9176

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

RollStore: Hybrid Onchain-Offchain Data Indexing
for Blockchain Applications

Qi Lin, Binbin Gu

Abstract—The interest in building blockchain Decentralized Ap-
plications (DApps) has been growing over the past few years. DApps
are implemented as smart contracts which are programs that are
maintained by a blockchain network. Building DApps, however,
faces many challenges—most notably the performance and mon-
etary overhead of writing to blockchain smart contracts. To over-
come this challenge, many DApp developers have explored utilizing
off-chain resources—nodes outside of the blockchain network—to
offload part of the processing and storage. In this paper, we propose
RollStore, a data indexing solution for hybrid onchain-offchain
DApps. RollStore provides efficiency in terms of reduced cost
and latency, as well as security in terms of tolerating Byzantine
(i.e., malicious) off-chain nodes. RollStore achieves this by: (1) a
three-stage commitment strategy where each stage represents a
point in a performance-security trade-off—i.e., the first stage is
fast but less secure while the last stage is slower but more secure.
(2) utilizing zero-knowledge (zk) proofs to enable the on-chain
smart contract to verify off-chain operations with a small cost.
(3) Combining Log-Structured Merge (LSM) trees and Merkle
Mountain Range (MMR) trees to efficiently enable both access
and verification of indexed data. We experimentally evaluate the
cost and performance benefits of RollStore while comparing with
BlockchainDB and BigChainDB.

Index Terms—Blockchain, decentralized applications, indexing.

I. INTRODUCTION

ECENTRALIZED Applications (DApps) are applications
D that are implemented as smart contracts. A smart contract
is a program where its state and logic are maintained by a
blockchain network.! This makes DApps inherit blockchain
features such as decentralization, transparency, and tamper-
freedom [6]. (However, this does not mean that DApps are
perfectly decentralized or tamper-free. This is because of the
possibility of designing smart contracts in an extendable way
either for legitimate or malicious reasons.) Recently, there has
been a lot of interest in DApps. Various DApps have amassed
hundreds of thousands of users and hundreds of millions of
dollars in assets [12]. DApps span many areas such as decen-
tralized finance [11], gaming and metaverses [18], and supply-
chain [49].

Manuscript received 10 May 2023; revised 8 July 2024; accepted 19 July
2024. Date of publication 12 August 2024; date of current version 13 November
2024. This work was supported by the NSF under Grant CNS1815212 and Grant
SaTC-2245372. Recommended for acceptance by K. Zheng. (Corresponding
author: Qi Lin.)

The authors are with the Institute of Computer Science Department, Uni-
versity of California, Irvine, CA 92697 USA (e-mail: linql 1 @uci.edu; binging
@uci.edu; nawabf@uci.edu).

Digital Object Identifier 10.1109/TKDE.2024.3436514

'In this paper, we consider permissionless blockchain technologies such as
Ethereum as they are the ones used predominately by DApps [12].

, and Faisal Nawab

DApp developers face many challenges, including the per-
formance overhead, security concerns, and monetary cost of
writing to blockchain smart contracts. Writing to blockchain
smart contracts often involves significant transaction finalization
times, with some operations taking tens of minutes to complete.
This delay can hinder the real-time responsiveness expected
in conventional applications [24], DApps also struggle with
scalability issues, especially as user bases grow. Blockchain
networks, on which many DApps are built, face limitations in
terms of transaction throughput [7]. Additionally, Security is
a paramount concern in DApps. Smart contract vulnerabilities
and consensus algorithm weaknesses are areas of focus [44].
Notably, the average cost of a single smart contract operation
is estimated to be around $3 [43]. This monetary factor di-
rectly influences the economic feasibility of DApps development
and usage. To overcome these challenges, many DApps are
developed using the hybrid onchain-offchain model [3], [20],
[34], [57] which makes them directly centralized (unless the
off-chain part is also decentralized), non-transparent and open
to any tampering, and we call it the hybrid model for short.
In this model, part of the DApp logic is maintained in the
on-chain contract-where “on-chain” refers to its implementation
in the blockchain smart contract, ensuring strong security. The
rest of the processing and storage of the DApp is maintained
by off-chain nodes—where off-chain nodes are nodes that are
outside of the blockchain network. By delegating part of the
processing and storage to off-chain nodes, both the monetary
cost and performance overhead are significantly reduced.

However, building a complex DApp is still a significant chal-
lenge in the hybrid model, particularly when constructing a data
management system for DApps that meets diverse performance
and security requirements. In this work, we aim to build a data
indexing solution for DApps in the hybrid model that can flexibly
balance the performance and security of the system to meet
different requirements. Data indexing is a fundamental problem
in data management and a building block for more complex
data management functionality. Therefore, the development of
an efficient and secure data indexing solution for DApps can
have an impact on a wide-range of decentralized data man-
agement systems. Our solution aims to extend and support the
space of blockchain-based data management systems [4], [14],
[16], [20], [32], [36], [37], [38], [40], [48]. Currently, existing
blockchain-based databases (BBDBs) fall under one or more of
the following categories: (1) BBDBs that do not utilize off-chain
nodes efficiently (i.e., by writing all data and/or operations
on-chain) [4], [16], making them inefficient in terms of monetary

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

cost and performance overhead. (2) BBDBs that utilize off-chain
nodes that are assumed to be trusted/permissioned (i.e., with
closed membership) [32] or utilize trusted execution environ-
ments [14]. These are strong assumptions for decentralized envi-
ronments and limit their practicality for DApps which are widely
implemented in permissionless environments. (3) BBDBs that
utilize authenticated data structures and verification methods to
verify query results using on-chain digests or verifiers [37], [55].
However, these BBDBs only consider querying immutable data
and suffer from the two limitations above if data is mutable.

We propose RollStore, a data indexing solution for hybrid
blockchain DApps that overcomes the challenges of prior BB-
DBs. RollStore has the following properties: (1) it utilizes
off-chain nodes efficiently by not needing to send raw data
or operations to the smart contract. Smart contracts are only
used for performing low-overhead operations (i.e., lightweight
verification of data digests). This makes RollStore efficient in
terms of reducing the monetary cost of writing to the blockchain.
(2) RollStore does not assume that any off-chain node is trusted.
(3) RollStore has a key-value interface where users can both
read and write data. RollStore is the first data indexing solution
for hybrid DApps that can achieve all these three properties. We
envision that RollStore will be augmented with existing BBDBs
as their indexing component to help transform them to enjoy the
aforementioned RollStore properties.

RollStore can achieve the three properties above by bringing
together and innovating in the areas of zero-knowledge (zk)
proofs [53], optimistic and zk rollups [41], [47], Log-Structured
Merge (LSM) trees [31], and Merkle Mountain Range (MMR)
trees [45]. We utilize Zero-Knowledge Succinct Non-interactive
Argument of Knowledge (zk-SNARK) [8], [19]. Zk-SNARK
allows an untrusted node to perform a computation that changes
the state of the data and produce the new state with a proof of
the new state’s correctness (i.e., that the new state is the result
of applying a correct mutating operation on the previous state).
The proof can be verified with low overhead, thus allowing cheap
verification on-chain. We also utilize the concept of optimistic
rollups (o-rollups) [41]. O-rollups were proposed as a layer-2
scaling solution for blockchain, where off-chain nodes perform
compute functions on behalf of the layer-1 blockchain. Then,
clients can interact with the blockchain in a challenge period to
challenge the correctness of the off-chain outcomes. Finally, we
integrate LSM and MMR tree structures in the design. LSM’s
append-only nature makes it a good candidate to manage the
movement of data from one stage to another (e.g., data in
each LSM layer corresponds to a different processing/validation
stage). MMR trees allow deconstructing a single MMR tree
into smaller Merkle trees. This allows better modularity and
integration with LSM trees.

RollStore combines the aforementioned technologies in a new
design for hybrid DApp data indexing. RollStore consists of
three types of nodes: (1) an updater node that manages clients
requests, (2) a prover node that is responsible for generating
proofs for operations, and (3) a backup node that maintains
the verified data and associated proofs. In addition, RollStore
includes a smart contract that performs lightweight verification
of digests and proofs.

9177

One of RollStore’s key proposals is a three-stage commitment
process to manage the performance-security trade-off of verifi-
cation methods. We support three kinds of verification methods
for updates to off-chain data: (1) zk-SNARK proofs: this is the
most trusted verification as it verifies the correctness of the
data operation and new off-chain data state. However, it has
high computational complexity requiring a long time to generate
proofs. (2) Optimistic rollups (o-rollups): this method relies on
a simple data digest that is written on-chain. Users agree on
the digest and the data represented by that digest; however, it is
not guaranteed that the corresponding operations and new state
are processed correctly. (3) Off-chain response proof: this is the
weakest guarantee which is for the client to receive a signed
response from the off-chain node before any digest or proof is
written on-chain.

RollStore addresses the challenge of accommodating diverse
user requirements in DApps. Our system is designed to cater
to varied needs in terms of security and performance. For in-
stance, in the context of bank transactions, scenarios involving
small amounts and high-frequency transactions demand lower
latency and higher throughput, aligning with our first-stage
commitments. Conversely, situations involving large amounts
and low-frequency transactions prioritize strong security and
can tolerate higher latency, aspects provided by our last-stage
commitments. Our system exhibits flexibility by offering distinct
performance-security trade-off services tailored to different user
requirements.

The signed response for both o-rollups and the off-chain
response represents a promise to include and process the request
on a specific LSM page. The client can use the signed response to
punish the off-chain node in case it lies or acts maliciously—by
not honoring its promise to process the request correctly. (We
discuss the punishment smart contract in the paper. This contract
withdraws a penalty from the off-chain node’s escrow fund if
malicious behavior is proven). RollStore ensures that any false-
hood by an off-chain node will eventually be detected by a client.
This is done by processing transactions through three stages
of commitment, starting from the off-chain response (fastest
commitment but with weaker guarantee), to o-rollups (slower
but with stronger guarantee), and finally to zk-SNARK (slowest
but with strongest guarantee). In the final step, RollStore checks
if the zZk-SNARK result matches the response sent to the client.
If they did not match, this is a sign that the off-chain node lied.
This process guarantees the detection of such malicious acts.
This guarantee of detecting malicious acts—with severe mone-
tary punishments through the punishment smart contract—is a
deterrent for off-chain nodes to act maliciously in the first stages
of commitment using off-chain response and o-rollups.

