
9176 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

RollStore: Hybrid Onchain-Offchain Data Indexing

for Blockchain Applications
Qi Lin, Binbin Gu , and Faisal Nawab

Abstract—The interest in building blockchain Decentralized Ap-
plications (DApps) has been growing over the past few years. DApps
are implemented as smart contracts which are programs that are
maintained by a blockchain network. Building DApps, however,
faces many challenges—most notably the performance and mon-
etary overhead of writing to blockchain smart contracts. To over-
come this challenge, many DApp developers have explored utilizing
off-chain resources—nodes outside of the blockchain network—to
offload part of the processing and storage. In this paper, we propose
RollStore, a data indexing solution for hybrid onchain-offchain
DApps. RollStore provides efficiency in terms of reduced cost
and latency, as well as security in terms of tolerating Byzantine
(i.e., malicious) off-chain nodes. RollStore achieves this by: (1) a
three-stage commitment strategy where each stage represents a
point in a performance-security trade-off—i.e., the first stage is
fast but less secure while the last stage is slower but more secure.
(2) utilizing zero-knowledge (zk) proofs to enable the on-chain
smart contract to verify off-chain operations with a small cost.
(3) Combining Log-Structured Merge (LSM) trees and Merkle
Mountain Range (MMR) trees to efficiently enable both access
and verification of indexed data. We experimentally evaluate the
cost and performance benefits of RollStore while comparing with
BlockchainDB and BigChainDB.

Index Terms—Blockchain, decentralized applications, indexing.

I. INTRODUCTION

D
ECENTRALIZED Applications (DApps) are applications

that are implemented as smart contracts. A smart contract

is a program where its state and logic are maintained by a

blockchain network.1 This makes DApps inherit blockchain

features such as decentralization, transparency, and tamper-

freedom [6]. (However, this does not mean that DApps are

perfectly decentralized or tamper-free. This is because of the

possibility of designing smart contracts in an extendable way

either for legitimate or malicious reasons.) Recently, there has

been a lot of interest in DApps. Various DApps have amassed

hundreds of thousands of users and hundreds of millions of

dollars in assets [12]. DApps span many areas such as decen-

tralized finance [11], gaming and metaverses [18], and supply-

chain [49].

Manuscript received 10 May 2023; revised 8 July 2024; accepted 19 July
2024. Date of publication 12 August 2024; date of current version 13 November
2024. This work was supported by the NSF under Grant CNS1815212 and Grant
SaTC-2245372. Recommended for acceptance by K. Zheng. (Corresponding

author: Qi Lin.)

The authors are with the Institute of Computer Science Department, Uni-
versity of California, Irvine, CA 92697 USA (e-mail: linq11@uci.edu; binging
@uci.edu; nawabf@uci.edu).

Digital Object Identifier 10.1109/TKDE.2024.3436514
1In this paper, we consider permissionless blockchain technologies such as

Ethereum as they are the ones used predominately by DApps [12].

DApp developers face many challenges, including the per-

formance overhead, security concerns, and monetary cost of

writing to blockchain smart contracts. Writing to blockchain

smart contracts often involves significant transaction finalization

times, with some operations taking tens of minutes to complete.

This delay can hinder the real-time responsiveness expected

in conventional applications [24], DApps also struggle with

scalability issues, especially as user bases grow. Blockchain

networks, on which many DApps are built, face limitations in

terms of transaction throughput [7]. Additionally, Security is

a paramount concern in DApps. Smart contract vulnerabilities

and consensus algorithm weaknesses are areas of focus [44].

Notably, the average cost of a single smart contract operation

is estimated to be around $3 [43]. This monetary factor di-

rectly influences the economic feasibility of DApps development

and usage. To overcome these challenges, many DApps are

developed using the hybrid onchain-offchain model [3], [20],

[34], [57] which makes them directly centralized (unless the

off-chain part is also decentralized), non-transparent and open

to any tampering, and we call it the hybrid model for short.

In this model, part of the DApp logic is maintained in the

on-chain contract–where “on-chain” refers to its implementation

in the blockchain smart contract, ensuring strong security. The

rest of the processing and storage of the DApp is maintained

by off-chain nodes—where off-chain nodes are nodes that are

outside of the blockchain network. By delegating part of the

processing and storage to off-chain nodes, both the monetary

cost and performance overhead are significantly reduced.

However, building a complex DApp is still a significant chal-

lenge in the hybrid model, particularly when constructing a data

management system for DApps that meets diverse performance

and security requirements. In this work, we aim to build a data

indexing solution for DApps in the hybrid model that can flexibly

balance the performance and security of the system to meet

different requirements. Data indexing is a fundamental problem

in data management and a building block for more complex

data management functionality. Therefore, the development of

an efficient and secure data indexing solution for DApps can

have an impact on a wide-range of decentralized data man-

agement systems. Our solution aims to extend and support the

space of blockchain-based data management systems [4], [14],

[16], [20], [32], [36], [37], [38], [40], [48]. Currently, existing

blockchain-based databases (BBDBs) fall under one or more of

the following categories: (1) BBDBs that do not utilize off-chain

nodes efficiently (i.e., by writing all data and/or operations

on-chain) [4], [16], making them inefficient in terms of monetary

1041-4347 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9177

cost and performance overhead. (2) BBDBs that utilize off-chain

nodes that are assumed to be trusted/permissioned (i.e., with

closed membership) [32] or utilize trusted execution environ-

ments [14]. These are strong assumptions for decentralized envi-

ronments and limit their practicality for DApps which are widely

implemented in permissionless environments. (3) BBDBs that

utilize authenticated data structures and verification methods to

verify query results using on-chain digests or verifiers [37], [55].

However, these BBDBs only consider querying immutable data

and suffer from the two limitations above if data is mutable.

We propose RollStore, a data indexing solution for hybrid

blockchain DApps that overcomes the challenges of prior BB-

DBs. RollStore has the following properties: (1) it utilizes

off-chain nodes efficiently by not needing to send raw data

or operations to the smart contract. Smart contracts are only

used for performing low-overhead operations (i.e., lightweight

verification of data digests). This makes RollStore efficient in

terms of reducing the monetary cost of writing to the blockchain.

(2) RollStore does not assume that any off-chain node is trusted.

(3) RollStore has a key-value interface where users can both

read and write data. RollStore is the first data indexing solution

for hybrid DApps that can achieve all these three properties. We

envision that RollStore will be augmented with existing BBDBs

as their indexing component to help transform them to enjoy the

aforementioned RollStore properties.

RollStore can achieve the three properties above by bringing

together and innovating in the areas of zero-knowledge (zk)

proofs [53], optimistic and zk rollups [41], [47], Log-Structured

Merge (LSM) trees [31], and Merkle Mountain Range (MMR)

trees [45]. We utilize Zero-Knowledge Succinct Non-interactive

Argument of Knowledge (zk-SNARK) [8], [19]. Zk-SNARK

allows an untrusted node to perform a computation that changes

the state of the data and produce the new state with a proof of

the new state’s correctness (i.e., that the new state is the result

of applying a correct mutating operation on the previous state).

The proof can be verified with low overhead, thus allowing cheap

verification on-chain. We also utilize the concept of optimistic

rollups (o-rollups) [41]. O-rollups were proposed as a layer-2

scaling solution for blockchain, where off-chain nodes perform

compute functions on behalf of the layer-1 blockchain. Then,

clients can interact with the blockchain in a challenge period to

challenge the correctness of the off-chain outcomes. Finally, we

integrate LSM and MMR tree structures in the design. LSM’s

append-only nature makes it a good candidate to manage the

movement of data from one stage to another (e.g., data in

each LSM layer corresponds to a different processing/validation

stage). MMR trees allow deconstructing a single MMR tree

into smaller Merkle trees. This allows better modularity and

integration with LSM trees.

RollStore combines the aforementioned technologies in a new

design for hybrid DApp data indexing. RollStore consists of

three types of nodes: (1) an updater node that manages clients

requests, (2) a prover node that is responsible for generating

proofs for operations, and (3) a backup node that maintains

the verified data and associated proofs. In addition, RollStore

includes a smart contract that performs lightweight verification

of digests and proofs.

One of RollStore’s key proposals is a three-stage commitment

process to manage the performance-security trade-off of verifi-

cation methods. We support three kinds of verification methods

for updates to off-chain data: (1) zk-SNARK proofs: this is the

most trusted verification as it verifies the correctness of the

data operation and new off-chain data state. However, it has

high computational complexity requiring a long time to generate

proofs. (2) Optimistic rollups (o-rollups): this method relies on

a simple data digest that is written on-chain. Users agree on

the digest and the data represented by that digest; however, it is

not guaranteed that the corresponding operations and new state

are processed correctly. (3) Off-chain response proof: this is the

weakest guarantee which is for the client to receive a signed

response from the off-chain node before any digest or proof is

written on-chain.

RollStore addresses the challenge of accommodating diverse

user requirements in DApps. Our system is designed to cater

to varied needs in terms of security and performance. For in-

stance, in the context of bank transactions, scenarios involving

small amounts and high-frequency transactions demand lower

latency and higher throughput, aligning with our first-stage

commitments. Conversely, situations involving large amounts

and low-frequency transactions prioritize strong security and

can tolerate higher latency, aspects provided by our last-stage

commitments. Our system exhibits flexibility by offering distinct

performance-security trade-off services tailored to different user

requirements.

The signed response for both o-rollups and the off-chain

response represents a promise to include and process the request

on a specific LSM page. The client can use the signed response to

punish the off-chain node in case it lies or acts maliciously—by

not honoring its promise to process the request correctly. (We

discuss the punishment smart contract in the paper. This contract

withdraws a penalty from the off-chain node’s escrow fund if

malicious behavior is proven). RollStore ensures that any false-

hood by an off-chain node will eventually be detected by a client.

This is done by processing transactions through three stages

of commitment, starting from the off-chain response (fastest

commitment but with weaker guarantee), to o-rollups (slower

but with stronger guarantee), and finally to zk-SNARK (slowest

but with strongest guarantee). In the final step, RollStore checks

if the zk-SNARK result matches the response sent to the client.

