scRNA-seq data and scATAC-seq data is par-
ticularly noteworthy, as CCAN facilitates accurate cell type predic-
tion for scATAC-seq data by leveraging the transformation of an-
notation information gleaned from scRNA-seq data. This unique
feature enhances the utility of CCAN in deciphering cellular het-
erogeneity and functional states across diverse data modalities.
Furthermore, CCAN exhibits remarkable versatility by not only
integrating differentiated data from various modalities but also
capturing the intricacies of cell differentiation trajectories. This
is exemplified in its ability to characterize the differentiation pro-
cess from hematopoietic stem cells (HSC) to different branches,
providing a holistic understanding of cell fate determination in
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Figure 6. Trajectory inference and pseudotime analysis on the integrated scRNA-seq data and scATAC-seq data. a) Reference of human hematopoietic
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differentiation pseudotime. e) scatter plot of gene expression along the pseodotime of nine highly-correlated genes. f) bubble plot of enriched pathways
of differentially expressed genes.

Ad. Sci. 2024, 11, 2401815 2401815 (11 of 16) © 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

QSULDIT SUOWWOD) dANEaI1) d[qearjdde oYy £q pausoAoS e sA[ONIE YO (SN JO SN 10J AIRIGIT AUIUQ AJIA UO (SUONIPUOD-PUB-SULIA) WO K[1M" ATRIqI[our[uoy/:sdny) SUONIPUOD) Pue SWIAL, Y1 98 *[$707/L0/10] U0 A1eIqr duruQ A1 ‘ST8T0PZ0T SAPE/Z001 01/10p/Wod" AA[Im  AIRIQIUITUOPIdURAPE//:sdNY WOy papeoumod ‘1€ “b70T ‘Pr8E861T



ADVANCED
SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

the context of integrated differentiation data. In essence, CCAN
emerges as a powerful tool for unraveling the complexities of cel-
lular dynamics across heterogeneous datasets.

In CCAN, we use a domain separation network that requires
the source domain data and the target domain data to have the
same number of features. The label transferring in the domain
separation network limits CCAN to be used only when the data
in the source domain and the target domain have the same cell
types. This limitation is not prone to over-correction, which is
likely to occur especially when integrating collections of datasets
with considerable differences in cellular composition. Currently,
there are many methods for analyzing and removing cell cycle
effects based on scRNA-seq data, but there are few methods for
cell cycle analysis based on scATAC-seq data. Therefore, in this
manuscript, the cell cycle effects analysis was focused on the
integration of scRNA-seq data from different platforms. When
integrating scRNA-seq and scATAC-seq data, we can regard the
private-encoder embedding as a confounding factor that affects
data integration and cell classification. Besides, we only used
single-cell datasets with two modalities, including gene expres-
sion profiling from scRNA-seq data and chromatin accessibil-
ity from scATAC-seq data. However, with the ongoing advance-
ments in high-throughput single-cell sequencing technologies,
the accessibility to analyze various molecular components such
as DNA, mRNA, and proteins at a single-cell resolution has ex-
panded significantly. Recognizing the potential for a more nu-
anced understanding through the integration of diverse omics
data types, we envision extending the capabilities of CCAN in
future development. The objective is to broaden CCAN’s scope
to encompass the integration and comprehensive analysis of a
more extensive array of single-cell omics data, thereby facilitat-
ing diverse analytical objectives.

4. Experimental Section

Basic Structure of Domain Separation Network in CCAN:  Domain sep-
aration network (DSN) is a specific type of neural network architecture
used for domain adaptation, it was designed based on the labeled source-
domain data and unlabeled target-domain data.[*3] In CCAN, source-
domain data is gene expression profiles of scRNA-seq data and target-
domain data can be same/different single-cell omics data, such as gene
expression of scRNA-seq data from different protocols, chromatin accessi-
bility of scATAC-seq data, etc. In the basic structure of DSN, it contains one
shared encoder and two domain-specific private encoders to extract the
common and private representations from input data. The common and
private components of the same domain should be totally split to make
sure the independence of these parts. A shared decoder reconstructs the
input domain by cascading the shared and private embeddings. Given a
labeled dataset in a source domain and an unlabeled dataset in a target
domain, cell type classification was mainly used as the cross-domain task,
training on the shared embedding from the source domain that gener-
alizes to the target domain, which requires the high invariance between
shared embeddings of source and target domains. To achieve this goal,
alignment was considered in the embedding space to eliminate differ-
ences between domains. Objectively, DSN is a model that produces a
shared representation that is similar for both domains and a private repre-
sentation that is different and transfers the classification label from source
domain to target domain.