The contribution of the paper is summarized as follows:

e RollStore is the first dynamic indexing solution for hybrid
DApps, featuring a three-stage design that represents a
novel commitment path.

e RollStore is the first solution to incorporate both zk proofs
and o-rollups verification in the problem of indexing by a
novel design that builds on LSM and MMR trees.

e RollStore addresses the multi-level trade-off challenge
between security and performance, effectively tackling

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9178

Height 2

Height 1

Height 0

Fig. 1. An example of the Merkle mountain range tree.

the task of accommodating diverse user requirements in
DApps.

In the rest of the paper, we present background and related
work in Section II. Then, we present the design of RollStore
in Section III. An experimental evaluation is presented in
Section IV. We conclude in Section VI.

II. BACKGROUND
A. LSM Trees

Log-Structured Merge (LSM) Trees are widely used for data
indexing [31]. LSM trees are designed to support fast data
ingestion by appending entries for write operations instead of
updating the corresponding old entry in-place. Periodically,
appended data is merged with the rest of the LSM tree. This
append-only nature of ingestion makes LSM trees a suitable
candidate for write-intensive workloads.

There are many LSM tree variants [31]. Here, we provide a
description of the common and typical design aspects of LSM
trees. Generally, LSM trees contain several levels, Lo, L1, - - -,
Ly,. Level Ly is maintained in main memory while other levels
are persisted on disk. Incoming write operations are appended
to an in-memory mutable table. When the mutable table is full,
the data in it—represented as key-value pairs—is ordered and
inserted to L as a new page. Lo—as well as other levels—has a
threshold on the number of pages. Once this threshold is met, the
data in the L pages is merged with the pages in the next level.
This continues until data reaches the final level L;. When two
levels are merged, one of two widely used techniques is used:
tiering and leveling [10].

B. MMR Trees

The Merkle Mountain Range (MMR) tree [45] is a variant of
the Merkle tree [33] which is structured as a group of underlying
Merkle trees (Fig. 1). A MMR tree is an append-only tree where
elements are added as leaf nodes from left to right (Fig. 1 shows
the case of adding items 1 to 7 from left to right.) Once there are
two children nodes at a level with no parent node, a parent node
for the two children nodes is generated at the higher level. For
example, consider the MMR tree in Fig. 1 where internal node
numbers represent the generation order (e.g., Hash_1i is the
ith generated hash node). Hash_ 6, for example, is generated

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Block]—>

Block]—> Block]—>

Rollups Smart
Contract

I New State Root: 0x456789

[o bl
! Transaction Digest !
:Previmls Root: 0x123456 :4- -

1 New Root: 0x456789 0x456789

Block I

Blockchain

Current State Root: 0x123456

Fig. 2. An example of blockchain rollups.

after Hash_4 and Hash_5 are added (for items 3 and 4).
Adding Hash_ 6 in turn leads to creating Hash_ 7. In the figure,
there are three underlying Merkle trees with roots Hash_7,
Hash_10 and Hash_11. These roots are also called peak
nodes, and each underlying Merkle tree is called a mountain.
The MMR root is calculated as the hash of the peak nodes.

An MMR tree can provide an inclusion proof of a data item
in a similar way to Merkle trees. The inclusion proof includes
the sibling node of every node in the path from the data item
to the MMR root. For example, in Fig. 1, the inclusion proof
of item Item_3 contains Hash_5, Hash_ 3, Hash_10, and
Hash_11. A client receiving the proof calculates the MMR
root using the provided hashes. If the calculated MMR root
matches the original MMR root, then the client knows that the
received item is correct. A malicious server cannot generate a
false inclusion proof of an item that is not in the MMR tree.
This is because any change to leaf nodes alters the MMR root.
Additionally, a strong one-way hash function would likely (with
very high probability) not lead to a collision of the hashes of two
different input texts [35].

C. Blockchain Rollups

Rollups is alayer 2 solution to enhance blockchain scalability,
which aims to reduce the performance overhead and monetary
cost of operations on-chain [41]. In rollups, transactions are
aggregated and executed in off-chain nodes, then the on-chain
smart contract maintains the root value (e.g., Merkle root hash
value) which corresponds to the current state (Fig. 2). The
off-chain node publishes a digest for batched transactions, which
contains the previous Merkle root MMR_Pre (0x123456 in
the figure) and the computed new Merkle root MMR_New
(0x456789 in the figure). When such digest is written on-chain,
the smart contract checks whether the previous Merkle root
MMR_ Pre in this digest matches the current Merkle root stored
in the smart contract; if it does, the smart contract updates its
state root to the new MMR root, MMR_ New.

The main challenge with rollups solutions is that the off-chain
node might act maliciously and provide a new digest, MMR_New,
that corresponds to an incorrect new state, i.e., the transactions
that lead to the new state with digest MMR_ New are incorrect or
malicious transactions. To overcome this challenge, two types of

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

1 Only run once in setup node

Aset of
Constraints

SN—" N

Secret
Randomness 'J

Original
Statement

Setup Node

Blockchain
(Verifier Node

Smart
Contract

Deploy

<—| Verification Key ' Proving Key

1
1 1
1 1
1 I
1 1
1 1
1]
1 I
1 I
1 1
1 1
1 I
1 1
1 1
1 1
1 1
R e L T TP ----4
1 1
1 1
1 1
1 I
1 1
1 1
1 I
1 1
1 1

Prover Node

Public Secret
Input Input

Repeat for any secret input
&

Fig. 3. Components and flow of zk-SNARK.

rollups variants are used: optimistic rollups and zero-knowledge
rollups.

1) Optimistic Rollups: O-rollups ensures that the new hash
that is written on-chain, MMR_ New, is based on correct compu-
tation by using an interactive fraud-proof mechanism [1]. In this
approach, the new digest is written on-chain before verification
(optimistically). Then, off-chain nodes have an opportunity to
challenge the correctness of the state that is represented by
the new digest, MMR_New. This opportunity remains for a
pre-defined challenge period. After this period expires, if no
successful challenges are raised, then the new digest is assumed
to be correct. Otherwise, if a client challenges the correctness of
MMR_ New, then a special smart contract verifies the correctness
of the challenge. If the new state turns out to be incorrect, the
challenge succeeds, and the smart contract reverts the state to
a previous correct state. The first problem with o-rollups is
that the challenge period needs to be long—several days to a
week [41]-to provide an opportunity for challengers. Another
issue is that it requires an incentive mechanism to encourage
active participants to challenge and compensate them for their
efforts.

2) Zero-Knowledge Rollups: Zk-rollups is a non-interactive
solution based on a zero-knowledge proof mechanism [22], [53].
In zk-rollups, a digest includes a validity proof. The validity
proof proves that the generated new digest MMR_New corre-
sponds to a state of the data that is correct, i.e., the new state
with digest MMR_ New is the outcome of processing transactions
on the previous state with digest MMR_ Pre. The zk-SNARK
protocol is one of the methods used to implement zk-rollups [8],
[17], [19], [21], [50]. The zk-SNARK protocol is used in the
following way by utilizing three components: a setup node, a
prover node, and a verifier node (Fig. 3):

e The setup node generates a proving key Pk, and a veri-
fication key V'k, that will be used to generate and verify
proofs. For zk-SNARK, the setup—which is a one-time
process before operation—must be performed by a trusted
node. After setup, there is no need for trusted nodes. The
generation of the two keys is influenced by the type of

9179

computation that needs to be proven. The user provides the
program to be proven/verified as well as the inputs to such
computation. The user assigns which parts of the inputs
are public and which parts are secret. In RollStore, for
example, the program to prove/verify is the one that updates
the LSM tree and produces a new state represented by
MMR_ New; and the inputs to the program are the previous
state and its digest MMR_ Pre as well as the operations that
are applied to the previous state to generate the new state.

e The prover node is responsible for generating the proof of
the computation outcome. It needs three parameters, the
proving key Pkg, the public information, Inf_Pub and
the secret information, Inf_Secret. After collecting
these parameters, the prover node generates a proof 7, of
the computation.

e The verifier node needs three parameters: the verification
key V' kg, the public information Inf_Pub, and the proof
ms. After collecting these parameters, the verifier node
generates a decision (True or False). In hybrid blockchains,
the verifier can be a smart contract. Typical zk-SNARK
protocols are designed so that verification is fast at the
expense of a more lengthy proof generation process. This
is suitable for hybrid blockchains, since generating proofs
is performed by off-chain nodes that do not have the con-
straints of smart contracts, while verification is performed
on-chain.

It is important to note that zk-SNARKSs offers a different
functionality compared to digital signatures. Digital signatures
can be used to verify the authenticity of data that is signed by
a trusted node. However, digital signatures cannot be used to
verify computation that modifies data from one state to another
state. Also, digital signatures rely on a trusted node signing the
data. zk-SNARKS, on the other hand, can be utilized to verify
computation and it can generate zero-knowledge proofs on an
untrusted node.

D. Related Work

Blockchain-Based Databases (BBDBs): BBDBs are databa-
ses that utilize blockchains in various ways to utilize
blockchain’s features such as transparency and immutability [4],
[14], [16], [32], [36], [40]. Most of this work targets permis-
sioned blockchain settings, where the blockchain network has a
closed-membership assumption, i.e., all the participants in the
blockchain network are authenticated and known. This permis-
sioned setting allows faster and cheaper processing which makes
it suitable for enterprise and consortium (multi-organization)
applications. However, the closed-membership assumption of
permissioned blockchain prevents their use in DApps that re-
quire open-membership and not rely on a single or group of
fixed members. We target supporting these DApps which is now
alarge market with hundreds of thousands of users and hundreds
of millions of dollars in assets [12], [39], [51]. For this reason,
we tackle the unique challenges that are faced when building a
BBDB over permissionless blockchains. Due to their focus on
permissioned blockchains, prior BBDBs [5], [25] do not factor in
the monetary cost and latency challenges of using permissionless

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9180

blockchain. This led to them being unsuitable for DApps due to
high costs and latency from writing raw data directly to the
blockchain [4], [14], [16], [32].