If they did not match, this is a sign that the off-chain node lied.

This process guarantees the detection of such malicious acts.

This guarantee of detecting malicious acts—with severe mone-

tary punishments through the punishment smart contract—is a

deterrent for off-chain nodes to act maliciously in the first stages

of commitment using off-chain response and o-rollups.

The contribution of the paper is summarized as follows:
� RollStore is the first dynamic indexing solution for hybrid

DApps, featuring a three-stage design that represents a

novel commitment path.
� RollStore is the first solution to incorporate both zk proofs

and o-rollups verification in the problem of indexing by a

novel design that builds on LSM and MMR trees.
� RollStore addresses the multi-level trade-off challenge

between security and performance, effectively tackling

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9178 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 1. An example of the Merkle mountain range tree.

the task of accommodating diverse user requirements in

DApps.

In the rest of the paper, we present background and related

work in Section II. Then, we present the design of RollStore

in Section III. An experimental evaluation is presented in

Section IV. We conclude in Section VI.

II. BACKGROUND

A. LSM Trees

Log-Structured Merge (LSM) Trees are widely used for data

indexing [31]. LSM trees are designed to support fast data

ingestion by appending entries for write operations instead of

updating the corresponding old entry in-place. Periodically,

appended data is merged with the rest of the LSM tree. This

append-only nature of ingestion makes LSM trees a suitable

candidate for write-intensive workloads.

There are many LSM tree variants [31]. Here, we provide a

description of the common and typical design aspects of LSM

trees. Generally, LSM trees contain several levels, L0, L1, · · · ,

Lk. Level L0 is maintained in main memory while other levels

are persisted on disk. Incoming write operations are appended

to an in-memory mutable table. When the mutable table is full,

the data in it—represented as key-value pairs—is ordered and

inserted to L0 as a new page. L0—as well as other levels—has a

threshold on the number of pages. Once this threshold is met, the

data in the L0 pages is merged with the pages in the next level.

This continues until data reaches the final level Lk. When two

levels are merged, one of two widely used techniques is used:

tiering and leveling [10].

B. MMR Trees

The Merkle Mountain Range (MMR) tree [45] is a variant of

the Merkle tree [33] which is structured as a group of underlying

Merkle trees (Fig. 1). A MMR tree is an append-only tree where

elements are added as leaf nodes from left to right (Fig. 1 shows

the case of adding items 1 to 7 from left to right.) Once there are

two children nodes at a level with no parent node, a parent node

for the two children nodes is generated at the higher level. For

example, consider the MMR tree in Fig. 1 where internal node

numbers represent the generation order (e.g., Hash_i is the

ith generated hash node). Hash_6, for example, is generated

Fig. 2. An example of blockchain rollups.

after Hash_4 and Hash_5 are added (for items 3 and 4).

AddingHash_6 in turn leads to creatingHash_7. In the figure,

there are three underlying Merkle trees with roots Hash_7,

Hash_10 and Hash_11. These roots are also called peak

nodes, and each underlying Merkle tree is called a mountain.

The MMR root is calculated as the hash of the peak nodes.

An MMR tree can provide an inclusion proof of a data item

in a similar way to Merkle trees. The inclusion proof includes

the sibling node of every node in the path from the data item

to the MMR root. For example, in Fig. 1, the inclusion proof

of item Item_3 contains Hash_5, Hash_3, Hash_10, and

Hash_11. A client receiving the proof calculates the MMR

root using the provided hashes. If the calculated MMR root

matches the original MMR root, then the client knows that the

received item is correct. A malicious server cannot generate a

false inclusion proof of an item that is not in the MMR tree.

This is because any change to leaf nodes alters the MMR root.

Additionally, a strong one-way hash function would likely (with

very high probability) not lead to a collision of the hashes of two

different input texts [35].

C. Blockchain Rollups

Rollups is a layer 2 solution to enhance blockchain scalability,

which aims to reduce the performance overhead and monetary

cost of operations on-chain [41]. In rollups, transactions are

aggregated and executed in off-chain nodes, then the on-chain

smart contract maintains the root value (e.g., Merkle root hash

value) which corresponds to the current state (Fig. 2). The

off-chain node publishes a digest for batched transactions, which

contains the previous Merkle root MMR_Pre (0x123456 in

the figure) and the computed new Merkle root MMR_New

(0x456789 in the figure). When such digest is written on-chain,

the smart contract checks whether the previous Merkle root

MMR_Pre in this digest matches the current Merkle root stored

in the smart contract; if it does, the smart contract updates its

state root to the new MMR root, MMR_New.

The main challenge with rollups solutions is that the off-chain

node might act maliciously and provide a new digest,MMR_New,

that corresponds to an incorrect new state, i.e., the transactions

that lead to the new state with digest MMR_New are incorrect or

malicious transactions. To overcome this challenge, two types of

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9179

Fig. 3. Components and flow of zk-SNARK.

rollups variants are used: optimistic rollups and zero-knowledge

rollups.

1) Optimistic Rollups: O-rollups ensures that the new hash

that is written on-chain, MMR_New, is based on correct compu-

tation by using an interactive fraud-proof mechanism [1]. In this

approach, the new digest is written on-chain before verification

(optimistically). Then, off-chain nodes have an opportunity to

challenge the correctness of the state that is represented by

the new digest, MMR_New. This opportunity remains for a

pre-defined challenge period. After this period expires, if no

successful challenges are raised, then the new digest is assumed

to be correct. Otherwise, if a client challenges the correctness of

MMR_New, then a special smart contract verifies the correctness

of the challenge. If the new state turns out to be incorrect, the

challenge succeeds, and the smart contract reverts the state to

a previous correct state. The first problem with o-rollups is

that the challenge period needs to be long–several days to a

week [41]–to provide an opportunity for challengers. Another

issue is that it requires an incentive mechanism to encourage

active participants to challenge and compensate them for their

efforts.

2) Zero-Knowledge Rollups: Zk-rollups is a non-interactive

solution based on a zero-knowledge proof mechanism [22], [53].

In zk-rollups, a digest includes a validity proof. The validity

proof proves that the generated new digest MMR_New corre-

sponds to a state of the data that is correct, i.e., the new state

with digest MMR_New is the outcome of processing transactions

on the previous state with digest MMR_Pre. The zk-SNARK

protocol is one of the methods used to implement zk-rollups [8],

[17], [19], [21], [50]. The zk-SNARK protocol is used in the

following way by utilizing three components: a setup node, a

prover node, and a verifier node (Fig. 3):
� The setup node generates a proving key Pks and a veri-

fication key V ks that will be used to generate and verify

proofs. For zk-SNARK, the setup—which is a one-time

process before operation—must be performed by a trusted

node. After setup, there is no need for trusted nodes. The

generation of the two keys is influenced by the type of

computation that needs to be proven. The user provides the

program to be proven/verified as well as the inputs to such

computation. The user assigns which parts of the inputs

are public and which parts are secret. In RollStore, for

example, the program to prove/verify is the one that updates

the LSM tree and produces a new state represented by

MMR_New; and the inputs to the program are the previous

state and its digest MMR_Pre as well as the operations that

are applied to the previous state to generate the new state.
� The prover node is responsible for generating the proof of

the computation outcome. It needs three parameters, the

proving key Pks, the public information, Inf_Pub and

the secret information, Inf_Secret. After collecting

these parameters, the prover node generates a proof πs of

the computation.
� The verifier node needs three parameters: the verification

key V ks, the public information Inf_Pub, and the proof

πs. After collecting these parameters, the verifier node

generates a decision (True or False). In hybrid blockchains,

the verifier can be a smart contract. Typical zk-SNARK

protocols are designed so that verification is fast at the

expense of a more lengthy proof generation process. This

is suitable for hybrid blockchains, since generating proofs

is performed by off-chain nodes that do not have the con-

straints of smart contracts, while verification is performed

on-chain.

It is important to note that zk-SNARKs offers a different

functionality compared to digital signatures. Digital signatures

can be used to verify the authenticity of data that is signed by

a trusted node. However, digital signatures cannot be used to

verify computation that modifies data from one state to another

state. Also, digital signatures rely on a trusted node signing the

data. zk-SNARKs, on the other hand, can be utilized to verify

computation and it can generate zero-knowledge proofs on an

untrusted node.

D. Related Work

Blockchain-Based Databases (BBDBs): BBDBs are databa-

ses that utilize blockchains in various ways to utilize

blockchain’s features such as transparency and immutability [4],

[14], [16], [32], [36], [40]. Most of this work targets permis-

sioned blockchain settings, where the blockchain network has a

closed-membership assumption, i.e., all the participants in the

blockchain network are authenticated and known. This permis-

sioned setting allows faster and cheaper processing which makes

it suitable for enterprise and consortium (multi-organization)

applications. However, the closed-membership assumption of

permissioned blockchain prevents their use in DApps that re-

quire open-membership and not rely on a single or group of

fixed members. We target supporting these DApps which is now

a large market with hundreds of thousands of users and hundreds

of millions of dollars in assets [12], [39], [51]. For this reason,

we tackle the unique challenges that are faced when building a

BBDB over permissionless blockchains. Due to their focus on

permissioned blockchains, prior BBDBs [5], [25] do not factor in

the monetary cost and latency challenges of using permissionless

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

blockchain. This led to them being unsuitable for DApps due to

high costs and latency from writing raw data directly to the

blockchain [4], [14], [16], [32].

Blockchain Rollups: Blockchain rollups was proposed as a

layer-2 scaling solution for blockchains [41] (see Section II-C

for an overview). Prior work utilizes either one of the two

rollups strategies—suffering from the disadvantages of the cho-

sen method. RollStore combines the two in a manner that

allows benefiting from their advantages while masking their

disadvantages. In particular, o-rollups digests can be written

faster on-chain but their challenge period takes a long time up

to days [41]. On the other hand, zk rollups’ time to generate

the digest/proof to be written on-chain is longer than o-rollups

time to write the digest; but, that proof is sufficient to finalize the

commitment of the operation without having to wait for days in a

challenge period. RollStore’s design allows enjoying the benefits

of fast o-rollups digest writing (stage 1) as well as the finality of

zk rollups (stage 2). Finally, RollStore introduces a new kind of

rollups that we utilize in stage 0 that is much faster than other

kinds of rollups as it does not require writing on-chain. This is

possible via a penalty strategy using a penalty smart contract.

