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ABSTRACT
Edge Artificial Intelligence (AI) demands ultra-low power
data processing on highly resource-constrained platforms,
mandating a departure from conventional computing ar-
chitectures. In this context, in-memory computing (IMC)
coupled with ultra-low precision (ULP) neural architectures
have gained traction. Furthermore, non-volatile memories
such as Resistive RAMs (ReRAMs), ferroelectric-transistors
(FeFETs) and others have shown an immense promise to fur-
ther enhance the efficiency of deep neural network (DNN)
accelerators by enabling compact and low-leakage solutions.
However, the design of ULP IMC platforms must counter the
impairment of inference accuracy due to manufacturing de-
fects such as stuck-at faults (SAFs), especially those based on
relatively immature emerging technologies. To that end, we
present two training-free and IMC-compatible fault tolerant
techniques that utilize the unique properties of ULP (binary
and ternary) DNNs to mitigate the impact of SAFs. For bi-
nary neural networks (BNNs), we present BNN-Flip, a weight
transformation technique that inverts rows and columns of
the weight matrices to convert harmful unmasked faults
to innocuous masked faults, while preserving the correct-
ness of matrix-vector multiplication operation. Our experi-
ments show that BNN-Flip recovers the inference accuracy of
binary-precision edge devices by up to 10.55%with an energy
overhead of < 3%. For ternary neural networks (TNNs),we
propose TFix, a technique that exploits the natural redun-
dancy of ternary memory arrays and high weight sparsity of
TNNs to enhance fault tolerance. Our experiments show that
TFix reprograms a majority of the faulty weights to their
correct values, regaining the inference accuracy by up to
11.07%, with an energy overhead of < 6%.
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1 INTRODUCTION
Deep neural networks (DNNs) have been immensely suc-
cessful for a wide range of tasks, including recognition and

sensory processing and generative tasks [5]. To support the
increasing complexity of the applications, the size of DNN
models has been continually increasing, resulting in exorbi-
tant energy and storage requirements for their deployment
on hardware platforms [21]. Managing the enormous hard-
ware demands of DNN accelerators is particularly critical
for edge computing systems, which are severely resource-
constrained.
One approach to reduce the resource requirements of

DNNs is to reduce the bit precision of their weights and
activations through quantization. Lowering the bit precision
decreases storage, computation and communication energy,
as well as the inference latency of DNNswithout losingmuch
accuracy. For highly energy-constrained platforms, aggres-
sive quantization strategies involving ultra-low precisions
(ULP) have also been proposed, where the bit precision of the
DNN parameters is reduced to binary or ternary precision [8]
[3]. Binary quantization offers the largest reduction in DNN
resource requirements, while ternary quantization trades off
some of this reduction for a higher inference accuracy.

Although quantization to binary/ternary precisions is very
promising to reduce the computational and storage demands,
the von-Neumann architecture-based DNN accelerators still
suffer from latency-and energy-expensive memory process-
ing transactions due to separate compute and memory units.
A popular hardware-centric way of alleviating this issue
is to use in-memory computing (IMC) [28]. IMC-based AI
accelerators perform a majority of the DNN computations
(specifically, vector-matrix multiplications or VMMs) within
the memory array storing the weights. Thus, IMC minimizes
the data movement between the memory and the compute
unit, leading to significant energy savings and speed-up.

Since IMC andULP quantization are complementary strate-
gies, various works have explored combining the two for the
design of IMC-based ULP edge artificial intelligence (AI) ac-
celerators. Multiple IMC-based binary neural network (IMC-
BNN) and IMC-based ternary neural network (IMC-TNN)
accelerators have been proposed, demonstrating significant
energy, latency, and area benefits [9, 22, 23, 27].
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To achieve further enhancements in the energy efficiency
and performance, the use of emerging non-volatile memo-
ries (NVM) like resistive random access memories (ReRAMs)
and ferroelectric field effect transistors (FeFETs) has been
explored for the IMC-BNN/TNN designs. While the state-
of-the-art memories such as static random access memories
(SRAMs) offer technological maturity and high programming
efficiency, they suffer from leakage issues and large memory
footprint. NVMs, on the other hand, counter these problems
by virtue of their non-volatility (which leads to zero stand-by
leakage) and high integration density [10, 20]. These are par-
ticularly appealing to enhance the storage capacity of edge
AI platforms to enable deployment of larger DNN models.

Although IMC-BNNs and IMC-TNNs are suitable options
for resource constrained edge AI accelerators, their deploy-
ment must consider the impact of manufacturing defects
on DNN performance. As an example, stuck-at faults (SAFs)
are irreversible hard faults that corrupt some of the mem-
ory bits in an array. Since the memory in IMC-BNN/TNNs
stores the weights, SAFs cause the weight values to be incor-
rectly programmed into the memory, leading to erroneous
computations and potentially, accuracy degradation. This
issue is further aggravated for IMC-BNN/TNNs designed
with emerging memories, since their fabrication processes
are relatively immature, resulting in a higher probability of
SAFs.

