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ABSTRACT
Molecular vibrations are generally responsible for chemical energy transport and dissipation in molecular systems. This transport is fast
and efficient if energy is transferred by optical phonons in periodic oligomers, but its efficiency is limited by decoherence emerging due
to anharmonic interactions with acoustic phonons. Using a general theoretical model, we show that in the most common case of the optical
phonon band being narrower than the acoustic bands, decoherence takes place in two stages. The faster stage involves optical phononmultiple
forward scattering due to absorption and emission of transverse acoustic phonons, i.e., collective bending modes with a quadratic spectrum;
the transport remains ballistic and the speed can be altered. The subsequent slower stage involves phonon backscattering in multiphonon
processes involving two or more acoustic phonons resulting in a switch to diffusive transport. If the initially excited optical phonon possesses
a relatively small group velocity, then it is accelerated in the first stage due to its transitions to states propagating faster. This theoretical
expectation is consistent with the recent measurements of optical phonon transport velocity in alkane chains, increasing with increasing the
chain length.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0222580

I. INTRODUCTION

Molecular vibrations are significant for chemical energy trans-
port and dissipation;1–5 they control reaction kinetics6,7 and
have potential applications in several fields of modern technol-
ogy spanning from sustainable energy to biomedicine to thermal
management.2,8–12 Energy transport can be fast and efficient even
compared to that inmetals because it emerges due to covalent bonds,
which are the strongest chemical bonds existing in nature.2,9–12

Although thermal conductivity of molecules at room tempera-
ture or below is determined substantially by low energy acoustic
phonons,9,12–14 high energy optical phonons can facilitate chemical
energy transport.4,15,16 Indeed, typical chemical energy, exceeding
phonon energy by over an order of magnitude, can be released
easier to optical phonons rather than to acoustic phonons possess-
ing considerably smaller energy. Since their propagation speeds are
comparable,17 optical phonons can transfer energy more efficiently
compared to the acoustic ones.

The fast and efficient energy transport by optical phonons
has been demonstrated in numerous experiments.15,18–22 If an opti-
cal phonon is initiated within the band of a periodic oligomer
chain, it can propagate along the chain ballistically due to normal
mode delocalization.15 This is the most efficient energy transport

realization, which is limited by decoherence and relaxation of prop-
agating phonons induced by their anharmonic interactions with
the other intramolecular vibrations and the environment.17 Here,
we consider intramolecular interactions since the coupling to the
environment is much weaker.5

Following earlier work,23 we specify that optical transitions
within the phonon band lead to decoherence, while those out of
the phonon band lead to irreversible relaxation. Decoherence occurs
inevitably due to interaction with low frequency acoustic phonons,
while relaxation requires involvement of other optical phonons and
is usually slower.23–25 Consequently, decoherence is the first pos-
sible source of ballistic transport breakdown to consider. In the
present work, we focus on optical phonon decoherence due to their
anharmonic interaction with transverse acoustic phonons.

Decoherence induced by interaction with longitudinal or tor-
sional acoustic phonons possessing a linear spectrum ω ≈ ck (where
ω is a phonon frequency, k is its wavevector, and c is the speed of
sound) was considered in earlier work.17 It was shown there that the
optical phonon decoherence is substantially suppressed in the most
common situation of a forbidden Cherenkov’s like emission (or
absorption), where the speed of sound c exceeds the maximum opti-
cal phonon velocity vmax. In this regime, only relatively slow high
order anharmonic processes (fourth and higher) result in phonon
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scattering in contrast with the regime of a violated Cherenkov’s
constraint vmax > c.

Decoherence due to transverse acoustic phonons represent-
ing collective bending modes needs special consideration because
these phonons possess a quadratic spectrum at small wavevectors
(ω = Aq2, see, e.g., Ref. 26). For this spectrum, there always exist
acoustic phonons with a small velocity violating Cherenkov’s con-
straint, so absorption and emission are always allowed. However,
if an optical phonon band is narrower than that for transverse
acoustic phonons, then the absorption or emission of transverse
phonons leads to a small change in the optical phonon wavevector
compared to this wavevector. Consequently, absorption or emission
does not modify the direction of the optical phonon propaga-
tion, leading only to its forward scattering. Backscattering requires
multiphonon processes occurring much slower compared to single
phonon absorption or emission. Thus, phonon relaxation occurs in
two (fast and slow) stages. The fast stage taking around 1–10 ps
involves an incomplete equilibration of the optical phonon within
the states of the band with group velocities oriented toward its initial
direction. At that stage, the energy propagates with a nearly constant
velocity similarly to the ballistic transport regime. The second stage,
involving phonon backscattering, emerges after orders of magnitude
longer time. Only at that stage, the transport mechanism changes
from the ballistic transport to the diffusive transport. Acoustic bands
are usually wider than optical bands since they are determined by
direct atomic interactions through covalent bonds (see, e.g., Refs. 17
and 24), so two stages of decoherence should take place for most of
the optical phonon bands.

If the acoustic band is narrower than the optical phonon band,
then the optical phonon relaxes very quickly in about few picosec-
onds from its initial state to all other states within the band. This
relaxation leads to substantial current reduction and changing the
transport from ballistic to diffusive. This regime is not expected
for optical phonons, but it is relevant for other systems of interest,
including electrons propagating in periodic molecules.

Optical phonon velocities that are initially slower than nor-
mal have been observed to accelerate during the first stage. This
increase can be used to interpret the observations of Ref. 27 in alkane
chains, where an increase in the optical phonon transport velocity
has been discovered with increasing the chain length. In the oppo-
site case of a narrow transverse phonon band, any absorption or
emission of transverse phonons overturns the propagating phonon
backward, leading to a rapid ballistic transport breakdown similarly
to Ref. 17.

To summarize the main goal of the present work is to char-
acterize the optical phonon transport affected by the interaction
with transverse acoustic phonons. To characterize the transport, we
present a theoretical model describing the interactions between the
optical phonon and transverse acoustic phonons. We will model
both sets of modes as collections of harmonic oscillators ∣o⟩∣a⟩. Here,
∣o⟩ represents an optical phonon state (normal mode) and ∣a⟩ like-
wise represents a direct product of transverse acoustic phonon states.
The frequencies of both sets are chosen to form optical and acoustic
energy bands. Cubic anharmonic couplings, bilinear in the optical
mode and linear in the acoustic mode, are introduced to allow near
resonant energy in which an ∣o⟩∣a⟩ state is coupled to another nearly
degenerate ∣o′⟩∣a′⟩ state. The dynamics of the model is studied at
three different levels of theory with the goal of highlighting how

coupling strengths, densities of states, temperature, and the widths
of the two bands influence energy transport.

Our consideration is limited to a single excited optical phonon.
This is the regime realized in the 2D IR experiments,15,23–25 where
the optical phonons are excited by the infrared laser pulse. The
heat released during, for example, chemical reaction would be trans-
ported by more than single optical phonon. Yet the scattering of
optical phonon by acoustic phonons can be characterized using the
consideration of the present work.

This paper is organized as follows: In Sec. II, the model of
optical and transverse acoustic phonons and their anharmonic
interactions is introduced. In Sec. III, the phonon decoherence is
considered in terms of elementary processes of transverse phonon
emission, absorption or scattering. The rates of these processes are
estimated using the Fermi golden rule, and the regimes of the Fermi
golden rule failure are discussed. Our estimates are found to be
consistent with the numerical simulations reported in Sec. IV and
targeted to verify the predictions of Sec. III. These simulations are
performed using accurate quantum mechanical17,28 and semiclassi-
cal29 approaches for low and high temperature limits. In Sec. V, we
numerically examine the increase in the transport speed of optical
phonon with the time assuming its small initial velocity and discuss
the possible connection of this result to recent experiments in alkane
chains.27 Finally, the conclusions are formulated in Sec. VI.

We ignore any static disorder, for instance gauche kinks in
alkane chains. The kinks can remarkably affect the phonon transport
because they reflect propagating phonons backward.30 We ignore
them assuming that the temperature is sufficiently small, so most
of the molecules do not have these kinks at room temperature. This
is consistent with the estimate in Ref. 30 for the molecular length
below 15 nm.

