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In database applications involving sensitive data, the dual imperatives of data con�dentiality and provable

(veri�able) query processing are important. This paper introduces PoneglyphDB, a database system that

leverages non-interactive zero-knowledge proofs (ZKP) to support both con�dentiality and provability. Unlike

traditional databases, PoneglyphDB enhances con�dentiality by ensuring that raw data remains exclusively

with the host, while also enabling verifying the correctness of query responses by providing proofs to clients.

The main innovation in this paper is proposing e�cient ZKP designs (called circuits) for basic operations

in SQL query processing. These basic operation circuits are then combined to form ZKP circuits for larger,

more complex queries. PoneglyphDB’s circuits are carefully designed to be e�cient by utilizing advances in

cryptography such as PLONKish-based circuits, recursive proof composition techniques, and designing with

low-order polynomial constraints. We demonstrate the performance of PoneglyphDB with the standard TPC-H

benchmark. Our experimental results show that PoneglyphDB can e�ciently achieve both con�dentiality and

provability, outperforming existing state-of-the-art ZKP methods.
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1 Introduction

As databases serve as the backbone of diverse applications, the responsibility entrusted to them
extends beyond data storage—it encompasses the safeguarding of sensitive information. This is an
important consideration, especially for databases that store personal data. Also, in applications
with sensitive information such as census data or unemployment statistics, it is important for users
to trust that the database owner is using the correct database (i.e., one that is consistent with the
claimed database) and that the provided answers accurately re�ect the intended computations.

We tackle the problem of providing a database solution to ensure two characteristics: (1) Con�-
dentiality: this property means that raw data is only maintained at the host (i.e., service provider)
and is not shared or made public to any other node. Other nodes only receive responses to speci�c
queries that they send to the host node and that the host node agrees to process. (2) Provability:
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ensuring the correctness of processing. This means that the results computed by the host node and
sent back to users re�ect the correct processing of the query on the private database. This requires
that the host node provides a proof of the correctness of the query response to the user.

As an example, consider the healthcare sector, where medical research institutions collect patient
data for collaborative studies. Institution X may wish to share insights about the data with data
consumers Y, Z, and W without disclosing the raw data. Data consumers send queries to X, where
queries are processed and their responses sent back to the consumer. X has control on what
queries to answer and therefore can control the con�dentiality of data [12]. However, because data
consumers do not have access to the raw database, they cannot verify the correctness of processing.
In this paper, we build on cryptographic solutions, namely zero-knowledge proofs (ZKP) [17,

21], to address the challenges of ensuring both con�dentiality and provability in database query
processing [14, 42, 43]. ZKP constitutes a powerful cryptographic tool that enables one party,
the prover, to convince another party, the veri�er, of the correctness of a statement without
revealing any speci�c information about the statement itself. The protocols used in ZKP systems
can be made interactive and non-interactive ZKP. Interactive ZKP utlize cryptographic protocols
wherein two entities, namely a prover and a veri�er, dynamically exchange messages to establish
the validity of a statement without revealing any sensitive information. Previous research has
introduced interactive ZKP for verifying SQL queries [30, 47, 49]. The rationale behind using
interactive ZKP for SQL query veri�cation (like ZKSQL [30]) is that they enable the prover to
engage with the veri�er in multiple rounds, incrementally constructing and verifying parts of
the proof. This step-by-step interaction often results in smaller circuit sizes, as the prover can
break down the computation into manageable parts rather than generating a single large, complex
proof upfront. However, the interactive nature introduces challenges related to synchronization
and availability between the prover and veri�er. Speci�cally, interactive ZKP are accompanied
by two main drawbacks that currently limit their widespread adoption in practical applications:
(1) They necessitate interaction between the prover and veri�er throughout the proof protocol,
imposing requirements for availability and synchronization between the involved parties. This
challenge exacerbates failures and timeouts. (2) They lack transferability, as only the speci�c
veri�er(s) engaged in the original protocol possess the capability to verify the proof. This excludes
the possibility of reusing (and caching) previously computed responses and proofs for multiple
veri�ers.

On the other hand, non-interactive ZKP is a cryptographic protocol class designed to establish
the validity of a statement without the necessity for a dynamic exchange of messages between the
prover and veri�er. Unlike interactive ZKP, non-interactive ZKP empowers a prover to generate a
single, self-contained proof that can be subsequently veri�ed by any party possessing the necessary
veri�cation key. This characteristic eliminates the requirement for real-time interaction during
the proof protocol, providing greater �exibility and e�ciency in scenarios where asynchronous
veri�cation or limited interactivity is desired. Non-interactive ZKP, however, can experience
signi�cant overheads if the underlying cryptographic circuits are not carefully optimized.
In this paper, we propose a database system named PoneglyphDB, which incorporates non-

interactive ZKP and the recursive proof composition technique. PoneglyphDB achieves both
con�dentiality and provability through non-interactive ZKP. PoneglyphDB di�ers from traditional
databases by incorporating ZKP circuits, which are sets of equality constraints over arithmetic
expressions designed to mimic the steps of query processing. These circuits enable ZKP frameworks
to generate proofs of correctness for computations. In PoneglyphDB, we design circuits to represent
basic query operations such as range checks, sorting, group-by, and joins, which are combined to
handle more complex queries. Circuit design directly impacts proof generation performance. We
optimize PoneglyphDB’s circuits using the PLONKish framework [46], considering factors such as
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Method Zero-knowledge Non-interactive Arbitrary SQL queries

IntegriDB [49] % % %

vSQL [47] % % !

vSQL+ [48] ! % N/A

ZKSQL [30] ! % !

PoneglyphDB ! ! !

Table 1. Comparing cryptography-based methods for verifiable SQL queries.

circuit size, polynomial degree, and batching construction. Additionally, PoneglyphDB leverages a
recursive structure for composing proofs of multiple statements, reducing the overall proof size and
computational overhead. This is made possible by advancements in proving systems that utilize
recursive proof composition techniques [9, 28].
Table 1 compares PoneglyphDB and prior research on veri�able database systems [30, 47, 49]

in terms of three properties: (1) the assurance of zero-knowledge (i.e., con�dentiality), (2) non-
interactive operability, and (3) applicability to arbitrary SQL queries. The protocols used in vSQL
and vSQL+ are originally presented in an interactive manner, however they can be made non-
interactive via the Fiat-Shamir heuristic [16]. To the best of our knowledge, PoneglyphDB is the
�rst system that achieves all these desirable properties. Also, in the evaluation section, we show
that PoneglyphDB performance outperforms the state-of-the-art ZKP methods.

This paper is structured as follows: Section 2 presents background material. Section 3 proposes
the general design of PoneglyphDB followed by the detailed design in Section 4. Section 5 presents
our experimental evaluations. Section 6 presents related work and Section 7 concludes the paper.

2 Preliminaries

2.1 Zero-Knowledge Proofs

In the area of ZKP, a prover can convincingly demonstrate the truth of a given statement to a
veri�er without divulging any additional information. Speci�cally, ZKP empowers a prover P with
a private witness F (a “private witness" refers to a piece of secret information such as a secret
input, e.g., database) to validate the truth of a public statement F (with respect toF ) to a veri�er
V , while preserving the con�dentiality of the underlying informationF . For instance, suppose a
database contains information about employees, and the data owner wants to prove to the veri�er
that the average salary of the employees is a certain number without disclosing individual salary
details. In this scenario, the private witnessF is the information about individual salaries, and the
public statement F is the average salary computed by the SQL query.

In scenarios with multiple veri�ers, such as healthcare settings where various institutions need
to verify query results, interactive protocols can become impractical due to the need for multiple
rounds of communication with each veri�er. Non-interactive ZKP addresses this issue by allowing
the prover to generate a single proof that can be veri�ed by all parties without further interaction. For
public-coin interactive protocols [21], the Fiat-Shamir heuristic [16] e�ectively converts them into
non-interactive ones (e.g., vSQL), maintaining e�ciency and minimizing computational overhead
while supporting asynchronous veri�cation.

2.2 Arithmetization

The use of arithmetic circuits is the most common paradigm for expressing computations within
ZKP systems. We introduce the PLONKish arithmetization [46] that we use in PoneglyphDB.
We emphasize that the PLONKish circuits used in PoneglyphDB serve primarily as a vehicle to
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demonstrate the potential of non-interactive ZK proofs within database management systems
(DBMSs), rather than representing a state-of-the-art protocol.

PLONKish circuits are de�ned in terms of a rectangular matrix of values. We refer to rows,
columns, and cells of this matrix with the conventional meanings. In the following, we introduce
the key de�nitions of PLONKish circuits that are relevant to our circuit optimization.

1. Fixed columns. Fixed columns are �xed by the circuit. The values in the �xed columns are
usually constants.

2. Advice columns. Advice columns correspond to witness values. These are private inputs
and intermediate values generated during the circuit computation.

3. Instance columns. Instance columns are used for any elements shared between the prover
and veri�er. In most cases, they are used for public inputs and outputs.

4. Equality constraints. Equality constraints specify that two given cells must have equal
values.

5. Polynomial constraints. For each row in the matrix, the multivariate polynomials over the
�eld F must be evaluated to zero.