While one can pursue the trivial approach of utilizing only
those chips with SAFs within a certain limit, the resultant
reduction in yield and increase in cost would limit the appli-
cability of a technology, which may be otherwise promising
for DNN acceleration. Hence, to counter this, various design
solutions have been proposed that aim to mitigate the im-
pact of the SAFs on the DNN accuracy. However, most of
these solutions are not compatible with IMC [25], require
additional DNN training [6], and/or have a large resource
overhead [13]. Also, some of these solutions are designed
for platforms with full precision parameters and may have
reduced efficacy for ULP DNN acclerators.
In this paper, we present an overview of two of our tech-

niques, TFix [15] and BNN-Flip [16], designed to enhance
the tolerance of ULP IMC-based DNNs to SAFs. Both tech-
niques are IMC compatible and do not require any additional
training. TFix is based on leveraging the inherent redun-
dancy present in IMC-TNN memory cells along with the
high weight sparsity of TNNs to enhance their inference
accuracy in the presence of faults [15]. BNN-Flip is a weight
transformation technique based on modifying the IMC-BNN
weight matrices in a way that minimizes the impact of SAFs
on the inference accuracy, while preserving the computa-
tional correctness of IMC-based VMM [16]. The key aspects
of fault-tolerant IMC for ULP DNNs discussed in this paper
are summarized below:

Figure 1: IMC-TNN memory cell with its input and weight encod-
ing. The boxed state in the weight encoding is an unused state.

• We present IMC-compatible, training-free and low
overhead fault-tolerant techniques viz. TFix and BNN-
Flip for TNNs and BNNs, respectively. We discuss how
these techniques utilize the unique properties of the
TNNs/BNNs to achieve fault tolerance.

• We evaluate TFix on ResNet-18 TNNs and BNN-Flip
on ResNet-18 BNNs, showing that these techniques
significantly improve accuracy in the presence of SAFs.

• We examine the hardware overhead of these tech-
niques, showing that TFix and BNN-Flip achieve SAF
tolerance with negligible energy/latency/area over-
heads.

2 BACKGROUND AND RELATEDWORKS
2.1 IMC-based ULP DNN accelerators
By combining the benefits of IMC and ULP quantization,
IMC-based ULP DNN accelerators offer immense promise
for edge AI. Binary and ternary quantization are two popular
ULP options. In IMC-BNNs, binary quantization restricts the
weights and activations of the DNN to two values: -1 and +1.
In comparison, ternary quantization uses three values: -1,0
and +1, for the weights and activations. Due to the signed
binary nature of the weights and activations in IMC-BNNs,
their scalar multiplication is equivalent to the XNOR opera-
tion. Similarly, the scalar multiplication of ternary weights
and activations can be thought of as a gated-XNOR operation;
i.e. the operation is XNOR if both the weight and activation
are non-zero; else, the output is 0.
Implementing XNOR functionality for scalar products in

IMC-BNNs often involves custom memory cell design. Previ-
ous research has explored using custom 12T-SRAM [27] for
IMC-BNNs. While these designs facilitate XNOR-based IMC,
they come at the cost of lower cell density and higher en-
ergy usage. An alternative method, particularly for emerging
memories, involves storing each weight across two memory
elements [22]. However, this approach nearly doubles the
area requirements, as it uses 2 bits per signed weight.
Recently, works like NAND-Net [11] have shown that

by applying linear transformations to the activations and
weights, IMC-BNNs can be enabled using standard memo-
ries, such as 8T-SRAM, 1T-1RRAM and 1FeFET. The linear
transformations map the ’-1’ value of the weight/activation
to ’0’ (high resistance state or HRS of the memory) and the



’1’ value to ’1’ (low resistance state or LRS). This leads to the
scalar product computation mapping to the AND (NAND)
operation (instead of XOR). Following the in-memory AND
operation and accumulation of the scalar products, some
inexpensive post-processing yields the correct VMM result.
This method offers lower area, energy consumption, and
latency compared to approaches that utilize custom designs.
Although BNN-Flip can be applied to a variety of IMC-BNN
memory cells, in this paper, we focus on IMC-BNNs imple-
mented in the NAND-Net style due to the above-mentioned
benefits.