II. MODEL
Here, we introduce the model for optical phonons in a periodic

chain interacting with transverse acoustic phonons. Our considera-
tion is limited to a single optical phonon interacting with acoustic
phonons, which is consistent with the experimental conditions of
optical phonon excitation using infrared laser.15 The optical phonon
is usually created at the one end of the molecule like in 2D IR
measurements,15 where the end group (usually azido group) is
excited, for example, by an infrared laser pulse and then initiate the
wavepacket that propagates toward the opposite end. The width of
the wavepacket is determined by the specific of excitation and can
be quite narrow as discussed in earlier work.21 In the present work,
this narrowwavepacket is approximatelymodeled using the periodic
boundary conditions and optical phonon placed into the initial state
with the certain wavevector.

Below, we set up the theoretical model by first defining an opti-
cal phonon Hamiltonian that describes the optical phonons, then we
define an acoustic phonon Hamiltonian for the transverse modes,
and finally, we describe the coupling between them.

A. Boundary conditions and normal modes
The molecule is represented by a circular periodic chain of N

identical sites (unit cells) separated by a distance a. Although real
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chains are not circular, this model is still relevant since the propa-
gation of phonon should not be sensitive to boundaries if the chain
length L = Na exceeds the coherence length of a pure ballistic prop-
agation of phonons. In this regime, the boundary conditions are
not significant. In the opposite regime where the transport remains
ballistic at distances exceeding the molecular length, the decoher-
ence is irrelevant. The use of periodic model simplifies numerical
studies because of the quasi-wavevector conservation28 that permits
us to investigate numerically longer chains than with other bound-
ary conditions and to avoid the complicated consideration of the
wavepacket.

Normal modes of the periodic chain for any specific band
can be enumerated by integer numbers n and characterized by a
wavevector

k =
2πn
L

, L = Na, n =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−
N − 1
2

, . . .
N − 1
2

if N is odd,

−
N
2
+ 1, . . .

N
2

if N is even.
(1)

Wavevectors are chosen to make phonon states periodic since their
site dependence is determined by the exponent eikx, where x is the
position of the site.

B. Optical phonons
We describe the optical phonon band using a standard

Hamiltonian,17

Ĥopt =∑
k
h̵ωopt(k)â†

k âk, (2)

where the bosonic operators âk (â
†
k) represent annihilation (cre-

ation) operators of optical phonons characterized by the wavevector
k defined in Eq. (1) and ωopt(k) stands for the wavevector dependent
phonon frequency. It is a periodic function of the wavevector with
the period 2π/a, and it is an even function, because of the time rever-
sal invariance. We model the phonon spectrum with the simplest
periodic function,

ωopt(k) = ω0 +
Δopt(1 − cos (ka))

2
, (3)

corresponding to the nearest neighbor interaction of site vibrations
in the coordinate representation.17 Here, ω0 is the optical phonon
bandgap 0 < Δopt ≪ ω0 and Δopt is the bandwidth. In all calculations
below, we assume ω0 = 1000 cm−1 and Δopt = 100 cm−1 similarly to
Ref. 17, which is quite consistent with optical phonon energy band
properties for organic polymer chains.31 Generalization to a more
complicated spectrum is straightforward.

The optical phonon transport is defined by the phonon current
that reads

Ĵ =∑
k
vopt(k)â†

k âk, vopt(k) =
∂ωopt

∂k
=
aΔ
2

sin (ka), (4)

where vopt(k) is velocity of the phonon with the given wavevector
k, which coincides with the group velocity for the same wavevector.
This average current is evaluated numerically in Sec. IV to charac-
terize the energy transport and its suppression by decoherence.

C. Transverse acoustic phonons
Transverse acoustic phonons, i.e., collective bendingmodes, are

discarded in most considerations of thermal energy transport possi-
bly because they possess a vanishing group velocity v(q)∝ q in the
long wavelength limit,23,26,32–35 while longitudinal phonons possess a
constant speed of sound. However, transverse acoustic phonons pro-
vide a more significant source of dissipation as a sub-Ohmic bath,26
so they can be significant for optical phonon decoherence.

The Hamiltonian of transverse acoustic phonons for each
band μ = 1, 2 corresponding to two possible directions of transverse
displacement can be expressed as

Ĥtr =∑
q,μ

h̵ωtrμ(q)̂b†
qμb̂qμ, (5)

where bosonic operators b̂qμ (̂b†
qμ) represent the annihilation (cre-

ation) operators of transverse phonons within the normal modes
characterized by the operator subscript indices.

Transverse phonon frequencies are periodic functions of the
wavevector, approaching 0 for k→ 0. We consider the simplest pos-
sible model for their spectrum, that is similar to the one for optical
phonons [Eq. (3)] but with the zero bandgap,

ωtrμ(q) =
Δtrμ(1 − cos (qa))

2
, (6)

where Δtrμ is the transverse acoustic phonon bandwidth for the spe-
cific branch μ = 1 or 2. The spectrum in Eq. (6) is originated from
a potential energy determined by local “bendings” ϵ̂n,μ = (ûn−1,μ
− 2ûn,μ + ûn+1,μ)/a in the form Uμ

bend =
Aμ
2 ∑n ϵ̂

2
n,μ, where ûn,μ is the

displacement operator of the site n in the direction μ, the parameter
Aμ is defined as Aμ =Ma2Δ2

trμ/4, and M is the mass of the elemen-
tary cell. The displacement operator ûn,μ for the site n is connected
to the bosonic operators b̂qμ as36

ûn,μ =
1
√
N
∑
q

¿
Á
ÁÀ h̵

2Mωtrμ(q)
eiqna(b̂−qμ + b̂†

qμ). (7)

If the molecule is immersed into a solvent, then the acoustic
phonon spectrum might acquire a small gap, because the solvent
violates the translational invariance36 for atoms belonging to the
molecule. Since this gap is determined by the interaction with
the environment that is much weaker compared to intramolecular
interaction, we ignore it.

We limit further consideration to the interaction of optical
phonons with a single transverse acoustic band, since the addition
of the second band will not modify results qualitatively, while the
generalization to two bands is quite straightforward. Consequently,
we skip the earlier introduced index μ everywhere for the single
transverse band considered below.

Similarly to Ref. 17, the relationship of acoustic and opti-
cal phonon bandwidths is a critically important parameter. We
introduce it as a separate ratio parameter r defined as

r =
Δtr

Δopt
. (8)
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Acoustic bands are wider than optical bands since they are deter-
mined by direct atomic interactions through covalent bonds, so
usually, one has r > 1 (see, e.g., Ref. 24).

D. Anharmonic interaction of optical phonons
with transverse phonons

Anharmonic interactions are weaker compared to harmonic
ones by the ratio of the typical vibration amplitude to the inter-
atomic distance represented by the dimensionless parameter η ∼ 0.1
[see Ref. 17 and Eq. (11)]. The effective strength of the pth order
anharmonic interaction is expressed by the parameter ηp−2 since har-
monic interaction emerges in the second order with respect to the
parameter η.

As in earlier work,17,37 we only include cubic couplings, these
being the largest. We further restrict these contributions to include
only those terms that couple the nearly degenerate states describing
the absorption or emission of transverse photons by optical photons.
Specifically, we write

V̂anh =
h̵
√
N

′
∑
k,q
[V(q, k)â†

k âk+qb̂
†
q +H.C.], (9)

where ∑′ means that we use the periodic extension of the wavevec-
tor k + q replacing it with k + q ± 2π/a if it is outside the domain
of the wavevectors (−π/a,π/a). V(k, q) is the interaction constant
of optical and transverse acoustic phonons; one has V(q, k)∝ q for
q→ 0.26

For future consideration, we take the interaction in Eq. (9) in
the form corresponding to the nearest neighbor interactions within
the coordinate representation,

V̂ loc =
h̵V0

a

N

∑
i=1

â†
i âi(ûi+1 − 2ûi + ûi−1), (10)

where V0 ∼ Δopt,tr is the interaction constant and operators ûi stand
for the transverse displacements at the site i [Eq. (7)] interacting with
the local densities of optical phonons (â†

i âi). For this specific model,
the interaction constants V(q, k) in Eq. (9) can be expressed as

V(q, k) = 2V3∣sin(
qa
2
)∣, V3 = ηV0, η =

√
2h̵

Ma2Δtr
∼ 0.1. (11)

This definition is used in all considerations below. The coupling con-
stant V3 represents a characteristic strength of anharmonic interac-
tions that should be smaller compared to the harmonic interactions
by the small factor η.