Example 2.1. Figure 1 illustrates the PLONKish circuit for calculating the function 5 (G,~, I) =

3 ∗ (G + ~) ∗ I. The circuit utilizes three advice columns—advice1, advice2, and advice3—to store
the private inputs and intermediate values during computation.
In row 0, the values for G and ~ are put into the cells in advice1 and advice2, respectively (i.e.

G = 01 and ~ = 11). A polynomial constraint is introduced to ensure that 21 = 01 + 11, calculating
G + ~. Next in row 1, the value of the input I (i.e. I = 02) is put into the cell in advice1. Since
01 + 11 was computed as 21, its value is propagated to 12 and an equality constraint sets 12 = 21. A
multiplier gate (with polynomial constraints) then calculates 22 = 02∗12, evaluating 02∗12−22 = 0.
Finally in row 2, the constant 3 is brought into advice1 at the cell of 03 and �xed by the copy (or
equality) constraint 03 = 3. The previous intermediate result (01 + 11) ∗ 02 = 22 is copied into 13,
with an equality constraint 13 = 22. The �nal output cell 23 calculates 03 ∗ 13, which evaluates to
3 ∗ (01 + 11) ∗ 02.
This result is copied into the public instance column at >1, allowing the veri�er to read o� the

�nal output. Through a series of advice columns, equality constraints, and polynomial operations,
the circuit computes the desired function in a modular fashion while keeping intermediate values
private. The veri�er only sees the �nal outputs revealed in the instance column.

To facilitate the modularity of PLONKish circuits, the designs of basic functions are represented
as gates. A gate is a collection of columns and constraints that together implement a basic operation,
such as division and multiplication. In our case, we will de�ne gates for basic operations for query
processing such as range checks and sorting. Gates can then be combined to implement more
complex functions (or more complex gates).

3 System Overview

3.1 System Model

In PoneglyphDB, the prover P hosts a copy of a private database DB. The prover receives queries
from one or more veri�ers, collectively denoted V . The prover does not provide raw access to the
data in the database. However, it answers queries sent by the veri�ers.

3.2 Workflow Overview

PoneglyphDB operates in �ve key phases, as illustrated in Figure 2:
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Fig. 1. PLONKish circuits illustration for calculating the function 5 (G,~, I) = 3 ∗ (G + ~) ∗ I.

(1) Sending SQL Queries: The client, who will eventually assume the role of a veri�er, sends
SQL queries for execution against a private database, directly to the prover. The prover, holding
exclusive access to this private database, is tasked with executing the queries.
(2) Circuit Construction: Upon receipt of the query request, the prover is then responsible

for constructing the SQL queries and database commitment into arithmetic circuits. These cir-
cuits, delineated by gates and polynomial constraints, performs the computations that need to be
proven. The SQL circuit encodes the desired SQL logic to be evaluated. This circuit allows for the
computation of di�erent inputs provided by the veri�ers during the veri�cation phase.
A database commitment is a cryptographic representation of a database state, enabling proof

of properties about the data without revealing the data itself. This allows the prover to include
evidence in the proof that the query was indeed processed on DB. We employ the Inner Product
Argument (IPA) protocol [8], operating over a 254-bit prime �eld, to generate this commitment.
We choose the IPA protocol for the following reasons: (1) the proving time is typically linear
with respect to the circuit size or the degree of the committed polynomial, (2) the proof size and
veri�cation time are logarithmic in the circuit size, due to the recursive structure of the inner
product proof [9], and (3) it is compatible with PLONKish-based circuit designs.
By leveraging IPA, we can encode both the database commitment and the desired SQL logic

within a uni�ed framework [8, 10]. The public parameters are a shared foundation for both provers
and veri�ers in proof creation and validation. This process utilizes publicly veri�able randomness
and avoids the need for a trusted setup [13]. Initial proof creation uses only public information,
forming the basis for subsequent proofs [9].
(3) Key Generation: Leveraging the public parameters and the circuit description, Poneg-

lyphDB generates a proving key. This key is used to generate proofs corresponding to the circuit.
Concurrently, a veri�cation key is also produced, grounded in the same public parameters and
circuit description. This veri�cation key empowers veri�ers to authenticate the proofs associated
with this circuit.

(4) Proof Generation: The prover uses the proving key to generate a ZKP validating the correct
computation of the SQL query over the private database. Leveraging the previously established
database commitment, the prover creates a veri�able link between the committed database, query
execution, and result. This process incorporates commitments to relevant database rows and
intermediate computation steps, forming a chain of veri�able commitments from the initial database
state to the �nal query output.
(5) Proof Veri�cation: Finally, the veri�er employs the public veri�cation key to e�ciently

validate the ZKP received from the prover. The veri�cation algorithm essentially interpolates the
wiring polynomials and checks that all constraints are satis�ed.
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Fig. 2. PoneglyphDB Workflow.

PoneglyphDB Positioning in the Work�ow. In PoneglyphDB, we utilize existing work from
the cryptography community to perform the steps of key and proof generation and veri�cation.
The main contribution of our work is in the design of SQL circuits that allow for e�cient proving
and veri�cation given the utilized framework [44].

3.3 Application Framework Disuccsion

Trust Model. In the PoneglyphDB framework, the core parties involved are the database owner,
acting as the prover, and the clients, acting as the veri�ers. The prover and veri�ers do not trust
each other as we detail below. There is an additional entity, the auditor, that both the prover and
veri�er trust (there can be multiple auditors). The following are trust concerns between the parties:

1. The prover may use a fake database: The client does not trust the prover to be using the
correct database to run the query. For example, a server responsible for running SQL queries
might use a tampered or fake database to process a query and provide incorrect results to the
veri�er.

2. The prover may process the query incorrectly: Even if the correct database is used,
the client cannot trust the accuracy of the results returned by the prover. The server could
mistakenly or intentionally alter or fabricate the query results.

3. The veri�er may attempt to leak data: On the other hand, the prover fears that the client
might attempt to extract or infer additional information about the underlying database beyond
what is allowed by the query. The client could craft a series of queries to uncover sensitive
patterns, private data, or proprietary information, breaching the prover’s con�dentiality.

We now map this trust model to a real-world scenario. In general, this trust model applies to
cases when a database owner has sensitive data and wants to enable other entities (clients) to query
the database without revealing data beyond what the database owner allows. In the healthcare
scenario, a hospital H wants to provide query access to its database of patient data. It does not
want to reveal all data, but would allow answering speci�c types of queries. The clients can be
healthcare providers or research institutions that want to utilize H’s database for their research. In
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this scenario, an auditor can be a government or regulatory entity that both H and clients trust.
Next, we map the trust model assumptions onto this example:

1. The clients do not trust the hospital H to be using a correct database of patient’s data: The
hospital H does not reveal the raw database to the clients, and therefore clients cannot attest
to the authenticity of the database used to answer queries.

2. The clients do not trust the hospital H to process queries on the database correctly: The
hospital H may process the queries on the database incorrectly (e.g., by using approximation
techniques to save costs, or by completely fabricating results).

3. The clients may attempt to leak data from query responses: The clients may want to know
more information about the database of H than what is provided in the answer to the query.

To address these trust issues, PoneglyphDB introduces the following measures:
(1) Cryptographic Commitment to the Database: PoneglyphDB requires the prover to

make an irrevocable cryptographic commitment to the database. This ensures that the prover
cannot substitute the real database with a bogus one while still producing valid query results. The
commitment is made public and shared in an irrevocable and immutable manner, e.g., by utilizing a
decentralized blockchain such as Ethereum. This ensures that the prover will use the same database
that corresponds to the database commitment as clients have access to an irrevocable, immutable
database commitment that they can compare with the commitment used in the received proof. The
database commitment can also be audited by a third-party auditor (e.g., a regulatory or government
entity trusted by both the prover and veri�ers). The auditor in this case reads the raw database
from the database owner, veri�es its authenticity, and validates that the database commitment
of the authentic database corresponds to the commitment that is shared in the blockchain and
accessible by the veri�ers.
To prove the correctness of database updates and generate new commitments, a naive method

would be to recompute the commitment for the entire database after each update. However, this
approach is ine�cient for large databases. A more advanced method might involve using a Merkle
tree structure [32], where only the a�ected subtree is updated and recomputed, enabling e�cient
localized proof generation. Another potential method involves leveraging batch update techniques,
where multiple updates are aggregated into a single proof.

(2) Ensuring Query Result Correctness: PoneglyphDB employs a constraint system that
encodes SQL queries as circuits, ensuring that the veri�er can con�rm the query results are derived
from a prede�ned and correct computation process. This process ensures the prover cannot return
fabricated results.

(3) Preserving Data Privacy: To ensure the owner’s database privacy, PoneglyphDB employs
ZKP. These proofs guarantee that the client only receives the query result without extracting or
inferring any additional information about the underlying database. The zero-knowledge property
protects the database from unwanted data leakage beyond what is revealed from the query response.
This zero-knowledge property can be combined with other techniques that prevent other types of
leakage of private data. For this reason, it is important to distinguish between the types of leakage
that are prevented or allowed by the zero-knowledge property and complement it with other
techniques. A ZKP does not reveal information beyond the query response, but it does reveal what
is part of the query response (and anything that can be implied by the query response). Therefore,
if there is data that a user should not have access to but is part of the query response, then it is
leaked to the client. To prevent this type of leakage, ZKP can be combined with techniques such
as access control, data masking, query �ltering, and policy management to prevent processing
queries on data that the user would not have access to [1]. These techniques, typically applied as
pre-processing steps, allow the prover to decide whether a query should be processed. For example,
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if the client’s query asks to get raw data that should not be revealed, then the prover would not
process the query. Query �ltering, in particular, helps prevent leakage by modifying the query plan
to exclude sensitive information before execution, ensuring that only authorized data is included
in the response. Another type of leakage is to infer information about the database that were not
intended to be revealed directly in the query response. This type of leakage can be prevented by
incorporating di�erential privacy techniques as we discuss at the end of Section 3.4.