Blockchain Rollups: Blockchain rollups was proposed as a
layer-2 scaling solution for blockchains [41] (see Section II-C
for an overview). Prior work utilizes either one of the two
rollups strategies—suffering from the disadvantages of the cho-
sen method. RollStore combines the two in a manner that
allows benefiting from their advantages while masking their
disadvantages. In particular, o-rollups digests can be written
faster on-chain but their challenge period takes a long time up
to days [41]. On the other hand, zk rollups’ time to generate
the digest/proof to be written on-chain is longer than o-rollups
time to write the digest; but, that proof is sufficient to finalize the
commitment of the operation without having to wait for days in a
challenge period. RollStore’s design allows enjoying the benefits
of fast o-rollups digest writing (stage 1) as well as the finality of
zk rollups (stage 2). Finally, RollStore introduces a new kind of
rollups that we utilize in stage 0 that is much faster than other
kinds of rollups as it does not require writing on-chain. This is
possible via a penalty strategy using a penalty smart contract.

Secure and Authenticated Off-Chain Processing: There have
been a lot of recent work on utilizing off-chain nodes to perform
compute and storage tasks for blockchain applications [2], [23],
[29], [34]. This is because utilizing off-chain nodes can reduce
the monetary cost and performance overhead of blockchain
applications. The challenge that is faced by many works in this
category is how to utilize off-chain nodes that might be untrusted.
For this reason, trusted and authenticated data structures were
used to provide trust on the outcome of off-chain nodes’ pro-
cessing [46], [52], [54]. These solutions focus on querying and
storing data securely off-chain, but do not support operations
that mutate the state of data, unlike RollStore and blockchain
rollups.

Related to this category is the plethora of work in authenti-
cated data and query processing [27], [56], [58]. These meth-
ods can be inherited and utilized in the context of querying
and processing data in hybrid onchain-offchain applications
(4], [46].

III. ROLLSTORE DESIGN

In this section, we present the design of RollStore.

A. System Model and Interface

System Components: RollStore consists of the following com-
ponents (Fig. 4):

® Updater node: the updater receives the write and read
requests from clients. It maintains a mutable table 7,,,,,
Level L of the LSM tree, and a MMR tree for data in L,
called MMR_ 0. Data in L represents stage O committed
data.

® Backup node: the backup maintains LSM levels (L, and
L>), and two MMR trees MMR_ 1 and MMR_ 2, each corre-
sponding to an LSM level. L contains data that is stage 1
committed (o-rollups) and L5 contains data that is stage 2
committed (zk-SNARK).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

(Ciient) iient Cien> Client

Updater Node
p

N
Mutable Table flush
xS 33}355 (stage 0)
<Ke§/; Value> 9
Level LO
MMR Tree 0 ¥ D
<Key, Value> <Key, Value>
KR8 valies | | Keivales |
Page 0-0 Page 0-1
L J
o-rollup (stage 1)€&——
Backup Node
v
(" Level L1 \(A
C MMR Tree 1 D Prover
<Key, Value> Key, Val
o Ve | [e values Node
<Key, Value> <Key, Value> \\
Page 1-0 Page 1-1 zk-rollup
Level L2 (stage 2) [T
MMR Tree 2 D)
<Key, Value> <Key, Value> ‘ i
Ky Vale | | Ky Vajue
Page 2-0 Page 2-1
9 9 J y,
f Blockchain Smart Contract
Stage 1 proofs
digests of page 1-0 & digests of page 1-1 & | ______

(pages 0-0 to 0-(m-1))
Stage 2 proofs
[digest of L2 MMR root digest of L2 MMR root
a

(pages 0-m to 0-(2m-1))

fter merging pages 2-0 to | after merging pages 2-k to
2-(k-1) and their digests | 2-(2k-1) and their digests

\

Fig. 4. Data architecture of RollStore.

® Provernode: the prover performs zk-SNARK computation
to generate proofs of Lo pages.

® Smart contracts: on-chain smart contracts handle the ver-
ification and maintenance of digests related to stage 1
and 2 committed data. Also, the smart contract handles
the punishment strategy by verifying whether an off-chain
node is malicious if a challenge is raised during stage O or 1
commitment. If the challenge indicates malicious activity,
then the smart contract punishes the off-chain node by
withdrawing funds from its escrow account.

The three types of off-chain nodes can be co-located or placed
across different machines. Also, the three types of nodes can be
elastically scaled, where more nodes of a node type are added
to scale its computation, e.g., prover nodes can be added to
speed up zk proof generation. We discuss scaling node types
in Section ITI-C.

System Interface: RollStore provides a read, and write oper-
ation interface for users to read and write data.

1. Write: (In: key — value pair, Out : inclusion proof,
sequence number): this call takes a key-value pair as the
input, the output of this call is the inclusion proof for the
key-value pair and the sequence number where it is added.
Clients use the write interface to submit write requests to
the updater node.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9181

2. Read: (In: key, Out : value, inclusionproof): this func-
tion takes a key as the input, the output of the read operation
is the corresponding value, and the inclusion proof for that
value. The inclusion proof might be (1) local (stage 0),
(2) global without full verification (stage 1), or (3) global
with full verification (stage 2). Clients use the read inter-
face to submit the read requests to the updater node.

Security Model: Off-chain nodes (updaters, backups, and

provers) are not trusted. They can deviate from the protocol
in arbitrary ways, similar to Byzantine failures [30]. Off-chain
nodes can collude together and with clients. The smart contract
logic executes correctly—without deviating from the protocol—
due to running on blockchain. Write requests are assumed to be
authenticated by a client, which prevents off-chain nodes from
fabricating clients requests.

Data Model: The following are the main data structures

maintained in RollStore (Fig. 4):

1. Distributed LSM tree: The LSM Tree maintains the key-

value pairs appended to RollStore. It has a mutable table
and three levels. The mutable table 7,,,, is at the updater
node. T;,,,+ holds the most recently appended entries that
are being staged to be pushed to level L of the LSM tree.
Level Ly maintains batches of appended data objects and
is stored in the updater node. A page is added to L(only
after a signed response is sent back to the clients with
operations corresponding to the page’s data objects. Pages
are assigned a monotonically increasing sequence number
Seq. We denote the ith appended page to Ly as page P0;.
Level L, represents pages that are consolidated from level
Ly. Before a page is written to Lq, its digest must be
written on-chain as part of stage 1 o-rollups. Pages in
L, are also assigned monotonically increasing sequence
numbers, where the ith page to be added to L, is denoted
P1,. Each page in L, represents a consolidation of pages
in L. Therefore, page P1; represents the consolidation
of pages POjm t0 POjm)4m—1 from Lo, where m is
the threshold of the number of pages in Ly to trigger a
consolidation of pages in L and creating a new page in
L. Note that a new page in L is added to the set of pages
in L1 and not merged with existing pages. Therefore, pages
in L; may have overlapping key ranges.
Level Lo represents pages that are merged from level L4
after a successful zk proof is generated for them. Pages
from L; are merged into Lo in the order of their sequence
numbers. Specifically, when the next k& pages at L; are zk
proven, then they are merged with the pages that already
exist in Ls. Therefore, after ¢ merge steps to Lo (where
1 = 0 corresponds to the first step), the pages in Lo contain
the merged key-value pairs that represent pages P1;.r)
t0 Pl(ux)4k—1), Which correspond to pages PO;.gm to
PO (isksm)+(msk)—1- Pages are merged from L; into Lo
which means that key-value pairs in Ly are ordered across
pages and each page has a unique range of key-value pairs
that do not overlap with other pages in L.

2. MMR trees: The MMR trees are used to create compact
digests of the data in the LSM tree. There are three MMR
trees, each one corresponding to an LSM level; MMR_ 0 for

Ly in the updater, and MMR_1 and MMR_ 2 for L; and L,
in the backup. The digests of this MMR tree are used for
the verification process of stage 1 and stage 2 committed
data.

. On-chain digests: The smart contract maintains a map

of digests and proofs that are related to stage 1 and 2
committed data. Users query these digests to verify the
authenticity of responses from off-chain nodes. There are
two sets of digests/proofs. The first setis for stage 1 digests.
In this set, each smart contract digest SC_Digest!;
corresponds to page P1;, which is a consolidation of pages
POjsm t0 PO(jsm)+m—1, Where m is the threshold for the
number of pages in L(before consolidation. The second
set is for stage 2 digests/proofs. In this set, each smart
contract digest/proof SC_Digest?; corresponds to the
1th merge operation on Lo. The ith merge operation in
Lo corresponds to merging the key-value pairs that are
consolidated in pages Pl t0 P1(jp)4x—1, where k is
the threshold of the number of L; pages to merge into Lo.

Commitment Model: A write operation W of client ¢ goes
through three stages of commitment:
1. Stage 0: When the updater sends a signed response back

to ¢, W is considered stage 0 committed. This signed
response includes acknowledging the operation is received
and promising to add it to page P0;. This stage of com-
mitment is the fastest as blockchain smart contracts are
not involved. Client ¢ can use the signed response later
to prove maliciousness if an updater has lied (e.g., oper-
ation W is not included in P0; and later not included in
P1;/m|, where m is the page threshold at Lo). A penalty
smart contract receives punishment requests from clients
that wish to prove maliciousness and punish malicious
off-chain nodes.

. Stage 1: Consider the page P0; that includes W and

the page P1y;/,,| that is the consolidated L; page that
includes P0;. When the digest of P0; and P1;/,,| are
written as SC_Digest!; to the smart contract, the op-
eration W is considered stage 1 committed. This takes
longer than stage 0 commitment since the digests need
to be written on-chain. However, it provides a stronger
consistency guarantee—if two clients observe the state of
a page P0; that is stage 1 committed, then they agree on
the state of the page. However, this stage of commitment
does not guarantee that the page itself is the result of
correct computations. This is because the off-chain node
can create a digest of arbitrary data. The client has to
wait for the next stage of commitment to ensure that the
derivation of the page is correct. However, if the off-chain
nodes lie about stage 1 committed pages, they won’t be
able to perform stage 2 commitment. This consequently
leads to clients sending a challenge request to the penalty
smart contract that punishes the off-chain nodes.

. Stage 2: Operation W is considered stage 2 committed

when the following is true: the zk proof of a merge that
includes page P1y;/,,) is verified by the smart contract
and written as SC_Digest? li/(m-k)|» Where k is the page
threshold at L. This is the strongest correctness guarantee

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9182

Block »| Block »| Block »| Block
Blockchain ‘—l r—‘
¥ Smart <
Contract
e \/_\ g
- ¥
y v SRR
0
. D 1 Updater
Client 7 node
A
B
] C 5 7
Backup - Prover
node node
D 6

Fig. 5. Lifecycle of RollStore requests. Red arrows represent stage 0 and 1
steps of write operations; blue arrows represent stage 2 steps of write operations;
and green arrows represent steps of read operations.

as a page that is stage 2 committed is guaranteed to
have been computed correctly by zk-SNARK. However,
generating such a proof is a complex and time-consuming
process.

