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Abstract—Identifying heavy hitters is vital for applications like
Denial of Service (DoS) detection and traffic engineering. Current
solutions fall into hardware or software categories. Hardware
solutions (e.g., P4 programmable data plane switches) offer high
performance but require adding hardware, which may not be
ideal for virtualized environments (e.g., cloud). Software solutions
are cost-effective and flexible but suffer from performance issues
due to the packet processing overhead in the Operating System
(OS) kernel. This paper presents a scalable heavy hitter detection
algorithm in the software, bypassing the kernel using the Data
Plane Development Kit (DPDK). The Count-min Sketch (CMS)
data structure is used to estimate the frequency of packets
per flow. The system is implemented in P4 and deployed on
the P4-DPDK target running on CPU cores. The experiments
analyzed the impact of various parameters such as the packet
size distribution, the number of CPU cores, and the number
of hash functions, on the performance and the accuracy of
the detection. The system’s performance is further evaluated
through comparison with another DPDK-based approach for
heavy hitter detection. The results show accurate identification of
heavy hitters and improved performance, even at a high traffic
rate approaching 100Gbps.

Index Terms—DPDK, Heavy Hitter, P4, SmartNIC.

I. INTRODUCTION

Heavy hitters are flows that contribute a significant amount
of traffic to a link. Their presence can have a drastic impact
on the performance and resilience of the network. They can
exhaust the network bandwidth, degrade the Quality of Service
(QoS), or even disrupt the communication in the network.
Detecting heavy hitters is crucial across various applications
such as congestion control, intrusion detection and prevention,
traffic rerouting, and network capacity planning. For instance,
a large data transfer, which results in a heavy hitter flow, can
be separated from latency-sensitive short flows by assigning it
to a dedicated queue. This will reduce the Flow Completion
Time (FCT) of short flows and will mitigate their burstiness,
thus averting degradation of throughput of the long flow [1].
Another example is identifying heavy hitters for mitigating
Denial of Service (DoS) attacks [2].

A simple approach to identify heavy hitters is to count
the number of packets per flow. If the flow’s packet count
exceeds a predefined threshold, the flow is identified as a
heavy hitter. However, networks today can have millions of
active flows, especially since the majority of these flows
are short-lived (e.g., web browsing traffic). Thus, a simple
counter-based solution is not scalable as it will have a large
memory footprint. An alternative is to use the Count-min

Sketch (CMS), which is a probabilistic data structure, to
estimate the number of packets per flow. Compared with the
simple counter-based approach, the CMS uses a much smaller
memory footprint (i.e., O(logN) for N active flows).

Existing solutions for detecting heavy hitters are either
hardware or software-based. Hardware solutions, such as P4
programmable data plane switches, can promptly detect heavy
hitters without impacting the network performance. However,
they require adding and maintaining the hardware, which
may not be possible in certain environments (e.g., cloud
computing). Software solutions, on the other hand, are more
flexible and easier to deploy. However, they often suffer from
performance issues due to the packet processing overhead,
especially with high traffic rates.

This paper implements a heavy hitter detection system that
leverages the Data Plane Development Kit (DPDK). DPDK
is a kernel-bypass acceleration technology [3] that avoids the
packet processing overhead incurred within the OS kernel. The
proposed system implements a Count-min Sketch (CMS) to
approximate the per-flow packet count. It is written in P4 code
and deployed on the P4-DPDK target. The system was tested
and evaluated with synthetic and real traffic, considering vari-
ous parameters such as the packet size distribution, the number
of CPU cores on which the system is running, the number of
hash functions used in the CMS, etc. The implementation is
made publicly available [4].

The contributions of the paper are summarized as follows:

« Implementing a scalable heavy hitters detection solution
using DPDK. The system uses CMS to reduce the mem-
ory footprint.

o Analyzing the impact of parameters such as the packet
sizes, the CPU cores, the number of hashes, etc., on the
performance of the detector.

o Testing the system with real dataset on FABRIC [5], an
international testbed used for research and experimenta-
tion.

o Comparing the performance of the system against a
popular open-source IDS/IPS that detects heavy hitters.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III provides a short back-
ground on various technologies used in this system. Section
IV describes the proposed system. Section V describes the
implementation details and evaluates the system. Section VI
concludes the paper.



II. RELATED WORK

This section reviews the existing heavy hitter detection
solutions, categorized by those deployed on hardware (pro-
grammable data plane switches) and those implemented in
software with DPDK.