IMC-TNN memory cells also require custom design. Fig. 1
shows a common memory cell topology used for IMC-TNNs
[23]. Since a single ternary weight can have three possible
states, two binary memory elements are required to store
it. In this paper, we restrict our discussion to memory cell
design with binary memory elements, due to their relative
maturity compared to multi-bit memory elements. To keep
the discussion technology-agnostic, we have used𝑀1 and𝑀2
in Fig. 1 to depict the binarymemory elements in thememory
cells, which could be based on SRAMs or NVMs.𝑀1/𝑀2 = 0
(1) signifies the high (low) resistance state or HRS (LRS) of
the memory cell. The weight and the activation encoding can
also be seen in Fig. 1. Note, the access transistors controlled
by𝑊𝐿1 connect𝑀1 to 𝐵𝐿1 and𝑀2 to 𝐵𝐿2. On the other hand,
the access transistors controlled by𝑊𝐿2 connect𝑀1 to 𝐵𝐿2
and 𝑀2 to 𝐵𝐿1, thus, cross-coupling the memory elements
to the opposite bitlines. This enables scalar multiplication in
the signed ternary regime, as explained subsequently. Since
two binary elements can store up to four states, whereas
storing a ternary weight needs only three states, we see
that 𝑀1𝑀2 = 11 state is unused. In other words, IMC-TNN
memory cells have one natural redundant state present.
In-memory scalar multiplication 𝐼 ∗𝑊 in IMC-TNNs is

performed as follows: First, the bitlines 𝐵𝐿1 and 𝐵𝐿2 are
precharged to the bitline voltage 𝑉𝐵𝐿 . Then𝑊𝐿1 and𝑊𝐿2
are asserted based on the 𝐼 value for that row (using the
encoding in Fig. 1). 𝐼1 (𝐼2) represents the logic value corre-
sponding to the voltage on𝑊𝐿1 (𝑊𝐿2), with ’1’ representing
a voltage of 𝑉𝑊𝐿 and ’0’ representing a voltage of 0. If there
is a low resistance path from 𝐵𝐿1/𝐵𝐿2 to ground, that bitline
discharges by Δ. A Δ discharge on 𝐵𝐿1 (𝐵𝐿2) corresponds
to a scalar multiplication output of +1(−1). Mathematically,
this can be expressed as:

𝑂𝑢𝑡 =
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿1) − 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿2)

Δ
(1)

𝑂𝑢𝑡 represents the scalar product. To calculate the dot
product

∑
𝐼 ∗𝑊 , multiple rows of the memory array are ac-

tivated simultaneously and the discharges from the memory
cells accumulate on the bitlines. Analog to digital converters
(ADCs) are connected to the bitlines to obtain the digital
values corresponding to their voltages.

𝐵𝐿1/𝐵𝐿2 discharges when an access transistor that is con-
nected to it is ON and the memory element connected to
that access transistor is in LRS (stores 1). Thus,

𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿1) = Δ ∗ (𝐼1 ∗𝑀1 + 𝐼2 ∗𝑀2) (2)
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿2) = Δ ∗ (𝐼2 ∗𝑀1 + 𝐼1 ∗𝑀2) (3)

and,

𝑂𝑢𝑡 =
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿1) − 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 (𝐵𝐿2)

Δ
=

(𝐼1 − 𝐼2) ∗ (𝑀1 −𝑀2) (4)
For example, if𝑊 = 1 and 𝐼 = −1,𝑀1𝑀2 = 10 and 𝐼1𝐼2 = 01,

thus𝑂𝑢𝑡 = −1. From thememory cell perspective, we can see
that 𝐵𝐿2 has a low resistance path through𝑀1, and therefore
discharges through that path by Δ to produce 𝑂𝑢𝑡 = −1.

To understand the behaviour of the redundant state𝑀1𝑀2 =
11, we can substitute it into Eq. 4. We see that𝑀1𝑀2 = 11 al-
ways leads to 𝑂𝑢𝑡 = 0. Thus, the state𝑀1𝑀2 = 11 is another
way to represent the weight value of 0.

Finally, let us look at how weights are distributed in BNNs
and TNNs. In BNNs, the weight distribution has been ob-
served to be even, with 50% 1’s and -1’s [4]. However, in
TNNs, the percentage of zeroweights is observed to be higher
than the percentage of +1/-1 weights [17]. The pronounced
sparsity arises because the weights in DNNs usually follow
a normal distribution centered around zero. Several previous
works have highlighted the sparse nature of TNNs [17][31].

2.2 Stuck-at faults (SAFs) in DNN
accelerators

SAFs in DNN accelerators pose a critical computational ro-
bustness concern. SAFs occur when memory elements get
irreversibly fixed at either ’0’/HRS (SA0) or ’1’/LRS (SA1).
In DNN accelerators, they corrupt DNN weights, leading to
incorrect computations and reduced DNN inference accu-
racy. SAFs can be unmasked or masked, depending on the
type of SAF and the intended data value. Unmasked faults
occur when the stored value and the fault state differ (e.g., a
SA1 fault in a location storing ’0’). In contrast, masked faults
occur when the stored value matches the fault state. It is
easy to see that the unmasked faults can potentially lead to
errors and accuracy degradation, while masked faults are
innocuous.
Multiple techniques have been proposed in recent times

for alleviating the impact of SAFs on IMC-based DNN accel-
erators. From the algorithmic side, fault-aware training/fine-
tuning has shown to be effective in increasing the accuracy of
SAF-afflicted accelerators to near fault-free values [6]. How-
ever, training-based solutions are not only computationally
expensive but also require access to training data, which may
not always be feasible. From the hardware perspective, SAF