B. RollStore Core Design and Protocol

We now provide a description of RollStore’s core design
and protocols. This includes the protocols for read and write
operations with a deployment of one updater, one backup, and
one prover. We will describe the protocol as we follow the
end-to-end life-cycle of write and read requests (Fig. 5 shows
the flow of operations that we refer to as steps in the rest of this
section).

Stage 0 Commitment: A client c creates a signed write request
W; that has a key-value pair, [K;, V;], and signature, S., as
payload; W; = (S, [K;, V;]). The signed write request is sent
to the updater node (step 0 in the figure). The updater node, after
receiving the signed request for W;, adds W; to the mutable table
Tt of the LSM tree. Once 715, is full, the key-value pairs in
Tt are reordered by their key and written as a new page PO, in
L of the LSM tree located in the updater node. Each page in L
is assigned a monotonically increasing sequence number. This
sequence number will be used by clients to track their operations
and ensure that they are eventually stage 1 and 2 committed.
Page P0;’s sequence number is denoted Seg; (if not mentioned
otherwise, assume that Seq; = 7).

The MMR tree in the updater node is updated to include
data in P0;. At this point, a signed response, Ack;, is sent
back to client ¢ for stage O commitment of W; (step 1). This
response includes: a stage-0 proof of inclusion of W; in P0;
(using the MMR tree) denoted Pr fgvl; also, Ack; includes
PO0;’s sequence number Segq; and the updater’s signature S,;
Ack; = (Sy, Seq;, Pr f‘(}vi). At this point, client ¢ considers the
operation stage 0 committed and has a signed response that the
updater node promised to include W; as part of page P0; with
sequence number Seg; in the LSM tree. If the updater node does

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

not honor this promise, then client ¢ can use this signed response
to trigger a punishment smart contract.

Stage 1 Commitment: The updater node continues adding
pages to Lo until the threshold of the number of pages, m, is
exceeded. At this point, Stage 1 commitment of pages in Lg
starts. The pages in Lo—including P0;—are now mapped by
the updater’s MMR tree, MMR_0. A consolidated page P1|;/.,
that consolidates the key-value pairs in pages in L is created.
The hashes and sequence numbers of the pages in Ly and the
hash of P1|;/,, are sent to the smart contract (step 2). The
smart contract records this root hash as the stage 1 commitment
o-rollups hash for the pages with the corresponding sequence
numbers. This hash is recorded as SC_Digestlu Jm]- Then,
the smart contract emits an event to the updater node and clients
about the new written hash and the corresponding page sequence
numbers? (step 3 and 3’). The updater node sends a signed
response to the client for stage 1 commitment (step 4). This
response includes the digest of page P1;/,,,| and the operation’s
inclusion proof.

After stage 1 commitment is performed for pages in Lo, all
pages in Lo and the consolidated page P1;/,,| are sent to the
backup node to be inserted to Ly (step 5). The original pages
in Lo are sent with P1;/,,,| to the backup node as they will be
used to provide inclusion proofs for read request as well as used
to generate the zk proofs in stage 2 commitment. After sending
P1);/m| and the Ly pages to the backup node, the pages in Ly
are cleared in the updater node. The page P1;/,,| will not be
merged with pages in L1, rather it will be inserted as a new page.
This means that the key-value pairs range of one page in L; may
overlap with the ranges of other pagesin L;.

Stage 2 Commitment: After page P1;/,, is added to L, the
backup node checks if the page threshold for L1, denoted £, is
met. If it did, the backup node starts the stage 2 commitment
process using zk-SNARK for pages in L;. This process merges
the pages in L1 with the pages in Lo. In the jth merge operation,
the pages to be merged from L, are from P1lj.; to P1(jp)1x-1-

The merge is performed in the backup node. Then, the merge
information is sent to the prover to generate a proof of the
correctness of the merge. The information to prove the jth merge
includes: (1) pages P11 10 P1(j.p) k-1, (2) pages POjigm to
PO (juksm)+(ksm)—1, (3) pages in Lo, (4) the MMR root of Lo,
MMR_2-Pre, before the merge, and (5) the MMR root of Lo,
MMR_2-New, after the merge (step 6). The prover node takes
all this information to generate a proof that: (1) each page in
pages Plj. to Pl(j.p)4r—1 is generated correctly from the
corresponding Lq pages, and (2) the merge of pages in P1;,y, to
P1(jup)4x—1 with pages in L (with MMR root MMR_ 2 -Pre)
yields a new state with MMR root MMR_ 2 -New.

After the zk-SNARK proof is generated, it is sent to the smart
contract to be validated (step 7). The smart contract performs the
following: (1) it validates the proof, (2) verifies that the hashes
used for Ly and L; pages match the ones in stage 1 commit

2 A smart contract in permissionless blockchain cannot communicate directly
to off-chain nodes. Here, we use the Ethereum emit operation that allows off-
chain nodes to filter and pull emitted data of interest from the smart contract.
Emit events in Fig. 5 are shown as dotted arrows.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

for the pages with the same sequence numbers, (3) verifies that
MMR_ 2 -Pre corresponds to the previous verification, (4) record
the new proof digest on-chain as SC_Digest?; for future
access by clients, and (5) an event is emitted to the backup
node and clients with operations in pages P1j.x to P1(jux) 451
(step 8 and 8’). The writes in Plj. to Pl(j)4x—1 are now
considered stage 2 committed. The backup node—once the proof
is verified by the smart contract—writes the merged pages to Lo
and clear pages P1;.x to P1(j.p) -1 from L.

Read Operations: A client reading a key x specifies the level
of the read request: stage 0, stage 1, or stage 2 committed. We
now show the process for a stage 0 committed read. (Stage 1
and stage 2 committed read follow the same process but starting
from the backup node at level Ly for stage 1, and L for stage
2). First, the read request 7 is sent to the updater node (step A).
When the updater node receives a read request, it responds with
a signed response with the corresponding key-value pair and
MMR inclusion proof (step B). The implications of this com-
mitment is similar to stage 0 commitment for write operations
where a read client can use the signed response as a proof of a
lie by the updater node in the future.

If the requested key was not in L, then the read request moves
to L (this is also the start point of a stage 1 committed read). The
client reads the most recent written stage 1 and 2 digests from the
smart contract to match them with the response once received.
The updater node forwards the request to the backup node
(step C) that responds with the corresponding key-value pair
from a page in level L; and the inclusion proof. The guarantee
of this read request is similar to a stage 1 committed write where
any two read requests would agree on the result but the result is
not yet verified by a zk proof. If the requested key is not in L,
then the read request moves to Lo (this is also the start point of a
stage 2 committed read). The backup node returns the requested
key-value pair from Lo if it exists (step D). The client can check
the inclusion proof against the smart contract and verify that the
read data object has been verified with a zk proof.

In both the stage 1 and stage 2 reads, the client reads the
proof/digest from the smart contract prior to the beginning of the
operation (note that unlike writing to blockchain smart contracts,
reading data from a smart contract is a fast operation). Consider
aread request that goes to a level L;; if the data object does not
exist in that level and the read is forwarded to L, 1, then a proof
of non-existence is also returned from L;. This can be done by
returning the pages with the ranges that overlap the requested
key so that the client can verify that the key does not exist.

C. Scaling Off-Chain Nodes

In this section, we discuss the scaling strategies for the three
node types, updaters, backups, and provers. This allows each
node type to utilize multiple nodes—instead of one node—to
service requests and improve performance and/or resilience.

Scaling Updater and Backup Nodes: The updater and backup
nodes maintain LSM and MMR data. We discuss scaling these
two types of nodes—which is increasing the number of updater
and backup nodes to achieve higher throughput through dis-
tributing the workload.

9183

RollStore offers a single-key operation interface (Section
II-A). The simplicity and efficiency of single-key operations
make them a suitable approach in DApps. Notably, applications
such as decentralized marketplaces utilize single-key operations
for activities like minting, allocation, and transfer of items; these
operations are performed by changing (or creating) a single data
record that corresponds to the item being managed. Another
set of examples include identity and access management where
single-key operations are used for authentication and access
control. Other than applications where it is sufficient to per-
form single-key operations, the strategy we adopt is to store
relevant data together within one shard. This approach—given
data locality—enables ordering more complex operations even
before stage 2 commitment. Our scaling strategy centers around
single-key operations, involving the sharding of data into n
shards. Each shard is maintained by a separate set of two
nodes, one for the updater and the other for the backup. The
smart contract is also deployed as n independent instances, one
for each shard. Each shard operates independently, enabling
parallel processing of data, thereby allowing the system to scale
effectively. This means that different shards can handle different
parts of a complex write operation simultaneously. This isolation
enables complex write operations to be performed on one shard
without affecting the data in other shards. However, it is crucial
to note that while each shard functions autonomously, our system
incorporates a coordination mechanism to address transactions
that involve data across multiple instances. This coordination
is essential for processing complex multi-data write operations.
The global ordering mechanism realized through a blockchain-
based smart contract (RollStore stage 2), plays a pivotal role
in orchestrating these operations. This ensures that transactions
touching data on multiple instances are executed in a coordinated
and deterministic order (see Section III-F, Theorem 4).

Scaling Prover Nodes: The prover node is tasked with gener-
ating the zk proofs of stage 2 commitment. Scaling the prove
operation is important as it is a lengthy process. To scale
proving tasks, we maintain n provers and distribute the zk
proving workload across the n provers. Specifically, each zk
proving task Task_1i is divided into n subtasks, Tasksyp 1
...Taskgyp n. Each subtask is responsible for proving N/n data
items, where N is the total number of data items in the prove
task.

Resilience and Availability: Increasing the numbers of nodes
can also serve the purpose of increasing the crash resilience
and availability of RollStore. Specifically, for stateful node
types—updaters and backups—the state of each node can be
maintained by a replication cluster [9]. Therefore, the failure of
one node can be tolerated by the rest of the nodes in the cluster.
For stateless nodes—provers—adding and replacing provers is
straight-forward, since the proving task is stateless. Therefore,
in the case of a prover failure, it can be replaced by another node
that takes over processing the requests from the backup node.