A. Hardware Approaches (Programmable Data Planes)

Programmable data plane switches allow the developer to
devise custom packet processing algorithms running at line
rate. By incorporating algorithms such as Count-min Sketch
or Space-saving, P4 switches can efficiently identify heavy
hitters [6], [7] and other attacks [8]. With P4’s flexibility,
operators can adapt detection mechanisms to suit evolving
network demands, ensuring accurate identification of heavy
hitters while minimizing resource overhead [9]. However, de-
spite the advantages, using P4 switches has certain drawbacks
like the requirement for additional hardware. This can result
in increased deployment costs and complexity, especially for
organizations with existing infrastructure that may not readily
support P4-enabled hardware. Furthermore, it is not possible
to use these systems in cloud environments where resources
are dynamically allocated.

B. Software-based Approaches (DPDK)

Software-based detectors are more flexible than the hard-
ware ones because they can be deployed in almost all envi-
ronments, without the need to add specialized hardware. While
DPDK-based approaches still require DPDK-compatible NICs,
most NICs today already support DPDK [10].

Heavy hitter detection using DPDK has been explored in
[11]-[13]. However, these approaches have some limitations:
They are implemented in C using DPDK, lacking the flexi-
bility of P4 for integrating new functionalities, particularly as
the program’s complexity grows; they are integrated within
other functionalities as part of Open vSwitch (OVS), which
could entail unnecessary processing overhead not required in
environments solely focused on heavy hitter detection; they
lack validation on real testbeds with actual traffic.

III. BACKGROUND
A. P4 Language and Architectures

The Protocol Independent Switch Architecture (PISA) is a
packet processing model for networking [14]. PISA is pro-
grammed using the Programming Protocol-independent Packet
Processor (P4) language [15]. With P4, the developer im-
plements the code for a programmable parser, programmable
match-action pipeline, and programmable deparser. The pro-
grammable parser enables the developer to define and parse
custom headers. The programmable match-action pipeline ex-
ecutes the operations over the packet headers and intermediate
results. The deparser assembles the packet headers back and
serializes them for transmission.

Although P4 was initially intended to program the data
plane of PISA-based switches, it has demonstrated its versatil-
ity to program data planes for other packet processing devices.
For instance, the Portable NIC Architecture (PNA) [16] is a P4
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Fig. 1. Comparison between (a) standard packet processing and (b) software
packet processing using DPDK (reproduced from [3]). DPDK bypasses the
kernel, which avoids the packet processing overhead.

architecture that defines the structure and common capabilities
for SmartNICs.

B. Data Plane Development Kit (DPDK)

Fig. 1 (a) shows the standard packet processing in the
kernel. When a packet is received, the NIC triggers an interrupt
that informs the OS about the packet’s location in memory.
The OS subsequently transfers the packet to the network
stack which then initiates system calls from the OS kernel to
deliver the packet to its intended user-level application. These
steps induce overheads that dramatically degrade the band-
width throughput. The Data Plane Development Kit (DPDK)
comprises a collection of libraries and drivers designed to
enhance packet processing efficiency by bypassing the kernel
space and handling packets within user space (see Fig. 1 (b)).
With DPDK, the ports of the NIC are disassociated from the
kernel driver and associated with a DPDK-compatible driver.
In contrast to the conventional method of packet processing
within the kernel stack using interrupts, the DPDK driver
operates as a Poll Mode Driver (PMD). It consistently polls for
incoming packets. The utilization of a poll mode driver, com-
bined with the kernel bypass, yields superior packet processing
performance. DPDK’s APIs can be used in C programs.

C. P4-DPDK

Writing P4 programs is generally considered more straight-
forward compared to writing DPDK. Consequently, there
have been efforts to translate P4 codes into DPDK. The p4c
compiler with the DPDK backend [17], known as p4c-dpdk,
translates a P4 program into a DPDK API (.spec file) for
configuring the DPDK software switch (SWX) pipeline [18].
The subsequent step involves the generation of a C code from
the .spec file. This code includes C functions corresponding
to each action and control block. A C compiler then generates
a shared object (.so) from the C code.