Figure 2: Overview of TFix: (a) weight mapping step, where the
ideal TNN weights are mapped to the memory. (b) diagnosis step,
where the SAFs are diagnosed and the hardware weights are com-
pared to their ideal counterparts (c) fix step, wherein, when an ideal
zero weight (00), is erroneously stored as as −1 or +1 due to a SAF,
it is fixed by reprogramming the memory cell to 01.

tolerance enhancement techniques broadly fall in two cate-
gories: adding redundancy and weight remapping. The work
in [13] designs a custom 2T-2ReRAM memory cell for IMC-
BNNs, such that the unused states present in the memory cell
can be used for increasing the fault tolerance. However, such
an approach compared to the NAND-Net design requires
custom memory cell design with two memory elements stor-
ing a binary weight, and therefore, incurs area and energy
overheads. The work in [29] maps the least significance bits
(LSBs) to the faulty locations in the memory and thus pro-
tects the most significant bits (MSBs) from being corrupted.
However, this method suffers from the hardware overhead
associated with tracking the position changes. Furthermore,
this method is not applicable to BNNs/TNNs, where there
is no MSB or LSB. In this paper, we discuss fault tolerant
techniques that cater specifically to BNNs and TNNs and do
not require fault-aware training. The discussed techniques
exploit the unique properties of BNNs/TNNs to mitigate the
impact of SAFs on inference accuracy.

3 FAULT TOLERANCE ENHANCEMENT
TECHNIQUES

In this section, we present TFix and BNN-Flip, two fault
tolerance enhancement techniques designed for IMC-TNNs
and IMC-BNNs, respectively. TFix uses the natural redundant
state and high weight sparsity in IMC-TNNs (see Section 2)
to increase the inference accuracy in the presence of SAFs.
BNN-Flip transforms the BNN weight matrices before they

aremapped on the acceleratormemory in away that converts
error-inducing unmasked faults to innocuous masked faults.

3.1 TFix
TFix exploits the fact that there are two unique ways to store
the weight value ’0’ in IMC-TNN memory cells, as discussed
in Section 2. In this paper, we will refer to the two ’0’ states as
00 and 01. 00 corresponds to when𝑀1𝑀2 = 00 and 01, which
is the unused state in a ternary cell (as proposed in [23]), cor-
responds to𝑀1𝑀2 = 11. TFix consists of three stages: weight
mapping, diagnosis and fix, as shown in Fig 2. In the weight
mapping stage, the trained TNN weights, which we refer
to as𝑊𝑖𝑑𝑒𝑎𝑙 , are programmed into the IMC-TNN memory
arrays. These memory arrays may have certain memory ele-
ments affected by SAFs, causing incorrect weight values to
be stored in the IMC-TNN. We refer to the hardware-mapped
weights as𝑊ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 . The next stage is diagnosis, in which
we use standard fault diagnosis techniques to determine the
location and nature of the SAFs in the IMC-TNN memory
[7]. Using the fault diagnosis information, we can decipher
which SAFs in the memory are unmasked, causing errors in
weight storage. Thus, we determine all the TNNweights𝑤ℎ𝑤

in𝑊ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 that are different from their equivalent weights
𝑤𝑖 in𝑊𝑖𝑑𝑒𝑎𝑙 . Now, there are three scenarios in the event that
𝑤ℎ𝑤 ≠ 𝑤𝑖 :

(1) When both memory elements𝑀1 and𝑀2 are faulty: If
both 𝑀1 and 𝑀2 in a single memory cell are affected
by SAFs, the value of𝑤ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 cannot be corrected by
TFix. However, having bothmemory elements faulty in
a single memory cell is fairly improbable, considering a
random distribution of SAFs in the IMC-TNN memory.

(2) When 𝑤𝑖 is -1 (Intended 𝑀1𝑀2 = 10) or 1 (Intended
𝑀1𝑀2 = 01): A single SAF would lead 𝑤ℎ𝑤 to have
the value 00 (𝑀1𝑀2 = 00) or 01 (𝑀1𝑀2 = 11). TFix
cannot correct this weight; hence,𝑤ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 will have
the incorrect weight value.

(3) When 𝑤𝑖 is 0 (Intended 𝑀1𝑀2 = 00): A single SAF
would cause the 𝑤ℎ𝑤 value to be either -1 (𝑀1𝑀2 =

01) or 1 (𝑀1𝑀2 = 10), as shown in Fig 2(c). Since the
01 state is available for storing 0, the stored weight
can be corrected by changing the value of the fault-
free memory element. For example, if 𝑀1 has a SA1
fault, 00 will be incorrectly programmed as 1 (𝑀1𝑀2 =
10). To correct this, 𝑀2, which is fault-free, can be
reprogrammed to 1, changing the stored weight value
to 01 and eliminating the impact of the SAF on IMC.