Secure and Authenticated Off-Chain Processing: There have

been a lot of recent work on utilizing off-chain nodes to perform

compute and storage tasks for blockchain applications [2], [23],

[29], [34]. This is because utilizing off-chain nodes can reduce

the monetary cost and performance overhead of blockchain

applications. The challenge that is faced by many works in this

category is how to utilize off-chain nodes that might be untrusted.

For this reason, trusted and authenticated data structures were

used to provide trust on the outcome of off-chain nodes’ pro-

cessing [46], [52], [54]. These solutions focus on querying and

storing data securely off-chain, but do not support operations

that mutate the state of data, unlike RollStore and blockchain

rollups.

Related to this category is the plethora of work in authenti-

cated data and query processing [27], [56], [58]. These meth-

ods can be inherited and utilized in the context of querying

and processing data in hybrid onchain-offchain applications

[4], [46].

III. ROLLSTORE DESIGN

In this section, we present the design of RollStore.

A. System Model and Interface

System Components: RollStore consists of the following com-

ponents (Fig. 4):
� Updater node: the updater receives the write and read

requests from clients. It maintains a mutable table Tmut,

Level L0 of the LSM tree, and a MMR tree for data in L0,

called MMR_0. Data in L0 represents stage 0 committed

data.
� Backup node: the backup maintains LSM levels (L1 and

L2), and two MMR trees MMR_1 and MMR_2, each corre-

sponding to an LSM level. L1 contains data that is stage 1

committed (o-rollups) and L2 contains data that is stage 2

committed (zk-SNARK).

Fig. 4. Data architecture of RollStore.

� Prover node: the prover performs zk-SNARK computation

to generate proofs of L2 pages.
� Smart contracts: on-chain smart contracts handle the ver-

ification and maintenance of digests related to stage 1

and 2 committed data. Also, the smart contract handles

the punishment strategy by verifying whether an off-chain

node is malicious if a challenge is raised during stage 0 or 1

commitment. If the challenge indicates malicious activity,

then the smart contract punishes the off-chain node by

withdrawing funds from its escrow account.

The three types of off-chain nodes can be co-located or placed

across different machines. Also, the three types of nodes can be

elastically scaled, where more nodes of a node type are added

to scale its computation, e.g., prover nodes can be added to

speed up zk proof generation. We discuss scaling node types

in Section III-C.

System Interface: RollStore provides a read, and write oper-

ation interface for users to read and write data.

1. Write: (In: key − value pair,Out : inclusion proof,
sequence number): this call takes a key-value pair as the

input, the output of this call is the inclusion proof for the

key-value pair and the sequence number where it is added.

Clients use the write interface to submit write requests to

the updater node.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9181

2. Read: (In : key,Out : value, inclusionproof): this func-

tion takes a key as the input, the output of the read operation

is the corresponding value, and the inclusion proof for that

value. The inclusion proof might be (1) local (stage 0),

(2) global without full verification (stage 1), or (3) global

with full verification (stage 2). Clients use the read inter-

face to submit the read requests to the updater node.

Security Model: Off-chain nodes (updaters, backups, and

provers) are not trusted. They can deviate from the protocol

in arbitrary ways, similar to Byzantine failures [30]. Off-chain

nodes can collude together and with clients. The smart contract

logic executes correctly—without deviating from the protocol—

due to running on blockchain. Write requests are assumed to be

authenticated by a client, which prevents off-chain nodes from

fabricating clients requests.

Data Model: The following are the main data structures

maintained in RollStore (Fig. 4):

1. Distributed LSM tree: The LSM Tree maintains the key-

value pairs appended to RollStore. It has a mutable table

and three levels. The mutable table Tmut is at the updater

node. Tmut holds the most recently appended entries that

are being staged to be pushed to level L0 of the LSM tree.

Level L0 maintains batches of appended data objects and

is stored in the updater node. A page is added to L0 only

after a signed response is sent back to the clients with

operations corresponding to the page’s data objects. Pages

are assigned a monotonically increasing sequence number

Seq. We denote the ith appended page to L0 as page P0i.
Level L1 represents pages that are consolidated from level

L0. Before a page is written to L1, its digest must be

written on-chain as part of stage 1 o-rollups. Pages in

L1 are also assigned monotonically increasing sequence

numbers, where the ith page to be added to L1 is denoted

P1i. Each page in L1 represents a consolidation of pages

in L0. Therefore, page P1i represents the consolidation

of pages P0i∗m to P0(i∗m)+m−1 from L0, where m is

the threshold of the number of pages in L0 to trigger a

consolidation of pages in L0 and creating a new page in

L1. Note that a new page in L1 is added to the set of pages

inL1 and not merged with existing pages. Therefore, pages

in L1 may have overlapping key ranges.

Level L2 represents pages that are merged from level L1

after a successful zk proof is generated for them. Pages

from L1 are merged into L2 in the order of their sequence

numbers. Specifically, when the next k pages at L1 are zk

proven, then they are merged with the pages that already

exist in L2. Therefore, after i merge steps to L2 (where

i = 0 corresponds to the first step), the pages inL2 contain

the merged key-value pairs that represent pages P1(i∗k)
to P1(i∗k)+k−1), which correspond to pages P0i∗k∗m to

P0(i∗k∗m)+(m∗k)−1. Pages are merged from L1 into L2

which means that key-value pairs in L2 are ordered across

pages and each page has a unique range of key-value pairs

that do not overlap with other pages in L2.

2. MMR trees: The MMR trees are used to create compact

digests of the data in the LSM tree. There are three MMR

trees, each one corresponding to an LSM level; MMR_0 for

L0 in the updater, and MMR_1 and MMR_2 for L1 and L2

in the backup. The digests of this MMR tree are used for

the verification process of stage 1 and stage 2 committed

data.

3. On-chain digests: The smart contract maintains a map

of digests and proofs that are related to stage 1 and 2

committed data. Users query these digests to verify the

authenticity of responses from off-chain nodes. There are

two sets of digests/proofs. The first set is for stage 1 digests.

In this set, each smart contract digest SC_Digest1
i

corresponds to pageP1i, which is a consolidation of pages

P0i∗m to P0(i∗m)+m−1, where m is the threshold for the

number of pages in L0 before consolidation. The second

set is for stage 2 digests/proofs. In this set, each smart

contract digest/proof SC_Digest2
i corresponds to the

ith merge operation on L2. The ith merge operation in

L2 corresponds to merging the key-value pairs that are

consolidated in pages P1i∗k to P1(i∗k)+k−1, where k is

the threshold of the number of L1 pages to merge into L2.

Commitment Model: A write operation W of client c goes

through three stages of commitment:

1. Stage 0: When the updater sends a signed response back

to c, W is considered stage 0 committed. This signed

response includes acknowledging the operation is received

and promising to add it to page P0i. This stage of com-

mitment is the fastest as blockchain smart contracts are

not involved. Client c can use the signed response later

to prove maliciousness if an updater has lied (e.g., oper-

ation W is not included in P0i and later not included in

P1�i/m�, where m is the page threshold at L0). A penalty

smart contract receives punishment requests from clients

that wish to prove maliciousness and punish malicious

off-chain nodes.

2. Stage 1: Consider the page P0i that includes W and

the page P1�i/m� that is the consolidated L1 page that

includes P0i. When the digest of P0i and P1�i/m� are

written as SC_Digest1
i to the smart contract, the op-

eration W is considered stage 1 committed. This takes

longer than stage 0 commitment since the digests need

to be written on-chain. However, it provides a stronger

consistency guarantee—if two clients observe the state of

a page P0i that is stage 1 committed, then they agree on

the state of the page. However, this stage of commitment

does not guarantee that the page itself is the result of

correct computations. This is because the off-chain node

can create a digest of arbitrary data. The client has to

wait for the next stage of commitment to ensure that the

derivation of the page is correct. However, if the off-chain

nodes lie about stage 1 committed pages, they won’t be

able to perform stage 2 commitment. This consequently

leads to clients sending a challenge request to the penalty

smart contract that punishes the off-chain nodes.

3. Stage 2: Operation W is considered stage 2 committed

when the following is true: the zk proof of a merge that

includes page P1�i/m� is verified by the smart contract

and written as SC_Digest2
�i/(m·k)�, where k is the page

threshold atL1. This is the strongest correctness guarantee

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 5. Lifecycle of RollStore requests. Red arrows represent stage 0 and 1
steps of write operations; blue arrows represent stage 2 steps of write operations;
and green arrows represent steps of read operations.

as a page that is stage 2 committed is guaranteed to

have been computed correctly by zk-SNARK. However,

generating such a proof is a complex and time-consuming

process.

B. RollStore Core Design and Protocol

We now provide a description of RollStore’s core design

and protocols. This includes the protocols for read and write

operations with a deployment of one updater, one backup, and

one prover. We will describe the protocol as we follow the

end-to-end life-cycle of write and read requests (Fig. 5 shows

the flow of operations that we refer to as steps in the rest of this

section).

Stage 0 Commitment: A client c creates a signed write request

Wi that has a key-value pair, [Ki, Vi], and signature, Sc, as

payload; Wi = (Sc, [Ki, Vi]). The signed write request is sent

to the updater node (step 0 in the figure). The updater node, after

receiving the signed request forWi, addsWi to the mutable table

Tmut of the LSM tree. Once Tmut is full, the key-value pairs in

Tmut are reordered by their key and written as a new pageP0i in

L0 of the LSM tree located in the updater node. Each page in L0

is assigned a monotonically increasing sequence number. This

sequence number will be used by clients to track their operations

and ensure that they are eventually stage 1 and 2 committed.