With these techniques, and re�ecting back to the mapping to the real-world scenario above, we
observe the following: (1) PoneglyphDB ensures that the hospital H uses an authentic database
to process queries. This is by utilizing a trusted third-party auditor that veri�es that the publicly
shared irrevocable and immutable database commitment corresponds to an authentic database. If a
prover attempts to utilize a di�erent database, then the client is able to discover this as the client
would match the publicly shared database commitment that is authenticated by an auditor with
the database commitment that is used to process the query and received as part of the response.
(2) PoneglyphDB ensures that hospital H processes the query correctly (according to the logic of
the SQL query) by the ZKP constructions. (3) PoneglyphDB ensures that no information leakage
occurs beyond what is revealed by the responses of hospital H. Hospital H can integrate further
techniques—such as di�erential privacy—to ensure that other types of data leakage would not occur
(as we describe in Section 3.4).

3.4 Security Model

PoneglyphDB leverages the Halo2 proving system [44], which incorporates well-established cryp-
tographic properties such as completeness, soundness, knowledge soundness, and zero-knowledge.

• Completeness. If the prover can generate the PLONKish circuit (including the output) of a
query, it can always convince the veri�er that the PLONKish circuit of the query is true.

• Soundness. For any false PLONKish circuit (including any wrong witness, inputs and output),
the probability of a dishonest prover successfully convincing an honest veri�er is negligible.

• Knowledge Soundness.When the veri�er is convinced the PLONKish circuit is correct, the
prover actually possesses a valid witness.

• Zero Knowledge. The veri�er learns only the information that can be inferred from the
structure of the PLONKish circuit and the output of the query. No additional knowledge
about the private witnesses or the database is revealed.

Figure 3 illustrates the detailed components involved in generating ZKP within PoneglyphDB.
The system comprises two main parts: the PLONKish circuit and the Halo2 proving system. The
PLONKish circuit serves as the input to the Halo2 proving system, which then generates ZKP for
the circuit. Our primary contribution lies in the design of the PLONKish circuits, which are tailored
to optimize the performance and e�ciency of the ZKP generation process.

The PLONKish circuit represents the computation of a SQL query. This circuit is a mathematical
representation of the logical operations and constraints involved in the SQL query execution. The
prover, who possesses the private database, assigns values to all circuit variables based on the
actual data from the database. This step involves mapping the data inputs to the corresponding
variables in the circuit, ensuring that the computation is correctly set up for proof generation. The
prover must use the database agreed upon with the veri�er by utilizing the previously established
database commitment.

The Polynomial representation component, provided by the Halo2 proving system, translates the
circuit into a polynomial form. This component encodes the computation and its constraints as
polynomial equations, making them suitable for ZKP.
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Fig. 3. Detailed components for generating ZK proofs.

The Polynomial commitment component, also provided by the Halo2 proving system, allows
the prover to commit to the polynomial evaluations without revealing the actual polynomials.
This ensures that the prover cannot alter the polynomials after the commitment, maintaining the
integrity of the proof.

The Halo2 proving system takes the committed polynomials and generates opening proofs. These
proofs are designed to show that the committed polynomials satisfy the polynomial constraints
derived from the PLONKish circuit.
It is important to note that the PLONKish circuits implemented in PoneglyphDB are primarily

intended to illustrate the feasibility of using non-interactive ZK proofs within DBMSs, rather than
to claim they represent the latest advancements in ZK protocol design.
Guarantees. The correctness and security of PoneglyphDB depend on PLONKish circuits and

the Halo2 proving system. we demonstrate the correctness of these circuits for SQL queries in
Section 4.
Regarding the security of the Halo2 proving system used in PoneglyphDB , the prover and

veri�er engage in a non-interactive ZKP protocol utilizing Halo2’s polynomial commitment scheme
and recursive proof composition. The detailed security analysis of this protocol has been rigorously
established in [9, 45]. We present a high-level summary of the correctness of the system below. To
analyze the cryptographic protocols employed in Halo2, we utilize the Algebraic Group Model
(AGM) [18]. The AGM is used to analyze protocols that rely on discrete logarithm assumptions
in prime-order groups, a fundamental aspect of Halo2’s design. The AGM evaluates the security
of cryptographic protocols by requiring that adversaries must explicitly compute group elements
from previously observed elements, emphasizing discrete logarithm-type assumptions in prime-
order groups. PoneglyphDB guarantees completeness, soundness, knowledge soundness, and zero-
knowledge properties under the AGM, assuming that all parties, including potential adversaries, are
computationally bounded to probabilistic polynomial-time (PPT) algorithms. PoneglyphDB ensures
that for any PPT adversary, there exists a PPT simulator such that, for any environment with
arbitrary auxiliary input, the output distribution of the environment in a real-world execution
(where a prover interacts with a veri�er) is computationally indistinguishable from the output
distribution in an ideal-world execution (where a simulator interacts with the veri�er).

Oblivious circuits. The proving logic of the circuits in PoneglyphDB is designed to be oblivious.
This means that the execution of the proving algorithm does not depend on the speci�c values of
the private inputs (the witness). Instead, the prover performs the same operations regardless of the
actual witness values, which helps ensure that no information about the private inputs is leaked
through the proof generation process or the resulting proof itself. For example, when implementing a
sorting algorithm, the circuit would compare and swap elements in a �xed pattern regardless of their
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actual values, ensuring the same operations are performed for any input. Similarly, for conditional
statements, both branches of the condition are typically evaluated, and their results are combined
using a selector value, rather than following only one branch based on the private condition. To
protect the privacy of table cardinalities and intermediate result sizes in join operations, we adopt
the method introduced in ZKSQL [30]. This approach involves introducing dummy tuples into our
query evaluation process, e�ectively obscuring true data sizes while maintaining consistent row
counts throughout query execution.

3.5 Data Privacy Issues and Limitations

PoneglyphDB sends the query results to the clients. Since the proof inherently includes the result
of the query, a client could, for example, issue a query like "SELECT * FROM T" to attempt to
retrieve all values from T, which threatens data privacy. Beyond the direct data exposure of returned
results, sensitive data can also be exposed indirectly. Speci�cally, when data points or records in
the database are correlated, query results may still leak sensitive information about records that
are not part of the response. For instance, correlation among records—such as similar attributes
shared across groups or statistical dependencies—can allow a client to infer additional, sensitive
details beyond the returned query results. In this way, even without direct access to records that
are not included in query results, clients can potentially exploit patterns in the query response to
gain insights into the broader dataset indirectly. This poses a data privacy risk that needs to be
handled carefully.
To address this issue, di�erential privacy techniques [15, 26] could be employed to ensure

that individual data points are not revealed either directly or indirectly. In this work, we do not
incorporate di�erential privacy and leave it as an avenue of future work. We note, however, that
methods of incorporating di�erential privacy to ZKP systems such as PoneglyphDB would lead to
additional overhead in the circuit design.

4 Custom Gates

In this section, we present customized gates to represent SQL queries arithmetization in circuits.
Our goal is to introduce e�cient designs by creating gates that have low-degree polynomials and
a smaller number of circuit constraints. We design with low-degree polynomials because ZKP
relies on cryptographic primitives where evaluating higher-degree polynomials is computationally
expensive.

4.1 Range Check

We �rst introduce a range check gate as it is involved in many SQL operations like “�lter”, “sort”,
“group by” and “join”.

Consider the range check statement G f C , where G is a private value and C is the public query
input. A naive encoding compares G against each possible value using the polynomial equation:
∏Ī

ğ=0 (G − 8) = 0. The degree of this polynomial grows linearly with C , making proof generation and
veri�cation computationally infeasible for large C . In this work, we leverage a lookup table [19]
circuit structure to design the range check gate. The intuition behind using lookup tables lies in the
idea of precomputing and storing results for a range of possible inputs. Our work builds upon the
widely used Plookup framework [19], which is well-established in the ZKP domain. While there
are alternatives, such as Jolt [36], we leave exploration of these methods for future work. Instead of
reinventing cryptographic primitives, we focus on solving concrete implementation challenges to
enhance e�ciency of SQL operations within the PLONK framework. While previous works [30, 47]
implement operations like �lter, sort, and join using boolean or logic gate frameworks, our approach
utilizes arithmetic-based PLONKish circuits. This fundamental di�erence introduces signi�cant
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challenges, as arithmetic circuits require di�erent optimization strategies compared to boolean
circuits. Adapting SQL operators in this context necessitates a rethinking of their expression and
optimization to achieve maximum e�ciency.
De�nition. The input to a range check gate, which checks if elements are between ~1 and ~ģ ,

consists of a column �in containing = elements {G1, G2, . . . , GĤ} to be range-checked, and a column
(lookup table) ) containing< sorted values {~1, ~2, . . . , ~ģ} representing the valid range, where
~1 < ~2 < · · · < ~ģ . The output of the range check gate is a column �out containing = elements
{I1, I2, . . . , IĤ}, where each Iğ indicates whether Gğ is within the range de�ned by the lookup table
) . Speci�cally, Iğ = 1 if Gğ ∈ {~1, ~2, . . . , ~ģ}, and Iğ = 0 otherwise.