E. Full Hamiltonian
The full Hamiltonian of the system includes Hamiltonians

of optical [Eq. (2)] and transverse [Eq. (5)] phonons and their
interaction [Eq. (9)] as rewritten as follows for reader convenience:

Ĥtot =∑
k
h̵(ω0 + Δopt

1 − cos (ka)
2

)â†
k âk +∑

q
h̵Δtr

1 − cos (qa)
2

b̂†
q b̂q

+
2h̵V3
√
N

′
∑
q,k
[sin (qa/2)â†

k âk+qb̂
†
q +H.C.], (12)

using Eqs. (3) and (6) for optical and transverse phonon frequencies,
respectively, and Eq. (11) for anharmonic interactions.

F. Higher order anharmonic interactions
The model under consideration includes only the third order

anharmonic interactions [Eq. (9)]. However, higher order interac-
tions are generated by the third order interactions in a perturba-
tion theory.28 Therefore, all decoherence channels originated from
higher order interactions are present within our model [Eq. (12)]
in the proper order in the small parameter η [Eq. (11)]. For future
consideration, we need the fourth order interaction, because it is
responsible for the optical phonon backscattering in the case of a
narrow optical phonon band, r > 1, where r is the ratio of transverse
to optical phonon bandwidths [Eq. (8)]. The fourth order interac-
tion is very important for the regime r > 1 since in this regime, the
third order interaction leads to only forward scattering and can-
not overturn propagating optical phonon (see Sec. III A). Indeed,
it contains the resonant scattering of optical and acoustic phonons
with opposite momentum expressed, for example, by the terms
a†
−kb

†
kakb−k overturning the optical phonon current, independent of

the bandwidth ratio r. Higher order anharmonic interactions gen-
erated in higher orders of perturbation theory also lead to optical
phonon backscattering. They are less important compared to the
fourth order interactions in the ratio of the atomic displacement to
the interatomic distance [Eq. (11)]. The perturbation theory devel-
oped below is not applicable to the regime of the small bandwidth
ratio r < 1 as shown below in Sec. III. In that case, backscattering
can be completed by the third order processes leading to much faster
phonon transitions.

We derive the fourth order interaction using the degenerate
Van Vleck perturbation theory,38,39 which is technically equivalent
to the Schrieffer–Wolff transformation40 eliminating off-resonant
third order anharmonic interactions to generate the resonant inter-
action in the fourth order. For the system Hamiltonian separated
into the harmonic part Ĥ0 and the perturbation V̂ (anharmonic
interactions), we introduce the unitary transformation of the Hamil-
tonian as Ĥ → êS Ĥe−̂S with the anti-Hermitian operator Ŝ defined
as [̂S, Ĥ0] = −V̂ . Then, the expansion of the exponents in the power
series in Ŝ results in a disappearance of the off-resonant part of the
perturbation V̂ (the perturbation expansion is not applicable to a
resonant part) with a simultaneous generation of the fourth order
interaction in the form40

Ĥ ≈ Ĥ0 + V̂res +
1
2
[̂S, V̂offres], (13)

where the anharmonic interaction V̂ is split into resonant V̂res and
off-resonant V̂offres parts.

For the specific Hamiltonian in Eq. (12), one can express the
matrix Ŝ in the form

Ŝ = −
1
√
N

′
∑
q,k

⎡
⎢
⎢
⎢
⎣
V(q, k)

â†
k âk+qb̂

†
q

ωopt(k) − ωopt(k + q) − ωtr(q)
−H.C.

⎤
⎥
⎥
⎥
⎦
.

(14)
The modified summation ∑′ means omitting resonant terms
with ∣ωopt(k) − ωopt(k + q) − ωtr(q)∣ ≤ η2Δopt to make both the
Schrieffer–Wolff perturbation theory and the Fermi golden rule for
the third order anharmonic interaction applicable and using the
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proper definition of the wavevector sum k + q shifted by ±2π/a if
necessary, to match the wavevector domain (−π/a,π/a) [Eq. (1)].

The induced fourth order anharmonic interaction can be
evaluated using Eq. (13) as

V̂4 = −
4h̵V2

3

NΔopt

′
∑
k,q,p

a†
kb

†
qak−pbq+p

×

⎡
⎢
⎢
⎢
⎢
⎣

sin ( q+p2 )
2 cos (k − p

2)

(r sin ( q2) − sin (k +
q
2))(r sin (

q
2) − sin (k − p −

q
2))

+
sin ( q2)

2 cos (k − p
2)

(r sin ( q+p2 )− sin (k +
q−p
2 ))(r sin (

q+p
2 )− sin (k −

p+q
2 ))

⎤
⎥
⎥
⎥
⎥
⎦

.

(15)

Remember that r is the transverse to optical phonon bandwidth ratio
[Eq. (8)].

Equation (15) contains denominators that can approach zero.
For r > 1, there are no zero denominator for the fourth order
resonant backscattering processes since the fourth order process
is composed of two virtual third order processes, conserving the
wavevector. These processes cannot both conserve energy as needed
for a zero denominator since at least one of them must include res-
onant optical phonon backscattering accompanied by absorption or
emission of an acoustic phonon, which is forbidden for r > 1 (see
Sec. III). The resonant terms associated with the forward scatter-
ing lead to the broadening of optical phonon energy levels. This
broadening can affect forward and backscattering rates for large
anharmonic coupling, leading to the failure of the Fermi golden rule
as discussed in Sec. III C.

In addition to the induced fourth order anharmonic interaction
[Eq. (13)], there exists the interaction emerging similarly to the third
order interaction in Eq. (9). This interaction will be also of the sec-
ond order in the parameter η in Eq. (11) as that in Eq. (15), so it gives
the effect comparable to that of the induced interaction. Since our
consideration is qualitative and does not target the specific molecule,
we can neglect that interaction.

III. OPTICAL PHONON TRANSITIONS INDUCED
BY ANHARMONIC INTERACTIONS

The anharmonic interactions of an optical phonon with trans-
verse acoustic phonons [Eq. (11)] can lead to transitions of this
optical phonon between different states emerging in the continu-
ous spectrum for sufficiently long chains (N ≫ 1). Such transitions
affect a current associated with this phonon. In particular, transi-
tions accompanied by the overturn of the phonon velocity lead to
ballistic transport breakdown with its further replacement with the
diffusive transport.

Below, we examine the phonon transitions permitted by the
energy and momentum (wavevector) conservation, estimate their
rates using the Fermi golden rule, and consider qualitatively other
regimes, not handled by the Fermi golden rule. In these regimes, an
anharmonic interaction is either too strong to be treated as a pertur-
bation or too weak to neglect the discreteness of the system at a finite

number of sites N. All regimes are revealed in the numerical studies
reported in Sec. IV.

A. Emission and absorption
1. Energy and momentum conservation

The emission or absorption of transverse phonon in a periodic
chain emerges with energy and quasi-momentum (wavevector) con-
servation. If initially the optical phonon has a wavevector k and after
emission it acquires the wavevector k′, then the wavevector of the
emitted transverse phonon is equal to q = k − k′ with the accuracy to
the inverse lattice period 2π/a. For absorption, the wavevector of the
absorbed phonon is given by q = k′ − k. In either case, the frequency
of the emitted or absorbed phonon satisfies the energy conservation
law in the following form:

ωopt(k) − ωopt(k′) = ωtr(k − k′) (absorption),

ωopt(k′) − ωopt(k) = ωtr(k′ − k) (emission).
(16)

These equations are not solvable for the emission or absorption of
longitudinal phonons possessing sound velocity exceeding the max-
imum group velocity of optical phonons in accord with Cherenkov’s
emission criterion of Ref. 17. This is not the case for the transverse
phonons as illustrated in Fig. 1 for the modeling phonon spectra
[Eqs. (3) and (6)]. The solution always exists because the group
velocity of transverse phonons approaches zero at small wavevectors
violating Cherenkov’s constraint.