Thus, TFix can cancel out the impact of SAFs on zero-
valued TNN weights. The efficacy of TFix is further boosted
by the fact that TNNs have substantial weight sparsity (dis-
cussed in Section 2). Therefore, TFix is able to neutralize the
impact of SAFs on majority of the weights (storing 0).



Figure 3: (a) Value of a mask matrix (𝑀) element for corresponding BNN weight matrix (𝑊 ) and fault matrix (𝐹 ) elements. (b) The working
of the BNN-Flip algorithm. Using row and column flips, BNN-Flip converts𝑊 to𝑊 ′, minimizing the number of unmasked faults for each

IMC-BNN memory array.

Since TFix utilizes the natural redundant state in IMC-
TNN memory cells, it incurs no area overhead. While TFix
requires memory array fault diagnosis and a few additional
write operations, these are one-time costs that are amortized
over many inference cycles. Also, since TFix converts faulty
weights from 00 to 01, it decreases the bitwise sparsity of
the memory array, leading to higher bitline charging and
discharging, on an average. Thus, TFix results in a mild
increase in energy consumption (more details in Section 4).

3.2 BNN-Flip
BNN-Flip is based on transformation of the weight matrix
in such a way that the impact of SAFs on IMC-BNNs is
mitigated. This technique relies on two types of linear trans-
formations: row flip and column flip, which form the basis
of the overall matrix transformation. BNN-Flip is applied
to the BNN weights before they are programmed into the
IMC-BNN hardware. Recall that BNN weights and activa-
tions have two possible values: -1 and 1. However, when
they are mapped on to NAND-Net based IMC-BNNs, the -1
(1) values are mapped as 0 (1). Thus, the row/column flips
are applied to the original weight matrix with weights being
either -1 or 1; while the SAFs (SA0 and SA1) are considered
are in the context of logic ’0’ (HRS) and logic ’1’ (LRS) of the
memory cell.
A row flip is defined as multiplying a row of the BNN

weights and the corresponding input by ’-1’. Since 𝐼 ∗𝑊 =

(−𝐼 ) ∗ (−𝑊 ), a row flip has no impact on the VMM of the
BNN weights and activations. A column flip is defined as
multiplying a column of the BNN weights by ’-1’. To obtain
the correct VMM value, the column output of a ’flipped’
column must also be multiplied by ’-1’. This is because

∑
𝐼 ∗

𝑊 = −1 ∗∑ 𝐼 ∗ (−𝑊 ). Note that a row/column in this case
refers to a row/column of an IMC-based memory array in
which BNN weights are to be mapped.

To preserve the accuracy of the VMM computations while
modifying the BNN weights via row and column flips, it

is essential to keep track of which rows and columns have
been flipped. To achieve this, we introduce two tracking
vectors: 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 . For an 𝑛x𝑚 mem-
ory array, 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 are bit vectors of
size 𝑛 and𝑚, respectively. When a flip is applied to the 𝑖𝑡ℎ
row (or column) of the array, the corresponding 𝑖𝑡ℎ entry in
𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 (or 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘) is toggled to reflect the change.
The 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vectors are initialized to
zero. If a row or column is flipped from its original state, its
corresponding entry in 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 or 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 is set to
1. If that particular row or column is flipped the second time,
the 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 or 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 entry is reset to 0. The un-
derstanding here is that an even number of consecutive flips
on the same row or column cancel themselves out. However,
if these flips are not consecutive (e.g. if two row-flips on the
same row are separated by a column flip), then this cancella-
tion is partial, which the 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and the 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘
together are able to keep track of.

BNN-Flip calculates the optimal row and column flip strat-
egy to transform the BNN weights with the aim of mini-
mizing the error-causing unmasked faults by transforming
them to innocuous masked faults. BNN-Flip is applied to
multiple weight sub-matrices, with each sub-matrix corre-
sponding to the IMC-enabled memory array on which it is
mapped. Fig. 3(b) depicts the BNN-Flip algorithm applied on
a single weight matrix𝑊 with an example. First, the faults
matrix 𝐹 associated with the memory array is determined
using conventional fault diagnosis techniques [7]. 𝐹 contains
information about the nature (SA1 or SA0) and location of
faults in the array. Next, the mask matrix𝑀 , which contains
information about where the masked and unmasked faults
are located, is calculated using 𝑊 and 𝐹 . Fig. 3(a) shows
the values of an element of 𝑀 for various combinations of
𝑊 and 𝐹 elements. For example, a SA0 fault on a location
that stores the weight value of ’-1’ will have 𝑀 value of 1,
denoting masked fault (recall ’-1’ weight is stored as ’0’ in
a NAND-Net IMC-BNN design). However, a SA1 fault on