Page P0i’s sequence number is denoted Seqi (if not mentioned

otherwise, assume that Seqi = i).
The MMR tree in the updater node is updated to include

data in P0i. At this point, a signed response, Acki, is sent

back to client c for stage 0 commitment of Wi (step 1). This

response includes: a stage-0 proof of inclusion of Wi in P0i
(using the MMR tree) denoted Prf0

Wi
; also, Acki includes

P0i’s sequence number Seqi and the updater’s signature Su;

Acki = (Su, Seqi, P rf0
Wi

). At this point, client c considers the

operation stage 0 committed and has a signed response that the

updater node promised to include Wi as part of page P0i with

sequence number Seqi in the LSM tree. If the updater node does

not honor this promise, then client c can use this signed response

to trigger a punishment smart contract.

Stage 1 Commitment: The updater node continues adding

pages to L0 until the threshold of the number of pages, m, is

exceeded. At this point, Stage 1 commitment of pages in L0

starts. The pages in L0—including P0i—are now mapped by

the updater’s MMR tree, MMR_0. A consolidated page P1�i/m�

that consolidates the key-value pairs in pages in L0 is created.

The hashes and sequence numbers of the pages in L0 and the

hash of P1�i/m� are sent to the smart contract (step 2). The

smart contract records this root hash as the stage 1 commitment

o-rollups hash for the pages with the corresponding sequence

numbers. This hash is recorded as SC_Digest1
�i/m�. Then,

the smart contract emits an event to the updater node and clients

about the new written hash and the corresponding page sequence

numbers2 (step 3 and 3’). The updater node sends a signed

response to the client for stage 1 commitment (step 4). This

response includes the digest of pageP1�i/m� and the operation’s

inclusion proof.

After stage 1 commitment is performed for pages in L0, all

pages in L0 and the consolidated page P1�i/m� are sent to the

backup node to be inserted to L1 (step 5). The original pages

in L0 are sent with P1�i/m� to the backup node as they will be

used to provide inclusion proofs for read request as well as used

to generate the zk proofs in stage 2 commitment. After sending

P1�i/m� and the L0 pages to the backup node, the pages in L0

are cleared in the updater node. The page P1�i/m� will not be

merged with pages inL1, rather it will be inserted as a new page.

This means that the key-value pairs range of one page in L1 may

overlap with the ranges of other pages in L1.

Stage 2 Commitment: After page P1�i/m� is added to L1, the

backup node checks if the page threshold for L1, denoted k, is

met. If it did, the backup node starts the stage 2 commitment

process using zk-SNARK for pages in L1. This process merges

the pages in L1 with the pages in L2. In the jth merge operation,

the pages to be merged from L1 are from P1j∗k to P1(j∗k)+k−1.

The merge is performed in the backup node. Then, the merge

information is sent to the prover to generate a proof of the

correctness of the merge. The information to prove the jth merge

includes: (1) pages P1j∗k to P1(j∗k)+k−1, (2) pages P0j∗k∗m to

P0(j∗k∗m)+(k∗m)−1, (3) pages in L2, (4) the MMR root of L2,

MMR_2-Pre, before the merge, and (5) the MMR root of L2,

MMR_2-New, after the merge (step 6). The prover node takes

all this information to generate a proof that: (1) each page in

pages P1j∗k to P1(j∗k)+k−1 is generated correctly from the

corresponding L0 pages, and (2) the merge of pages in P1j∗k to

P1(j∗k)+k−1 with pages in L2 (with MMR root MMR_2-Pre)

yields a new state with MMR root MMR_2-New.

After the zk-SNARK proof is generated, it is sent to the smart

contract to be validated (step 7). The smart contract performs the

following: (1) it validates the proof, (2) verifies that the hashes

used for L0 and L1 pages match the ones in stage 1 commit

2A smart contract in permissionless blockchain cannot communicate directly
to off-chain nodes. Here, we use the Ethereum emit operation that allows off-
chain nodes to filter and pull emitted data of interest from the smart contract.
Emit events in Fig. 5 are shown as dotted arrows.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9183

for the pages with the same sequence numbers, (3) verifies that

MMR_2-Pre corresponds to the previous verification, (4) record

the new proof digest on-chain as SC_Digest2
j for future

access by clients, and (5) an event is emitted to the backup

node and clients with operations in pages P1j∗k to P1(j∗k)+k−1

(step 8 and 8’). The writes in P1j∗k to P1(j∗k)+k−1 are now

considered stage 2 committed. The backup node—once the proof

is verified by the smart contract—writes the merged pages to L2

and clear pages P1j∗k to P1(j∗k)+k−1 from L1.

Read Operations: A client reading a key x specifies the level

of the read request: stage 0, stage 1, or stage 2 committed. We

now show the process for a stage 0 committed read. (Stage 1

and stage 2 committed read follow the same process but starting

from the backup node at level L1 for stage 1, and L2 for stage

2). First, the read request r is sent to the updater node (step A).

When the updater node receives a read request, it responds with

a signed response with the corresponding key-value pair and

MMR inclusion proof (step B). The implications of this com-

mitment is similar to stage 0 commitment for write operations

where a read client can use the signed response as a proof of a

lie by the updater node in the future.

If the requested key was not inL0, then the read request moves

toL1 (this is also the start point of a stage 1 committed read). The

client reads the most recent written stage 1 and 2 digests from the

smart contract to match them with the response once received.

The updater node forwards the request to the backup node

(step C) that responds with the corresponding key-value pair

from a page in level L1 and the inclusion proof. The guarantee

of this read request is similar to a stage 1 committed write where

any two read requests would agree on the result but the result is

not yet verified by a zk proof. If the requested key is not in L1,

then the read request moves to L2 (this is also the start point of a

stage 2 committed read). The backup node returns the requested

key-value pair from L2 if it exists (step D). The client can check

the inclusion proof against the smart contract and verify that the

read data object has been verified with a zk proof.

In both the stage 1 and stage 2 reads, the client reads the

proof/digest from the smart contract prior to the beginning of the

operation (note that unlike writing to blockchain smart contracts,

reading data from a smart contract is a fast operation). Consider

a read request that goes to a level Li; if the data object does not

exist in that level and the read is forwarded to Li+1, then a proof

of non-existence is also returned from Li. This can be done by

returning the pages with the ranges that overlap the requested

key so that the client can verify that the key does not exist.

C. Scaling Off-Chain Nodes

In this section, we discuss the scaling strategies for the three

node types, updaters, backups, and provers. This allows each

node type to utilize multiple nodes—instead of one node—to

service requests and improve performance and/or resilience.

Scaling Updater and Backup Nodes: The updater and backup

nodes maintain LSM and MMR data. We discuss scaling these

two types of nodes—which is increasing the number of updater

and backup nodes to achieve higher throughput through dis-

tributing the workload.

RollStore offers a single-key operation interface (Section

III-A). The simplicity and efficiency of single-key operations

make them a suitable approach in DApps. Notably, applications

such as decentralized marketplaces utilize single-key operations

for activities like minting, allocation, and transfer of items; these

operations are performed by changing (or creating) a single data

record that corresponds to the item being managed. Another

set of examples include identity and access management where

single-key operations are used for authentication and access

control. Other than applications where it is sufficient to per-

form single-key operations, the strategy we adopt is to store

relevant data together within one shard. This approach—given

data locality—enables ordering more complex operations even

before stage 2 commitment. Our scaling strategy centers around

single-key operations, involving the sharding of data into n
shards. Each shard is maintained by a separate set of two

nodes, one for the updater and the other for the backup. The

smart contract is also deployed as n independent instances, one

for each shard. Each shard operates independently, enabling

parallel processing of data, thereby allowing the system to scale

effectively. This means that different shards can handle different

parts of a complex write operation simultaneously. This isolation

enables complex write operations to be performed on one shard

without affecting the data in other shards. However, it is crucial

to note that while each shard functions autonomously, our system

incorporates a coordination mechanism to address transactions

that involve data across multiple instances. This coordination

is essential for processing complex multi-data write operations.

The global ordering mechanism realized through a blockchain-

based smart contract (RollStore stage 2), plays a pivotal role

in orchestrating these operations. This ensures that transactions

touching data on multiple instances are executed in a coordinated

and deterministic order (see Section III-F, Theorem 4).

Scaling Prover Nodes: The prover node is tasked with gener-

ating the zk proofs of stage 2 commitment. Scaling the prove

operation is important as it is a lengthy process. To scale

proving tasks, we maintain n provers and distribute the zk

proving workload across the n provers. Specifically, each zk

proving task Task_i is divided into n subtasks, Tasksub_1

...Tasksub_n. Each subtask is responsible for proving N/n data

items, where N is the total number of data items in the prove

task.

Resilience and Availability: Increasing the numbers of nodes

can also serve the purpose of increasing the crash resilience

and availability of RollStore. Specifically, for stateful node

types—updaters and backups—the state of each node can be

maintained by a replication cluster [9]. Therefore, the failure of

one node can be tolerated by the rest of the nodes in the cluster.

For stateless nodes—provers—adding and replacing provers is

straight-forward, since the proving task is stateless. Therefore,

in the case of a prover failure, it can be replaced by another node

that takes over processing the requests from the backup node.

D. DApp-Indexing-as-a-Service Model

In this section, we discuss the payment model to enable

DApp-indexing-as-a-service. In this model, each off-chain node

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9184 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Fig. 6. Incentive mechanism.

deposits an amount of cryptocurrency to an escrow fund in

the penalty smart contract in the setup stage. the addresses

(Ethereum addresses and IP addresses) of off-chain nodes that

successfully deposited the fund in the smart contract would be

stored in the penalty smart contract.

The penalty smart contract is initialized with the following

variables: OC_AddressE , OC_AddressIP , OC_Deposit,

and OC_Signature. The first two variables store the

Ethereum address and IP address of the off-chain node that

signed up as a server node. The OC_Deposit variable sets

an amount of how much cryptocurrency (Ether) should be de-

posited to successfully sign up. The variable OC_Signature

stores the digital signature of the off-chain node that provides

the service. Users can send their requests (writes or reads)

to valid server nodes that successfully stored their addresses

in the penalty smart contract. The valid server nodes process

these requests and interact with other nodes and the blockchain

network.