Yet the graphical solutions of Eq. (16), expressing the energy
conservation law, are different for different ratios r of optical and
acoustic phonon bandwidths, as illustrated in Fig. 1 for r = 1/3 and
r = 3. Namely, for r < 1, initial and final wavevectors are of opposite
signs, so the emission or absorption is accompanied by the overturn
of the optical phonon propagation direction, i.e., backscattering,

FIG. 1. Graphical solution for the emission of transverse phonon [Eq. (17)]. The ini-
tial optical phonon wavevector is k, and the final one is k′. The dashed (magenta)
and dotted (green) lines are defined as y(k′) = ωopt(k) − ωtr(k − k′) and used
to find the solution of Eq. (16) for the emitted phonon wavevector k′ as the graph
intersection y(k′) = ωopt(k′) for narrow (Δtr = Δopt/3) or wide (Δtr = 3Δopt)

transverse phonon bands, respectively. The black arrows illustrate wavevector
modifications after transverse phonon emission.
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while in the opposite case r > 1, initial and final wavevectors are
of the same signs as for scattering forward. This observation is in
full accord with the analytical solution of Eq. (16) for the mod-
eling spectra in Eqs. (3) and (6), where we obtained (remember,
r = Δtr/Δopt)

q =
2
a
tan−1(

sin (ka)
r + cos (ka)

) (emission),

q =
2
a
tan−1(

sin (ka)
−r + cos (ka)

) (absorption).
(17)

It is clear from both solutions [Eq. (17)] that the unity ratio
r = 1 serves as the crossover regime q = k for emission or q = π/a − k
for absorption, while for r > 1 and k > 0, one has 0 < q < k for emis-
sion and 0 < q < π/a − k for absorption, leaving the wavevector k′

positive. For r < 1, it inevitably changes direction after both absorp-
tion and emission. These conclusions remain valid for arbitrary
phonon spectra at sufficiently large (r ≫ 1) or small (r ≪ 1) ratios
since for r ≫ 1, the only small wavevector change leaves phonon
energy within the optical band, while for r ≪ 1, one has q ≈ 2k since
the narrow band reflects optical phonon backward almost statically
(see also Fig. 1).

Based on this consideration, we can conclude that the emission
and absorption of transverse phonons occur differently depending
on the ratio r of transverse acoustic to optical phonon bandwidths.
If r > 1, then the change of the wavevector of optical phonon during
emission or absorption is smaller than the wavevector itself. Conse-
quently, single phonon absorption or emission cannot overturn the
direction of the phonon propagation. Backscattering requires higher
order anharmonic processes considered in Sec. III B. These pro-
cesses can be orders ofmagnitude slower than single phonon absorp-
tion or emission as it is demonstrated in the numerical simulations
reported in Sec. IV. Consequently, a unidirectional propagation of
vibrational energy lasts for a while. Experimentally, this regime is
seen quite similarly to a ballistic transport since after a phonon equi-
libration among the states with a certain wavevector direction, the
transport speed should approach a constant value given by its proper
average over those states.

In the opposite regime of a smaller acoustic phonon band-
width, single phonon absorption or emission is accompanied by
the change of the direction of phonon propagation. Consequently,
ballistic transport breaks down after a single or few absorption or
emission events, which is consistent with our numerical studies
reported in Sec. IV.

2. Absorption and emission rates
Consider the optical phonon having the wavevector k. Due to

its anharmonic interaction [Eq. (9)], it can emit or absorb an acous-
tic phonon with the wavevector q [Eq. (17)] getting to the new
state within the same band, characterized by the wavevectors k ∓ q
due to the quasi-momentum conservation. In a first non-vanishing
order in a weak anharmonic interaction, the rate of this transition
is given by the Fermi golden rule. According to this rule, emis-
sion and absorption rates (Wem and Wabs) can be expressed as

(cf. Refs. 17 and 41)

Wem = a∫
π/a

−π/a
dk′ V(k − k′, k)2δ(ωopt(k) − ωopt(k′)

− ωtr(k − k′))(1 + ν(k − k′)),

Wabs = a∫
π/a

−π/a
dk′V(k′ − k, k)2δ(ωopt(k) − ωopt(k′)

+ ωtr(k − k′))ν(k − k′),

ν(q) =
1

e
h̵ωtr(q)
kBT − 1

, (18)

where ν(q) represents the average number of transverse phonons
with the wavevector q, defined in Eq. (17).

Using the specific phonon spectra and interactions, defined by
Eqs. (3), (6), and (11), we evaluate the integral in Eq. (18) as

Wem = 8
V2
3

Δopt
(1 + ν(q))

sin (ka)
r2 + 2r cos (ka) + 1

,

Wabs = 8
V2
3

Δopt
ν(q)

sin (ka)
r2 − 2r cos (ka) + 1

.
(19)

At high temperatures where population numbers can be replaced
with their classical expressions [ν(x) = kBT/(hωtr(x)) and
ν(x)≫ 1], we get

Wem = 8
V2
3

Δopt

kBT
h̵Δtr sin (ka)

, Wabs = 8
V//32

Δopt

kBT
h̵Δtr sin (ka)

,

Wtot =Wabs +Wem = 16
V2
3

Δopt

kBT
h̵Δtr sin (ka)

,
(20)

whereWtot represents the total decay rate of the optical phonon.
The lifetime Trel of the optical phonon in the given quantum

state can be estimated as the inverse total decay rate,

Trel =
1

Wtot
. (21)

The inverse lifetime defines the inelastic width of the energy level
as h/Trel.

B. Backscattering for a large bandwidth ratio r > 1
1. Backscattering at high temperature. Fourth order
processes

At a large bandwidth ratio r > 1, backscattering can arise from
the phonon scattering expressed by the fourth order anharmonic
interaction [Eq. (15)], which is the next anharmonic correction to
the third order interaction considered above. There are no con-
straints for the energy conservation for phonon scattering as can
be illustrated for instance by the resonant backscattering of optical
and acoustic phonons with opposite wavevectors resulting in their
wavevector exchange. Such processes require the presence of excited
acoustic phonons that is possible if the thermal energy kBT is at least
comparable to or larger than the transverse bandwidth hΔtr. In the
opposite case of low temperature kBT ≪ hΔtr, multiphonon emis-
sion is needed for the optical phonon backscattering as shown in
Sec. III B 2.
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The backscattering rate can be estimated using the Fermi
golden rule with the interaction in Eq. (13) as a perturbation.
Because of the large number of scattering outcomes, we do not
attempt to calculate a specific relaxation rate, but instead consider
its dependence on the anharmonic coupling V3, bandwidth ratio r
assuming r > 1, and temperature T in a thermodynamic limit of a
sufficiently long chain, where the continuum approach is applicable
(see the discussion of discreteness in Sec. III C 2).

At high temperatures kBT > hΔtr, one can estimate the coupling
matrix element for the processes relevant for the optical phonon
overturn in Eq. (13) as h̵V4 = h̵V2

3kBT/(r
3Δ2

opt). The transition rate
produced by the Fermi golden rule can then be estimated as

W4 ∼
V2
4

Δtr
= C

V4
3(kBT/h̵)

2

r7Δ5
opt

, C ≈ 3 ⋅ 104, (22)

where C is the dimensionless proportionality constant determined
numerically in Sec. IV B 4. Equation (22) is approximately consistent
with the numerical results for the phonon current relaxation rate
reported in Sec. IV, where the large magnitude of the proportion-
ality constant C in Eq. (22) is explained on a semiquantitative level.
The fourth order anharmonic interaction with longitudinal phonons
should result in a relaxation rate behaving similar to Eq. (22) since
longitudinal and transverse branches are weakly distinguishable for
a large phonon wavevector k, q ∼ π/a relevant for that regime.

2. Backscattering at low temperature: Multiphonon
emission

If the temperature is very low so that there are no acous-
tic phonons capable of scattering initially excited optical phonon
backward, then the only remaining option for the optical phonon
overturn is multiphonon emission. Such a process is forbidden for
longitudinal acoustic phonons possessing the velocity exceeding
that of optical phonons,17 but it is allowed for transverse acoustic
phonons even for r ≫ 1 as shown below.

As an illustration, consider the overturn of the optical phonon
with the wavevector k by means of the emission of n trans-
verse phonons with wavevectors q1, q2, . . . , qn and total wavevector
∑

n
i=1 qi = k, which is the minimum wavevector change correspond-

ing to the overturn that should take place simultaneously with the
frequency change ∑n

i=1 ωtr(qi) = (ωopt(q) − ωopt(0)) due to energy
conservation law. Themost efficient emission takes place at the min-
imum number n of emitted transverse phonons since the emission
rate decreases exponentially as η2nwith increasing n [see Eq. (11) for
the definition of η].