Design A: A single range check.We start with a simple case where we only want to prove
that a single value G is in a speci�c range [0, C], hence proving that 0 f G f C . In the �rst step of
constructing the circuit, we create a private array % (stored in an advice column) with the same
length of set & where the �rst element in % is G and the other elements are any values copied from
& (these values can be duplicates). Then, the prover supplies a permutation of % , denoted by % ′

where % ′ is private and stored in an advice column in the circuit. The values in % ′ are sorted so
that duplicate values are row-adjacent to each other.
In the second step, we establish a �xed column to store the set & , arranging the values in

ascending order. This organization ensures that both the prover and the veri�er are aware of the
values and their corresponding indices within the table. Such knowledge is crucial for determining
the size of the lookup table needed.
The prover supplies a permutation of & , denoted by & ′, where & ′ is private and stored in an

advice column in the PLONKish circuit. The purpose of the permutation & ′ is to hide the position
of values in & as the veri�er knows all the information about & . Then, the circuit can compare
values in& ′ and % ′ to check whether G (in % ′) is equal to some value in& ′, without revealing which
value is that in & ′.

Now, we show how we can check whether the value G in % ′ is equal to a value in & ′. The values
in & ′ are arranged in a speci�c order such that either % ′

ğ = & ′
ğ or that %

′
ğ = % ′

ğ−1 where %
′
ğ and &

′
ğ

represent the 8-th elements of % ′ and & ′ respectively. Speci�cally, we enforce that the �rst values
of % and& are equal, i.e, % ′

ğ = & ′
ğ with 8 = 0. If % ′

ğ ≠ & ′
ğ for 8 > 0, we enforce that % ′

ğ = % ′
ğ−1 meaning

that % ′
ğ must be a duplicate of % ′

ğ−1 in this case. Therefore, these constraints guarantee that every
value in % ′

ğ is equal to some value in & ′. Formally, we enforce that either % ′
ğ = & ′

ğ or that %
′
ğ = % ′

ğ−1,
using the rule:

0 =

{

(% ′
ğ −& ′

ğ ) · (%
′
ğ − % ′

ğ−1) if 1 f 8 f ;4=(& ′) − 1,

% ′
ğ −& ′

ğ if 8 = 0.
(1)

With the above polynomial constraints, the veri�er knows that all the values of % ′ are in& ′ without
knowing the position information of the values in % ′ and & ′ (therefore it does not know the exact
values at each position in % ′, preserving the privacy of the G value).

Since % ′ and & ′ are permutations of % and & , the polynomial constraints above ensure that all
the values of % (and % ′) are in & . To ensure this property, we develop polynomial constraints to
ensure that both % ′ is a permutation of % and & ′ is a permutation of & :

ĢěĤ (č )−1
∏

ğ=0

(%ğ + U) (&ğ + V) =

ĢěĤ (č )−1
∏

ğ=0

(% ′
ğ + U) (& ′

ğ + V) (2)

where %ğ , &ğ , %
′
ğ and &

′
ğ represent the 8−th element in % , & , % ′, and & ′ respectively, and U and V

are randomly chosen parameters. The random values U and V conceal the contents of the columns,
ensuring con�dentiality during veri�cation and preventing zero products from causing collisions
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Fig. 4. Range check with lookup tables illustration.

due to poor randomness.
ĢěĤ (Č )−1
∏

ğ=0

(%ğ + U) =

ĢěĤ (č )−1
∏

ğ=0

(&ğ + U) (3)

To make the circuit formulation e�cient, we express it as a recursive function to ensure that
each equation maintains a low polynomial degree:

/ğ+1 = /ğ ·
(%ğ + U) (&ğ + V)

(% ′
ğ + U) (& ′

ğ + V)

/len(č ) = /0 = 1

(4)

Example 4.1. Figure 4 illustrates our proposed lookup table circuit design for proving a range
check statement without revealing the speci�c values of G1 and G2. The prover uses a �xed column&
accessible to veri�ers, containing values in the range [0, 4). An advice column % includes the actual
values of G1 and G2 with the remaining cells �lled arbitrarily from & . The prover then generates
advice columns % ′ and & ′ as permutations of % and & , respectively, with % ′ sorted in ascending
order and duplicates adjacent, ensuring & ′ starts with the same value as % ′. The prover checks that
each % ′

ğ is either equal to &
′
ğ or %

′
ğ−1. This polynomial constraint ensures that values are within the

range.

Design B: Batching range check. The lookup table technique facilitates verifying whether
all elements of an array % belong to the set & = {8 | 0 f 8 f C, 8 ∈ Z}, e�ectively checking if
they fall within the range [0, C]. By organizing the elements of % into a single advice column and
aligning the set & within a �xed column, the lookup table approach previously discussed can be
applied. For instance, the circuit depicted in Figure 4 can demonstrate whether the elements in the
array [0, 2, 1, 3] (column & ′) are contained within the range [0, 4) (column &). The complexity of
verifying the inclusion of the arrays [0] and [0, 1, 2, 3] within the range [0, 4) remains consistent,
as it necessitates the application of formulas 1 and 4 for each row.
Design C: Optimizing range checks with bitwise decomposition and lookup tables. To

mitigate the scalability concerns associated with range checks, especially when the size of the set&
becomes signi�cantly large (e.g., 264), we propose an optimization technique that leverages bitwise
decomposition in conjunction with lookup tables. This method entails representing integers in a
�xed bit-length format, such as 64 bits, and subsequently verifying the integrity of this bitwise
representation in relation to the original integer value.
Given an integer # and its representation as a sequence of bits 10, 11, . . . , 1ġ−1, where 10 is the

least signi�cant bit and1ġ−1 the most signi�cant, the relationship between# and its bits is described

by # =
∑ġ−1

ğ=0 1ğ · 2
ğ . We partition the bitwise representation of integer # into smaller segments

of 8 bits, referred to as u8 cell. This approach is predicated on the standard binary representation
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of integers, wherein the integer is segmented into 8-bit blocks. For instance, a 64-bit integer is
divided into 8 u8 cells, each encapsulating an 8-bit slice of the integer. Constraints are imposed
to ensure this decomposition is accurately executed with the constraints # =

∑

7

ğ=0 2ğ · 2
8ğ for a

64-bit integer # , where 2ğ represents the 8-bit segment of # at position 8 . Each u8 cell 2ğ should
have values within the range 0 to 255 (inclusive), corresponding to 2

8 − 1. To validate each u8 cell,
we utilize a �xed-sized lookup table of size 256, which contains integers from 0 to 255. This table
allows e�cient range checking for each segment of the integer. The advantage of using this lookup
table is that it is �xed-sized (256 entries) and can be reused multiple times for each u8 cell check.
This ensures that each u8 cell 2ğ can quickly verify if its value falls within the allowed range of 0 to
2
8 − 1. By reusing the lookup table across all 8 u8 cells of # , we streamline the validation process
and ensure consistent range checks.
Design D: Conditional statements proving. The previous range check method faces limi-

tations when a value falls outside the lookup range, making proof construction di�cult. To this
end, we introduce an augmented method that seamlessly integrates with lookup tables to facilitate
range checks while gracefully handling conditional scenarios. When dealing with data �ltering,
an upper-bound value, denoted as D, typically exists. Consequently, for G g C , this also implies
D > G g C . Therefore, proving D > G g C is equivalent to proving 0 f G − C f D. To establish G < C ,
it su�ces to demonstrate that G − C < 0. By adding D to both sides of the inequality, we obtain
0 f G − C + D < D. Introducing a binary variable, denoted as 2ℎ42: , to determine whether G < C , we
ultimately prove the following statement:

0 f (G − C) + check · D < u (5)

To accomplish this, the prover con�gures several supporting columns in the PLONKish circuits.
Initially, an advice column is created to output 1 if G < C and 0 otherwise. Additionally, another
advice column is established to store the values of G − C . Finally, the prover undertakes the task of
proving that check + (G − C) falls within the range of [0, D) with the assistance of the lookup tables
introduced in Section 4.1.

Note that the values in the “check” columns are prover-determined, with no explicit constraints
imposed among G , C , and “check”. However, if the “check” values are inaccurately provided,
the proof generation process encounters a failure. Moreover, the values in the “x”, “t”, and “x-t”
columns adhere to the constraints 24;;ğ (G) − 24;;ğ (C) − 24;;ğ (G − C) = 0 for the initial four rows,
where 24;;ğ (G) represents the value in the “x” column at row 8 . These constraints guarantee that the
discrepancies between corresponding elements in the “x” and “t” columns align with the values
stored in the “x-t” column.