E. Failure Examples

In this section, we briefly present the new threats and discuss

how RollStore addresses them. RollStore allows servers to act

maliciously, but it guarantees the detection of the malicious act

and the punishment of dishonest servers. RollStore handles these

threats using a three-stage security protocol, ensuring that the

committed state (stage 2) is consistent across all honest nodes,

and any malicious act can be detected and punished in the three-

stage commitment process

Threat in Stage 0 Commitment: An adversary might delib-

erately respond incorrectly during stage 0 commitment. In this

scenario, if the adversary is an updater node, given a writes

request Wi, the malicious updater can return a wrong sequence

number Seqw, or wrong inclusion proofs Prfw
Wi

. RollStore

guarantees that any incorrect response will be detected and

punished.

In stage 0 commitment, the updater provides a signed response

back to the client that its write requestWi is part of a pageP0i in

L0 with sequence number Seqi. Prf0
Wi

is the signed inclusion

proof of the write in page P0i. An updater must use this page

P0i during the o-rollups operation of stage 1 commitment. The

client can verify that this is the case by observing the hashes that

were written on-chain for stage 1 commitment.

As shown in Fig. 6, we also designed an incentive mechanism

to encourage clients to verify and challenge such malicious

behavior. For example, if the hash that corresponds to sequence

number Seqi is the same as the one received in the stage 0

response, then the promise is honored. Otherwise, the client

starts the penalty process. The client sends a request to the

penalty smart contract with the following input: the received

stage 0 response received from the updater node, i.e., Acki =
(Su, Seqi, P rf0

Wi
). The penalty smart contract verifies whether

the penalty should be applied by verifying the authenticity of

Acki (that it is signed by the updater signatureSu), and checking

whether the MMR root hash in Prf0
Wi

equals the o-rollups hash

in the smart contract for the page with sequence number Seqi. If

the hash is different, the penalty is applied. The client can retrieve

the deposit from that adversary node. However, if clients submit

an invalid challenge request to the penalty smart contract, the

smart contract will impose an additional payment that clients

are required to pay. As a consequence of an invalid challenge,

clients will also face a temporary restriction from connecting to

our system.

Threat in Stage 1 Commitment: An adversary can upload the

wrong digest of the stage 1 commitment or send the wrong pages

used in the proof generation. In this scenario, if the adversary

is an updater node, for a write operation Wi in page P0i with

sequence numberSeqi, the stage 1 commitment hashesHash_o

in the smart contract include the hash for P0i as well as P1i
which is the merge result of page P0i and other L0 pages. The

malicious node can upload a wrong digest Hash_w instead of

Hash_o or send the wrong pages P1w used in the later zk proof

generation. RollStore guarantees that no incorrect response can

pass through the rest of the system and will be detected, thus not

harming the system.

In stage 1 commitment, the client observes the stage 1 com-

mitment hashes that are written to the smart contract for stage

1 commitment. RollStore protocols ensure that these hashes

are the same ones that will be used in stage 2 commitment.

This is done because the smart contract—when verifying the

proof in stage 2 commitment—verifies that the hashes used to

generate the zk proof are identical to the ones used in stage 1

commitment by o-rollups. This is performed by checking which

hashes were written to the smart contract during stage 1 for the

corresponding pages used in the proof generation. In the case of

Wi, this includes the hashes for pages P0i and P1i. Since this

is guaranteed by the verification process in stage 2 commitment,

the off-chain nodes must keep their promise in using the stage

1 pages in stage 2 commitment. If they commit a false digest

Hashw, then they would have to indefinitely delay the stage 2

commitment, and if they send the wrong pagesP1w, they cannot

generate the correct zk proof. Thus, they cannot pass through

to the final commitment. Clients can then send requests to the

penalty smart contract to penalize such incorrect behaviors.

Delay Threat: In both stage 0 and stage 1 commitment,

another type of malicious act that the off-chain nodes may do

is to delay the next stages of commitment indefinitely. In this

case, we designed a two-step process to prove and punish the

off-chain nodes.

Consider the case of a client—with operation Wi in P0i—
that received a stage 0 or stage 1 response r at time t. If the

user suspects that the off-chain nodes are not continuing the

processing of the request and future stages of P0i. The first step

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9185

is to send a delay − notification request to the penalty smart

contract. The input to this notification is a proof that a signed

response is received from the off-chain node for page P0i. The

smart contract records this notification with the blockchain block

number that it was written in, b1i . Now, the off-chain nodes have

an opportunity to finalize the commitment of P0i before the

second step. The initiation of the second step is contingent on

reaching a future block b2i , satisfying the condition b2i − b1i >
bt, where bt represents the threshold specifying the minimum

number of blockchain blocks that must have elapsed before the

second step can be triggered. This is a predefined number that

is agreed on by the off-chain nodes and should be sufficiently

large to allow for processing requests. If bt blocks passed and

the client still observes that P0i is not committed, it starts the

second step by sending a delay − followup request. This request

references the first step. The penalty smart contract checks that

bt blocks have been committed since the previous notification

and ifP0i is still not committed. If both conditions are true, then

the penalty logic is applied and funds are withdrawn from the

off-chain node escrow fund.

This strategy can be applied separately for stage 0 and 1

commitment delays where there is a threshold bt for each type

of commitment. We use a block number threshold as it is a

standard practice in smart contract development. The reason for

using block numbers between requests is that it is predictable

since the commitment of a block typically takes a predefined

amount of time.

F. Safety

In this section, we formally prove the safety of read and write

operations in RollStore. Specifically, we first demonstrate that

the guarantees of each level of commitment are met, and then

we discuss the linearizability of RollStore. With these theorems

established, RollStore ensures that any security violations will

be detected and punished eventually, and the final commitment

stage (stage 2) remains linearizable across all honest nodes.

Theorem 1. (Stage 0 safety guarantee): For a write w that is

stage 0 committed in page P0i with sequence number i, either

(1) the writew is going to be part of pageP0i that is committed in

stage 1 as part of the o-rollups in the consolidated page P1�i/m�,

where m is the threshold of the number of pages in L0; or (2) the

client can prove that the updater provided a false promise to

include w in page P0i.
Proof: We prove this statement by contradiction. Assume to

the contrary to the defined guarantee that there is a writew that is

stage 0 committed as part of pageP0i, however, (1) the off-chain

node used another page P0′i (with the same sequence number as

P0i) during stage 1 commitment for page P1�i/m�, and (2) the

client cannot prove the fake promise about w.

If page P0′i was used in stage 1 o-rollups of P1�i/m� instead

of P0i, this means that the stage 1 digest written on-chain,

SC_Digest1
�i/m� for page P0i is different from the one

returned to the client during the response (step 1 in Fig. 5).

This is because any change to the contents of the page would

lead to a different digest. Therefore, the client knows that the

off-chain node lied by detecting the different digests. The client

can then prove that the off-chain node promised to include w as

part of P0i by showing the signed response received in step 1.

This is a contradiction, which proves the guarantee. �

Theorem 2. (Stage 1 safety guarantee): For a write w that is

stage 1 committed in page P1j with sequence number j, the

following is guaranteed: the write w in P1j is going to be part

of the j
k

th
merge to L2, where k is the threshold of the number

of pages in L1.

Proof: We prove this statement by contradiction. Assume to

the contrary to the defined guarantee that another page P1′j with

sequence number j—that does not include w—was included in

the merge to L2. This means that the digest SC_Digest1
j

(which corresponds to P1j) in the smart contract is different

than the digest of the page P1′j . However, during the smart

contract verification of the merge proof, part of the verification

is that the digest of L1 pages used in the merge are equivalent

to the ones that were written to the smart contract during stage

1 commitment; this includes SC_Digest1
j . This means that

the proof verification in the smart contract will fail, which is a

contradiction, which proves the guarantee. �

Theorem 3. (Stage 2 safety guarantee): For a write w that is

stage 2 committed (i.e., the corresponding L1 page P1i is stage

2 committed as part of merge number j), the following is true:

any stage 2 read operation will receive the key-value pair of w
if it reads from any merge starting from merge j to merge j′ − 1
where the first write w′ that overwrites w is in merge j ′.

Proof: We prove this by contradiction. Assume to the con-

trary that a stage 2 read operation that reads from merge j∗,

where j < j∗ < j′, observes a value written by w∗ that is

different from the value written byw.3 As part of the assumption,

w is part of the state of L2 as of merge j. Therefore, returning

another write value w∗ after merge j∗, but before merge j′ can

happen in one of two ways: (1) a write w∗ is introduced in a

merge J between j and j∗. This means that w∗ is part of the L0

pages that correspond to merge J . This is a contradiction since

we assume that the first write to overwrite w, w′, is performed as

part of merge j′ that is after j∗. (2) the updater returns the value

of w∗ that is not part of any merges between j and j∗. However,

to be returned and verified by the reader, the write w∗ must be

part of L2. Being incorporated in L2 necessitates that a zk proof

was obtained for it in some merge J between j and j∗. This is

a contradiction since we assume that the first write to overwrite

w, w′, is performed as part of merge j′ that is after j∗. �

Isolation Guarantee: RollStore guarantees linearizability [26]

of operations that are stage 2 committed. We focus our isolation

guarantee discussion on stage 2 commitment since it represents

the point of final commitment and verification of operations.

Theorem 4. (Consistency of stage 2 operations): Any history

H of stage 2 operations is linearizable.

Proof: A history H of read and write operations is lineariz-

able [26] if (1) H is equivalent to some sequential history S,

and (2) the partial time order <H is a subset of the equivalent

sequential history order <S .