IV. PROPOSED SYSTEM

Consider Fig. 2 which shows a high-level overview of
the proposed system. The system implements a heavy hitter
detection pipeline running on multicore CPUs in the user
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Fig. 2. Proposed system architecture. Heavy hitter detection pipelines are
deployed on CPU cores. Packets are distributed to be processed by different
CPU cores using RSS at the SmartNIC.

space. The system bypasses the kernel by leveraging DPDK.
Upon receiving a packet, the SmartNIC forwards it to one of
the pipelines running on a certain CPU core. The packet is
then processed by the heavy hitter detection algorithm.

A. Distributing Packets to CPU Cores

When a NIC receives a packet, it typically goes through a
single CPU core for processing. This can become a bottleneck,
especially when the traffic rate is high, as the CPU core can
become overwhelmed with processing incoming packets. To
alleviate this bottleneck, the NIC can distribute the packets
across multiple CPU cores using the Receive Side Scaling
(RSS) technique. RSS uses a hashing algorithm to determine
which receive queue should handle each incoming packet
(see Fig. 2). The hashing algorithm uses the packet header
information, such as the 5-tuple!, to generate a hash value.
This hash value is then used to determine the appropriate
receive queue for the packet, and subsequently, the CPU core
where it will be processed. Note that all the packets belonging
to the same flow will be assigned to the same CPU core. The
NIC then forwards the packet to the pipeline running on the
CPU core.

B. Heavy Hitter Detection
Upon receiving the packet, the heavy hitter detection logic
running in the pipeline executes. The algorithm estimates

ISource and destination IP addresses, source and destination port numbers,
and protocol.
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Fig. 3. Count-min Sketch (CMS) for estimating the per-flow packet counts.
Different hash functions compute the indices to be used in the register arrays
where the packet counters are incremented. The minimum of these counters
is an estimation of the flow’s packet count.
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Fig. 4. The p4c-dpdk workflow.

the number of packets per flow and compares that number
against a predefined threshold. The Count-min Sketch (CMS)
data structure, which provides fast updates while significantly
reducing memory requirements compared to exact counting
methods, is used (see Fig. 3). The input to the system is a
packet stream S = {(k;)|¢ € [1, N]}, where N = is the total
number of packets in the stream and k; is a key to identify
the 7th input packet’s flow based on the 5-tuple. Let ¢ be a
predefined packet count threshold value. A heavy hitter is a
flow identified by key K, whose estimated packet count c;(k;)
is at least ¢.

Let D and W denote the number of rows (depth) and
the number of columns (width) of the two-dimensional array
representing the CMS. Let C;(d,w) represent the counter at
row d and column w after processing the i-th packet. As
shown in Fig. 3, for each packet in S, for all d € [1, D],
Ci(d,hq(k;)) = Ci—1(d, ha(k;)) + 1. ¢;(k;) is the estimation
of the total number of packets by the flow with ID k;
after the i-th packet is processed. c¢;(k;) is calculated as
min{C;(d, hq(k;))|d € [1,D]}. If ¢;(k;) > ¢, then the flow
with a key k; is reported as a heavy hitter.

C. DPDK Pipeline Generation

The system is implemented in P4 using the PNA archi-
tecture. The P4 code consists of all the packet processing
functions, including the heavy hitter detection algorithm. It
is translated into a DPDK pipeline that runs on the CPU core
of the host bypassing the kernel. Consider Fig. 4. The p4c-
dpdk compiler accepts the P4 code as input and generates a
representation file (.spec file) that aligns with the DPDK SWX
pipeline. Subsequently, using the DPDK codegen function,
the C code is generated and then compiled. In the proposed
system, the same pipeline generated from the P4 code is
deployed on the CPU cores. Note that it is possible to use
different programs and chain the pipelines.

V. IMPLEMENTATION AND EVALUATION

The system is implemented on FABRIC [5], an NSF-funded
international testbed for large-scale research and experimenta-
tion. The FABRIC infrastructure consists of a distributed set
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Fig. 5. Experiment topology. The background traffic is generated by random-
izing the 5-tuple. The heavy hitter traffic is generated from a single 5-tuple.
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Fig. 6. Heavy hitter mitigation with 100Gbps background traffic. The

proposed system promptly detected and blocked the heavy hitter.

of equipment at commercial collocation spaces, national labs,
research and education networks, Internet Service Providers,
and campus networks. FABRIC provides resources such as
servers, NICs, high-speed links, etc.