D. DApp-Indexing-as-a-Service Model

In this section, we discuss the payment model to enable
DApp-indexing-as-a-service. In this model, each off-chain node

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9184

Off-chain Node

\Z
|

1
Send Deposit

2 Send Request

Client

ﬁ Wrong Response
3

Retrieve Deposit
Smart Y s

& > Contract Valid? DN
node k/_\\

Punishment
Block —> Block ——> Block — Block

Challenge Result
4

5

Fig. 6. Incentive mechanism.

deposits an amount of cryptocurrency to an escrow fund in
the penalty smart contract in the setup stage. the addresses
(Ethereum addresses and IP addresses) of off-chain nodes that
successfully deposited the fund in the smart contract would be
stored in the penalty smart contract.

The penalty smart contract is initialized with the following
variables: OC_Addressg, OC_Addressyp, OC_Deposit,
and OC_Signature. The first two variables store the
Ethereum address and IP address of the off-chain node that
signed up as a server node. The OC_Deposit variable sets
an amount of how much cryptocurrency (Ether) should be de-
posited to successfully sign up. The variable OC_Signature
stores the digital signature of the off-chain node that provides
the service. Users can send their requests (writes or reads)
to valid server nodes that successfully stored their addresses
in the penalty smart contract. The valid server nodes process
these requests and interact with other nodes and the blockchain
network.

E. Failure Examples

In this section, we briefly present the new threats and discuss
how RollStore addresses them. RollStore allows servers to act
maliciously, but it guarantees the detection of the malicious act
and the punishment of dishonest servers. RollStore handles these
threats using a three-stage security protocol, ensuring that the
committed state (stage 2) is consistent across all honest nodes,
and any malicious act can be detected and punished in the three-
stage commitment process

Threat in Stage 0 Commitment: An adversary might delib-
erately respond incorrectly during stage 0 commitment. In this
scenario, if the adversary is an updater node, given a writes
request IV;, the malicious updater can return a wrong sequence
number Seq,,, or wrong inclusion proofs Pr fjj, . RollStore
guarantees that any incorrect response will be detected and
punished.

In stage 0 commitment, the updater provides a signed response
back to the client that its write request W, is part of a page P0; in
Ly with sequence number Seg;. Pr f{/)Vi is the signed inclusion
proof of the write in page P0;. An updater must use this page
PO, during the o-rollups operation of stage 1 commitment. The
client can verify that this is the case by observing the hashes that
were written on-chain for stage 1 commitment.

As shown in Fig. 6, we also designed an incentive mechanism
to encourage clients to verify and challenge such malicious
behavior. For example, if the hash that corresponds to sequence

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

number Seg; is the same as the one received in the stage O
response, then the promise is honored. Otherwise, the client
starts the penalty process. The client sends a request to the
penalty smart contract with the following input: the received
stage 0 response received from the updater node, i.e., Ack; =
(Su, Seq;, Pr f{}vi). The penalty smart contract verifies whether
the penalty should be applied by verifying the authenticity of
Ack; (thatitis signed by the updater signature S,,), and checking
whether the MMR root hash in Pr f{,)vi equals the o-rollups hash
in the smart contract for the page with sequence number Seg;. If
the hash is different, the penalty is applied. The client can retrieve
the deposit from that adversary node. However, if clients submit
an invalid challenge request to the penalty smart contract, the
smart contract will impose an additional payment that clients
are required to pay. As a consequence of an invalid challenge,
clients will also face a temporary restriction from connecting to
our system.

Threat in Stage 1 Commitment: An adversary can upload the
wrong digest of the stage 1 commitment or send the wrong pages
used in the proof generation. In this scenario, if the adversary
is an updater node, for a write operation W; in page P0; with
sequence number Seg;, the stage 1 commitment hashes Hash_o
in the smart contract include the hash for P0; as well as P1;
which is the merge result of page P0; and other L(pages. The
malicious node can upload a wrong digest Hash_w instead of
Hash_ o or send the wrong pages P1,, used in the later zk proof
generation. RollStore guarantees that no incorrect response can
pass through the rest of the system and will be detected, thus not
harming the system.

In stage 1 commitment, the client observes the stage 1 com-
mitment hashes that are written to the smart contract for stage
1 commitment. RollStore protocols ensure that these hashes
are the same ones that will be used in stage 2 commitment.
This is done because the smart contract—when verifying the
proof in stage 2 commitment—verifies that the hashes used to
generate the zk proof are identical to the ones used in stage 1
commitment by o-rollups. This is performed by checking which
hashes were written to the smart contract during stage 1 for the
corresponding pages used in the proof generation. In the case of
W;, this includes the hashes for pages P0; and P1;. Since this
is guaranteed by the verification process in stage 2 commitment,
the off-chain nodes must keep their promise in using the stage
1 pages in stage 2 commitment. If they commit a false digest
Hash,,, then they would have to indefinitely delay the stage 2
commitment, and if they send the wrong pages P1,,, they cannot
generate the correct zk proof. Thus, they cannot pass through
to the final commitment. Clients can then send requests to the
penalty smart contract to penalize such incorrect behaviors.

Delay Threat: In both stage 0 and stage 1 commitment,
another type of malicious act that the off-chain nodes may do
is to delay the next stages of commitment indefinitely. In this
case, we designed a two-step process to prove and punish the
off-chain nodes.

Consider the case of a client—with operation W, in P0,—
that received a stage O or stage 1 response r at time t. If the
user suspects that the off-chain nodes are not continuing the
processing of the request and future stages of P0;. The first step

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

is to send a delay — notification request to the penalty smart
contract. The input to this notification is a proof that a signed
response is received from the off-chain node for page P0;. The
smart contract records this notification with the blockchain block
number that it was written in, b}. Now, the off-chain nodes have
an opportunity to finalize the commitment of P0; before the
second step. The initiation of the second step is contingent on
reaching a future block b?, satisfying the condition b7 — b} >
bt, where bt represents the threshold specifying the minimum
number of blockchain blocks that must have elapsed before the
second step can be triggered. This is a predefined number that
is agreed on by the off-chain nodes and should be sufficiently
large to allow for processing requests. If bt blocks passed and
the client still observes that P0, is not committed, it starts the
second step by sending a delay — followup request. This request
references the first step. The penalty smart contract checks that
bt blocks have been committed since the previous notification
and if PO0; is still not committed. If both conditions are true, then
the penalty logic is applied and funds are withdrawn from the
off-chain node escrow fund.

This strategy can be applied separately for stage O and 1
commitment delays where there is a threshold bt for each type
of commitment. We use a block number threshold as it is a
standard practice in smart contract development. The reason for
using block numbers between requests is that it is predictable
since the commitment of a block typically takes a predefined
amount of time.

F. Safety

In this section, we formally prove the safety of read and write
operations in RollStore. Specifically, we first demonstrate that
the guarantees of each level of commitment are met, and then
we discuss the linearizability of RollStore. With these theorems
established, RollStore ensures that any security violations will
be detected and punished eventually, and the final commitment
stage (stage 2) remains linearizable across all honest nodes.

Theorem 1. (Stage 0 safety guarantee): For a write w that is
stage 0 committed in page P0; with sequence number 4, either
(1) the write w is going to be part of page PP0; thatis committed in
stage 1 as part of the o-rollups in the consolidated page P1; /|,
where m is the threshold of the number of pages in L; or (2) the
client can prove that the updater provided a false promise to
include w in page PO0;.

Proof: We prove this statement by contradiction. Assume to
the contrary to the defined guarantee that there is a write w that s
stage 0 committed as part of page P0;, however, (1) the off-chain
node used another page PO} (with the same sequence number as
P0;) during stage 1 commitment for page P1;/,,|, and (2) the
client cannot prove the fake promise about w.

If page P0; was used in stage 1 o-rollups of P1;/,,| instead
of P0;, this means that the stage 1 digest written on-chain,
SC_Digest!|;/,, for page PO; is different from the one
returned to the client during the response (step 1 in Fig. 5).
This is because any change to the contents of the page would
lead to a different digest. Therefore, the client knows that the
off-chain node lied by detecting the different digests. The client

9185

can then prove that the off-chain node promised to include w as
part of P0; by showing the signed response received in step 1.
This is a contradiction, which proves the guarantee. (]

Theorem 2. (Stage 1 safety guarantee): For a write w that is
stage 1 committed in page P°1; with sequence number j, the
following is guaranteed: the write w in P1; is going to be part

of the %th merge to Lo, where k is the threshold of the number
of pages in L.

Proof: We prove this statement by contradiction. Assume to
the contrary to the defined guarantee that another page P 1’j with
sequence number j—that does not include w—was included in
the merge to Lo. This means that the digest SC_Digest!;
(which corresponds to P1;) in the smart contract is different
than the digest of the page Pl;-. However, during the smart
contract verification of the merge proof, part of the verification
is that the digest of L, pages used in the merge are equivalent
to the ones that were written to the smart contract during stage
1 commitment; this includes SC_Digest! j- This means that
the proof verification in the smart contract will fail, which is a
contradiction, which proves the guarantee. |

Theorem 3. (Stage 2 safety guarantee): For a write w that is
stage 2 committed (i.e., the corresponding L, page P1, is stage
2 committed as part of merge number j), the following is true:
any stage 2 read operation will receive the key-value pair of w
if it reads from any merge starting from merge j to merge j' — 1
where the first write w’ that overwrites w is in merge j'.

Proof: We prove this by contradiction. Assume to the con-
trary that a stage 2 read operation that reads from merge j*,
where j < j* < j/, observes a value written by wx that is
different from the value written by w.? As part of the assumption,
w is part of the state of Ly as of merge j. Therefore, returning
another write value wx after merge j+, but before merge j' can
happen in one of two ways: (1) a write wsx is introduced in a
merge J between j and j*. This means that wx is part of the L
pages that correspond to merge 7. This is a contradiction since
we assume that the first write to overwrite w, w’, is performed as
part of merge ;' that is after j*. (2) the updater returns the value
of w that is not part of any merges between j and j*. However,
to be returned and verified by the reader, the write w* must be
part of Lo. Being incorporated in Lo necessitates that a zk proof
was obtained for it in some merge J between j and jx. This is
a contradiction since we assume that the first write to overwrite
w, w', is performed as part of merge j' that is after jx.]

Isolation Guarantee: RollStore guarantees linearizability [26]
of operations that are stage 2 committed. We focus our isolation
guarantee discussion on stage 2 commitment since it represents
the point of final commitment and verification of operations.