Cell Cycle-Aware Module in CCAN:  The cell cycle has been recognized
as a confounding factor in the analysis of cell type-dependent processes.
In CCAN, to achieve better cell type transfer from the source domain to
the target domain, it is necessary not only to account for differences in
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the shared embeddings between different domains, but also to remove
cell cycle effects from the shared representations. Considering the mu-
tual independence between shared and private components in DSN, a cell
cycle-aware module was introduced in the private part of DSN to charac-
terize the dynamic process of cell cycle. The high degree of differences
between shared and private components can make shared components
out of the influence of private components, that is, the prediction of cell
types based on shared components can eliminate the effect of cell cycle
modeling based on private components. Taking the source data as X, and
the target data as X;, the objective of the cell cycle-aware module is to infer
the cell cycle pseudotime Z,, for cells from their corresponding profiles X;
or X,. DSN is an autoencoder-based network, in the encoder, a standard
multi-layer perceptron with hyperbolic tangent activation functions was
used in the private part (also as circular part) and selu activation func-
tions in the shared part (also as acyclic part). The encoder of source data
X; is as below

(circular)
Zsp

N

- (acyclic)
Zss

W}(circular) tanh (Wz(cfrcu/ar) tanh (W$circular)xs + b1) + b2>

= ‘ _ , (M
Ws(acyc//c) selu (Wz(acycllc)selu (v(/](acycl/c)xS i b1) i bz)

where W's and b’s are the weight matrices and bias vectors of the encoder.
Zy, and Z are private embedding and shared embedding of the source
domain. Z; represents the cascade of Zy, and Z in the hidden layer. In
the decoder, cosine and sine were used as the activation functions in the
first layer, followed by two layers performing linear transformations. The

—
reconstruction of source data Xs can be represented mathematically as

. ircul
sin ZS(;”W ar)

)’<‘S — [V(circular) v(acyclic)] cos Z(circu/ar) = vz @
P

Z(acyclic)

SS

where V's are the weight matrices of the decoder and )/(; is the recon-
structed matrix of source domain generated by the decoder. The target
domain has the same autoencoder structure of cell cycle-aware module in
the private part as follows.

(circular)
th
2=l
acyclic
Zts
(circular) (circular) (circular)
W, tanh ( W tanh ( W, X;+by)+b,
= _ , , @)
W}(acycl:c)selu (Wz(acycl/c)selu (Wl(acyc/rc)xt i b1) i bz)
sin Zt(pcircular)
),(\‘ — [v(circular) V(acyc/r’c)] cos Zt(;irculur) = vz, (4
Z(acyclic)

ts

where Z, and Z,; are private embedding and shared embedding of the
target domain. Z, represents the cascade of Z,, and Z,; in the hidden layer.

X, is the reconstructed matrix of target domain.

Algorithm Design and Training of CCAN:  CCAN uses a domain separa-
tion network (DSN) to integrate data from source and target domains and
transfer the annotations from source domain to target domain. Shared
encoder and private encoders in DSN are three-layer perceptrons to learn
circular and acyclic embeddings of both modalities, separately. The shared
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embedding function projects a high-dimensional profile of each cell to a
low-dimensional vector, which distinguishes biological meaningful signals
from circular confounding factors (private embedding) and transforms the
embeddings of cells from different domains into a similar distribution. In
the decoder, sine and cosine were used as the activation functions specific
for private embeddings, followed by a two-layer perceptron performing
noncircular transformations mapping the embedded data to the original
space. CCAN used the labeled transcriptomic profile of scRNA-seq data
(source domain) and unlabeled profile from same/different omics data
(target domain) as input. Taking scRNA-seq data as source domain and
scATAC-seq data as target domain as an example, the training of CCAN
has four main steps:

Step 1: Pretraining of the cell cycle-aware domain separation network. A
cell-cycle aware domain separation network was used to perform joint em-
bedding and modality alignment in a common embedding space through
a multi-objective loss L. First, CCAN trains the source and target autoen-
coders by minimizing the data reconstruction error.

1 Nq 2, 1 yv'M
£mons-ﬁ£2f:1 +ﬂtz/‘=1

where N, and N, are number of cells in source and target data, X; and X,
are input source and target data, )’(\S and )/(\, are the decoder-reconstructed
data. Second, it learns shared signals between the scRNA-seq data and
scATAC-seq data as well as private signals that are unique to the scRNA-
seq data and scATAC-seq data. CCAN applies an orthogonal constrain L
to push the features of the shared and the private embeddings apart from
each other

X0 _ x0 0 _ 50

s

®)

C+laz| ©

T
Zss ZSP

l:dl_'ﬁ =

where Z; and Z,; are the embedded source and target data from shared
encoder, Z,, and Z,, are the embedded data from domain-specific private
encoders. The rationale is to disentangle biological signals specific for cell
type heterogeneity from cell cycle confounders. Third, CCAN regularizes
the embeddings of scRNA-seq data and scATAC-seq data to make their
distributions to be similar. Aligning the distributions across cells from dif-
ferent domains in the shared embedding space can alleviate the out-of-
distribution problem between different modalities. The Maximum Mean

Discrepancy loss Lp was used as the alignment loss L., to align the

distribution of the scRNA-seq data and scATAC-seq data

Lo = Lamn = || T 6 (20) = L 3 k(20 7
align = ~MMD = Ws Zi:] ss ) T Nt Zi:'l ts ™

where k represents the kernel function. Finally, after the unsupervised pre-
training of the autoencoder, a supervised cell type classification model can
be trained from the aligned shared embedding using the labeled scRNA-
seq data, refer as a cross-entropy classification loss £

K
Lilgss = Zi:] Yilog (p)) (©)

where y; is ground-truth cell type label of scRNA-seq data and p; is the
predicted probability generated by the cell type classifier. In summary, the
total loss in the pretraining of CCAN is

L= ‘Cclﬂss + [’recons + [:diﬂ" + [’align (9)

Multiple losses will be given different weights during training.