3We ignore the trivial case when there are multiple writes to the same key of
w in the merge j. In such a case, the most recent write—the one in the highest
sequence numbered L0 page—overwrites the others.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9186 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

First, we prove the first property—H is equivalent to some se-

quential history S. RollStore performs stage 2 merge operations

one-by-one in the order of the pages in L1 which in turn are

consolidations of ordered L0 pages. In particular, the jth stage 2

merge operation commits the operations consolidated in pages

P1j∗k toP1(j∗k)+k−1, where k is the threshold of the number of

pages inL1. Now, we construct the equivalent sequential history

S. Consider the commit point for write operations in P1j∗k to

P1(j∗k)+k−1 to be the time when the verification is performed

and the proof is written on-chain. A read operation that reads a

value written by w that is committed as part of the jth merge

is ordered in the sequential history to be between the jth and

(j + 1)th merge. The history H is equivalent to this constructed

sequential history S.

Second, we show that <H is a subset of <S . This is trivial

for write operations as the commit points are ordered by the

smart contract so that the values committed in the jth merge

precedes the values committed in the (j + 1)th merge. For read

operations, consider a read r that reads a value committed in

the jth merge. Consider the following partial time order in H.

The read r starts at time tstartr and terminates at time tendr . The

read algorithm checks the smart contract first to inquire about

the most recent successful stage 2 merge in L2. It receives the

proof and digest for the jth merge. Then, the read operation is

serviced from the backup node. From this timeline, we deduce

the following about the partial time ordering in H: (1) tcommit
j <

tendr , where tcommit
j is the commit time of the jth merge in the

smart contract. This is true because the read observes the commit

digest/proof. (2) tcommit
j+1 > tstartr . This is true because the read

observed the jth merge in the smart contract, which is a point

after tstartr , therefore, the next merge must have happened after

the start of the read operation. Therefore, r can be assigned

a commit time in the history in any point between tstartr and

minimum(tendr , tcommit
j+1). This partial time ordering is part of

the constructed sequential ordering in S. �

IV. EVALUATION

In this section, we experimentally evaluate the performance

of RollStore in comparison to two blockchain-based databases

(BBDBs): BlockchainDB [16] and BigchainDB [32], as well

as compare our system with an oracle-based logging system,

WedgeBlock [42]. We perform our experiments by deploying

off-chain nodes on Chameleon cloud machines [28]. Each ma-

chine has two 64-bit Skylake CPUs with 192 GB of RAM and

300 GB of storage. We used the Zokrates [15] framework to

implement the zk-SNARK proof mechanism. The underlying

blockchain network we utilize for our experiments is the Ropsten

network, a widely used Ethereum test network.

Default Configuration: For each experiment, we use the fol-

lowing default configuration. The threshold of the mutable table

Tmut, level L0, and level L1 are set to 64 writes, 7 pages, and

3 pages, respectively. The default batch size is 512. The main

variables we vary are the batch size and the number of server

nodes.

Benchmark: We use the Yahoo! Cloud Serving Benchmark

(YCSB) to generate the workload for experiments [13]. YCSB

is a key-value store benchmark that offers various workloads. In

our experiments, we utilize: (1) Workload A: 50% write opera-

tions and 50% read operations, and (2) Workload C: read-only

workload. We use a uniform distribution to choose access keys.

Evaluation Objectives: Our evaluation addresses:
� What are the performance characteristics of RollStore in

terms of throughput, transaction cost, and latency?
� What is the impact of the batch size on performance?
� How does the performance of our system compare to other

hybrid blockchain-based database systems?
� How does the performance of our system compare to that

of an oracle-based system?

Metrics: The metrics we measure are:
� Throughput: This metric represents the throughput in terms

of operations per second. We measure and report the

throughput for each stage of commitment.
� Latency: The average latency to perform the three stages of

commitments for writes and the average time to serve read

requests. The latency of zk-SNARKs proof generation for

Rollup-2 includes the time of setup and proof generation.

Since the time of setup is much less than that of the proof

generation, we show both latencies together.
� Transaction cost: The transaction fee cost incurred by

optimistic rollups (stage 1 commit) and zk proving (stage

2 commit) in terms of dollars per thousand operations (we

assume that the Ether price is $1500). Although the base

gas fee may fluctuate, our experiments were conducted in

close time proximity, during which we did not experience

significant fluctuation in gas cost. The cost in Ether indi-

cates the resource consumption on blockchain for methods

accurately.

Comparisons: We compare the performance of our system on

two widely used blockchain networks, Ethereum (permission-

less) and Tendermint (permissioned). It is worth noting that the

Ethereum mainnet does not provide direct support for key-value

store tasks. As a result, the throughput on the mainnet cannot be

directly compared to the throughput of RollStore: To evaluate

the performance of RollStore, we select two database systems

that are deployed on these two networks, namely BlockchainDB

(built on Ethereum) and BigChainDB (built on Tendermint). For

an oracle-based system, while WedgeBlock does not support a

key-value store service, it does provide a secure logging service

that closely resembles a key-value store service. Hence, the

comparison between our system and Wedgeblock is justified

for the purpose of performance evaluation
� BlockchainDB [16]: BlockchainDB is a hybrid BBDB that

utilizes a blockchain layer as a storage layer and builds a

database layer on top of it. We focus on the performance

of read and write operations in BlockchainDB when a

permissionless blockchain is used.4 BlockchainDB stores

all data on-chain. This leads to high monetary costs and

latency overhead for write operations. For both reads and

4BlockchainDB is designed for permissioned settings. We make it with
permissionless settings here as it is the closest BBDB that can be adapted
to utilize permissionless settings. We also compare with BigChainDB while
maintaining its permissioned settings.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9187

writes, the operation is first performed on off-chain nodes

(BlockchainDB-1), which is done fast, and then performed

on-chain (BlockchainDB-2), which is full on-chain ex-

ecution. When evaluating BlockchainDB, we utilize the

Ethereum testnet network called Ropsten.
� BigChainDB [32]: BigChainDB is a BBDB that is im-

plemented as a permissioned blockchain. A Byzantine

agreement protocol, Tendermint, is used to implement a

blockchain ledger and a database layer runs on top of

this blockchain. This makes BigChainDB not suitable for

DApps that require decentralization and open membership

(permissionless) blockchains. However, we include it in

our evaluation to understand the differences in performance

characteristics compared to RollStore. Being on a permis-

sioned blockchain, BigChainDB does not incur monetary

costs. Also, because the database layer is integrated with

the permissioned blockchain layer, the performance of op-

erations is dependent on the performance of the underlying

consensus mechanism.
� WedgeBlock [42]: WedgeBlock, a data logging platform

for DApps, introduces the Lazy-Minimum Trust (LMT)

concept to address high latency challenges. In LMT, the

off-chain node adopts a lazy approach by asynchronously

writing the log entry digest on-chain, promptly respond-

ing to user requests before the actual write occurs. This

strategy is supported by a robust trust-proof and penalty

mechanism, reminiscent of an oracle solution. We include

WedgeBlock in our comparison to explore variations in

the performance and cost of RollStore compared to an

oracle-based solution.

We utilize and adapt available implementations of both

BlockchainDB [16] and BigChainDB [32] that are made as a

part of a study of hybrid BBDBs performance [20]. For the

oracle-based system, we employ an available implementation

of WedgeBlock [42].

A. Baseline Performance

In baseline experiments, we configure RollStore to have one

updater node, one prover node and one backup node. The

three nodes are located on three different machines and we use

YCSB’s workload A. The following experiments are performed

while varying the batch size from 1 to 32 operations per batch

(small) and from 64 to 2048 operations per batch (large).

Throughput: The left side of Fig. 7 shows the throughput

results for small batch sizes. RollStore stage 0 commitment

(RollStore-0) achieves the highest throughput. This is because

all processes in stage 0 are performed locally and do not need

to coordinate with the smart contract. Both stage 0 and stage 1

(RollStore-1) throughputs increase with the increase in the batch

size. Batching amortizes the cost of committing operations. In

the case of RollStore-1, when batches are bigger, this means

that the number of writes to the blockchain is lower, which

increases performance. Stage 2 (RollStore-2) achieves a lower

throughput compared to stage 1, primarily due to the added

overhead of performing a compute-intensive proof generation

process. Unlike RollStore-0 and RollStore-1, the performance

Fig. 7. Throughput and latency in small batch sizes.

Fig. 8. Throughput and latency in large batch sizes.

of RollStore-2 does not significantly improve as the batch size

increases. This is because the performance of RollStore-2 is

primarily determined by the time required for proof genera-

tion, which becomes increasingly challenging as the batch size

increases.

The local (off-chain) throughput of BlockchainDB

(BlockchainDB-1) achieves a higher performance compared

to RollStore-1 because it does not require interacting with the

blockchain. However, when it comes to committing operations

on-chain in Ethereum, BlockchainDB-2 exhibits poorer

performance compared to RollStore-1 and even underperforms

RollStore-2. This is because BlockchainDB-2 writes raw

data on-chain which increases the overhead of interacting

with blockchain. BigChainDB performance is between

RollStore-0 and RollStore-1. This is because it does not

utilize permissionless blockchain, which means that it does

not suffer from the high overhead associated with it. However,

BigChainDB incurs overhead from the underlying permissioned

blockchain, Tendermint, and the consensus mechanism,

leading to worse performance than RollStore-0. WedgeBlock

outperformed BigChainDB as the batch size increased, but it

lagged behind RollStore-0. However, the gap between these two

systems narrowed when the batch size reached 32 operations

per batch.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9188 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

The left side of Fig. 8 displays the throughput results for large

batch sizes. The findings are similar to those for small sizes:

our system achieved the best performance in both the off-chain

process (RollStore-0) and on-chain process (RollStore-1). Fur-

thermore, it demonstrated improved performance compared to

its results with small sizes. The performance trend remains con-

sistent, particularly in Stage 1 (RollStore-1), where throughput

increases rapidly as batch sizes become larger. While Wedge-

Block achieved better performance than our system in specific

batch sizes (64 and 128), our off-chain process (RollStore-0)

outperforms WedgeBlock as batch sizes become larger.

Latency: The right part of Fig. 7 shows the latency results

for small batch sizes. The latency of off-chain operations—

RollStore-0, BlockchainDB-1, and BigChainDB—are the low-

est as they do not need to write to a permissionless blockchain

smart contract. The latency of RollStore-1, BlockchainDB-2,

and WedgeBlock—both requiring a write to the smart contract—

is similar at around 20 seconds, which is proportional to the time

to write to the smart contract. Although the compute-intensive

proof generation process in RollStore-2 gradually increases its

latency, it outperforms Ethereum (BlockchainDB-2) in certain

batch sizes where the advantage of batching outweighs the time

required for proof generation.