Correctness.We prove the correctness of the range check gate from two aspects. (1) Property 1:
Element Inclusion. All the values in % ′ are in & ′. Assume that there exists one value G in % ′ that is
not in & ′. We will show that this assumption leads to a contradiction. If G is the �rst value in % ′, by
Equation (1), 0 = % ′

0
−& ′

0
, implying % ′

0
= & ′

0
. Thus, G = % ′

0
contradicts G ∉ & ′. If G is not the �rst,

for 1 f 8 f len(& ′) − 1, 0 = (% ′
ğ −& ′

ğ ) (%
′
ğ − % ′

ğ−1) enforces %
′
ğ = & ′

ğ or %
′
ğ = % ′

ğ−1. If %
′
ğ = & ′

ğ , G ∈ & ′;
if % ′

ğ = % ′
ğ−1, G duplicates % ′

ğ−1, tracing back to % ′
0
= & ′

0
. Thus, G must be in & ′, contradicting G ∉ & ′.

Hence, all % ′ values are in & ′, proving Equation (1)’s constraints ensure % ′ ¦ & ′. (2) Property
2: Permutation Integrity. Assume % ′ and & ′ are not permutations of % and & . This implies that
some %ğ or &ğ does not match any corresponding % ′

ğ or &
′
ğ . Since the products involve symmetric

polynomials, if {% ′
ğ + U} ∪ {& ′

ğ + V} are not permutations of {%ğ + U} ∪ {&ğ + V}, the two sides of
the equation cannot be equal due to the unique factorization of polynomials. Therefore, by the
Fundamental Theorem of Symmetric Polynomials, % ′ and & ′ must be permutations of % and & .
With the two properties proven above, we can guarantee the correctness of proving G < C if

G is not larger than C . The inequality in Equation 5 holds if 2ℎ42: = 1 and G < C , or if 2ℎ42: = 0
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and G f C . Therefore, setting the binary variable check correctly is su�cient to determine whether
G < C or not. By transforming G to (G − C) + check · D, we can guarantee that the transformed G is
in the range of 0 to D.
Complexity of a Range Check Gate. The ZK proof generation cost depends on the number

of constraints. We analyze the complexity of a gate by specifying the required number of each
type of constraint. To validate that all elements of an array % reside within a set & , the number
of constraints, as de�ned in Equations 1 and 4, corresponds to the greater of |% | or |& |, denoted
as max( |% |, |& |). When employing the bitwise decomposition method for an input set % where
|% | > 256, the lookup table is padded to match the size of the input by including duplicates of
values ranging from 0 to 255. For 64-bit integers decomposed into 8 u8 cells, each cell undergoes
a range check utilizing the lookup table. The number of constraints, as described by Equations 1
and 4, is equivalent to 8|% |. Additionally, the number of constraints required to ensure the correct
decomposition of integers into u8 cells, as well as verifying that all segments of the integer fall
within the speci�ed ranges, is |% |. Finally, to transform a value G with G ′ = (G − C) + check · D (see
Equation 5), an additional |% | constraints are needed.

4.2 Sort

We detail our approach to proving the correctness of sort operations.
De�nition. The input of a sort gate consists of a table � with< columns �1,�2, . . . ,�ģ , where

�ğ represents di�erent attributes or values to be sorted. Each column �ğ contains = elements
{Gğ1, Gğ2, . . . , GğĤ}. The output is a table (� with< columns �′

1
,�′

2
, . . . ,�′

ģ , where each column �′
ğ

contains the sorted elements {~ğ1, ~ğ2, . . . , ~ğĤ}. Here, ~ğ Ġ represents the 9-th element in column �′
ğ

of � , arranged in the desired order (e.g. increasing or decreasing).
Design. The �rst step in proving sort operations entails generating a witness, which includes

the result of applying a speci�c sorting algorithm to the input data. The prover has the �exibility
to choose any sorting algorithm, as long as the resulting order is correct. Let � and ' represent the
input data and the sorted result, respectively. Two essential properties of ' must be guaranteed
for a successful proof. First, the data in ' should match that in � except for the order, leading to a
permutation check between ' and � . The following constraints, akin to Equations (4), ensure this:

/ğ+1 = /ğ ·
'ğ + U

�ğ + U

/len(Ā ) = /0 = 1

(6)

Here, �ğ and 'ğ represent the 8-th element in � and ', and U is a randomly chosen parameter
similar to ones in Equation 2.
In sorting mechanisms where multiple attributes are considered, a uni�ed approach is adopted

to encapsulate these attributes into a singular composite entity. This is achieved by allocating a
consistent bit-length representation for each attribute, speci�cally employing a 64-bit format for
this purpose. Such a �xed bit-length representation is critical in preserving the intrinsic value
hierarchy and relative ordering of each attribute during the process of concatenation. In addition,
the data in ' must align with the sort de�nition. To verify this, we check that 'ğ f 'ğ+1 (assuming
an ascending order) for 8 in the range [0, len(') − 1). This is achieved by proving the transformed
statement introduced in Equation 5 with the assistance of lookup tables.
Correctness. We prove the correctness of the two properties introduced in the sort gate. (1)

Property 1: Permutation Integrity. ' is a permutation of � . The proof follows a similar approach
used to prove that % ′ is a permutation of % . For details, refer to the proof in Section 4.1. (2) Property
2: Sortedness. ' is sorted in ascending order. Assume, for contradiction, that ' is not sorted in
ascending order. This implies there exists at least one pair of indices 8 < 9 such that 'ğ > ' Ġ .
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Fig. 5. Illustration with the SQL query “SELECT SUM(D2) FROM T GROUP BY D1.”

Since we enforce the constraints 'ğ f 'ğ+1 for each pair ('ğ , 'ğ+1) where 8 ∈ [0, len(') − 1), and
the correctness of the range check gate for 'ğ f 'ğ+1 is proven in Section 4.1, we guarantee that
'ğ f 'ğ+1 holds for all valid indices 8 . This contradicts the assumption that there exists at least one
pair of indices 8 < 9 such that 'ğ > ' Ġ . Therefore, ' must indeed be sorted in ascending order to
satisfy the de�ned properties and constraints of the sort operation.

Complexity of a sort gate. Permutation checks between � and ' require |� | constraints, as per
Equation 6. Additionally, checking 'ğ f 'ğ+1 for 8 ∈ [0, len(') −1) requires constraints proportional
to |� |, similar to the range check gate in Section 4.1.

4.3 Group-by

In this section, we outline our methodology for verifying the correctness of group-by operations.
De�nition. The input of a group-by gate consists of a table � with = columns �1,�2, . . . ,�Ĥ ,

where each column represents di�erent attributes of � . The output is a table (� with = + 2 columns
that rearranges the records of � such that records with identical values on the grouping attributes
G are placed into the same group-by bin. Alongside the original = columns from � , (� includes
two additional columns: (1) start_index: Indicates the starting index of each group-by bin in � . (2)
end_index: Indicates the ending index of each group-by bin in � . The start_index and end_index
are used for the later aggregation functions such as SUM and others.
Design. Given an input table � and the group-by attributes G, the prover �rst generates the

sorted table (� based on the group-by attributes G. This sorting ensures that records with identical
values in G are adjacent in (� . To verify that (� is a sorted version of � , we employ the approach
introduced in Section 4.2.
To identify the starting and ending indices of each group-by bin, we check each record in (�

on the group-by attributes G. We use a binary value 1 to indicate whether a record in (� is a
starting or ending record, where 1 signi�es that the record is either a starting or ending record.
The constraint to check whether two values E1 and E2 are equal or not with a binary value 1 is as
follows:

1 = 1 − (E1 − E2) · ? (7)

where ? is the value provided by the prover. Speci�cally, ? = 0 if E1 = E2 and ? =
1

Ĭ1−Ĭ2
otherwise.

To ensure that the prover provides the correct value of ? , we add the following constraint for each
pair of E1 and E2:

1 · (E1 − E2) = 0 (8)

A record is marked as the start of its bin if no preceding adjacent records share identical values
in group-by attributes G. Conversely, it is marked as the end of its bin if no subsequent adjacent
records share identical values in G.

Correctness. We utilize the sort gate introduced in Section 4.2 to ensure that (� is sorted. The
correctness of the sort gate is demonstrated in Section 4.2. Next, we deduce the correctness of
the starting and ending indices of each group-by bin. According to Equation 7, if E1 = E2, then
1 = 1, and Equation 8 holds trivially as 1 · (E1 − E2) = 0. If E1 ≠ E2: (1) If ? =

1

Ĭ1−Ĭ2
, then 1 = 0, and
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Equation 8 holds because 1 · (E1 − E2) = 0. (2) If ? = 0, then 1 = 1. In this case, Equation 8 does not
hold as 1 · (E1 − E2) = (E1 − E2) ≠ 0. Consequently, a valid proof cannot be generated because the
system detects the inconsistency.
Complexity of a group-by gate. The group-by operation is facilitated through the sorting

of associated attributes, followed by a veri�cation of the accuracy of sorting. Consequently, the
computational complexity and the number of constraints required for ensuring the correctness
of group-by operations are identical to those identi�ed in the analysis of sorting constraints.
Additionally, the number of constraints (Equations 7 and 8) needed to identify the starting and
ending indices of each group-by bin is 2|� | where � is the input set.

Example 4.2. Figure 5 illustrates the SQL query "SELECT SUM(D2) FROM T GROUP BY D1."
The input table has columns D1 and D2. The prover adds sorted columns SD1 and SD2, as well
as columns S and E for group-by bin indices. An advice columnM is created where"ğ is de�ned
as"ğ−1 + (�2ğ if (�1ğ = (�1ğ−1, otherwise"ğ = (�2ğ , with"0 = (�20. The �nal output column
O captures the result by copying only the last record of each group-by bin, as indicated by the E
column.