It can be shown rigorously for our specific phonon spectrum
[Eq. (6)] and generalized to any monotonic function ωtr(q) that
the optimum emission regime is realized for all identical emitted
transverse phonons with wavevectors qi = k/n. Assuming a large
number of phonons, n≫ 1, which is valid for r ≫ 1, we can approx-
imate the total emitted energy as hΔtra2k2/(4n), and we estimate the
minimum number of emitted phonons needed for the overturn as

n = ηphr, ηph =
k2a2

4 sin (ka/2)2
. (23)

Thus, in our model, the number of transverse phonons needed
to be emitted is proportional to the bandwidth ratio r with the

proportionality coefficient ηph ranging from 1 to π2/4 ≈ 2.5. The
multiphonon emission rate Wmult is proportional to the squared
coupling constant for the n phonon process. Consequently, we
expect that

Wmult ∝ η2ηphr , (24)

where η ∼ 0.1 [Eq. (11)]. An additional dependence on the number
of emitted phonons can be originated from the wavevector depen-
dence of the n-phonon interaction constant. We do not investigate
this dependence in detail, because we were not able to reproduce
this regime numerically as reported in Sec. IV A, so it cannot be
compared to any experimental or numerical observation.

C. Regimes of Fermi golden rule failure
Here, we consider the regimes that cannot be characterized by

Fermi golden rule rates. These considerations are needed for under-
standing dynamics observed in numerical simulations reported in
Sec. IV for very large or very small anharmonic interactions.

The Fermi golden rule fails at very large anharmonic inter-
actions V3 in Eq. (11), where the perturbation theory is no more
applicable, and at very small anharmonic interactions, where the dis-
creteness of the phonon spectrum becomes important. Below, we
address both regimes.

1. Strong anharmonic coupling
Consider the evolution of the initial harmonic state a with

certain wavevectors of all phonons. The population Pa(t) of this
state decreases with time due to anharmonic interactions. At short
times, it decreases as Pa(t) = 1 −W2

∗t2, where W∗ = V∗/h, and

V∗ =
√

∑b≠a V
2
ab, where Vab is the off-diagonal matrix element of

anharmonic interaction coupling harmonic states a with any other
harmonic state b possessing harmonic energies Ea and Eb, respec-
tively. For a weak anharmonic interaction, where the Fermi golden
rule is applicable, this decay slows down at times much shorter
than the effective minimum relaxation time T∗ ≈ 1/W∗, since the
squared time dependence for each specific state b saturates at time
t ∼ h/∣Ea − Eb∣. For a strong interaction, the maximum rateW∗ gives
a reasonable estimate for the relaxation rate consistent with the
numerical results of Sec. IV.

For future comparisons with numerical results, we report the
maximum relaxation rate W∗ and its asymptotic behaviors at high
and low temperatures evaluated for the anharmonic interaction
Eq. (11) as

W∗ =

¿
Á
Á
ÁÀ

1
N∑q

4V2
3 sin

2
(qa/2)

⎛

⎝
1 +

2

e
h̵ωtr(q)
kBT − 1

⎞

⎠

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

√
2V3, kBT ≪ Δtr

4
√
2V3

√
kBT
Δtr

, kBT ≫ Δtr.
(25)

2. Weak anharmonic coupling: Effect of discreteness
Fermi’s golden rule is applicable to the continuous spectrum

in the infinite chain limit. The spectrum can be treated as continu-
ous if the energy uncertainty associated with the specific state decay
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rate Eq. (19) defined as hWtot exceeds the interlevel splitting given
by ΔE ≈ (2πh/L) max(∣∂ωtr(k)/∂k∣, ∣dωopt(k)/dk∣), where L is the
chain length. Comparing two energies to each other, we derived the
constraint on the strength of anharmonic interaction V3 needed for
the Fermi golden rule to be applicable, which can be expressed as

V3 > max (1,
√
r)
Δopt
√
N

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

√

π(1 + 2r cos (ka) + r2)
8

, kBT ≪ h̵Δtr,

sin (ka)
4

√
πrh̵Δopt

kBT
, kBT ≫ h̵Δtr.

(26)
If Eq. (26) is not satisfied, then the optical phonon state time

evolution will depend on the temperature and the molecular length.
At low temperatures and reasonably short chains N ∼ 10, the non-
ergodic behavior can emerge5,28,42,43 similarly to that found in earlier
work,17 where the interaction of optical phonons with longitudinal
acoustic phonons was considered. In the non-ergodic or many-body
localized regime,5,28 optical phonon current in a periodic chain will
never relax to zero staying close to its initial value, except for the
states with the total wavevector 0 or π/a where it disappears in aver-
age due to the inversion symmetry. Yet in the non-ergodic regime,
the current does not relax to zero but coherently oscillates switching
between positive and negative values.

There is a greater chance to observe the localized regime for a
larger bandwidth ratio r since the critical strength of anharmonic
coupling separating discrete and quasi-continuous regimes grows
with r as r3/2. At high temperatures, the ergodic behavior should be
restored due to phonon scattering. All these expectations are reason-
ably consistent with the results of numerical simulations reported in
Sec. IV.

IV. NUMERICAL STUDIES
Here, we numerically model our Hamiltonian equation (12)

for optical phonon transport in order to test the validity of the
analytical results described in Sec. III. We study how the trans-
port in periodic atomic chains is affected by the interaction with
transverse acoustic phonons using fully quantum mechanical or
semiclassical approaches for periodic atomic chains. The quantum
mechanical treatment reported in Sec. IV A is developed similarly
to earlier work17 considering longitudinal acoustic phonons. It is
limited to relatively short chains and small total energies (very low
temperatures) because of the exponential increase in the number
of significant quantum states with energy and number of sites N,
which prohibits an accurate numerical diagonalization for longer
chains. The second approach (Sec. IV B) treats acoustic phonons
and their interaction with the optical phonon classically, which per-
mits us to characterize large systems at high temperatures, where this
consideration is reasonably justified.

A. Quantum mechanical treatment
The full quantum-mechanical treatment of optical phonon

transport is quite similar to earlier work17 (see also Ref. 28). Exact
diagonalization of the system Hamiltonian equation (12) is not
possible since the basis of its possible states is infinitely large. How-
ever, for the states with relatively small energies, we can limit our

consideration to a number of acoustic phonons not exceeding a cer-
tain maximum number nmax and perform full diagonalization with
that limited basis.17,28 Our approximation can be validated consider-
ing the dependence of certain parameters of interest on the number
nmax. In most of the calculations, we investigated the time evolution
of the probability Pn(t) to find the excited optical phonon in its ini-
tial state with a certain wavevector k = 2πn/L and we used its infinite
time limit Pn(∞) as a convergence control parameter.

The calculations reported below are performed for a peri-
odic chain of N = 12 sites and the anharmonic interaction strength
V3 ≤ 0.5Δopt. In this specific case, a good convergence for proba-
bilities Pn(∞) is obtained for nmax = 6, which corresponds to the
basis of 12 376 states. The difference of the results for nmax = 5 and
nmax = 6 is always less than few percents, and their difference for
nmax = 6 and nmax = 7 is less than 1%. Therefore, we believe that our
method gives a good approach to the actual quantum evolution of
the system.

We investigate the relaxation of the current for the initially
excited optical phonon with the wavevector k = 2πn/(aN), Eq. (1).
The state with number n = N/4 = 3 is chosen because it is located
in the middle of the band and possesses a maximum phonon veloc-
ity v(k) = Δopt sin(ka)/2 realized at ka = π/2 [Eq. (4)]. The results
for other initial wavevectors are quite similar, except for n = 0 where
no relaxation is seen for V < 0.5Δopt for any considered bandwidth
ratios because it is the lowest energy optical phonon state having
no decay channels. Since the observed dependence on the initial
wavevector is quite similar to that reported in Ref. 17, we do not
show the results of calculations for n ≠ 3. We evaluate the cur-
rent following its definition in Eq. (4) using the optical phonon
time-dependent density matrix ρkk as J = ∑k ρkk∂ωopt(k)/∂k, where
the summation is made over all optical phonon normal modes
enumerated by their wavevectors k.

We investigated two different initial states, including (A) the
initial state with a single excited optical phonon with the wavevec-
tor k = 2πn/L and (B) the two-phonon initial state with a single
excited optical phonon with the same wavevector k and a single
acoustic phonon with the wavevector −k. Case (A) earlier used in
Ref. 17 is targeted to examine the relaxation due to the emission of
acoustic phonons, while in case (B), we also investigate the effect of
resonant backscattering on the optical phonon current for a large
bandwidth ratio r > 1. The more complicated initial conditions are
briefly discussed in the end of the present section.