Figure 4: (a) An overview of an IMC-BNN memory array using
BNN-Flip. Once the optimal values of 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 , 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘
and𝑊 ′ are determined, they are mapped on to the IMC-BNN.𝑊 ′

is stored in the memory array, while the calculated 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and
𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vectors are stored in near-memory registers for the
necessary pre- and post-processing. (b) Flipping activation 𝐼 for a
single row in the row processing unit and (c) Flipping the VMM
output for a single column in the column processing unit.

the same location will cause an unmasked fault, leading to
𝑀 = −1. All locations that are free of SAFs have a value of
0 in𝑀 . From Fig. 3(a), we observe that𝑀 can be calculated
by simply performing the element-wise multiplication of𝑊
and 𝐹 (Hadamard product).
Once 𝑀 is calculated, the next step is to minimize the

number of unmasked faults (𝑀 = −1) in𝑀 . This is achieved
by performing row and column flips on 𝑀 in an iterative
manner, until the number of unmasked faults cannot be
reduced further. Every row/column flip is tracked by the
𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘/𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vectors, which are then used to
convert𝑊 to𝑊 ′. Note that although 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘/𝑐𝑜𝑙𝑢𝑚𝑛_𝑡−
𝑟𝑎𝑐𝑘 vectors are eventually applied on𝑊 to convert it to𝑊 ′,
they are calculated by minimizing the unmasked faults in𝑀 .
This is possible because 𝐹 is fixed (SAFs are irreversible) post
the diagnosis step. And since𝑀 is the element-wise product
of 𝐹 and𝑊 , any row/column flip in 𝑀 is equivalent to a
row/column flip in𝑊 . This observation enables us to avoid
recomputing𝑀 from𝑊 and 𝐹 after every row/column flip.
Finding the optimal 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘/𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vectors is

akin to tackling a well-known NP-hard ’Shortest Vector in a
Lattice,’ problem [2]. Hence, we employ a heuristic algorithm
to obtain these vectors, a strategy also adopted by other
studies encountering this NP-hard problem [30].
The algorithm begins by initializing all entries in the

𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vectors to zero. We then cal-
culate the sum of the elements in each row of matrix𝑀 . If a
row’s sum is less than zero, it indicates that the number of
unmasked faults (𝑀 = −1) exceeds the number of masked
faults (𝑀 = 1). In this case, flipping the row would reduce the

unmasked faults, as this operation flips the weight values,
converting unmasked faults to masked ones and vice versa.
Therefore, we flip all rows with a sum less than zero and
update the corresponding 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 values. This process is
illustrated in the row flipping step in Fig. 3 (b), where the
highlighted rows have been flipped.

We then perform a similar operation on the columns, calcu-
lating the sum of elements in each column, flipping columns
where the sum is less than zero, and updating the correspond-
ing 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 values (see Fig. 3 (b)). These two steps are
repeated iteratively until no row or column has a sum of
elements less than zero.

Next, we examine all possible row-column pairs, checking
if they satisfy the following condition:

𝑚∑︁
𝑗=1

𝑀 [𝑖] [ 𝑗] +
𝑛∑︁
𝑖=1

𝑀 [𝑖] [ 𝑗] − 2𝑀 [𝑖] [ 𝑗] < 0 (5)

In this equation, for an 𝑛x𝑚 memory array, the first two
terms represent the sums of the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column,
respectively, while the third term is twice the value of the
common element at the intersection of that row and column.
The rationale behind equation 5 is that when both the row
and column are flipped, the common element remains un-
changed. Therefore, if the sum of the elements in the row
and column, excluding the common element, is less than
zero, flipping the row-column pair would reduce the num-
ber of unmasked faults. For all row-column pairs meeting
this condition, we simultaneously flip the corresponding
rows and columns along with toggling their 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and
𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 values. This step is shown in Fig. 3(b), where
the highlighted row-column pairs are flipped together.

These three steps are iteratively repeated until no further
flips can reduce the number of unmasked faults.
Finally, the computed 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vec-

tors are used to derive𝑊 ′ from𝑊 . This is achieved by flip-
ping (i.e. multiplying by ’-1’) each row and column of𝑊 for
which the corresponding 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘/𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 entry is
’1’. This step is shown in Fig. 3(b) as the final step.
𝑊 ′, 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 are then mapped onto

the IMC-BNN. Note that the original BNN weight matrix𝑊
does not need to be stored in the memory. Some additional
hardware is required to maintain the correctness of the in-
memory computations when using𝑊 ′. To address this need,
a row and column processing unit is integrated into the mem-
ory array. Fig. 4(a) shows the IMC-BNN array augmented
with the row and column processing units. The row process-
ing unit for a single row is simply an XOR gate, which is
shown in Fig. 4(b). It flips the activation value 𝐼 for that row,
if the corresponding 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 value is ’1’ (recall that the
’-1’ activations/weights are mapped to ’0’ in NAND-Net). 𝐼
remains unchanged when the 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 value for the row
is 0. Similarly, the column processing unit, shown in Fig.4(c)),