Theorem 4. (Consistency of stage 2 operations): Any history
H of stage 2 operations is linearizable.

Proof: A history H of read and write operations is lineariz-
able [26] if (1) H is equivalent to some sequential history S,
and (2) the partial time order <y is a subset of the equivalent
sequential history order <g.

3We ignore the trivial case when there are multiple writes to the same key of
w in the merge j. In such a case, the most recent write—the one in the highest
sequence numbered Ly page—overwrites the others.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9186

First, we prove the first property—H is equivalent to some se-
quential history S. RollStore performs stage 2 merge operations
one-by-one in the order of the pages in L; which in turn are
consolidations of ordered L pages. In particular, the jth stage 2
merge operation commits the operations consolidated in pages
Pl to Pl(j*k)+k_1, where k& is the threshold of the number of
pages in L. Now, we construct the equivalent sequential history
S. Consider the commit point for write operations in P1;,;, to
P1(j.p)45-1 to be the time when the verification is performed
and the proof is written on-chain. A read operation that reads a
value written by w that is committed as part of the jth merge
is ordered in the sequential history to be between the jth and
(7 + 1)th merge. The history H is equivalent to this constructed
sequential history S.

Second, we show that <y is a subset of <g. This is trivial
for write operations as the commit points are ordered by the
smart contract so that the values committed in the jth merge
precedes the values committed in the (j + 1)th merge. For read
operations, consider a read r that reads a value committed in
the jth merge. Consider the following partial time order in H.
The read 7 starts at time ¢5*"* and terminates at time <", The
read algorithm checks the smart contract first to inquire about
the most recent successful stage 2 merge in Lo. It receives the
proof and digest for the jth merge. Then, the read operation is
serviced from the backup node. From this timeline, we deduce
the following about the partial time ordering in H: (1) t;ommit <
tﬁ"d, where t‘;omm“ is the commit time of the jth merge in the
smart contract. This is true because the read observes the commit
digest/proof. (2) t51™™" > t5'*"* This is true because the read
observed the jth merge in the smart contract, which is a point
after ¢5'" | therefore, the next merge must have happened after
the start of the read operation. Therefore, r can be assigned
a commit time in the history in any point between £5/%"* and
minimum (te"e, £59™), This partial time ordering is part of
the constructed sequential ordering in S. O

IV. EVALUATION

In this section, we experimentally evaluate the performance
of RollStore in comparison to two blockchain-based databases
(BBDBs): BlockchainDB [16] and BigchainDB [32], as well
as compare our system with an oracle-based logging system,
WedgeBlock [42]. We perform our experiments by deploying
off-chain nodes on Chameleon cloud machines [28]. Each ma-
chine has two 64-bit Skylake CPUs with 192 GB of RAM and
300 GB of storage. We used the Zokrates [15] framework to
implement the zk-SNARK proof mechanism. The underlying
blockchain network we utilize for our experiments is the Ropsten
network, a widely used Ethereum test network.

Default Configuration: For each experiment, we use the fol-
lowing default configuration. The threshold of the mutable table
Tonut, level Lo, and level Lq are set to 64 writes, 7 pages, and
3 pages, respectively. The default batch size is 512. The main
variables we vary are the batch size and the number of server
nodes.

Benchmark: We use the Yahoo! Cloud Serving Benchmark
(YCSB) to generate the workload for experiments [13]. YCSB

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

is a key-value store benchmark that offers various workloads. In
our experiments, we utilize: (1) Workload A: 50% write opera-
tions and 50% read operations, and (2) Workload C: read-only
workload. We use a uniform distribution to choose access keys.

Evaluation Objectives: Our evaluation addresses:

e What are the performance characteristics of RollStore in
terms of throughput, transaction cost, and latency?

e What is the impact of the batch size on performance?
How does the performance of our system compare to other
hybrid blockchain-based database systems?

® How does the performance of our system compare to that
of an oracle-based system?

Metrics: The metrics we measure are:

® Throughput: This metric represents the throughput in terms
of operations per second. We measure and report the
throughput for each stage of commitment.

e Latency: The average latency to perform the three stages of
commitments for writes and the average time to serve read
requests. The latency of zk-SNARKSs proof generation for
Rollup-2 includes the time of setup and proof generation.
Since the time of setup is much less than that of the proof
generation, we show both latencies together.

® Transaction cost: The transaction fee cost incurred by
optimistic rollups (stage 1 commit) and zk proving (stage
2 commit) in terms of dollars per thousand operations (we
assume that the Ether price is $1500). Although the base
gas fee may fluctuate, our experiments were conducted in
close time proximity, during which we did not experience
significant fluctuation in gas cost. The cost in Ether indi-
cates the resource consumption on blockchain for methods
accurately.

Comparisons: We compare the performance of our system on
two widely used blockchain networks, Ethereum (permission-
less) and Tendermint (permissioned). It is worth noting that the
Ethereum mainnet does not provide direct support for key-value
store tasks. As a result, the throughput on the mainnet cannot be
directly compared to the throughput of RollStore: To evaluate
the performance of RollStore, we select two database systems
that are deployed on these two networks, namely BlockchainDB
(built on Ethereum) and BigChainDB (built on Tendermint). For
an oracle-based system, while WedgeBlock does not support a
key-value store service, it does provide a secure logging service
that closely resembles a key-value store service. Hence, the
comparison between our system and Wedgeblock is justified
for the purpose of performance evaluation

® BlockchainDB [16]: BlockchainDB is a hybrid BBDB that
utilizes a blockchain layer as a storage layer and builds a
database layer on top of it. We focus on the performance
of read and write operations in BlockchainDB when a
permissionless blockchain is used.* BlockchainDB stores
all data on-chain. This leads to high monetary costs and
latency overhead for write operations. For both reads and

“4BlockchainDB is designed for permissioned settings. We make it with
permissionless settings here as it is the closest BBDB that can be adapted
to utilize permissionless settings. We also compare with BigChainDB while
maintaining its permissioned settings.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

writes, the operation is first performed on off-chain nodes
(BlockchainDB-1), which is done fast, and then performed
on-chain (BlockchainDB-2), which is full on-chain ex-
ecution. When evaluating BlockchainDB, we utilize the
Ethereum testnet network called Ropsten.

® BigChainDB [32]: BigChainDB is a BBDB that is im-
plemented as a permissioned blockchain. A Byzantine
agreement protocol, Tendermint, is used to implement a
blockchain ledger and a database layer runs on top of
this blockchain. This makes BigChainDB not suitable for
DApps that require decentralization and open membership
(permissionless) blockchains. However, we include it in
our evaluation to understand the differences in performance
characteristics compared to RollStore. Being on a permis-
sioned blockchain, BigChainDB does not incur monetary
costs. Also, because the database layer is integrated with
the permissioned blockchain layer, the performance of op-
erations is dependent on the performance of the underlying
consensus mechanism.

o WedgeBlock [42]: WedgeBlock, a data logging platform
for DApps, introduces the Lazy-Minimum Trust (LMT)
concept to address high latency challenges. In LMT, the
off-chain node adopts a lazy approach by asynchronously
writing the log entry digest on-chain, promptly respond-
ing to user requests before the actual write occurs. This
strategy is supported by a robust trust-proof and penalty
mechanism, reminiscent of an oracle solution. We include
WedgeBlock in our comparison to explore variations in
the performance and cost of RollStore compared to an
oracle-based solution.

We utilize and adapt available implementations of both
BlockchainDB [16] and BigChainDB [32] that are made as a
part of a study of hybrid BBDBs performance [20]. For the
oracle-based system, we employ an available implementation
of WedgeBlock [42].

A. Baseline Performance

In baseline experiments, we configure RollStore to have one
updater node, one prover node and one backup node. The
three nodes are located on three different machines and we use
YCSB’s workload A. The following experiments are performed
while varying the batch size from 1 to 32 operations per batch
(small) and from 64 to 2048 operations per batch (large).

Throughput: The left side of Fig. 7 shows the throughput
results for small batch sizes. RollStore stage 0 commitment
(RollStore-0) achieves the highest throughput. This is because
all processes in stage 0 are performed locally and do not need
to coordinate with the smart contract. Both stage 0 and stage 1
(RollStore-1) throughputs increase with the increase in the batch
size. Batching amortizes the cost of committing operations. In
the case of RollStore-1, when batches are bigger, this means
that the number of writes to the blockchain is lower, which
increases performance. Stage 2 (RollStore-2) achieves a lower
throughput compared to stage 1, primarily due to the added
overhead of performing a compute-intensive proof generation
process. Unlike RollStore-0 and RollStore-1, the performance

9187

—— BlockchainDB-1
—=— BlockchainDB-2

——

101y, R N N +
107

e

—=— RollStore-0
—— RollStore-1
—e— RollStore-2

—e— BigchainDB
—+— WedgeBlock

10°

Throughput (op/s)
Latency (second)

M - ./_*./-/'

1 2 4 8 16 32 1 2 4 8 16 32
batch size batch size

Fig. 7. Throughput and latency in small batch sizes.

—— BlockchainDB-1
—— BlockchainDB-2

—=— RollStore-0
—— RollStore-1
—e— RollStore-2

—e— BigchainDB

—4+— WedgeBlock
:: 104
10°
ﬁ 10°
102

W

o
100 10
107
107t —
1072

1024 2048 64 128 256 512
batch size

Throughput (op/s)
Latency (second)

64 128 256 512
batch size

1024 2048

Fig. 8. Throughput and latency in large batch sizes.

of RollStore-2 does not significantly improve as the batch size
increases. This is because the performance of RollStore-2 is
primarily determined by the time required for proof genera-
tion, which becomes increasingly challenging as the batch size
increases.