The right part of Fig. 8 shows the latency results for large

batch sizes. The latency of RollStore-2 increases very rapidly as

it requires more time for proof generation in larger batches. The

latency of off-chain operations also increases as more processing

time is needed for larger batches. However, it’s worth noting that

the latency of RollStore-2 can be reduced by adding more server

nodes, as discussed in Section III-C. We will introduce the scal-

ability performance in Section IV-B. In the case of WedgeBlock,

it demonstrated lower latency compared to our on-chain process

(RollStore-1), although it lagged behind our off-chain process.

This can be attributed to its reliance on an oracle-based design,

which depends on security guarantees provided by the oracle

design. While this design effectively reduces communication

latency between the off-chain and on-chain elements, it still

results in higher latency compared to our dedicated off-chain

process and sacrifices the security guarantees provided by the

blockchain mainnet.

Transaction cost: Fig. 9 shows the monetary cost results.

In RollStore-1, each batch requires sending one transaction

only—that writes a simple set of digests—to the blockchain.

Therefore, the transaction cost in stage 1 will decrease when

the batch size becomes larger. This is not the case in stage 2.

Since we need to send the proof parameters to the blockchain,

the size of these parameters also increases with the increase in

the batch size; this increases the cost. For this reason, the trans-

action cost per thousand operations in stage 2 does not change

significantly when the batch size becomes larger. For Ethereum

(BlockchainDB-2), the monetary cost is the largest (around $122

per 1000 operations). This is because raw operations are written

on-chain, unlike RollStore that only writes digests and verifies

proofs. The cost in WedgeBlock also decreased with the increase

in batch size. Both stage 1 (RollStore-1) and stage 2 (RollStore-

2) can reduce the cost of interacting with the permissionless

blockchain. (RollStore-0, BlockchainDB-1, and BigChainDB

Fig. 9. Cost in different batch sizes.

Fig. 10. Read latency in different batch sizes.

are not included in the figure as they do not utilize permissionless

blockchain that requires fees).

Read latency: Fig. 10 shows the read latency while varying

the batch sizes. The average read latency of RollStore becomes

larger when increasing the batch size of reading requests. As

batch size increases, the backup node requires more time to

search and generate the related proofs. The read latency in

BlockchainDB is higher than RollStore when the batch size

is larger than 512; we attribute this to the Verify operation in

BlockchainDB. This operation spends more time to verify the

read result when the batch size becomes larger. The read latency

in BigchainDB is the longest and becomes longer when the batch

size increases; this is because—although it does not need to

perform a consensus round for reads—BigchainDB needs to

build the block to record the read request; this process increases

the read latency. The read latency in WedgeBlock increases

slightly, and the batch size does not significantly affect the read

latency. This is because it processes these reads locally without

interacting with on-chain nodes.

B. Scalability Performance

In this section, we present a set of experiments to test the

scalability performance of our system. In this configuration,

multiple updater nodes, multiple prover nodes, and multiple

backup nodes are located on three different machines. Each

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9189

Fig. 11. Throughput and latency in multiple server nodes.

machine contains multiple instances of a type of node. We

evaluate scalability by changing the number of server nodes and

fixing the batch size of requests at 32. We vary the number of

server nodes from 4 to 13.

Throughput: This set of experiments focused on measuring

the throughput, as depicted on the left side of Fig. 11. As the

number of server nodes increased, the throughput of all three

stages increased. This is because more updater and backup nodes

were able to work in parallel, resulting in higher throughput.

This observation highlights that even smaller batch sizes can

achieve higher throughput by adding more server nodes, which

also leads to reduced latency in stage 2. The throughput of stage

2 commitment (RollStore-2) increased by a factor of 11.9X

when the number of server nodes was increased from 1 to 13.

This is due to the leveraging of computation resources from

multiple prover nodes to accelerate the proof generation process

(see Section III-C). Compared to the baseline performance, the

throughput of stage 2 in the scalability configuration was much

higher than that of Ethereum (BlockchainDB-2). While this

throughput was not as high as that of stage 0 and stage 1, it still

played a significant role in reducing the waiting time for verify-

ing the results of stage 1 commitment. Specifically, the waiting

time was reduced from several days to hours, highlighting the

importance of stage 2 in the overall performance of the system.

(see Section II-C1). The throughput of WedgeBlock decreases

when adding server nodes up to 4 nodes, then fluctuates slightly

with the addition of more nodes.

Another observation is that the local (off-chain) throughput,

as seen in BlockchainDB-1 and BigchainDB, decreases when

adding more server nodes compared to a single server node. We

attribute this to the cost of the underlying consensus mecha-

nism, where a larger number of nodes causes the overhead of

coordination to increase.

Latency: As shown in the right side of Fig. 11, the reduction

of latency in RollStore-0, RollStore-1, and WedgeBlock is not

significant. This is because the latency is mainly determined by

the updater node processing for RollStore-0 and the blockchain

confirmation time for RollStore-1 and WedgeBlock. The latency

of RollStore-2 is significantly reduced because multiple prover

nodes work in parallel to generate the proof. It is important

to note that although the latency of RollStore-2 is significantly

Fig. 12. Read throughput in multiple server nodes.

reduced due to multiple prover nodes working in parallel to

generate the proof of one task, this reduction is limited. It

can only bring the latency to a slightly higher level than the

blockchain confirmation time. Nevertheless, RollStore benefits

from batching and can achieve higher throughput and lower cost.

The addition of more server nodes does not significantly

benefit BlockchainDB and BigchainDB due to coordination

overhead in their consensus mechanism.

Transaction cost: Since the content of transactions and smart

contracts do not change when we add multiple server nodes, the

change of transaction fee (Ether cost) is negligible and is only

due to the fluctuation of gas fees.

Read throughput: Fig. 12 shows the read throughput

while varying the number of server nodes. RollStore and

BlockchainDB are not impacted by the increase in the number of

server nodes. This is because the throughput is determined by the

overhead of assembling the read responses and verifying reads.

BlockchainDB achieves lower performance than RollStore due

to its verification step that takes more latency than RollStore for

large batch sizes. WedgeBlock achieves better performance than

RollStore in a single-server configuration; however, its perfor-

mance worsens when additional nodes are added. BigchainDB

achieves the lowest throughput due to the added overhead to

synchronize the response to the read operations. As the num-

ber of nodes increases, this overhead increases and lowers the

throughput of BigChainDB.

V. DISCUSSION AND FUTURE WORK

Investigating Cross-Chain Interoperability: RollStore cur-

rently focuses on providing a secure and efficient data index-

ing solution for hybrid onchain-offchain DApps within a sin-

gle blockchain ecosystem, specifically Ethereum. Future work

could explore the challenges and opportunities of enabling cross-

chain interoperability. This would involve developing mecha-

nisms to index and manage data across multiple blockchain

networks, allowing DApps to leverage the strengths of differ-

ent blockchains while maintaining consistency and security.

Addressing cross-chain data management could significantly

expand the applicability and flexibility of RollStore in the rapidly

evolving blockchain landscape.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

9190 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 12, DECEMBER 2024

Enhancing Flexibility in Security and Performance Trade-

offs: RollStore currently uses a three-stage commit protocol that

balances security and performance. However, the implementa-

tion does not allow users to actively control the degree of security

based on their specific needs. For example, users might want to

partially guarantee security for some higher-priority operations

while accepting lower security for less critical ones. Exploring

this flexibility could lead to broader usage of RollStore in various

DApps, enabling them to customize the balance between secu-

rity and performance according to their unique requirements.

VI. CONCLUSION

The authors propose RollStore, a data indexing solution for

hybrid onchain-offchain DApps. RollStore builds on advances in

blockchain scaling solutions such as rollups, as well as indexing

and authenticated data structures. The outcome is a three-stage

commit protocol that allows balancing the trade-off between

security and performance for hybrid blockchain methods. Our

evaluations demonstrate the advantages of RollStore in terms

of cost and performance while comparing with two blockchain-

based databases, BlockchainDB and BigChainDB.

REFERENCES

[1] J. Adler and M. Quintyne-Collins, “Building scalable decentralized pay-
ment systems,” 2019, arXiv: 1904.06441.

[2] H. Al-Breiki, M. H. U. Rehman, K. Salah, and D. Svetinovic, “Trustworthy
blockchain oracles: Review, comparison, and open research challenges,”
IEEE Access, vol. 8, pp. 85675–85685, 2020.

[3] A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, “Hybrid blockchain
platforms for the Internet of Things (IoT): A systematic literature review,”
Sensors, vol. 22, no. 4, 2022, Art. no. 1304.

[4] L. Allen et al., “Veritas: Shared verifiable databases and tables in the cloud,”
in Proc. 9th Biennial Conf. Innov. Data Syst. Res., 2019, pp. 1–9.

[5] M. J. Amiri, D. Agrawal, and A. El Abbadi, “Sharper: Sharding permis-
sioned blockchains over network clusters,” in Proc. Int. Conf. Manage.

Data, 2021, pp. 76–88.
[6] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart

Contracts and Dapps. Sebastopol, CA, USA: O’Reilly Media, 2018.
[7] M. Belotti, N. Božić, G. Pujolle, and S. Secci, “A vademecum on

blockchain technologies: When, which, and how,” IEEE Commun. Surv.

Tut., vol. 21, no. 4, pp. 3796–3838, Fourth Quarter, 2019.
[8] P. Biel, S. Zhang, and H.-A. Jacobsen, “A zero-knowledge proof system

for openlibra,” in Proc. 22nd Int. Middleware Conf. Demos Posters, 2021,
pp. 3–4.

[9] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance data
store,” in Proc. 8th USENIX Symp. Netw. Syst. Des. Implementation, 2011,
pp. 141–154.