(a) TFix - CIFAR-100 (b) TFix - CIFAR-10 (c) BNN-Flip - CIFAR-100 (d) BNN-Flip - CIFAR-10
Figure 5: Inference accuracy versus fault rate for ResNet-18 IMC-TNNs and IMC-BNNs. Both TFix and BNN-Flip provide substantial

improvement in inference accuracy in the presence of SAFs over the baseline.

adjusts the VMM output for a column by multiplying the
post-processed output by ’-1’ if the 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 value for
that column is ’1’. This is achieved by computing the 2’s
complement of the post-processed VMM output, (effectively
achieved by adding ’1’ to the 1’s complement of the output).
As discussed in Section 2, NAND-Net requires some post-
processing to transform the column output from the [0,1]
domain to the [-1,1] domain. Thus, the post-processing block
depicted in Fig. 4(c) is part of the peripheral circuitry required
by the NAND-Net design [11] and does not contribute to
the overhead of BNN-Flip. We will further explore the hard-
ware overheads of BNN-Flip quantitatively in Section 4. It is
important to note here that the BNN-Flip algorithm, which
determines the optimal 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟𝑎𝑐𝑘 vec-
tors, is executed offline before the weights are programmed
into the IMC-BNN memory. Thus, it does not add to the
inference overhead.

4 RESULTS
In this section, we quantitatively analyze the improvements
in inference accuracy in the presence of SAFs achieved by
TFix for IMC-TNNs and BNN-Flip for IMC-BNNs. We also
discuss the hardware overhead of these techniques.

4.1 Accuracy Enhancement
For our accuracy analysis, we consider ResNet-18 based
BNNs and TNNs, trained on the CIFAR-100 and CIFAR-10
datasets. To maintain competitive accuracy, the first and last
layers of each model are kept at full precision, following
the approach used in prior studies [18]. We observe that the
weight sparsity of the TNNs is 64.8% and 74.1% when trained
on CIFAR-100 and CIFAR-10, respectively. The weight spar-
sity for the BNNs is observed to be∼ 50% for both the datasets.
SAFs are randomly and uniformly injected throughout the
TNNs/BNNs, consistent with methods in related research
[26]. We conduct 100 Monte Carlo-based fault injection ex-
periments, and report the mean inference accuracy for each
fault rate (FR - ranging from 0% to 10%).

For the IMC-TNNs, we compare accuracy for three designs:
i) the baseline design with no fault tolerance applied, ii) TFix,

and iii) Triple Modular Redundancy (TMR) [14]. For TMR,
three identical copies of the IMC-TNNs are deployed for
inference and their outputs are averaged. This approach is
commonly used in DNN hardware, as averaging the outputs
from three copies effectively reduces the impact of random
faults in each individual copy [19]. While TMR introduces a
significant area overhead of ∼ 200%, it remains a robust fault
tolerance strategy compatible with IMC.
For the IMC-BNNs, we compare the accuracy achieved

with BNN-Flip against the baseline accuracy (with no fault
tolerant technique applied) and the fault tolerant design pro-
posed in [13]. The method in [13] leverages the unused mem-
ory states to improve fault tolerance of IMC-BNNs, where
each weight is represented by two memory elements (refer
to Section 2.2). Although this technique is effective, it is lim-
ited to a subset of IMC-BNNs and results in reduced area
efficiency compared to NAND-Net (which we have used for
BNN-Flip in our study).

From Fig. 5, we observe that both TFix and BNN-Flip out-
perform their respective baselines in reducing the accuracy
degradation due to SAFs over FR ranging from 1% - 10%. For
FR of 5%, TFix improves accuracy by 5.11% on CIFAR-100 and
3.68% on CIFAR-10. BNN-Flip increases accuracy by 4.07%
on CIFAR-100 and 1.84% on CIFAR-10.

We also observe that TFix provides comparable accuracy
improvements to TMR. It is even able to outperform TMR
at higher FRs, surpassing TMR accuracy by 3.54% and 1.97%
for CIFAR-100 and CIFAR-10, respectively, for FR of 10%.
Similarly, BNN-Flip outperforms the work in [13] for almost
all FRs, with an accuracy improvement of up to 4.56%.

4.2 Hardware Overhead
To evaluate the hardware overhead, we design IMC-TNN
and IMC-BNN memory arrays along with the peripheral
circuits (including the extra circuits needed by BNN-Flip).
For TFix, we design IMC-TNNmemory arrays of size 256x256
using three types of memories: Ferroelectric FETs (FeFETs),
resistive random access memories (ReRAMs) and 8T SRAMs.
We use [20] and [10] as the experimentally calibrated models
for FeFETs and ReRAMs, respectively. We use a𝑉𝐵𝐿 and𝑉𝑊𝐿



of 0.7V for IMC-based inference, Δ of 100mV and utilize the
PTM 7nm technology node for our simulations [1]. We use
3-bit flash ADCs for our simulations and activate multiple
rows simultaneously, following the methodology used in
[23]. Our evaluation focuses on the memory macro, which
consists of the memory array and the ADCs.
Since TFix exploits the natural redundancy present in