The local (off-chain) throughput of BlockchainDB
(BlockchainDB-1) achieves a higher performance compared
to RollStore-1 because it does not require interacting with the
blockchain. However, when it comes to committing operations
on-chain in Ethereum, BlockchainDB-2 exhibits poorer
performance compared to RollStore-1 and even underperforms
RollStore-2. This is because BlockchainDB-2 writes raw
data on-chain which increases the overhead of interacting
with blockchain. BigChainDB performance is between
RollStore-0 and RollStore-1. This is because it does not
utilize permissionless blockchain, which means that it does
not suffer from the high overhead associated with it. However,
BigChainDB incurs overhead from the underlying permissioned
blockchain, Tendermint, and the consensus mechanism,
leading to worse performance than RollStore-0. WedgeBlock
outperformed BigChainDB as the batch size increased, but it
lagged behind RollStore-0. However, the gap between these two
systems narrowed when the batch size reached 32 operations
per batch.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9188

The left side of Fig. 8 displays the throughput results for large
batch sizes. The findings are similar to those for small sizes:
our system achieved the best performance in both the off-chain
process (RollStore-0) and on-chain process (RollStore-1). Fur-
thermore, it demonstrated improved performance compared to
its results with small sizes. The performance trend remains con-
sistent, particularly in Stage 1 (RollStore-1), where throughput
increases rapidly as batch sizes become larger. While Wedge-
Block achieved better performance than our system in specific
batch sizes (64 and 128), our off-chain process (RollStore-0)
outperforms WedgeBlock as batch sizes become larger.

Latency: The right part of Fig. 7 shows the latency results
for small batch sizes. The latency of off-chain operations—
RollStore-0, BlockchainDB-1, and BigChainDB—are the low-
est as they do not need to write to a permissionless blockchain
smart contract. The latency of RollStore-1, BlockchainDB-2,
and WedgeBlock—both requiring a write to the smart contract—
is similar at around 20 seconds, which is proportional to the time
to write to the smart contract. Although the compute-intensive
proof generation process in RollStore-2 gradually increases its
latency, it outperforms Ethereum (BlockchainDB-2) in certain
batch sizes where the advantage of batching outweighs the time
required for proof generation.

The right part of Fig. 8 shows the latency results for large
batch sizes. The latency of RollStore-2 increases very rapidly as
it requires more time for proof generation in larger batches. The
latency of off-chain operations also increases as more processing
time is needed for larger batches. However, it’s worth noting that
the latency of RollStore-2 can be reduced by adding more server
nodes, as discussed in Section III-C. We will introduce the scal-
ability performance in Section IV-B. In the case of WedgeBlock,
it demonstrated lower latency compared to our on-chain process
(RollStore-1), although it lagged behind our off-chain process.
This can be attributed to its reliance on an oracle-based design,
which depends on security guarantees provided by the oracle
design. While this design effectively reduces communication
latency between the off-chain and on-chain elements, it still
results in higher latency compared to our dedicated off-chain
process and sacrifices the security guarantees provided by the
blockchain mainnet.

Transaction cost: Fig. 9 shows the monetary cost results.
In RollStore-1, each batch requires sending one transaction
only—that writes a simple set of digests—to the blockchain.
Therefore, the transaction cost in stage 1 will decrease when
the batch size becomes larger. This is not the case in stage 2.
Since we need to send the proof parameters to the blockchain,
the size of these parameters also increases with the increase in
the batch size; this increases the cost. For this reason, the trans-
action cost per thousand operations in stage 2 does not change
significantly when the batch size becomes larger. For Ethereum
(BlockchainDB-2), the monetary cost is the largest (around $122
per 1000 operations). This is because raw operations are written
on-chain, unlike RollStore that only writes digests and verifies
proofs. The cost in WedgeBlock also decreased with the increase
in batch size. Both stage 1 (RollStore-1) and stage 2 (RollStore-
2) can reduce the cost of interacting with the permissionless
blockchain. (RollStore-0, BlockchainDB-1, and BigChainDB

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

—— RollStore-1
—&— RollStore-2

—¥— BlockchainDB-2 ~ —4— WedgeBlock

123

-
N
N}

v\‘\‘\“\o—o

IS
o
N

w
N ®
NN

Cost (dollar per 1000 operations)
w
- ©

o

64 128 256 . 512 1024 2048
batch size

Fig. 9. Costin different batch sizes.

3.0
FZA RollStore (Search) N

[RollStore (Proof Generation)
E==J BlockchainDB (Get operation)
2.41 mEEB BlockchainDB (Verify operation)
BigchainDB

Ex==3 WedgeBlock

Latency (ms)
=
©

=
N

0.6

0.0

256 512
batch size

B
o0
S
oo

Fig. 10. Read latency in different batch sizes.

are notincluded in the figure as they do not utilize permissionless
blockchain that requires fees).

Read latency: Fig. 10 shows the read latency while varying
the batch sizes. The average read latency of RollStore becomes
larger when increasing the batch size of reading requests. As
batch size increases, the backup node requires more time to
search and generate the related proofs. The read latency in
BlockchainDB is higher than RollStore when the batch size
is larger than 512; we attribute this to the Verify operation in
BlockchainDB. This operation spends more time to verify the
read result when the batch size becomes larger. The read latency
in BigchainDB is the longest and becomes longer when the batch
size increases; this is because—although it does not need to
perform a consensus round for reads—BigchainDB needs to
build the block to record the read request; this process increases
the read latency. The read latency in WedgeBlock increases
slightly, and the batch size does not significantly affect the read
latency. This is because it processes these reads locally without
interacting with on-chain nodes.

B. Scalability Performance

In this section, we present a set of experiments to test the
scalability performance of our system. In this configuration,
multiple updater nodes, multiple prover nodes, and multiple
backup nodes are located on three different machines. Each

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

—=— RollStore-0
—v— RollStore-1
—e— RollStore-2

—— BlockchainDB-1
—— BlockchainDB-2

—e— BigchainDB
—+— WedgeBlock

Throughput (op/s)
Latency (second)

10° 10-1

107t

1 4 7 10 13 1 4 7 10 13
of Server Nodes # of Server Nodes

Fig. 11. Throughput and latency in multiple server nodes.

machine contains multiple instances of a type of node. We
evaluate scalability by changing the number of server nodes and
fixing the batch size of requests at 32. We vary the number of
server nodes from 4 to 13.

Throughput: This set of experiments focused on measuring
the throughput, as depicted on the left side of Fig. 11. As the
number of server nodes increased, the throughput of all three
stages increased. This is because more updater and backup nodes
were able to work in parallel, resulting in higher throughput.
This observation highlights that even smaller batch sizes can
achieve higher throughput by adding more server nodes, which
also leads to reduced latency in stage 2. The throughput of stage
2 commitment (RollStore-2) increased by a factor of 11.9X
when the number of server nodes was increased from 1 to 13.
This is due to the leveraging of computation resources from
multiple prover nodes to accelerate the proof generation process
(see Section III-C). Compared to the baseline performance, the
throughput of stage 2 in the scalability configuration was much
higher than that of Ethereum (BlockchainDB-2). While this
throughput was not as high as that of stage 0 and stage 1, it still
played a significant role in reducing the waiting time for verify-
ing the results of stage 1 commitment. Specifically, the waiting
time was reduced from several days to hours, highlighting the
importance of stage 2 in the overall performance of the system.
(see Section II-C1). The throughput of WedgeBlock decreases
when adding server nodes up to 4 nodes, then fluctuates slightly
with the addition of more nodes.

Another observation is that the local (off-chain) throughput,
as seen in BlockchainDB-1 and BigchainDB, decreases when
adding more server nodes compared to a single server node. We
attribute this to the cost of the underlying consensus mecha-
nism, where a larger number of nodes causes the overhead of
coordination to increase.

Latency: As shown in the right side of Fig. 11, the reduction
of latency in RollStore-0, RollStore-1, and WedgeBlock is not
significant. This is because the latency is mainly determined by
the updater node processing for RollStore-0 and the blockchain
confirmation time for RollStore-1 and WedgeBlock. The latency
of RollStore-2 is significantly reduced because multiple prover
nodes work in parallel to generate the proof. It is important
to note that although the latency of RollStore-2 is significantly

9189

V72 RollStore BigchainDB 3 BlockchainDB
KN WedgeBlock
1750 N
15001 7] 7 7 A
21250
g N N N N
51000
Q
<
S 750
e
<
= 500
250
0
1 4 7 10 13

of Server Nodes

Fig. 12. Read throughput in multiple server nodes.

reduced due to multiple prover nodes working in parallel to
generate the proof of one task, this reduction is limited. It
can only bring the latency to a slightly higher level than the
blockchain confirmation time. Nevertheless, RollStore benefits
from batching and can achieve higher throughput and lower cost.

The addition of more server nodes does not significantly
benefit BlockchainDB and BigchainDB due to coordination
overhead in their consensus mechanism.

Transaction cost: Since the content of transactions and smart
contracts do not change when we add multiple server nodes, the
change of transaction fee (Ether cost) is negligible and is only
due to the fluctuation of gas fees.

Read throughput: Fig. 12 shows the read throughput
while varying the number of server nodes. RollStore and
BlockchainDB are not impacted by the increase in the number of
server nodes. This is because the throughput is determined by the
overhead of assembling the read responses and verifying reads.
BlockchainDB achieves lower performance than RollStore due
to its verification step that takes more latency than RollStore for
large batch sizes. WedgeBlock achieves better performance than
RollStore in a single-server configuration; however, its perfor-
mance worsens when additional nodes are added. BigchainDB
achieves the lowest throughput due to the added overhead to
synchronize the response to the read operations. As the num-
ber of nodes increases, this overhead increases and lowers the
throughput of BigChainDB.

V. DISCUSSION AND FUTURE WORK

Investigating Cross-Chain Interoperability: RollStore cur-
rently focuses on providing a secure and efficient data index-
ing solution for hybrid onchain-offchain DApps within a sin-
gle blockchain ecosystem, specifically Ethereum. Future work
could explore the challenges and opportunities of enabling cross-
chain interoperability. This would involve developing mecha-
nisms to index and manage data across multiple blockchain
networks, allowing DApps to leverage the strengths of differ-
ent blockchains while maintaining consistency and security.
Addressing cross-chain data management could significantly
expand the applicability and flexibility of RollStore in the rapidly
evolving blockchain landscape.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9190

Enhancing Flexibility in Security and Performance Trade-
offs: RollStore currently uses a three-stage commit protocol that
balances security and performance. However, the implementa-
tion does not allow users to actively control the degree of security
based on their specific needs. For example, users might want to
partially guarantee security for some higher-priority operations
while accepting lower security for less critical ones. Exploring
this flexibility could lead to broader usage of RollStore in various
DApps, enabling them to customize the balance between secu-
rity and performance according to their unique requirements.