4.4 Join

Now, we present our methodology for verifying the correctness of join operations.
De�nition. The input of a join gate consists of two tables )1 and )2, each represented by

< columns �
(1)
1

,�
(1)
2

, . . . ,�
(1)
ģ for )1 and = columns �

(2)
1

,�
(2)
2

, . . . ,�
(2)
Ĥ for )2. These columns

correspond to di�erent attributes of )1 and )2, respectively. The joining operation is performed
based on equality conditions between speci�ed joining attributes J1 from) 1 and J2 from) 2, which

may involve any of the columns �
(1)
ğ from )1 and �

(2)
Ġ from )2. The output is a table �� that

combines records from ) 1 and ) 2 where the joining condition ) 1.J1 = ) 2.J2 is satis�ed. The table

�� has< + = columns: (1) The �rst< columns �
(1)
1

,�
(1)
2

, . . . ,�
(1)
ģ are the attributes from )1. (2)

The next = columns �
(2)
1

,�
(2)
2

, . . . ,�
(2)
Ĥ are the attributes from ) 2.

Design. Consider two private tables ) 1 and ) 2, and let ? be the join predicate. To establish the
correctness of the join operations, the prover calculates several types of witnesses locally. Initially,
the prover creates two new tables ) ′

1 and ) ′
2 to reorder the records within them. Speci�cally,

each table ) 1′ and ) 2′ is split into two parts: ) 1′Ħ and ) 2′Ħ contain records contributing to the join
predicate, while ) 1′ĤĥĤ−Ħ and ) 2′ĤĥĤ−Ħ contain records that do not contribute to the join predicate.
The correctness of this reordering is veri�ed using polynomial constraints, as detailed in Equation 6.

Next, the prover ensures that the records in ) 1′ and ) 2′ indeed contribute to the join predicate.
In the context of primary key-foreign key joins (non-primary key-foreign key joins are discussed
later), assuming that table T1 contains the foreign key and table T2 contains the primary key,
instead of checking the existence of records in one table in another, the prover proves that ) 2′ĤĥĤ−Ħ
is disjoint from )1′ĤĥĤ−Ħ and )1′Ħ . Traditional straight-forward methods involve checking each
value in) 1′ĤĥĤ−Ħ against) 2′ĤĥĤ−Ħ , resulting in a large number of polynomial constraints. To address
this, a sorted table ( is created to store the unique values in ) 1′ĤĥĤ−Ħ and ) 2′ĤĥĤ−Ħ , with a proof of

(ğ < (ğ+1 for 8 ∈ [0, len(() − 1).
However, duplicates 1 in ( pose challenges in determining their origin (from the same or di�erent

tables). To resolve this, the prover implements a deduplication strategy through the creation of

1Since SQL operates on multisets, duplicates are not only a concern in join algorithms but also throughout the entire

query process, as the result must accurately re�ect the correct number of duplicates. In Plookup [19], this can be e�ciently

managed by encoding the frequency of elements in the multiset into polynomial commitments. Plookup then ensures that

the correct number of occurrences for each value is preserved during query execution, maintaining the semantic integrity

of SQL operations.
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Fig. 6. Illustration with the SQL query “SELECT T1.D1, T2.D2’ FROM T1, T2WHERE T1.D1 = T2.D1’ ”.

distinct versions, namely )1Ěě and )2Ěě . This process ensures that each value in )1′=>= − ? is
accounted for in )1Ěě and every value in )2′=>= − ? is accounted for in )2Ěě . To establish this
deduplication property, we leverage the mechanism of lookup tables we proposed in Section 4.1.
The veri�cation of the range check operation, which con�rms the existence of each value in a
column within a lookup table (i.e. another column), is adapted to ensure the deduplication of ) 1Ěě

and )2Ěě . It is noteworthy that the distinction between )1Ěě , )2Ěě , and a lookup table for range
check lies in their roles within the PLONKish circuit con�guration. Speci�cally, )1Ěě and )2Ěě

serve as advice columns, signifying the privacy of the data they contain, while a lookup table for
range check is stored in an instance column, designating the public nature of the data within it.
This distinction is integral to the overall architecture of the PLONKish circuit con�guration. The
prover establishes that ( is a permutation of )1Ěě ∪)2Ěě , ensuring that ( matches the records in
) 1Ěě and ) 2Ěě except for the order. And (ğ < (ğ+1 holds for ∀8 ∈ [0, ;4=(() − 1).

Next, we introduce the method for generating join results from contributing records. Consider the
scenario where the join predicate between two tables, ) 1 and ) 2, is de�ned as ) 1.attr1 = ) 2.attr2.
In the context of primary key-foreign key joins, the uniqueness of primary keys implies the absence
of duplicates, ensuring that each foreign key in ) 1 corresponds to at most one matching row in ) 2.
Let us denote )1′Ħ and )2′Ħ as the subsets of )1 and )2, respectively, that are relevant to the join
predicate. Within )1, attr1 serves as the foreign key, whereas attr2 is the primary key within )2.
For each record in )1′Ħ , a search is conducted within )2′Ħ to identify any record that satis�es the
join predicate. Upon �nding a match, the record from ) 2′Ħ is concatenated with the corresponding
record from )1′Ħ , forming a combined record. To verify the join results, two key properties must

be established: (1) Equality Veri�cation: For each concatenated record A , we set the polynomial
A .attr1 − A .attr2 = 0, where attr1 and attr2 are the attributes from ) 1 and ) 2, respectively, used for
the join. (2) Source Veri�cation: To ensure all records joined with ) 1′Ħ originate exclusively from
) 2′Ħ , we use lookup tables as described in Section 4.1.

To handle joins without relying on primary key-foreign key relationships, we compute the join
result by pairwise comparing records from )1′Ħ and )2′Ħ using a similar procedure. However, the
method introduced above may not include all records contributing to the join predicate in ) 1′ and
)2′. To ensure completeness, we additionally prove that )1′ĤĥĤ−Ħ is disjoint from )2′ using the
same deduplication and sorting mechanism. This ensures that all relevant records are considered
in the join operation.
Scalability. When managing a large number of join operations, the database’s query engine

typically executes these joins sequentially, joining two tables at a time. This results in various
execution plans having di�ering numbers of total and intermediate join results. Optimizations
aimed at reducing the number of these total and intermediate join results should be identi�ed and
applied prior to the circuit design phase.
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Correctness. To ensure the correctness of the join gate, we verify the following properties: (1)
Property 1: Permutation Integrity. The sets ) 1′Ħ ∪) 1′ĤĥĤ−Ħ and ) 2′Ħ ∪) 2′ĤĥĤ−Ħ are permutations of
the original tables ) 1 and ) 2, respectively. The proof follows a similar approach used to prove that
% ′ is a permutation of % . For details, refer to the proof in Section 4.1. (2) Property 2: Completeness.
) 1′ and ) 2′ include all records that contribute to the join predicate. Assume ) 1′ misses a record G
that contributes to the join predicate, i.e., G is in) 1′ĤĥĤ−Ħ . We prove that) 1′ĤĥĤ−Ħ is disjoint from) 2′

and ) 2′ĤĥĤ−Ħ using the Element Inclusion and Sortedness properties as detailed in Section 4.2. This
implies G does not overlap with) 2′, indicating that G does not contribute to the join predicate. This
contradicts the assumption, proving that ) 1′ includes all relevant records. Similarly, ) 2′ includes
all records that contribute to the join predicate. (3) Property 3: Exclusivity. )1′ and )2′ do not
include records that do not contribute to the join predicate. Assume )1′ includes a record ~ that
does not satisfy the join condition. During the join process, the concatenated record A involving
~ would fail the constraint A .attr1 − A .attr2 = 0, contradicting the assumption. Therefore, )1′ and
)2′ only include records that contribute to the join predicate. The correctness of the above three
properties ensures the correctness of the join gate.

Example 4.3. Figure 6 illustrates the SQL query "SELECT T1.D1, T2.D2 FROM T1, T2 WHERE
T1.D1 = T2.D1’." Upon receiving the input tables ) 1 and ) 2, the prover creates new tables ) 1′ and
)2′. The upper parts contain records contributing to the join )1.�1 = )2.�1′. The green area in
columns��1 and��1

′ shows corresponding values. The prover veri�es that the non-contributing
records (gray areas) in��1 and��1

′ do not intersect by constructing columns (1 and (2, removing
duplicates, and ensuring that each value in (1 and (2 exists in their respective sorted columns
(1′ and (2′. The process of proving that the non-contributing records (gray areas) in ��1′ do not
intersect with the contributing records (green areas) in��1 is performed in a similar manner. This
step is omitted in the example and assumes that table )1 contains the foreign key and table )2
contains the primary key. A column ( is constructed by sorting (1′ and (2′. The prover checks ( is
a permutation of (1′ ∪ (2′ and that (ğ < (ğ+1 for all 8 . The join results, as depicted in the last four
columns, are derived from the green-highlighted values in ��1 and ��1′.