Our initial conditions correspond to zero temperature in a ther-
modynamic limit of an infinite system size with T ∝ 1/N. The full
quantum mechanical consideration of a finite temperature is prob-
lematic because of the exponential increase in the number of relevant
states with the temperature.

1. Single excited optical phonon
The time evolution of the optical phonon current for the initial

state containing only one excited optical phonon with the wavevec-
tor k = π/(2a) (N = 12) is shown in Fig. 2(a) for four different
bandwidth ratios r. We choose the maximum coupling strength
V3 = 0.2Δopt, where the perturbation theory with respect to anhar-
monic interaction is still applicable. Infinite time limits of current
shown by the dashed lines are evaluated averaging the current over
time, which sets all oscillating contributions to zero as in Refs. 17
and 44.
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FIG. 2. Time dependence of currents J/J(0) (a) and size dependence of time averaged currents J∞/J(0) (b) for different ratios r of transverse acoustic and optical
bandwidths. J(0) stands for the current at time t = 0.

The observed evolution of currents for bandwidths r ≤ 1 and
r > 1 is clearly different. For r ≤ 1, the current rapidly decreases to
the small value compared to the initial current I(0), while for r = 2
and 3, it changes weakly compared to its initial value. We inter-
pret this difference as the separation between ergodic (r = 0.5) and
non-ergodic (r = 2 and 3) regimes. In the ergodic regime, averag-
ing over time and over realizations should give identical results.
This definition is accurate for infinite systems, while in a finite
system, the difference of the results of two averagings should be
small. Here, we use the approximate ergodicity criterion based on
the time-averaged phonon current J∞. Average current over realiza-
tions is zero because of the system symmetry. Consequently, for the
finite system, we expect that in the ergodic regime, its time average
J∞ should be much less than its initial value J(0). Consequently,
for the 12 site chain, we can approximately assume that the sys-
tem is ergodic if J∞/J(0) < 0.1 for the bandwidth ratio r = 1/2 and
definitely non-ergodic if J∞/J(0) > 1/2 for r ≥ 2. This qualitative
criterion is consistent with the energy level statistics used to distin-
guish ergodic and non-ergodic regimes similarly to earlier work,17
where the level statistics was reported.

According to Fig. 2(b) for considered numbers of sites N = 4,
8, and 12, the infinite time current J∞ is substantially smaller than
the initial current J(0) for the small bandwidth ratio r = 1/2 where
it rapidly decreases with N as it normally happens in the ergodic
regime. For larger ratios r > 2, the infinite time current exceeds half
of the initial current, which is typical for the non-ergodic behav-
ior. However, even for r > 1, the ratio J∞/J(0) also decreases with
the system size so at sufficiently large N > Nc where the discreteness
is less significant, the ergodic behavior should emerge. The critical
sizeNc increases with decreasing the bandwidth ratio r in agreement
with the expectations of Sec. III C 2.

We investigated the relaxation of the population of the initially
excited state Pn(t) in the ergodic regime r = 1/2 to compare relax-
ation times estimated using Fermi’s golden rule [inverse relaxation
rate Wtot, Eq. (19)] with their numerical estimates. The numerical
relaxation time Trel is defined using time dependent populations
P(t) shown in Fig. 3(a) setting P(Trel) = P∞ + (1 − P∞)e−1 for
n = 3. The numerical relaxation times are shown by diamonds in
Fig. 3(b) vs anharmonic coupling strengths and compared to the
Fermi golden rule estimate W−1

tot [Eq. (19), dashed line] and the

FIG. 3. (a) Relaxation of the population of the optical phonon midband state for bandwidth ratio r = 0.5 at different strengths of anharmonic interaction. (b) Dependence of
population relaxation time on the strength of anharmonic interaction shown together with the rate predicted by the Fermi golden rule (19) shown by the dashed line and
characteristic minimum lifetime 1/W∗ [Eq. (25)] shown by the dotted line.
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minimum relaxation time W−1
∗ realized for a strong anharmonic

coupling [Eq. (25), dotted line]. It turns out that relaxation time
switches between two regimes with increasing the coupling strength
V3 as expected. For V3 < 0.03Δopt, the relaxation is no more seen,
but instead the current oscillates around its average value close
to its initial value. This suggests an ergodicity breakdown emerg-
ing at V3 < 0.03Δopt with the current evolution similar to observed
behaviors for r ≥ 2 as shown in Fig. 2(a).

Non-ergodic behaviors are caused by discreteness as discussed
in Sec. III C 2. An increase in the number of sites N should most
probably eliminate that behavior even for r > 1 in a thermodynamic
limit of N →∞ due to allowed forward scattering that was lacking
in the previous study.17

2. Two phonon initial state
To investigate the effect of a resonant two-phonon interaction

onto the system dynamics, we modified the initial conditions com-
pared to Sec. IV A 1 using an optical phonon with the wavevector
k = 2πn/L (n = 3, N = 12) and one transverse acoustic phonon with
the opposite wavevector −k. We focus only on a nonergodic regime
r > 1 since in the ergodic regime, the current evolution is practi-
cally the same as for the initial conditions of a single excited optical
phonon reported in Sec. IV A 1.

For a two-phonon initial condition, the time-averaged optical
phonon current approaches zero because of the inversion symmetry
of the problem for a total wavevector equal to 0, suggesting that each
eigenstate of the problem is composed of the symmetric or antisym-
metric combination of pairs of states with all opposite wavevectors
like ∣k,−k⟩ and ∣ − k, k⟩ for a two-phonon state. The initial state used
in Sec. IV A 1 possesses a wavevector k = π/(2a). The conserva-
tion of the wavevector does not allow a system transition to the
symmetric state with the opposite wavevector, since the difference
of two state wavevectors π/a is not equal to an integer number of
inverse lattice periods 2π/a. Consequently, the inversion symmetry
is broken and the average current differs from zero.

For a two-phonon initial condition and r ≥ 2, the current shows
nearly coherent oscillations around zero, as illustrated in Fig. 4(a)
(gray line) for a bandwidth ratio r = 4, in a stark contrast with the

time evolution for a single phonon initial condition, as shown in
the same graph (magenta line). Similar oscillations were found for a
wide range of anharmonic coupling strengths and bandwidth ratios
r ≥ 2.

To interpret the observed coherent oscillations, we employ
the secular perturbation theory limiting our consideration to the
only two resonant states ∣k,−k⟩ (the initial state) and ∣ − k, k⟩ (the
symmetric state) possessing identical harmonic energies and cou-
pled by the fourth order anharmonic interaction V(k,−k,−k, k)
= 16h̵V2

3 /(NΔopt(r2 − 1)) [Eq. (15)]. For the given initial condition,
the system coherently oscillates between these two states possessing
opposite optical phonon currents with the period

Tres =
2πh̵

V(k,−k,−k, k)
=
2π(r2 − 1)NΔopt

16V2
3

. (27)

In Fig. 4(b), we show the dependence of numerically estimated
oscillation periods (symbols) on a system size and bandwidth ratios.
Here, we used themaximum number of acoustic phonons equal to 5,
which is justified for N ≤ 12 but questionable for N = 16. Numerical
estimates are consistent with the theory predictions [Eq. (27)] shown
by the straight lines. Coherent oscillations of current suggest a non-
ergodic behavior in spite of average current vanishing.

We also examined more complicated initial conditions. If one
uses three phonons, including one optical phonon, one acoustic
phonon with an opposite wavevector, and one additional acous-
tic phonon, the time averaged current approaches an intermediate
value between 0 and its initial value J(0) [for instance, if we add
one more transverse acoustic phonon with the same wavevector −k,
we obtain J∞ ≈ J(0)/2] in the limit of small anharmonic coupling.
This is a typical behavior for a non-ergodic regime. In the ergodic
regime realized for long chainsN ≫ 1 and/or high temperatures kBT
≫ hΔopt, the fourth order anharmonic interaction [Eq. (15)] leads
to the relaxation investigated in Sec. IV B using the semiclassical
approach.