[10] Z. Cao, S. Dong, S. Vemuri, and D. H. Du, “Characterizing, modeling,
and benchmarking {RocksDB }{ Key-Value} workloads at facebook,” in
Proc. 18th USENIX Conf. File Storage Technol., 2020, pp. 209–223.

[11] Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” J. Bus. Venturing

Insights, vol. 13, 2020, Art. no. e00151.
[12] D. Company, “Dapp radar rankings,” 2022. [Online]. Available: https:

//dappradar.com/rankings
[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,

“Benchmarking cloud serving systems with YCSB,” in Proc. 1st ACM

Symp. Cloud Comput., 2010, pp. 143–154.
[14] H. Desai, M. Kantarcioglu, and L. Kagal, “A hybrid blockchain archi-

tecture for privacy-enabled and accountable auctions,” in Proc. IEEE Int.

Conf. Blockchain (Blockchain), 2019, pp. 34–43.
[15] J. Eberhardt and S. Tai, “Zokrates-scalable privacy-preserving off-chain

computations,” in Proc. IEEE Int. Conf. Internet Things IEEE Green

Comput. Commun. IEEE Cyber Phys. Social Comput. IEEE Smart Data,
2018, pp. 1084–1091.

[16] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy,
“Blockchaindb: A shared database on blockchains,” in Proc. VLDB En-

dowment, vol. 12, no. 11, pp. 1597–1609, 2019.
[17] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,” J.

Cryptol., vol. 1, no. 2, pp. 77–94, 1988.
[18] D. Foundation, “decentraland,” 2020. [Online]. Available: https://

decentraland.org/
[19] A. Garoffolo, D. Kaidalov, and R. Oliynykov, “Zendoo: A ZK-Snark ver-

ifiable cross-chain transfer protocol enabling decoupled and decentralized
sidechains,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020,
pp. 1257–1262.

[20] Z. Ge, D. Loghin, B. C. Ooi, P. Ruan, and T. Wang, “Hybrid blockchain
database systems: Design and performance,” in Proc. VLDB Endowment,
vol. 15, no. 5, pp. 1092–1104, 2022.

[21] O. Goldreich and H. Krawczyk, “On the composition of zero-knowledge
proof systems,” in Proc. Int. Colloq. Automata Lang. Program., Springer,
1990, pp. 268–282.

[22] O. Goldreich and Y. Oren, “Definitions and properties of zero-knowledge
proof systems,” J. Cryptol., vol. 7, no. 1, pp. 1–32, 1994.

[23] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
“SoK: Off the chain transactions,” IACR Cryptol. ePrint Arch., vol. 2019,
2019, Art. no. 360.

[24] H. Guo and X. Yu, “A survey on blockchain technology and its security,”
Blockchain Res. Appl., vol. 3, no. 2, 2022, Art. no. 100067.

[25] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi, “ResilientDB: Global
scale resilient blockchain fabric,” in Proc. VLDB Endowment, vol. 13,
pp. 868–883, 2020.

[26] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3,
pp. 463–492, 1990.

[27] R. Jain and S. Prabhakar, “Trustworthy data from untrusted databases,” in
Proc. IEEE 29th Int. Conf. Data Eng., 2013, pp. 529–540.

[28] K. Keahey et al., “Lessons learned from the chameleon testbed,” in Proc.

USENIX Annu. Tech. Conf., 2020, pp. 219–233.
[29] R. Kumar, N. Marchang, and R. Tripathi, “Distributed off-chain storage of

patient diagnostic reports in healthcare system using IPFs and blockchain,”
in Proc. IEEE Int. Conf. Commun. Syst. Netw., 2020, pp. 1–5.

[30] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, 1982.

[31] C. Luo and M. J. Carey, “LSM-based storage techniques: A survey,” VLDB

J., vol. 29, no. 1, pp. 393–418, 2020.
[32] T. McConaghy et al., “BigchainDB: A scalable blockchain database,”

White Paper BigChainDB, 2016.
[33] R. C. Merkle, “A digital signature based on a conventional encryption

function,” in Proc. Conf. Theory Appl. Cryptographic Techn., 1987,
pp. 369–378.

[34] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,”
in Proc. Int. Conf. Financial Cryptogr. Data Secur., Springer, 2019,
pp. 508–526.

[35] M. Naor and M. Yung, “Universal one-way hash functions and their cryp-
tographic applications,” in Proc. 21st Annu. ACM Symp. Theory Comput.,
1989, pp. 33–43.

[36] S. Nathan et al., “Blockchain meets database: Design and implementation
of a blockchain relational database,” 2019, arXiv: 1903.01919.

[37] Q. Pei, E. Zhou, Y. Xiao, D. Zhang, and D. Zhao, “An efficient query
scheme for hybrid storage blockchains based on merkle semantic trie,” in
Proc. Int. Symp. Reliable Distrib. Syst., 2020, pp. 51–60.

[38] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “Falcondb: Blockchain-
based collaborative database,” in Proc. ACM SIGMOD Int. Conf. Manage.

Data, 2020, pp. 637–652.
[39] C. Pop, T. Cioara, I. Anghel, M. Antal, and I. Salomie, “Blockchain

based decentralized applications: Technology review and development
guidelines,” 2020, arXiv: 2003.07131.

[40] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal, “Chaini-
fydb: How to blockchainify any data management system,” 2019, arXiv:

1912.04820.
[41] C. Sguanci, R. Spatafora, and A. M. Vergani, “Layer 2 blockchain scaling:

A survey,” 2021, arXiv:2107.10881.
[42] A. Singh, Y. Zhou, S. Mehrotra, M. Sadoghi, S. Sharma, and

F. Nawab, “WedgeBlock: An off-chain secure logging platform for
blockchain applications,” Adv. Database Technol., vol. 26, pp. 526–539,
2023.

[43] M. Tan, “Ethereum charts and statistics,” 2015. [Online]. Available: https:
//etherscan.io/charts

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: ROLLSTORE: HYBRID ONCHAIN-OFFCHAIN DATA INDEXING FOR BLOCKCHAIN APPLICATIONS 9191

[44] P. J. Taylor, T. Dargahi, A. Dehghantanha, R. M. Parizi, and K.-K. R.
Choo, “A systematic literature review of blockchain cyber security,” Digit.

Commun. Netw., vol. 6, no. 2, pp. 147–156, 2020.
[45] P. Todd, Making UTXO set growth irrelevant with low-latency delayed

TXO commitments, 2016.
[46] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei, “VChain+:

Optimizing verifiable blockchain boolean range queries,” in Proc. IEEE

38th Int. Conf. Data Eng., 2022, pp. 1927–1940.
[47] Y. Wang, Z. Tu, Y. Bai, H. Yuan, X. Xu, and Z. Wang, “A blockchain-based

infrastructure for distributed Internet of Services,” in Proc. IEEE World

Congr. Serv., 2021, pp. 108–114.
[48] Q. Wei, B. Li, W. Chang, Z. Jia, Z. Shen, and Z. Shao, “A survey of

blockchain data management systems,” ACM Trans. Embedded Comput.

Syst., vol. 21, no. 3, pp. 1–28, 2022.
[49] H. Wu et al., “Data management in supply chain using blockchain: Chal-

lenges and a case study,” in Proc. IEEE 28th Int. Conf. Comput. Commun.

Netw., 2019, pp. 1–8.
[50] H. Wu, W. Zheng, A. Chiesa, R. A. Popa, and I. Stoica, “{DIZK}: A

distributed zero knowledge proof system,” in Proc. 27th USENIX Secur.

Symp., 2018, pp. 675–692.
[51] K. Wu, “An empirical study of blockchain-based decentralized applica-

tions,” 2019, arXiv: 1902.04969.
[52] C. Xu, C. Zhang, J. Xu, and J. Pei, “Slimchain: Scaling blockchain

transactions through off-chain storage and parallel processing,” in Proc.

VLDB Endowment, vol. 14, no. 11, pp. 2314–2326, 2021.
[53] K. Yang, P. Sarkar, C. Weng, and X. Wang, “Quicksilver: Efficient and

affordable zero-knowledge proofs for circuits and polynomials over any
field,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., 2021,
pp. 2986–3001.

[54] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “Gem^ 2-tree: A gas-efficient
structure for authenticated range queries in blockchain,” in Proc. IEEE 35th

Int. Conf. Data Eng., 2019, pp. 842–853.
[55] Q. Zhang, Y. He, R. Lai, Z. Hou, and G. Zhao, “A survey on the efficiency,

reliability, and security of data query in blockchain systems,” Future Gener.

Comput. Syst., vol. 145, pp. 303–320, 2023.
[56] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-

thou, “VSQL: Verifying arbitrary SQL queries over dynamic outsourced
databases,” in Proc. IEEE Symp. Secur. Privacy, 2017, pp. 863–880.

[57] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16440–16455, 2020.

[58] W. Zhou, Y. Cai, Y. Peng, S. Wang, K. Ma, and F. Li, “VeriDB: An
SGX-based verifiable database,” in Proc. Int. Conf. Manage. Data, 2021,
pp. 2182–2194.

Qi Lin received the master’s degree in computer
science from the University of California, Irvine.
He is currently working towards the PhD degree
in computer science and engineering with Arizona
State University. His research interests lie in the ar-
eas of zero-knowledge proofs, blockchain, and query
compilation.

Binbin Gu is currently working towards the PhD
degree in computer science and engineering with
the University of California, Irvine. His research in-
terests include machine learning, blockchain, zero-
knowledge proofs, and Natural Language Processing
(NLP). He has published several papers in IEEE

Transactions on Knowledge and Data Engineering,
ICDE, EDBT, DASFAA, etc.

Faisal Nawab is an assistant professor with the Uni-
versity of California, Irvine (UCI). He leads EdgeLab
which tackles research problems in the intersection
of data management and distributed systems with a
focus on decentralized and Internet of Things (IoT)
applications. He has published papers in VLDB,
SIGMOD, ICDE, EDBT, IEEE Internet of Things

Journal, and other data management and systems
conferences and journals.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on July 01,2025 at 23:45:38 UTC from IEEE Xplore. Restrictions apply.