Complexity of a join gate. Given two tables) 1 and) 2 with the number of records denoted by
) 1num and ) 2num respectively, we categorize records that contribute to the join predicate as ) 1join

and )2join, and those that do not contribute as )1disjoin and )2disjoin. The counts of these records
are denoted as ) 1join_num, ) 2join_num, ) 1disjoin_num, and ) 2disjoin_num respectively. We omit the copy
constraints in this analysis as they are lightweight. A permutation or range check gate, sized at - ,
implies that - corresponding constraints are applied across two columns, each populated with -

values. The computation of constraints for a join operation encompasses �ve distinct categories:

• Two permutation check gates with sizes ) 1num and ) 2num.
• Two range check constraints with lookup tables (referred to by Equations 1 and 4) in sizes
) 1disjoin_num + ) 2num and ) 2disjoin_num + ) 1num for the deduplication process.

• One range check constraint with lookup tables (referred to by Equations 1 and 4) in sizes
) 1disjoin_num +) 2num and) 2disjoin_num +) 1num (in the worst case) for sorting the deduplicated
versions.

• The number of equality check constraints (in the form G−~ = 0) for checking if corresponding
values satisfy the join predicate, with a maximum of either ) 1disjoin or ) 2disjoin, for columns
such as �1 and �1′ in the given �gure.

• One range check constraint with lookup tables (referred to by Equations 1 and 4) in the size

of max()1disjoin,)2disjoin) to ensure all records joined with )
join
2

originate exclusively from

)
join
2

.
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4.5 Aggregation and Other Operations

Since aggregation operations are often applied together with the group-by operation, we describe
how to implement them in conjunction with group-by. The SUM gate is implemented by establishing
a column that holds intermediate, non-�nal values for each group-by bin, as described in Figure 5
and Example 4.2. To identify the starting and ending indices of each group-by bin, we can follow the
method introduced in the Group-by section 4.3. Once we determine the indices of these boundary
records for each group-by bin, we can employ a similar approach to implement the COUNT gate.
With the SUM and COUNT values determined for each bin, the AVERAGE gate can be naturally
realized through a division gate that processes these values.

Furthermore, the MAX and MIN gates are facilitated by a sorting mechanism. By arranging the
values in ascending order, the smallest and largest values, corresponding to the MIN and MAX
gates respectively, can be directly identi�ed as the �rst and last values in the sorted list. Along
with these functionalities, we have implemented additional aggregate functions such as Standard
Deviation, Variance, and Median. Additionally, we have developed capabilities for string matching
and concatenation by validating the equality of sub-strings in two strings using lookup tables.
For projection operation, we use selectors to project the desired columns by setting them to

1 for inclusion and 0 for exclusion. Each selector controls a multiplication gate, multiplying the
column by 1 or 0 based on whether it is part of the projection. To ensure that the projection results
include all the desired columns without revealing their positional information, we employ a lookup
table technique. This approach guarantees that the output preserves the required columns while
maintaining the privacy of their original positions.

The set operations can be implemented using the methods described for the join gate. Set equality
is handled by �rst sorting both tables and then comparing tuples at each index. Set disjointness is
checked by sorting both tables and ensuring that any consecutive tuples 'ğ and 'ğ+1 in the sorted list
satisfy 'ğ f 'ğ+1. Set intersection is achieved as illustrated in Example 4.3 and Figure 6, where the
join method is applied to extract common tuples between tables ' and ( . For set union, tuples that
are common to both ' and ( (found via set equality) are �rst removed from ', and the remaining
tuples are then concatenated to ( .
We have covered the most common operations used in SQL queries. Other variations of these

operations can be constructed using the methods introduced in this work, as long as they can be
represented within the circuit framework.

4.6 Combining Gates

PoneglyphDB processes full SQL queries by combining customized gates for di�erent operators as
follows:

1. Mapping Operations to Gates: Each SQL query operation, such as sorting or joining, is
represented by a corresponding gate. This gate executes the speci�c operation, ensuring
accurate relationships between inputs and outputs.

2. Prede�ned Execution Plan and Assembly: The SQL query’s prede�ned execution plan
outlines the sequence and dependencies of operations, guiding the assembly of gates in
sequence. Each gate’s output serves as the input for the next, ensuring data �ows correctly
through the circuit according to the optimized plan.

3. Combining Gates: Multiple gates are combined to handle various operations as outlined in
the execution plan. The gates are strategically assembled in sequence, with the output of one
gate serving as the input for the next.

Since each operator (such as sorting or aggregation) is veri�ed separately, proving each ensures
the correctness of the entire query. However, even when all inputs appear in the output, as with

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 63. Publication date: February 2025.



63:20 Binbin Gu, Juncheng Fang, and Faisal Nawab

sorting, there is a risk of data leakage from intermediate steps like comparisons. This is because
intermediate steps, like comparing the relative order of data elements, may reveal unintended
patterns or relationships. This is why we implement oblivious circuits: to ensure that no information
about intermediate steps, such as comparisons or data order, is exposed during proof generation.

Correctness. Let �1,�2, . . . ,�Ĥ be a sequence of gates processing a query. Assume �1 receives
correctly transformed input and operates correctly, yielding correct output $1. Assume for each �ğ

(where 1 f 8 f =), the output$ğ is correct and serves as input to�ğ+1. Given each gate’s correctness,
�ğ+1 operates correctly on $ğ to produce $ğ+1. By induction, the �nal output $Ĥ produced by the
last gate �Ĥ is correct.

5 EXPERIMENTAL RESULTS

We evaluate PoneglyphDB in terms of proving and veri�cation time, memory usage, operator
performance, proof size and scalability.

5.1 Experimental Setup

We implement PoneglyphDB’s circuits and gates using Halo2, a state-of-the-art ZKP system [44].
The implementation of all Plonkish circuits for the queries is conducted using Rust. Our evaluation
of PoneglyphDB focuses on a selected subset of the TPC-H benchmark [39], speci�cally targeting
queries that are representative of common data analytics workloads.
We compare with ZKSQL [30], a state-of-the-art solution for using interactive ZKP in data-

base systems. The interactivity in ZKSQL involves breaking down the computation into smaller
sub-circuits to reduce the complexity of the overall circuit. These sub-circuits are then veri�ed
interactively, where the prover demonstrates the correctness of each sub-circuit step-by-step.
The interaction ensures that the combined outputs of the sub-circuits correspond to the correct
execution of the SQL query, allowing the veri�er to check the correctness of the entire query
process incrementally. However, this interactivity increases the communication and computational
overhead, as each round of interaction requires multiple exchanges between the prover and veri�er.
To align with existing research evaluations of ZKP-based databases and to conduct a fair com-

parison with ZKSQL, we have implemented the six TPC-H queries identi�ed in their evaluation:
Q1, Q3, Q5, Q8, Q9, and Q18.
In addition, we compare our system with Libra [40], a state-of-the-art non-interactive ZKP

system that leverages the GKR protocol [20], which is also foundational to vSQL [47]. To the best
of our knowledge, Libra is the most e�cient publicly available system utilizing the GKR protocol.
Since the high-level logic for implementing SQL operations in vSQL can be adapted across various
ZKP systems, we use Libra’s circuit structure to implement SQL operations based on the logic and
optimizations introduced in vSQL. While Libra uses a �xed input structure, we adopt an alternative
approach to avoid the need for relay gates for inputs that may not be needed immediately. That is,
we split the circuit into multiple parts, ensuring that each part includes only the necessary inputs
in its input layer.
In our experimentation, we adhere to the same query variables wherever applicable, such as

the orderdate �lter, to maintain consistency and relevance in our results. For query Q9, similar
to ZKSQL’s approach, we exclude string pattern-matching predicates from our evaluation. We
converted all �oating point operations to 64-bit integer ones in our experiments similar to ZKSQL.

Our experimental setup quanti�es the database scale by the size of the central fact table, lineitem,
and scales the dimension tables proportionally, as described in the TPC-H benchmark speci�cations.
We report results across three database sizes—60k Rows, 120k Rows, and 240k Rows—with the
lineitem table containing 60k, 120k, and 240k rows, respectively. These varying sizes provide
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Table 2. Running time (in seconds) for generating public parameters with di�erent maximal numbers of rows
in Plonkish circuits.

Maximal number of rows 2
15

2
16

2
17

2
18

Running time (s) 104 221 410 832

Table 3. Running time (in seconds) of database commitment over data of increasing sizes.

The size of the database 60: Rows 120: Rows 240: Rows

Running time (s) 2.89 5.53 10.94

insights into the scalability and practicality of PoneglyphDB in handling veri�able databases across
di�erent volumes of data. Unless otherwise mentioned, our experiments run on 60k Rows.

Our experiments are conducted on Chameleon Cloud [27] using a Skylake node, equipped with
two Intel Xeon Skylake CPUs running at 2.60 GHz, 192 GB of RAM, and 10 Gigabit Ethernet
connectivity.

5.2 Setup

PoneglyphDB eliminates the need for a trusted setup process. Instead, PoneglyphDB utilizes public
parameters. These parameters are essential for both constructing and verifying proofs and are
known to all parties involved—the prover and the veri�er alike. Importantly, these parameters are
not con�dential and require no secrecy.

Table 2 details the running time associated with generating these public parameters. It’s worth
noting that the generation of these parameters is a one-time process; once created, they can be
stored and reused inde�nitely. The versatility of these parameters allows for their application across
various circuits, provided the number of rows in the circuit does not surpass the maximum capacity
de�ned by the public parameters. Consequently, the time spent generating these parameters is not
considered part of the cost associated with generating SQL query proofs in this work.