FIG. 4. Coherent oscillation of current for a two-phonon initial state with the total wavevector 0. (a) Dependence of current on time for one- and two-phonon initial states and
bandwidth ratios r = 1/2 and 4. The initial state and number of phonons are indicated near each graph. (b) Dependence of oscillation period on chain length at different ratios
of bandwidths r for the midband state n = N/4 [Eq. (1)]. The straight lines show the expected oscillation period due to resonant interactions in Eq. (27). The anharmonic
coupling strength is V3 = 0.2Δopt.
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B. Semiclassical treatment
1. Semiclassical model

Since most of the experiments are performed at room temper-
ature, the assumption of a low temperature made in Sec. IV A is not
satisfied there. At room temperature, a typical thermal energy kBT
is comparable to the acoustic phonon bandwidth and exceeds the
optical phonon bandwidth that is usually around 100 cm−1.21 Under
those conditions,

Δopt, Δtr ≤ kBT, (28)

we employ a semiclassical treatment of acoustic phonons to simplify
the consideration. Here, we use it in the form of Ref. 29 developed to
investigate charge transfer in DNA.

The semiclassical approach can be formulated as follows.
We describe the optical phonon by the wavefunction within the
momentum (wavevector) representation

∣ψ⟩ =∑
k
ck∣k⟩, (29)

where the symbol ∣k⟩ stands for the state with the given wavevec-
tor k and coefficients ck are wavefunction amplitudes determining
probabilities Pk = ∣ck∣2 to find the phonon in the state with the
given wavevector k, which are subject to the normalization condition
∑k Pk = 1. Transverse phonons are characterized by classical coordi-
nates uq and momenta pq also defined in the wavevector representa-
tion. We evaluate the current following its definition in Eq. (4) using
time-dependent probabilities Pk as J = ∑k Pk∂ωopt(k)/∂k, where the
summation is performed over all optical phonon normal modes
enumerated by their wavevectors k.

The system is described by the Hamiltonian equation (12),

H =∑
q

pqp−q
2M

+
M
2 ∑q

ωtr(q)2uqu−q +∑
k
h̵ωopt(k)c∗k ck

+ 2V3

√
2h̵MΔtr∑

k,q
sin (qa/2)2uq(c∗k ck−q + C.C.). (30)

The time evolution of the variables is defined by Hamilton’s
equations of motion,

dck
dt
= −

i
h̵
∂H
∂c∗k

,
dc∗k
dt
=

i
h̵
∂H
∂ck

,
duk
dt
=

∂H
∂p−k

,
dpk
dt
= −

∂H
∂uk

. (31)

It is straightforward to check that these equations conserve both the
total energy and the optical phonon wavefunction normalization
∑q ∣ck∣

2
= 1. This approximation treats classically all participating

phonons. The equations for the amplitudes ck are equivalent to
the Schrödinger equations for the optical phonon interacting with
classical transverse acoustic vibrations.

A semiclassical approach is justified for optical phonons if
anharmonic interactions are weak compared to harmonic ones,

V3 ≪ Δopt,Δtr. (32)

In this regime, one can think of an optical phonon as a plane wave
with a certain wavevector k undergoing rare scattering events. This
justifies averaging of the nonlinear interactions over the optical
phonon wavefunction implied in the classical equations [Eq. (31)].

The semiclassical approach can miss the effect of quantum dis-
creteness,42 although the analysis of the minimalist system of
weakly anharmonically coupled oscillators shows similarity between
classical and quantum considerations.45

Below, we focus on modeling the relaxation in the regimes of
the smallest numbers of sites N, where Fermi’s golden rule in the
form of Eq. (20) (N = 20 and r < 1) or Eq. (22) (N = 48 and r > 1)
is still applicable for a reasonable anharmonic coupling strength
V3 ≥ 0.01Δopt. In both cases, we choose the initial midband opti-
cal phonon state with the wavevector k = 2πn/L and n = N/4 with
one exception related to the investigation of the dependence of the
relaxation rate on the initial state. The dynamics for smaller num-
bers of sites is slower and contains oscillations determined by rare
resonances similarly to Ref. 46. Its consideration is beyond the scope
of the present work.

In our calculations, we set the thermal energy equal to the
double bandwidth for transverse acoustic phonons kBT = 2hΔtr. At
that temperature, the classical approximation is reasonably justi-
fied, while the temperature under consideration is not much higher
than the room temperature where kBT ∼ hΔtr. The results are appli-
cable to the alkane chains at room temperature only qualitatively,
although the theory might be still relevant for other oligomers with
narrower bandwidths. One should notice that the semiclassical con-
sideration is developed for the verification of the relevance of the
Fermi golden rule estimates of scattering rates. The numerical results
below confirm that the optical phonon decoherence emerges in two
stages and the decoherence rates can be estimated using the Fermi
golden rule.

2. Results of calculations
At time t = 0, the optical phonon is placed to the state with a

certain wavevector k similarly to Sec. IV A. For transverse acous-
tic phonons, we choose zero initial coordinates uq = 0 and random
momenta pq = p−q = ξq

√
2MkBT, where ξq are random numbers

generated from the Gaussian distribution with a unit width. These
initial conditions introduce the relevant temperature if anharmonic
interaction is weak [Eq. (31)], so kinetic and potential energies for
each normal mode should be approximately equal to kBT/2.

The time dependencies of probabilities Pk(t) = ∣ck(t)∣2 are cal-
culated solving the Hamiltonian equations [Eq. (31)] and averaging
their solutions over many random initial conditions correspond-
ing to the given temperature until the accuracy of few percents is
obtained. Below, the results of calculations are reported for time
dependent probabilities Pk for different system sizes, anharmonic
coupling strengths, and bandwidth ratios r.

First, we report time dependent currents for a represen-
tative chain of N = 20 sites with an initially excited mid-
band optical phonon. The anharmonic coupling was chosen as
V3 = 0.05

√
ΔoptΔtr to have bandwidth independent Fermi’s golden

rule rates of emission and absorption [Eq. (20)]. The absolute value
ofV3 and the system size were chosen to avoid discreteness and have
perturbation theory applicable. Remember that the temperature is
given by kBT = 2hΔtr.

Time dependencies of current are very different for r ≤ 1 where
it can be characterized by a single relaxation time and r ≥ 2 where it
relaxes in two stages, including the fast initial relaxation during the
time of the order of one picosecond and a slow subsequent relaxation
taking orders of magnitude longer. This observation is consistent
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FIG. 5. Time dependence of current for different ratios (r) of acoustic to optical
bandwidth indicated near each graph. The temperature is defined as kBT = 2hΔtr.

with the expectations of Sec. III A 2. For N = 20 and r > 1 a system
discreteness is significant and it shows up as oscillations in Fig. 5 due
to three or four phonon Fermi resonances. We do not consider them
in detail.

To characterize both regimes, we examine relaxation time
behaviors separately in Sec. IV B 3 for a small bandwidth ratio
r = 1/2 and in Sec. IV B 4 in the opposite regime of r > 1.

3. Relaxation at small bandwidth ratio (r = 1/2)
For r ≤ 1, it is natural to expect a population relaxation fol-

lowing the Fermi golden rule predictions at high temperatures
[Eq. (20)]. To verify that, we examined the population relaxation
for the bandwidth ratio r = 1/2 and all possible initial wavevec-
tors k for N = 20 as reported in Fig. 6. The relaxation time for
each initial state time dependent population Pn(t) correspond-
ing to the wavevector k = 2πn/L was estimated setting Pn(Trel(n))
= Pn(∞) + (1 − Pn(∞))e−1, where Pn(∞) ≈ 1/N is the infinite
time limit of the phonon state population in the classical ergodic
system. Exact time averaged populations slightly differ from each
other for different wavevectors, but this difference is negligible for
the temperature under consideration due to the conservation of the
number of optical phonons and their classical treatment.

To compare the numerical results for relaxation times with the
theory [Eq. (20)] predicting that

Trel(n) =
h̵ΔtrΔopt sin (∣n∣π/N)

16V2
3kBT

,

we plot the ratios Trel(n)/ sin(nπ/N) vs n, which should be inde-
pendent of the initial wavevector in Fig. 6(a). Only half of initial
wavevectors are shown since the data for n and −n are identical
due to the inversion symmetry. We did not examine lifetimes of
the states with n = 0 and N/2, where the Fermi golden rule must
obviously fail.

According to our observations, the results for the relaxation
rate are in an excellent agreement with the theory for N = 20 and
2 ≤ n ≤ 8. The deviations at small wavevectors are probably because
the predicted relaxation rate is too fast there, so the Fermi golden
rule is no longer applicable (see discussion in Sec. III C 1). The
dependence of the relaxation time on the anharmonic interaction
Trel ∝ V−23 is also consistent with the theory predictions except
for very small coupling constants V3 ≤ 0.01Δopt, where discreteness
becomes significant as shown in Fig. 6(b).