Step 2: Label transferring from source domain to target domain. After
pretraining of CCAN, the trained cell type classification network is applied
to the unlabeled scATAC-seq data, transferring the cell type information of
scRNA-seq data to annotate the scATAC-seq data, regarded as label trans-
ferring. CCAN makes it possible to remove circular confounders while per-
forming accurate annotations for scATAC-seq data. After the label transfer-
ring in step 2, a pseudo-label of the scATAC-seq data was obtained.
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Step 3: Refining CCAN by introducing a cluster alignment loss. The
jointembedding and label prediction performance was improved using the
ground truth of scRNA-seq data and the pseudo-label of the scATAC-seq
data. A cluster alighment loss £, was added to refine the neural networks
in CCAN.

e T ()
s -o)max(om—d(2,7,)) ]+ 2 X -4l (10)

where m is the distance threshold, A, and A, are centroids of embed-
ded source and target data, K is the number of cell types. L, is a class-
conditional loss that forces the features from the same class to concen-
trate together and the features from different classes to be separated. In
addition, it introduces a conditional feature matching loss to improve the
alighment between two domains that aligns the clusters which correspond
to the same class but come from different domains. Thus, the updated
alignment loss is

Ealign = EMMD + Eca (-l 1)

Step 4: Finalization of CCAN model. The last step generates the joint
profile of two modalities and finalizes the annotation of scATAC-seq data.
Besides, more downstream analyses can be operated on the joint embed-
ding profile of scRNA-seq and scATAC-seq data when the shared embed-
ding of scRNA-seq and scATAC-seq was cascaded.

Balanced Mini-Batch Training for Cluster Alignment: In the refining
step, a cluster alignment loss in CCAN was introduced, which challenges
the choice of batch size in neural network training. The batch size selection
in the pretraining step is no longer suitable for the refining step to calculate
the cluster alignment loss, because it cannot guarantee that each batch
size of data can contain all cell types, and may cause extreme imbalance
of batch-size data, which will affect the performance of class alignment. To
overcome this problem, a balanced mini-batch training in the optimiza-
tion of the cluster alignment loss was applied that can virtually balance
the class ratio of training samples in CCAN. The numbers of samples for
each class in a mini-batch are restricted to be the same. This method does
not modify or discard cells in the input data, so it can avoid oversampling
and under-sampling problems while improving cluster alignment perfor-
mance, achieving a better integration of single-cell multi-omics data.

CCAN Parameters: By default, the following parameters were set for
CCAN: batch size: 64, the hidden-layer dimensions in the encoder: [512,
256), the hidden-layer dimensions in the classifier: [32, 16], the dimension
of latent space: 64, learning rate: 1e-3, number of training epochs: 1000.
Parameters are optimized via grid search and may vary based on input
data.

Datasets: CCAN is an effective tool for multitasking. In order to ver-
ify the performance of CCAN in different application scenarios, several
real single-cell datasets were used (Table S1, Supporting Information), in-
cluding scRNA-seq data of peripheral blood mononuclear cells from dif-
ferent protocols,['] breast cancer single-cell dataset,[33] paired scRNA-
seq and scATAC-seq data generated from SNARE-seq technology,!'%c]
unpaired scRNA-seq and scATAC-seq data of different cells from the
same tissue [22] and single-cell multi-omics data of human hematopoi-
etic differentiation.[344] Virtual datasets were also generated based on
the real mESC data, as shown below [28]:

1) scRNA-seq data of PBMCs: The scRNA-seq data of PBMCs consisted
of two scRNA-seq data, each assayed on the Chromium 10X platform,
but using different library construction protocols: 3’ end v1 (3pV1)
and 3’ end v2 (3pV2) chemistries. This dataset was pre-processed
following the vignette in Seurat (https://satijalab.org/seurat/articles/
pbmc3k_tutorial). The 3pV1 scRNA-seq data has 5356 cells after data
pre-processing and the 3pV2 scRNA-seq data has 8806 cells after data
pre-processing.
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2) mESCs data: This scRNA-seq dataset of mouse embryonic stem
cells were downloaded from https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-2805/. The cells were stained with Hoechst and
sorted using FACS for respective cell-cycle fractions (G1, S and G2/M
phase). Two hundred eighty-eight mouse embryonic stem cells were
sequenced using HighSeq 2000 sequencing system.

3) Breast cancer single-cell dataset: This data comprised patients with
ER+ breast cancer undergoing neoadjuvant endocrine therapy (letro-
zole) with or without a CDK4/6 inhibitor (ribociclib), sampled at the
start of treatment, after 14 days, and after 180 days of treatment, us-
ing 10x technology for single-nucleus RNA sequencing. This dataset is
available from Gene Expression Omnibus (GEO) with GEO Series ID
GSE158724.

4) SNARE-seq data: Single-nucleus chromatin accessibility and mRNA
expression sequencing (SNARE-seq) is a droplet-based method to
simultaneously profile transcriptome and chromatin accessibility in
single nucleus. This dataset is regarded as paired single-cell RNA-
seq and ATAC-seq data for adult mouse cerebral cortex. SNARE-seq
data of adult mouse brain was pre-processed following the vignette
in Signac (https://stuartlab.org/signac/1.2.0/articles/snareseq.html).
8055 cells were used in CCAN after data pre-processing. This dataset
is available from Gene Expression Omnibus (GEO) with GEO Series
ID GSE126074.