Running time of database commitment. The proof generation for a �xed database commit-
ment can be done once and be reused for SQL queries that are applied on the database. Table 3
shows the running time of committing to the 8 TPC-H tables.

5.3 Benchmarking with ZKSQL

We compare the running time of generating proofs for six SQL queries in PoneglyphDB with
that of ZKSQL. The results (the left �gure of Figure 7), reveal that PoneglyphDB—although a
non-interactive ZKP solution—achieves performance that is similar to the interactive ZKP solution
ZKSQL for most queries. In fact, PoneglyphDB outperforms ZKSQL signi�cantly—by at least up
to 40%—for queries Q1 and Q9. This di�erence is attributed to the relatively fewer range check
(or �ltering) and sort operations required in Q1 and Q9. PoneglyphDB utilizes arithmetic circuits
for handling range checks and sorting operations. Despite the use of lookup tables to optimize
the degrees of polynomial constraints and reduce the circuit size, arithmetic circuits can become
more complex than boolean circuits, which ZKSQL employs for �ltering and sorting operations,
especially as the range of data increases. Nevertheless, PoneglyphDB exhibits enhanced performance
in join operations, which necessitate arithmetic expressions to represent polynomial constraints
accurately. Figure 10 (right) shows the memory usage for generating proofs for the six SQL queries
in PoneglyphDB and ZKSQL. PoneglyphDB uses signi�cantly less memory, ranging from 23% to
60% of ZKSQL’s usage.
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Fig. 7. Running time (le� figure) and memory usage (right figure) for generating SQL queries proofs.
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Fig. 8. PoneglyphDB’s performance breakdown of dif-
ferent proof generation steps for Q1.
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Fig. 9. PoneglyphDB’s performance breakdown of dif-
ferent proof generation steps for Q3.

5.4 Benchmarking with Libra

Since Libra is a non-interactive ZKP system, we benchmarked PoneglyphDB against Libra in terms
of three critical factors: proving time, veri�cation time, and proof size. As shown in Table 4, Libra
requires more proving time than PoneglyphDB. In Libra, complex operations such as sorting require
a large number of basic gates, with each gate limited to two inputs, which increases both the circuit
depth and size. For comparison operations in SQL queries, decimal values are represented using full
64-bit binary representations in Libra. Logical operations on these 64-bit binary numbers necessitate
circuits that handle each bit individually, including managing carry bits across the entire bit width.
This bitwise processing, along with the overhead of transforming binary values to decimal for
subsequent arithmetic operations, results in signi�cantly larger circuits. This increased circuit
size leads to longer proving times. In contrast, PoneglyphDB optimizes the handling of decimal
values by segmenting them into 8-bit chunks and leveraging lookup tables to e�ciently validate
and perform operations on each segment. The larger circuit size in Libra not only increases the
proving time but also leads to longer veri�cation times and larger proof sizes, as shown in Table 4
for queries Q1, Q3, and Q5.

5.5 Operation Performance

To enhance our understanding of PoneglyphDB’s performance, we assess the overheads associated
with the steps involved in proof generation. Figures 8 and 9 show a breakdown of the execution
time to generate proofs for queries Q1 and Q3, respectively. We selected these two queries for
our performance evaluation because they encompass a comprehensive range of SQL operations,
including multiple aggregations, joins, group-by, sort, and �ltering functions.
The proof generation process begins with the construction of a comprehensive circuit, encap-

sulating all facets of witness generation; this preliminary phase is described as a “circuit without
any gates”. Following this, the procedure advances to the integration of polynomial constraints—or
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Table 4. Benchmarking against Libra in terms of proving time (in seconds), verification time (in seconds), and
proof size (in kilobytes).

Proving time Veri�cation time Proof size

Libra

Q1 812 1.290 435.8

Q3 997 1.212 411.4

Q5 1021 1.227 413.9

PoneglyphDB

Q1 180 0.617 8.6

Q3 161 0.725 24.7

Q5 313 0.739 29.6
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Fig. 10. Proof generation time and memory usage over data of increasing sizes.

gates—that correspond to the SQL operations. These operations include �ltering, grouping by, or-
dering, and performing eight aggregations for query Q1, as well as applying three �lters, executing
two joins, a group-by, an order-by, and an aggregation for query Q3.
The results show that the initial step takes over 50 seconds, attributable to the �xed overheads

determined by the chosen public parameter; a larger public parameter size increases this initial
step overhead. The signi�cant overhead in proof generation, notably from the aggregations in
Q1 and the �lters and joins in Q3, can be attributed to the extensive computational resources
required. Aggregation operations, for instance, necessitate the collation and computation across
sizable datasets to yield a singular summary outcome. This task demands multiple iterations of
data processing and polynomial constraints veri�cation within the circuit, thereby amplifying its
complexity and extending the duration needed for proof generation. Similarly, �lters and joins in
Q3 are computationally intensive, as �ltering requires checking each record against conditions,
while joins involve aligning records from di�erent tables based on join keys.

5.6 Scalability

We evaluate the scalibility of PoneglyphDB by generating proofs with larger workloads. We
evaluate with the workload of TPC-H’s lineitem table at 120k and 240k rows as the lineitem table
dominates the complexity of the SQL queries. As depicted in Figure 10, the running time and
memory consumption increases with the increase in the size of the dataset. Speci�cally, the running
times for the six SQL queries—Q1, Q3, Q5, Q8, Q9, and Q18—exhibit a gradual increase as the
database size increases from 60k to 240k Rows.

The running time for query Q1 starts at 180 seconds for 60k rows and increases to 683 seconds
for the 240k row dataset, indicating a proportional relationship between dataset size and observed
performance. This is because the size of our circuits linearly grows with the size of inputs and all
the polynomial constraints enforced on the circuits have low degrees. This validates our design goal
of maintaining low-degree polynomials in PoneglyphDB’s circuits. Memory usage shows a similar
pattern, with the memory footprint for query Q1 starting at 1.53 GB for 60k rows and increasing to
5.12 GB for 240k rows.
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6 Related Work

There is substantial research into veri�able SQL querying, employing a variety of techniques that
ensure the integrity and security of query results. These methods can be broadly categorized
into three groups: Authenticated Data Structures (ADS) [38], Trusted Execution Environments
(TEE) [35], and Cryptographic Proof Techniques [17].

ADS-based methods use asymmetric cryptography to authenticate data, requiring extra memory
to maintain authenticated data structures for SQL query veri�cation [4, 33, 34, 41, 50]. While secure,
these methods are generally limited to speci�c computational tasks.
TEE-based approaches, exempli�ed by [3, 4, 37, 51, 52], secure SQL query results through

computations performed within trusted hardware environments. Basic TEE implementations might
expose sensitive data through program traces. Integrating TEE with Oblivious Random Access
Machine (ORAM), as in [23], can obscure such traces but at the cost of additional computation time,
highlighted in [2, 29].
Cryptographic proof techniques, such as zk-SNARKs [6] and zk-STARKs [5], enable entities to

verify the correctness of computations without revealing underlying data. These techniques have
found widespread application across various domains, including blockchain o�-chain computations
and privacy-preserving machine learning [24, 25, 31, 53]. These techniques ensure high levels of
security but are resource-intensive, requiring substantial memory tomanage numerous intermediate
values and considerable time to create proofs.

Prior cryptographic proof systems, such as IntegriDB [49] and vSQL [47], employ cryptographic
veri�able computation to validate a wide range of SQL queries. While IntegriDB and vSQL ensure
data integrity, they operate in an outsourcing model and do not inherently provide zero-knowledge
properties. An extension of vSQL, referred to as vSQL+ [48], introduces ZKP; however, it lacks
support for ad-hoc queries and does not thoroughly address practical e�ciency or the translation
of arbitrary SQL statements into cryptographic protocols necessary for such guarantees. Notably,
vSQL and vSQL+ are based on public-coin protocols [21, 22], which can be transformed into non-
interactive ZKP systems using the Fiat-Shamir heuristic [16]. ZKSQL [30] reduces the proving
cost by dividing the entire circuit into smaller sub-circuits to reduce the size of the overall circuit.
This approach supports ad-hoc queries and maintains zero-knowledge properties, but it shares
the common limitations of interactive ZKP. ZKSQL is based on designated-veri�er protocols [22],
where the Fiat-Shamir heuristic cannot generally be applied to transform the protocol into a
non-interactive proof.
Our system, PoneglyphDB, generates non-interactive ZKP using recursive proof composition

[7, 9, 11, 28]. It enhances proof generation performance by optimizing arithmetic circuits.

7 Conclusion

In this paper, we introduced PoneglyphDB, a non-interactive ZKP-based database. PoneglyphDB
achieves both con�dentiality and provability e�ciently by leveraging recent advances in cryp-
tography. Also, PoneglyphDB is designed to optimize the performance of proof generation by
utilizing recursive proving methods as well as specialized designs for SQL queries. The experimental
evaluation of PoneglyphDB against standard SQL queries benchmarked on the TPC-H benchmark
demonstrates that PoneglyphDB can o�er competitive or superior performance compared to exist-
ing interactive ZKP solutions.
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