ternary memory cells, it incurs no area overhead. TMR, on
the other hand, suffers from an area overhead of 200%. The
accuracy results mentioned earlier reflect the full implemen-
tation of TMR, but even partial versions of TMR, where only
critical hardware components are triplicated, still carry an
area overhead ranging from 30.4% to 73.3%. TFix is, how-
ever, accompanied with an energy overhead. TFix mitigates
faults by converting weights intended to be 00 into 01, which
reduces the bitwise sparsity of the memory array. This reduc-
tion in sparsity leads to increased charging and discharging
of the bitlines, resulting in higher energy consumption. As
TFix transforms more weights from 00 to 01 with rising fault
rates, we assess the energy overhead at a fault rate of 10%
to evaluate the worst-case scenario. Table 1 presents the en-
ergy overhead of TFix for IMC-TNNs designed with various
memory technologies. The energy overhead introduced by
TFix ranges from approximately 3% to 6% compared to the
baseline (where no fault mitigation technique is applied). The
energy overhead is minimal since bitline charging forms only
a small portion of the total array level energy consumption,
which is generally dominated by the ADCs [12].

For BNN-Flip, we utilize the same design parameters as
above, except for the array size (=64x64). For enabling BNN-
Flip, the IMC-BNN memory array has to be augmented with
two extra registers for storing the 𝑟𝑜𝑤_𝑡𝑟𝑎𝑐𝑘 and 𝑐𝑜𝑙𝑢𝑚𝑛_𝑡𝑟−
𝑎𝑐𝑘 vectors, 1 XOR gate per row (to flip the activations), and
2’s complement circuitry and multiplexers to flip the col-
umn outputs (details in Section 3.2). These additions lead
to energy, latency and area overheads, which are quantified
in Table 1. We observe that BNN-Flip results in a modest
increase in energy consumption, ranging from 2.5% to 2.9%,
and a latency increase of 1.6% to 1.8% across the three mem-
ory technologies. These overheads are minimal and have a
negligible impact on the overall energy and latency of IMC
macros, where the majority of the energy consumption is
attributed to ADCs [12]. We also estimate the area overheads
of BNN-Flip for the memory macro using layouts based on
[24]. BNN-Flip results in an area increase of 2.3% to 6.3%

Table 1: Hardware overheads of BNN-Flip and TFix for different
memory technologies

BNN-Flip TFix
Energy Latency Area Energy Latency/Area

SRAM 2.5% 1.6% 2.3% 5.1% no impact
ReRAM 2.9% 1.8% 5.8% 3.9% no impact
FeFET 2.9% 1.8% 6.7% 3.4% no impact

over the baseline for the three memory types. The bulk of
this modest overhead comes from the near-memory regis-
ters used to store the row and column track vectors. This
area overhead is significantly lower than that of [13], which
demands approximately 100% additional area.

5 SUMMARY
In this paper, we present two fault-tolerant design techniques,
TFix and BNN-Flip, to mitigate the impact of SAFs on the in-
ference accuracy of IMC-based ULP DNN accelerators. TFix,
which is designed for IMC-TNNs, leverages the natural re-
dundancy and high weight sparsity present in IMC-TNNs to
achieve SAF fault tolerance. BNN-Flip, which is targeted for
IMC-BNNs, utilizes row and column flips to convert error-
inducing unmasked faults to benign masked faults, reducing
the impact of SAFs on the inference accuracy. We evaluate
both TFix and BNN-Flip on ResNet-18 TNN and BNNmodels,
respectively, trained on CIFAR-10 and CIFAR-100. Our exper-
iments show that TFix can regain the inference accuracy by
up to 11.07%, with an energy overhead of < 6%; and BNN-Flip
can recoup the inference accuracy by 10.55% with an energy
overhead of < 3%.
It is interesting to note certain similarities and differ-

ences between TFix and BNN-Flip. Both techniques are IMC-
compatible, memory technology agnostic, require a one time
fault diagnosis and do not require additional training. The
first key difference lies in the type of faulty weights that
these techniques are fundamentally designed to fix. While
TFix is targeted towards redressing zero weights (since the re-
dundancy that TFix exploits is associated with zero weights),
BNN-flip is amenable to remedying the impact of SAFs on
non-zero weights (as the row/column flip, at the algorithm
level, involves the change in sign, which cannot be used for a
zero weight). Thus, while TFix cannot be used for NAND-Net
based BNNs (which do not have redundancy), the row/col-
umn flips can potentially be utilized to target the non-zero
weights in TNNs. This presents an opportunity to utilize
TFix and flip techniques in TNNs for potentially enhanced
fault tolerance, which we are currently exploring. The sec-
ond difference between the techniques lies in their hardware
requirements. TFix does not need any additional circuitry,
whereas BNN-Flip incurs a mild hardware overhead.
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