5) Unpaired scRNA-seq and scATAC-seq data: This dataset includes
scRNA-seq data from CITE-seq and scATAC-seq data from ASAP-seq.
The CITE-seq generates filtered scRNA-seq data based on the condi-
tion of mitochondrial reads greater than 10%, number of expressed
genes fewer than 500 and total number of UMI fewer than 1000. For
the scATAC-seq data from ASAP-seq, cells with a number of peaks
more than 100 000 were filtered out and calculated the gene activity
matrices for scATAC-seq data using Signac.>4! After that, 17 668 over-
lapped genes are selected as the input features of CCAN. This dataset
is available from Gene Expression Omnibus (GEO) with GEO Series
ID GSE156478.

6) Single-cell differentiated data: This dataset includes scRNA-seq and
scATAC-seq of human hematopoietic differentiation. The scATAC-seq
and scRNA-seq were performed separately on different cells and
there is no paired relationship between cells from the scRNA-seq
data and cells from the scATAC-seq data. Six cell types shared by
scRNA-seq and scATAC-seq were selected and used in CCAN, they are
hematopoietic stem cells (HSC), plasmacytoid dendritic cells (pDC),
common myeloid progenitor (CMP), megakaryocyte erythroid progen-
itor (MEP), Monocyte (mono) and granulocyte—monocyte progenitors
(GMP).

Input Format for Compared Methods: CCAN was compared with
several existing integration methods for different integration situations
(Table S2, Supporting Information). These methods are developed for dif-
ferent integration types, so they have different format requirements for
input data.

1) Harmony, Conos, Scanorama and BBKNN: These methods are de-
signed specific for scRNA-seq data integration. Their required input
is scRNA-seq data with gene expression matrix.

2) Seurat V4 and online_iNMF: The scRNA-seq data is gene expression
matrix with genes as rows and cells as columns. The scATAC-seq data
is gene activity matrix pro-pressed using Signac.

3) scMVP: scMVP takes raw count of scRNA-seq and term frequency—
inverse document frequency (TF-IDF) transformed scATAC-seq as in-
put.

4) scAl: The data of scRNA-seq is a matrix with genes as rows and cells as
columns. The data of scATAC-seq is a sparse/binary epigenomic profile
with regions as rows and cells as columns.

5) scMVAE: The raw count data of scRNA-seq and scATAC data (gene
activity format). Row indicates variable (genes and loci), and column
indicates sample (cell).

6) scjoint: The input of scjoint consists of gene activity score matrix, cal-
culated from the accessibility peak matrix of scATAC-seq, and gene
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expression matrix including cell-type labels from scRNA-seq experi-
ments.

7) GLUE: GLUE requires gene expression profile and peak matrix with An-
nData format as input. In the pre-processing step of scRNA-seq data,
highly variable genes were selected using Seurat v3. Then, the data
is normalized and scaled, and PCA dimensionality reduction is per-
formed, using 100 principal components by default. For scATAC-seq,
GLUE uses LSI dimensionality reduction with a default dimensionality
of 100.

8) SCALEX: SCALEX requires sparse matrix of gene expression and gene
activity as two batches. Although it is designed for unpaired data, it
can be applied to paired data as well via changing the cell names of
one batch.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements

This study was supported by the National Institutes of Health
[ROTGM 123037, UOTAR069395, ROTDE027027 and RO1CA241930 to X.Z.]
the National Science Foundation [NSF2217515 and NSF2326879 to X.Z.];
The funders had no role in study design, data collection and analysis, deci-
sion to publish or preparation of the manuscript. Funding for open access
charge: Dr & Mrs Carl V. Vartian Chair Professorship Funds to Dr. Zhou
from the University of Texas Health Science Center at Houston.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

J.L. and X.Z. conceived the study. .L. developed the model and performed
all analyses. .M. implemented balanced mini-batch sampling in the model
and helped test the methods. J.W. helped with cell cycle identification
and cell cycle dysregulation analysis. J.L. wrote the manuscript and all
authors revised it. All authors read and approved the final version of the
manuscript.

Data Availability Statement

The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords

batch effect, cell cycle effect, domain separation network, single-cell multi-
omics integration

Received: February 20, 2024
Revised: April 22, 2024
Published online: June 17, 2024

[1] a) M. S. Kowalczyk, I. Tirosh, D. Heckl, T. N. Rao, A. Dixit, B. ). Haas,
R. K. Schneider, A. |. Wagers, B. L. Ebert, A. Regev, Genome Res. 2015,
25, 1860; b) I. C. Macaulay, C. P. Ponting, T. Voet, Trends Genet. 2017,
33, 155; ¢) E. Papalexi, R. Satija, Nat. Rev. Immunol. 2018, 18, 35; d)
A. Tanay, A. Regev, Nature. 2017, 541, 331.

© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

ASUDOIT SUOWWO)) dANEAID) d[qeat[dde oy Aq PAUIIA0S AIe SA[INIE Y I8N JO SI[NI 10§ AIRIQIT SUIUQ KI[IAN UO (SUOIIPUOI-PUB-SULI/WOD" AA[Im AIRIqI[ouI[uoy/:sdiy) SUonIpuoy) pue sWIdL Ay 39S *[S70Z/L0/10] U0 Areiqry aurjuQ AIM ‘S18T10FT0T SAPE/Z001 0 1/10p/Wwod* K3[1m* AIeIqUaul[uo-paoueApey/:sdny woly papeojumod ‘1€ ‘b70T ‘tr€8612



ADVANCED

SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

(2

(3]

(4]

(3]
(6]

(7]

(8]

9]

(1]

(1

(12]

(13]
(14]

[15]

Adv. Sci. 2024, 11,2401815

a) L. Gonzalez-Silva, L. Quevedo, I. Varela, Trends Cancer. 2020, 6, 13;
b) D. Lahnemann, |. Koster, E. Szczurek, D. J. McCarthy, S. C. Hicks,
M. D. Robinson, C. A. Vallejos, K. R. Campbell, N. Beerenwinkel,
A. Mahfouz, L. Pinello, P. Skums, A. Stamatakis, C. S. Attolini, S.
Aparicio, J. Baaijens, M. Balvert, B. Barbanson, A. Cappuccio, G.
Corleone, B. E. Dutilh, M. Florescu, V. Guryev, R. Holmer, K. Jahn,
T. ). Lobo, E. M. Keizer, I. Khatri, S. M. Kielbasa, . O. Korbel, et al.,
Genome Biol. 2020, 21, 31; c) F. Wu, J. Fan, Y. He, A. Xiong, |. Yu, Y.
Li, Y. Zhang, W. Zhao, F. Zhou, W. Li, J. Zhang, X. Zhang, M. Qiao,
G. Gao, S. Chen, X. Chen, X. Li, L. Hou, C. Wu, C. Su, S. Ren, M.
Odenthal, R. Buettner, N. Fang, C. Zhou, Nat. Commun. 2021, 12,
2540;

E. Mereu, A. Lafzi, C. Moutinho, C. Ziegenhain, D. |. McCarthy, A.
Alvarez-Varela, E. Batlle, D. G. Sagar, ). K. Lau, S. C. Boutet, C. Sanada,
A. Ooi, R. C. Jones, K. Kaihara, C. Brampton, Y. Talaga, Y. Sasagawa,
K. Tanaka, T. Hayashi, C. Braeuning, C. Fischer, S. Sauer, T. Trefzer,
C. Conrad, X. Adiconis, L. T. Nguyen, A. Regev, ). Z. Levin, S. Parekh,
A. Janjic, et al., Nat. Biotechnol. 2020, 38, 747.

a) A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Nat.
Biotechnol. 2018, 36, 411; b) ). Gehring, J. Hwee Park, S. Chen, M.
Thomson, L. Pachter, Nat. Biotechnol. 2020, 38, 35; c) L. Haghverdi,
A.T. L. Lun, M. D. Morgan, J. C. Marioni, Nat. Biotechnol. 2018, 36,
421.

M. Eisenstein, Nat. Biotechnol. 2020, 38, 254.

M. D. Luecken, M. Buttner, K. Chaichoompu, A. Danese, M.
Interlandi, M. F. Mueller, D. C. Strobl, L. Zappia, M. Dugas, M.
Colome-Tatche, F. J. Theis, Nat. Methods. 2022, 19, 41.

a) M. Efremova, S. A. Teichmann, Nat. Methods. 2020, 17, 14; b) H.
Gao, B. Zhang, L. Liu, S. Li, X. Gao, B. Yu, Brief Bioinform. 2023, 24,
bbad081; c) L. Heumos, A. C. Schaar, C. Lance, A. Litinetskaya, F.
Drost, L. Zappia, M. D. Lucken, D. C. Strobl, J. Henao, F. Curion, C.
H. B. Schiller, F. ). Theis, Nat. Rev. Genet. 2023, 24, 550.

a) ). D. Buenrostro, P. G. Giresi, L. C. Zaba, H. Y. Chang, W. J.
Greenleaf, Nat. Methods. 2013, 10, 1213; b) H. Chen, C. Lareau, T.
Andreani, M. E. Vinyard, S. P. Garcia, K. Clement, M. A. Andrade-
Navarro, J. D. Buenrostro, L. Pinello, Genome Biol. 2019, 20, 247; c)
S. Sinha, A. T. Satpathy, W. Zhou, H. Ji, J. A. Stratton, A. Jaffer, N.
Bahlis, S. Morrissy, J. A. Biernaskie, Genomics Proteomics Bioinformat-
ics 2021, 19, 172.

a) J. M. Granja, S. Klemm, L. M. McGinnis, A. S. Kathiria, A. Mezger,
M. R. Corces, B. Parks, E. Gars, M. Liedtke, G. X. Y. Zheng, H. Y.
Chang, R. Majeti, W. J. Greenleaf, Nat. Biotechnol. 2019, 37, 1458;
b) R. K. Kawaguchi, Z. Tang, S. Fischer, C. Rajesh, R. Tripathy, P. K.
Koo, J. Gillis, Brief Bioinform. 2023, 24, bbac541.

a) R. Fang, S. Preissl, Y. Li, X. Hou, J. Lucero, X. Wang, A. Motamedi,
A. K. Shiau, X. Zhou, F. Xie, E. A. Mukamel, K. Zhang, Y. Zhang, M.
M. Behrens, J. R. Ecker, B. Ren, Nat. Commun. 2021, 12, 1337; b) Z.
Ji, W. Zhou, W. Hou, H. Ji, Genome Biol. 2020, 21, 161.