The topology, which is shown in Fig. 5, consists of three
nodes, each equipped with an NVIDIA ConnectX-6 NIC
(100Gbps). All the servers are on the same FABRIC site.
DPDK-pktgen [19] is used to generate background and heavy
hitter traffic. The heavy hitter traffic consists of packets all be-
longing to the same flow (i.e., same 5-tuple). The heavy hitter
detector reflects all incoming packets. This allows measuring
the performance of the system by comparing the number of
sent packets with the number of received (reflected) packets.
Unless otherwise specified, the experiments are conducted
using four CPU cores and 1500 bytes packet sizes.

A. Detecting Heavy Hitter with High Traffic Rate

This experiment assesses whether the system can detect
heavy hitters in the presence of high traffic rates. The back-
ground traffic generator is sending at a 100Gbps rate. The
5-tuples are randomized to ensure that the traffic does not
belong to a single flow. Fig. 6 shows the results of this
experiment. All the generated background traffic is reflected,
which denotes that the pipeline was able to process all these
packets. In the fourth second, a heavy hitter is generated. When
its packet counter exceeds the predefined threshold value ¢, a
heavy hitter is identified and blocked, even while processing
100Gbps of background traffic.

B. Evaluating the Impact of the Number of Pipelines and
Packet Size on the Throughput

This experiment studies the impact of the number of running
DPDK pipelines (one pipeline per CPU core) and the packet
sizes on the maximum achievable throughput. The experiment
is tested with a number of cores ranging from one to eight
and different packet sizes (64, 128, 256, 512, 1024, 1500
bytes). Fig. 7 shows the results of this experiment. The results
show that as the number of cores and packet size increase, the
throughput increases. Therefore, these three parameters are di-
rectly proportional. For the smallest packet size considered (64
bytes), the maximum throughput attained is 12Gbps running
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Fig. 7. Throughput as a function of number of cores and packet size.
Increasing the number of cores and the packet sizes improves the throughput.

on eight cores. Using four cores is enough to achieve line rate
while considering a minimum packet size of 1024 bytes.

C. Evaluating the Impact of the Number of Hash Functions
on the Throughput

Another factor that significantly impacts the performance
is the number of hash functions used in the CMS. As the
number of hash functions increases, the complexity of the code
and the amount of computations (i.e., increment the counters,
calculating the minimum) in the CMS also increase. This
process happens for every received packet. This experiment
evaluates the throughput while considering various numbers
of hash functions (two to eight) and various packet sizes, with
two and four CPU cores. Fig. 8 (a) shows the results with
two cores, and Fig. 8 (b) shows the results with four cores.
The results in both experiment setups show that the number
of hash functions is inversely proportional to the throughput.
The throughput is also affected by the packet size. The drop in
the throughput is clearly observed with two cores, even with
large packet sizes. However, with four cores, the performance
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Fig. 8. (a) Throughput as a function of the number of hash functions and
packet size using two CPU cores, (b) Throughput as a function of the number
of hash functions and packet size using four CPU cores. The top of both
figures shows the packet count accuracy 0 based on the number of hash
functions.



penalty is almost eliminated for larger packets, even with eight
hash functions.

While the increase in the number of hash functions degrades
the throughput, it offers a higher accuracy in the packet count
estimation. The accuracy ¢ is calculated based on the number
of hash functions h as follows: § = 100 — 2% . The accuracy
for the different number hash functions ranging from two to
eight is shown at the top of the two heatmaps in Fig. 8.

D. Performance Results of Heavy Hitter Detection with Re-
played Real Traffic Data

This experiment evaluates the system with open-source real
traffic captured from different Measurements and Analyses
on the WIDE Internet (MAWI) datasets [20]. The MAWI
packet traces are publicly available datasets of network traffic
data. The packet traces are anonymized, with IP addresses
scrambled, and do not contain packet payloads. Four different
datasets were considered, each containing truncated packets
captured on various dates in the year 2024. Datasets one
through four are associated with the following dates respec-
tively; January 27, February 10, March 23, and April 07.
The packet size cumulative distribution function (CDF) of the
datasets is shown in the first graph in Fig. 9 (a).