VI. CONCLUSION

The authors propose RollStore, a data indexing solution for
hybrid onchain-offchain DApps. RollStore builds on advances in
blockchain scaling solutions such as rollups, as well as indexing
and authenticated data structures. The outcome is a three-stage
commit protocol that allows balancing the trade-off between
security and performance for hybrid blockchain methods. Our
evaluations demonstrate the advantages of RollStore in terms
of cost and performance while comparing with two blockchain-
based databases, BlockchainDB and BigChainDB.

REFERENCES

[1] J. Adler and M. Quintyne-Collins, “Building scalable decentralized pay-
ment systems,” 2019, arXiv: 1904.06441.

[2] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trustworthy
blockchain oracles: Review, comparison, and open research challenges,”
IEEE Access, vol. 8, pp. 85675-85685, 2020.

[3] A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, “Hybrid blockchain
platforms for the Internet of Things (IoT): A systematic literature review,”
Sensors, vol. 22, no. 4, 2022, Art. no. 1304.

[4] L.Allenetal., “Veritas: Shared verifiable databases and tables in the cloud,”
in Proc. 9th Biennial Conf. Innov. Data Syst. Res., 2019, pp. 1-9.

[5] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding permis-
sioned blockchains over network clusters,” in Proc. Int. Conf. Manage.
Data, 2021, pp. 76-88.

[6] A.M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and Dapps. Sebastopol, CA, USA: O’Reilly Media, 2018.

[71 M. Belotti, N. Bozi¢, G. Pujolle, and S. Secci, “A vademecum on
blockchain technologies: When, which, and how,” IEEE Commun. Surv.
Tut., vol. 21, no. 4, pp. 3796-3838, Fourth Quarter, 2019.

[8] P. Biel, S. Zhang, and H.-A. Jacobsen, “A zero-knowledge proof system
for openlibra,” in Proc. 22nd Int. Middleware Conf. Demos Posters, 2021,
pp. 3-4.

[91 W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance data
store,” in Proc. 8th USENIX Symp. Netw. Syst. Des. Implementation, 2011,
pp. 141-154.

[10] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking {RocksDB }{ Key-Value} workloads at facebook,” in
Proc. 18th USENIX Conf. File Storage Technol., 2020, pp. 209-223.

[11] Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” J. Bus. Venturing
Insights, vol. 13, 2020, Art. no. e00151.

[12] D. Company, “Dapp radar rankings,” 2022. [Online]. Available: https:
//dappradar.com/rankings

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM
Symp. Cloud Comput., 2010, pp. 143-154.

[14] H. Desai, M. Kantarcioglu, and L. Kagal, “A hybrid blockchain archi-
tecture for privacy-enabled and accountable auctions,” in Proc. IEEE Int.
Conf. Blockchain (Blockchain), 2019, pp. 34-43.

[15] J. Eberhardt and S. Tai, “Zokrates-scalable privacy-preserving off-chain
computations,” in Proc. IEEE Int. Conf. Internet Things IEEE Green
Comput. Commun. IEEE Cyber Phys. Social Comput. IEEE Smart Data,
2018, pp. 1084-1091.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

[16] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb: A shared database on blockchains,” in Proc. VLDB En-
dowment, vol. 12, no. 11, pp. 1597-1609, 2019.

[17] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” J.
Cryptol., vol. 1, no. 2, pp. 77-94, 1988.

[18] D. Foundation, “decentraland,” 2020. [Online]. Available: https://
decentraland.org/

[19] A. Garoffolo, D. Kaidalov, and R. Oliynykov, “Zendoo: A ZK-Snark ver-
ifiable cross-chain transfer protocol enabling decoupled and decentralized
sidechains,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020,
pp. 1257-1262.

[20] Z. Ge, D. Loghin, B. C. Ooi, P. Ruan, and T. Wang, “Hybrid blockchain
database systems: Design and performance,” in Proc. VLDB Endowment,
vol. 15, no. 5, pp. 1092-1104, 2022.

[21] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge
proof systems,” in Proc. Int. Collog. Automata Lang. Program., Springer,
1990, pp. 268-282.

[22] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge
proof systems,” J. Cryptol., vol. 7, no. 1, pp. 1-32, 1994.

[23] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Off the chain transactions,” JACR Cryptol. ePrint Arch., vol. 2019,
2019, Art. no. 360.

[24] H. Guo and X. Yu, “A survey on blockchain technology and its security,”
Blockchain Res. Appl., vol. 3, no. 2, 2022, Art. no. 100067.

[25] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “ResilientDB: Global
scale resilient blockchain fabric,” in Proc. VLDB Endowment, vol. 13,
pp. 868-883, 2020.

[26] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463-492, 1990.

[27] R.Jain and S. Prabhakar, “Trustworthy data from untrusted databases,” in
Proc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 529-540.

[28] K. Keahey et al., “Lessons learned from the chameleon testbed,” in Proc.
USENIX Annu. Tech. Conf., 2020, pp. 219-233.

[29] R.Kumar, N. Marchang, and R. Tripathi, “Distributed off-chain storage of
patient diagnostic reports in healthcare system using IPFs and blockchain,”
in Proc. IEEE Int. Conf. Commun. Syst. Netw., 2020, pp. 1-5.

[30] L.Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401, 1982.

[31] C.LuoandM.]J. Carey, “LSM-based storage techniques: A survey,” VLDB
J., vol. 29, no. 1, pp. 393418, 2020.

[32] T. McConaghy et al., “BigchainDB: A scalable blockchain database,”
White Paper BigChainDB, 2016.

[33] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Proc. Conf. Theory Appl. Cryptographic Techn., 1987,
pp. 369-378.

[34] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,”
in Proc. Int. Conf. Financial Cryptogr. Data Secur., Springer, 2019,
pp. 508-526.

[35] M. Naor and M. Yung, “Universal one-way hash functions and their cryp-
tographic applications,” in Proc. 21st Annu. ACM Symp. Theory Comput.,
1989, pp. 33-43.

[36] S. Nathan et al., “Blockchain meets database: Design and implementation
of a blockchain relational database,” 2019, arXiv: 1903.01919.

[37] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao, “An efficient query
scheme for hybrid storage blockchains based on merkle semantic trie,” in
Proc. Int. Symp. Reliable Distrib. Syst., 2020, pp. 51-60.

[38] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Falcondb: Blockchain-
based collaborative database,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2020, pp. 637-652.

[39] C. Pop, T. Cioara, I. Anghel, M. Antal, and I. Salomie, “Blockchain
based decentralized applications: Technology review and development
guidelines,” 2020, arXiv: 2003.07131.

[40] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal, “Chaini-
fydb: How to blockchainify any data management system,” 2019, arXiv:
1912.04820.

[41] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain scaling:
A survey,” 2021, arXiv:2107.10881.

[42] A. Singh, Y. Zhou, S. Mehrotra, M. Sadoghi, S. Sharma, and
F. Nawab, “WedgeBlock: An off-chain secure logging platform for
blockchain applications,” Adv. Database Technol., vol. 26, pp. 526-539,
2023.

[43] M. Tan, “Ethereum charts and statistics,” 2015. [Online]. Available: https:
//etherscan.io/charts

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

(58]

P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi, and K.-K. R.
Choo, “A systematic literature review of blockchain cyber security,” Digit.
Commun. Netw., vol. 6, no. 2, pp. 147-156, 2020.

P. Todd, Making UTXO set growth irrelevant with low-latency delayed
TXO commitments, 2016.

H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei, “VChain+:
Optimizing verifiable blockchain boolean range queries,” in Proc. [EEE
38th Int. Conf. Data Eng., 2022, pp. 1927-1940.

Y. Wang, Z. Tu, Y. Bai, H. Yuan, X. Xu, and Z. Wang, “A blockchain-based
infrastructure for distributed Internet of Services,” in Proc. IEEE World
Congr. Serv., 2021, pp. 108-114.

Q. Wei, B. Li, W. Chang, Z. Jia, Z. Shen, and Z. Shao, “A survey of
blockchain data management systems,” ACM Trans. Embedded Comput.
Syst., vol. 21, no. 3, pp. 1-28, 2022.

H. Wu et al., “Data management in supply chain using blockchain: Chal-
lenges and a case study,” in Proc. IEEE 28th Int. Conf. Comput. Commun.
Netw., 2019, pp. 1-8.

H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “{DIZK}: A
distributed zero knowledge proof system,” in Proc. 27th USENIX Secur.
Symp., 2018, pp. 675-692.

K. Wu, “An empirical study of blockchain-based decentralized applica-
tions,” 2019, arXiv: 1902.04969.

C. Xu, C. Zhang, J. Xu, and J. Pei, “Slimchain: Scaling blockchain
transactions through off-chain storage and parallel processing,” in Proc.
VLDB Endowment, vol. 14, no. 11, pp. 2314-2326, 2021.

K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient and
affordable zero-knowledge proofs for circuits and polynomials over any
field,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2021,
pp. 2986-3001.

C.Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gem" 2-tree: A gas-efficient
structure for authenticated range queries in blockchain,” in Proc. IEEE 35th
Int. Conf. Data Eng., 2019, pp. 842-853.

Q. Zhang, Y. He, R. Lai, Z. Hou, and G. Zhao, “A survey on the efficiency,
reliability, and security of data query in blockchain systems,” Future Gener.
Comput. Syst., vol. 145, pp. 303-320, 2023.

Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “VSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 863-880.

Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16440-16455, 2020.

W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li, “VeriDB: An
SGX-based verifiable database,” in Proc. Int. Conf. Manage. Data, 2021,
pp. 2182-2194.

9191

Qi Lin received the master’s degree in computer
science from the University of California, Irvine.
He is currently working towards the PhD degree
in computer science and engineering with Arizona
State University. His research interests lie in the ar-
eas of zero-knowledge proofs, blockchain, and query
compilation.

Binbin Gu is currently working towards the PhD
degree in computer science and engineering with
the University of California, Irvine. His research in-
terests include machine learning, blockchain, zero-
knowledge proofs, and Natural Language Processing
(NLP). He has published several papers in /[EEE
Transactions on Knowledge and Data Engineering,
ICDE, EDBT, DASFAA, etc.

Faisal Nawab is an assistant professor with the Uni-
versity of California, Irvine (UCI). He leads EdgeLab
which tackles research problems in the intersection
of data management and distributed systems with a
focus on decentralized and Internet of Things (IoT)
applications. He has published papers in VLDB,
SIGMOD, ICDE, EDBT, [EEE Internet of Things
Journal, and other data management and systems
conferences and journals.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