10x Genomics, Cell Type Annotation Strategies for Single Cell ATAC-
Seq Data, Technical Note, Document Number CG000234, 10xGe-
nomics, Pleasanton, CA 2020.

a) S. Ma, B. Zhang, L. M. LaFave, A. S. Earl, Z. Chiang, Y. Hu, ). Ding,
A. Brack, V. K. Kartha, T. Tay, T. Law, C. Lareau, Y. C. Hsu, A. Regeyv,
J. D. Buenrostro, Cell. 2020, 183, 1103; b) ). Cao, D. A. Cusanovich,
V. Ramani, D. Aghamirzaie, H. A. Pliner, A. ). Hill, R. M. Daza, J. L.
McFaline-Figueroa, J. S. Packer, L. Christiansen, F. . Steemers, A. C.
Adey, C. Trapnell, J. Shendure, Science 2018, 361, 1380; c) S. Chen, B.
B. Lake, K. Zhang, Nat. Biotechnol. 2019, 37, 1452; d) C. Zhu, M. Yu,
H. Huang, I. Juric, A. Abnousi, R. Hu, J. Lucero, M. M. Behrens, M.
Hu, B. Ren, Nat. Struct. Mol. Biol. 2019, 26, 1063.

A. Ma, G. Xin, Q. Ma, Nat. Commun. 2022, 13, 2728.

R. Argelaguet, A. S. E. Cuomo, O. Stegle, J. C. Marioni, Nat. Biotech-
nol. 2021, 39, 1202.

a) N. Barkas, V. Petukhov, D. Nikolaeva, Y. Lozinsky, S. Demharter,
K. Khodosevich, P. V. Kharchenko, Nat. Methods. 2019, 16, 695; b)

2401815 (15 of 16)

[16]
(17]

(18]

[19]

(20]

(21]

(22]

(23]
(24]

(23]
(26]

(27]

(28]

(29]
(30]
(31]
(32

(33]

(34]
3]

36]

www.advancedscience.com

B. Hie, B. Bryson, B. Berger, Nat. Biotechnol. 2019, 37, 685; c) I.
Korsunsky, N. Millard, ). Fan, K. Slowikowski, F. Zhang, K. Wei, Y.
Baglaenko, M. Brenner, P. R. Loh, S. Raychaudhuri, Nat. Methods.
2019, 76, 1289; d) K. Polanski, M. D. Young, Z. Miao, K. B. Meyer, S.
A. Teichmann, ). E. Park, Bioinformatics. 2020, 36, 964.

S. Jin, L. Zhang, Q. Nie, Genome Biol. 2020, 21, 25.

Y. Hao, S. Hao, E. Andersen-Nissen, W. M. Mauck 3rd, S. Zheng,
A. Butler, M. ). Lee, A. J. Wilk, C. Darby, M. Zager, P. Hoffman, M.
Stoeckius, E. Papalexi, E. P. Mimitou, J. Jain, A. Srivastava, T. Stuart,
L. M. Fleming, B. Yeung, A. ]. Rogers, |. M. McElrath, C. A. Blish, R.
Gottardo, P. Smibert, R. Satija, Cell. 2021, 184, 3573.

a) G. Li, S. Fu, S. Wang, C. Zhu, B. Duan, C. Tang, X. Chen, G. Chuai,
P. Wang, Q. Liu, Genome Biol. 2022, 23, 20; b) C. Zuo, L. Chen, Brief
Bioinform. 2021, 22, bbaa287.

a) Z. ). Cao, G. Gao, Nat. Biotechnol. 2022, 40, 1458; b) Y. Lin, T. Y.
Wu, S. Wan, J. Y. H. Yang, W. H. Wong, Y. X. R. Wang, Nat. Biotechnol.
2022, 40, 703; ¢) L. Xiong, K. Tian, Y. Li, W. Ning, X. Gao, Q. C. Zhang,
Nat. Commun. 2022, 13, 6118.

C. Gao, ). Liu, A. R. Kriebel, S. Preissl, C. Luo, R. Castanon, J. Sandoval,
A. Rivkin, J. R. Nery, M. M. Behrens, |. R. Ecker, B. Ren, J. D. Welch,
Nat. Biotechnol. 2021, 39, 1000.

a) M. Barron, ). Li, Sci. Rep. 2016, 6, 33892; b) M. Chen, X. Zhou,
Sci. Rep. 2017, 7, 13587; ¢) S. Liang, F. Wang, J. Han, K. Chen, Nat.
Commun. 2020, 11, 1441; d) ). Liu, M. Yang, W. Zhao, X. Zhou,
Nucleic Acids Res. 2022, 50, 704; e) S. C. Zheng, G. Stein-O’'Brien,
J. J. Augustin, ). Slosberg, G. A. Carosso, B. Winer, G. Shin, H. T.
Bjornsson, L. A. Goff, K. D. Hansen, Genome Biol. 2022, 23, 41.