Since the packets in the datasets are truncated, a payload
was generated and added to the packets based on the size
of the packet. The traces are replayed using tcpreplay [21].
During the trace, a heavy hitter flow is generated. Fig. 9
(b) shows the throughput over a 30-second time frame during
the experiment. All the replayed packets are processed and
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alert tcp any any —> any any (msg:"Setting _a flowint
unter"; flowint:counter,notset; noalert; flowint:
counter,=,1; sid:123;)

alert tcp any any —> any any (msg:"Ad g, ,to_flow =
ounter"; flowint:counter,isset; flowint:counter,+,1;
noalert; sid:234;)

alert tcp any any -> any any (msg:"fire this_when_th
counter_reaches 10000"; flowint:counter,isset;

flowint:counter,==,10000; sid:345;)

Fig. 10. Suricata rules to detect a heavy hitter. The first rule creates a per-flow
counter. The second rule increments the counter. The third rule alerts when
the counter exceeds the threshold (10,000 packets).

reflected (there were no lost packets). Note that the traffic
rates in this experiment are derived from the rates of real
trace capture. The system is capable of achieving orders of
magnitude higher throughput, as shown in Fig. 7.

E. Performance Comparison Against Suricata DPDK

This experiment compares the performance of the pro-
posed system against Suricata [22]. Suricata is an open-source
network IDS/IPS. It is multi-threaded and has an extensive
ruleset and signature language to monitor network traffic for
threats and events. In addition to the existing rules created
and maintained by the community, Suricata supports scripting
for custom threat detection. Suricata also supports DPDK [23],
which accelerates the packet processing. For a fair comparison,
the Suricata with DPDK enabled is considered.

In this experiment, a heavy hitter detection is implemented
in Suricata. The rules are shown in Fig. 10. The first
rule matches on any TCP flow and creates a new variable

100 counter which will serve as the flow’s packet counter. The
& so second rule increments counter by one. The third rule
alerts when counter reaches a threshold (10,000 packets).
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Fig. 11. Packet loss rates with different sending rates and different packet

Fig. 9. (a) MAWI trace packet size distribution in four real traffic datasets
populated on different dates. In some datasets, ~ 40% of the packets are
larger than 1024 bytes. (b) Heavy hitter mitigation while processing each
trace. All the packets were processed by the pipelines.

sizes using Suricata DPDK (a) and the proposed system (b). Suricata DPDK
has large packet loss rates in almost all cases. The proposed system processes
significantly more packets than Suricata DPDK.



TABLE I
PACKET DROP RATES WITH REAL TRAFFIC.

Trace Replayed Packet drop rate
packets Suricata-DPDK | Proposed system
MAWI 01-27-2024 | 95,172,026 1.59% 0%
MAWI 02-10-2024 | 75,845,886 0.85% 0%
MAWI 03-23-2024 | 87,786,793 18.01% 0%
MAWI 04-07-2024 | 90,774,252 19.47% 0%

Fig. 11 shows the packet loss rates of both systems. The
packet loss rate in Suricata DPDK is significantly large,
especially when the sending rate increases beyond 1Gbps and
when the packet sizes are small. Even with large packets (e.g.,
1500 bytes), Suricata dropped more than 60% of the traffic.
The proposed system on the other hand has much smaller
packet loss rates. With larger packets, the proposed system
only dropped a small percentage at a 100Gbps rate. Note that
these results are produced with four CPU cores; the results
can significantly improve if more cores are used (Fig. 7).

The proposed system and Suricata-DPDK were both tested
using real traffic datasets identical to those used in Section
V-D. Table I shows the packet drop rates for each dataset.
Suricata-DPDK’s performance varies significantly based on
the dataset, with packet loss rates ranging from as low as
0.85% to as high as 19.47%. The drop rate is influenced by
the burstiness of the traffic, which increases the number of
packets per second. In contrast, the proposed system exhibited
zero packet drops, in all the tested datasets.

VI. CONCLUSION AND FUTURE WORK

This paper implemented a heavy hitter detection system
using P4 and DPDK. The system uses the CMS data structure
for estimating the number of packets per flow. When this
number exceeds a predefined threshold, a heavy hitter is
detected. While CMS introduces some estimation errors, it
offers a tunable trade-off between accuracy § and memory
usage based on the number of hash functions i and the size
of the register arrays. The experimental results show that
increasing the number of hash functions improves the accuracy
but degrades the throughput. Using two CPU cores, the per-
formance penalty is high, especially with small packet sizes.
With four CPU cores, the performance penalty is diminished
even with a high number of hash functions. The results show
that heavy hitters can be accurately detected even with high
traffic rates. The system was also tested with real traffic and
compared against Suricata DPDK. Future work includes 1)
testing the system on a public cloud platform (e.g., Amazon’s
AWS [24]); 2) augmenting the P4 program to detect a wide
range of cyberattacks; and 3) profiling the performance of P4-
DPDK with various P4 programs and execution paths.
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