E. P. Mimitou, C. A. Lareau, K. Y. Chen, A. L. Zorzetto-Fernandes, Y.
Hao, Y. Takeshima, W. Luo, T. S. Huang, B. Z. Yeung, E. Papalexi, P.
I. Thakore, T. Kibayashi, J. B. Wing, M. Hata, R. Satija, K. L. Nazor, S.
Sakaguchi, L. S. Ludwig, V. G. Sankaran, A. Regev, P. Smibert, Nat.
Biotechnol. 2021, 39, 1246.

J. D. Buenrostro, M. R. Corces, C. A. Lareau, B. Wu, A. N. Schep, M.
J. Aryee, R. Majeti, H. Y. Chang, W. J. Greenleaf, Cell. 2018, 173, 1535.
V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, J. Stat. Mech.:
Theory Exp. 2008, 2008, P10008.

H. Guo, ). Li, Genome Biol. 2021, 22, 69.

L. Mclnnes, ). Healy, J. Melville. Umap: Uniform manifold approxi-
mation and projection for dimension reduction 2018.

M. Buttner, Z. Miao, F. A. Wolf, S. A. Teichmann, F. J. Theis, Nat.
Methods. 2019, 16, 43.

F. Buettner, K. N. Natarajan, F. P. Casale, V. Proserpio, A. Scialdone,
F. ). Theis, S. A. Teichmann, ). C. Marioni, O. Stegle, Nat. Biotechnol.
2015, 33, 155.

T.Wang, T.S. Johnson, W. Shao, Z. Lu, B. R. Helm, J. Zhang, K. Huang,
Genome Biol. 2019, 20, 165.

Z. Liu, H. Lou, K. Xie, H. Wang, N. Chen, O. M. Aparicio, M. Q. Zhang,
R. Jiang, T. Chen, Nat. Commun. 2017, 8, 22.

A. Santos, R. Wernersson, L. ). Jensen, Nucleic Acids Res. 2015, 43,
D1140.

H. K. Matthews, C. Bertoli, R. A. M. de Bruin, Nat. Rev. Mol. Cell Biol.
2022, 23, 74.

J. I. Griffiths, J. Chen, P. A. Cosgrove, A. O’'Dea, P. Sharma, C. Ma,
M. Trivedi, K. Kalinsky, K. B. Wisinski, R. O’'Regan, . Makhoul, L. M.
Spring, A. Bardia, F. R. Adler, A. L. Cohen, J. T. Chang, Q. J. Khan, A.
H. Bild, Nat Cancer 2021, 2, 658.

T. Stuart, A. Srivastava, S. Madad, C. A. Lareau, R. Satija, Nat. Meth-
ods. 2021, 18, 1333.

K. Street, D. Risso, R. B. Fletcher, D. Das, J. Ngai, N. Yosef, E. Purdom,
S. Dudoit, BMC Genomics. 2018, 19, 477.

A. T. Satpathy, J. M. Granja, K. E. Yost, Y. Qi, F. Meschi, G. P.
McDermott, B. N. Olsen, M. R. Mumbach, S. E. Pierce, M. R. Corces,
P. Shah, J. C. Bell, D. Jhutty, C. M. Nemec, . Wang, L. Wang, Y. Yin, P.
GC. Giresi, A. L. S. Chang, G. X. Y. Zheng, W. ]. Greenleaf, H. Y. Chang,
Nat. Biotechnol. 2019, 37, 925.

© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

ASUDOIT SUOWWO)) dANEAID) d[qeat[dde oy Aq PAUIIA0S AIe SA[INIE Y I8N JO SI[NI 10§ AIRIQIT SUIUQ KI[IAN UO (SUOIIPUOI-PUB-SULI/WOD" AA[Im AIRIqI[ouI[uoy/:sdiy) SUonIpuoy) pue sWIdL Ay 39S *[S70Z/L0/10] U0 Areiqry aurjuQ AIM ‘S18T10FT0T SAPE/Z001 0 1/10p/Wwod* K3[1m* AIeIqUaul[uo-paoueApey/:sdny woly papeojumod ‘1€ ‘b70T ‘tr€8612



ADVANCED

SCIENCE NEWS

ADVANCED
SCIENCE

Open Access,

www.advancedsciencenews.com

(37]

38]

(39]

[40]

Ady. Sci. 2024, 11, 2401815

J. Cao, M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill,
F. Zhang, S. Mundlos, L. Christiansen, F. ). Steemers, C. Trapnell, J.
Shendure, Nature. 2019, 566, 496.

H. Chen, L. Albergante, J. Y. Hsu, C. A. Lareau, G. Lo Bosco, J. Guan,
S. Zhou, A. N. Gorban, D. E. Bauer, M. J. Aryee, D. M. Langenau,
A. Zinovyev, ]. D. Buenrostro, G. C. Yuan, L. Pinello, Nat. Commun.
2019, 70, 1903.

M. R. Tallack, G. W. Magor, B. Dartigues, L. Sun, S. Huang, J. M.
Fittock, S. V. Fry, E. A. Glazov, T. L. Bailey, A. C. Perkins, Genome Res.
2012, 22, 2385.

a) Y. A. Ko, Y. H. Chan, C. H. Liu, J. ). Liang, T. H. Chuang, Y. P. Hsueh,
Y. L. Lin, K. I. Lin, Front Immunol 2018, 9, 1828; b) G. C. Ippolito, ).
D. Dekker, Y. H. Wang, B. K. Lee, A. L. Shaffer 3rd, J. Lin, J. K. Wall, B.
S. Lee, L. M. Staudt, Y. J. Liu, V. R. lyer, H. O. Tucker, Proc Natl Acad
Sci U S A 2014, 111, E998; c) T. Tamura, P. Tailor, K. Yamaoka, H.
J. Kong, H. Tsujimura, J. ). O’Shea, H. Singh, K. Ozato, J. Immunol.
2005, 174, 2573;d) S. Ning, ). S. Pagano, G. N. Barber, Genes Immun.
2011, 72, 399; e) D. Sichien, C. L. Scott, L. Martens, M. Vanderkerken,
S. Van Gassen, M. Plantinga, T. Joeris, S. De Prijck, L. Vanhoutte, M.
Vanheerswynghels, G. Van Isterdael, W. Toussaint, F. B. Madeira, K.
Vergote, W. W. Agace, B. E. Clausen, H. Hammad, M. Dalod, Y. Saeys,
B. N. Lambrecht, M. Guilliams, Immunity. 2016, 45, 626; f) ). Dai, N.

2401815 (16 of 16)

[41]
[42]

[43]

[44]

www.advancedscience.com

J. Megjugorac, S. B. Amrute, P. Fitzgerald-Bocarsly, J. Immunol. 2004,
173, 1535; g) B. Cisse, M. L. Caton, M. Lehner, T. Maeda, S. Scheu,
R. Locksley, D. Holmberg, C. Zweier, N. S. den Hollander, S. G. Kant,
W. Holter, A. Rauch, Y. Zhuang, B. Reizis, Cell. 2008, 135, 37.

M. I. Love, W. Huber, S. Anders, Genome Biol. 2014, 15, 550.

a) C. A. Spek, H. L. Aberson, J. M. Butler, A. F. de Vos, |. Duitman,
Cells 2021, 10, 2233; b) P. Shyamsunder, M. Shanmugasundaram,
A. Mayakonda, P. Dakle, W. W. Teoh, L. Han, D. Kanojia, M. C. Lim,
M. Fullwood, O. An, H. Yang, . Shi, M. Z. Hossain, V. Madan, H.
P. Koeffler, Blood. 2019, 133, 2507; c) J. Y. Noh, S. Gandre-Babbe, Y.
Wang, V. Hayes, Y. Yao, P. Gadue, S. K. Sullivan, S. T. Chou, K. R.
Machlus, J. E. Italiano jr., M. Kyba, D. Finkelstein, J. C. Ulirsch, V. G.
Sankaran, D. L. French, M. Poncz, M. ). Weiss, J. Clin. Invest. 2015,
125, 2369; d) F. Aguilo, S. Avagyan, A. Labar, A. Sevilla, D. F. Lee, P.
Kumar, I. R. Lemischka, B. Y. Zhou, H. W. Snoeck, Blood. 2011, 117,
5057; ) M. Abuhantash, E. M. Collins, A. Thompson, Biochem. Soc.
Trans. 2021, 49, 1817.

a) K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, D. Erhan,
Adv Neural Inf Process Syst. 2016, 29; b) D. He, Q. Liu, Y. Wu, L. Xie,
Nature Machine Intelligence. 2022, 4, 879.

M. Setty, V. Kiseliovas, J. Levine, A. Gayoso, L. Mazutis, D. Pe’er, Nat.
Biotechnol. 2019, 37, 451.

© 2024 The Author(s). Advanced Science published by Wiley-VCH GmbH

ASUDOIT SUOWWO)) dANEAID) d[qeat[dde oy Aq PAUIIA0S AIe SA[INIE Y I8N JO SI[NI 10§ AIRIQIT SUIUQ KI[IAN UO (SUOIIPUOI-PUB-SULI/WOD" AA[Im AIRIqI[ouI[uoy/:sdiy) SUonIpuoy) pue sWIdL Ay 39S *[S70Z/L0/10] U0 Areiqry aurjuQ AIM ‘S18T10FT0T SAPE/Z001 0 1/10p/Wwod* K3[1m* AIeIqUaul[uo-paoueApey/:sdny woly papeojumod ‘1€ ‘b70T ‘tr€8612



	A Cell Cycle-Aware Network for Data Integration and Label Transferring of Single-Cell RNA-Seq and ATAC-Seq
	1. Introduction
	2. Results
	2.1. Overview of CCAN Approach
	2.2. Batch Effect Removal of scRNA-Seq Datasets from Different Protocols
	2.3. Cell Cycle Identification and Cell Cycle Effect Removal of the Integrated Data
	2.4. Integration of Joint Profiling of scRNA-Seq Data and scATAC-Seq Data
	2.5. Integration of Unpaired Datasets and Label Transferring from scRNA-Seq Data to scATAC-Seq Data
	2.6. Trajectory Inference and Pseudotime Analysis on the Integrated scRNA-Seq Data and scATAC-Seq Data

	3. Discussion
	4. Experimental Section
	Supporting Information
	Acknowledgements
	Conflict of Interest
	Author Contributions
	Data Availability Statement

	Keywords