4. Relaxation at large bandwidth ratio r > 1
For a large bandwidth ratio r ≥ 2, the evolution of current can-

not be described using a single relaxation time as it is clearly seen in
Fig. 5. The current relaxes in two stages, including the first fast stage
taking few picoseconds due to absorption or emission [Eq. (20)]
(forward scattering) and the second slow stage that is expected to be
determined by much slower phonon scattering [Eq. (22)] (backscat-
tering). Here, we report the results for the slow stage relaxation for
N = 48 and compare the current evolution at the slow stage with the
predictions of theory [Eq. (22)]. We always excite initially the mid-
band optical phonon n = 12 and use the temperature corresponding
to the thermal energy exceeding the transverse phonon bandwidth
twice kBT = 2hΔtr.

First, we report the results for the representative bandwidth
ratio r = 3 in Fig. 7. In Fig. 7(a), the time evolution of currents is
shown for different anharmonic coupling constants. The current
clearly relaxes in two stages, and we focus on the second stage.

FIG. 6. (a) Dependence of the rescaled relaxation time on the wavevector for N = 20 compared to the Fermi golden rule result [Eq. (20)] for the parameters kBT = 2Δtr,
V = 0.05Δopt, and r = 0.5. (b) Dependence of the relaxation time on the strength of the anharmonic interaction for the same parameters as in (a) and n = 5. Results are
compared with the Fermi golden rule [Eq. (20)] (dashed line) and the minimum relaxation time 1/W∗ [Eq. (25)] (dotted line).
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FIG. 7. (a) Time dependence of current for the initially excited midband optical phonon and different anharmonic coupling strengths V3/Δopt shown near each curve. The
negative inverse slope of the dashed line serves as an estimate for the relaxation time. (b) Dependence of relaxation times on anharmonic coupling strengths fitted by V−4

3

dependence for small couplings (dashed line) and V−2
3 dependence for large couplings (dotted line). In both graphs, the bandwidth ratio is r = 3.

To extract the relaxation time, we fit the current time dependence
by a single exponent for the part of relaxation occurring between
J/J(0) = 0.4 and J/J(0) = 0.2 as shown by the dashed line. The relax-
ation time is estimated using the negative inverse slope of this line.
The results are sensitive to the fitting domain [use of the specific
points J/J(0) = 0.4 and 0.2 to extract the relaxation rate], since
relaxation is getting slower with time possibly reflecting its diffu-
sive nature. Our estimate gives a right guess about the time of the
transition between ballistic and diffusive regimes and parametric
dependencies of this time nearly insensitive to its specific definition.

The relaxation time dependence on the anharmonic cou-
pling strength is shown in Fig. 7. At relatively small coupling
V3 ≤ 0.05Δopt, this dependence is perfectly consistent with the the-
ory prediction of the inverse fourth power dependence [Eq. (22)],
while at large V , it switches to the weaker dependence probably
because of the failure of the Fermi golden rule as a perturbation
theory.

Similar scaling of relaxation times is obtained for other
two considered bandwidth ratios r = 2 and r = 4 as illustrated in
Figs. 8(a) and 8(b), respectively. The dependence V−43 is seen in a

wider domain for r = 4 and in a very narrow domain for r = 2 com-
pared to r = 3 that is the consequence of different separations from
the threshold at r = 1.

We also examine the dependence of relaxation times on the
bandwidth ratio. In our regime of interest kBT = 2hΔtr, the expected
dependence can be expressed following Eq. (22) as Trel = r5Δ3

opt/

(4CV4
3). To check the relevance of this dependence, we plot the

rescaled relaxation times Trel/r5 in Fig. 9 for r = 2, 3, and 4. The
graphs for the bandwidth ratios r = 3 and 4 are perfectly consis-
tent with the theory expectations. The dependence for r = 2 deviates
from those expectations. This deviation is possibly because the case
r = 2 is close to the crossover regime r = 1. Two approaches are
getting consistent for r = 2 at small V3 if we use the resonant cou-
pling r dependence V(k,−k,−k, k)∝ 1/(r2 − 1) [see Eq. (27)] to
estimate the effective scattering matrix element replacing expected
r5 relaxation time dependence with r(r2 − 1)2.

Using the numerical estimate of the relaxation time, we can
find the dimensionless constant C in Eq. (22) as 2.7 ⋅ 104. This
dimensionless numerical factor is huge, but this is not so surpris-
ing. The typical transition matrix element V(k,−k,−k, k) [Eq. (27)]

FIG. 8. Dependence of relaxation times on anharmonic coupling strengths for r = 2 (a) and r = 4 (b) fitted similarly to Fig. 7.
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FIG. 9. Dependence of rescaled relaxation times on anharmonic coupling for
different bandwidth ratios.

contains a large numerical factor of η4 = 16. At high tempera-
ture, it also acquires a factor expressing the number of ther-
mal phonons kBT/(hωtr(k)) estimated in Eq. (22) as kBT/(hΔtr).
However, the actual energy hωtr(k) for the initial midband state
k = π/(2a) is a half of the bandwidth, so an extra factor of two nat-
urally appears in the definition of the matrix element modifying the
numerical factor to 2η4 ∼ 32. The squared matrix element within
the Fermi golden rule acquires this numerical factor squared that
is 322 ≈ 1000.

The remaining factor of C/322 ≈ 27 in the definition of the
current relaxation rate originated from the integration over two
wavevectors in the related Fermi-golden rule expression for the cur-
rent relaxation rate (see Refs. 47 and 48). Another possible origin for
the extra rate enhancement factor of order of 10 can be due to a mul-
tistep current evolution involving first fast relaxation of the phonon
to one of the states with a smaller energy with a subsequent backscat-
tering from that state that can happen faster compared to that from
the initial state due to a larger number of participating transverse
phonons at lower energies. Thus, the large numerical factor C is
quite reasonable for the current relaxation rate.

V. ACCELERATION OF TRANSPORT FOR A SMALL
INITIAL VELOCITY OF OPTICAL PHONON

We demonstrated in Secs. III and IV that the evolution of an
optical phonon due to its interaction with transverse phonons for
the bandwidth ratio (transverse to optical ones) greater than unity
can be separated into two stages. In the first, fast stage, the phonon
is scattered only forward, so its average velocity remains finite as for
the ballistic transport. Consequently, in the first stage, we observed
numerically the fast current reduction to some finite value [Fig. 5].
This reduction is because the initial midband state used in Sec. IV
possesses the maximum velocity. If the initial state is chosen near
band edges, where the velocity approaches minimum, then the for-
ward scattering to other faster states should increase the velocity.
This is an interesting and untypical regime, where the relaxation
enhances the current.

Such acceleration can possibly explain the recently discov-
ered increase in the optical phonon ballistic transport velocity in
alkane chains with the chain length.27 Themeasurements carried out

similarly to earlier work21 show that the phonon velocity increases
with increasing the chain length from 14 Å/ps for shorter chains
to around 48 Å/ps for longer chains containing more than 20 CH2
groups. If the propagating wavepacket is initiated at the top of a band
where the group velocity is small, it can be scattered toward the mid-
band states, featuring much larger group velocities, still propagating
in the forward direction. Since such a process became efficient at
longer chains where the phonon has sufficient time for scattering,
it would result in a speed increase. Several optical bands of alkane
chains can fit such conditions, including CH2 wagging, CH2 rock-
ing, and C–C stretching bands.49 Then, in long chains, the phonon
gets re-scattered forward to midband states possessing much bigger
group velocities up to 60 Å/ps. This redistribution emerges during
the first stage of relaxation taking few picoseconds, while the second
stage taking time orders of magnitude longer is possibly not reached
yet.

To demonstrate the optical phonon acceleration numerically,
we tried a variety of model parameters always choosing the initially
excited optical phonon with a smallest (yet nonzero) velocity for dif-
ferent numbers of sites N and anharmonic coupling strengths V3.
The high temperature semiclassical regime (kBT = 2hΔtr) is con-
sidered since we observed a substantial increase in current only
for N > 20 sites, where an accurate quantum mechanical treatment
is problematic. Below, we report a substantial increase in current
for N = 21 with the initial state wavevector k = 2πn/L and n = 10
possessing the minimum group velocity.

For our study, we choose an anharmonic coupling strength
V3 = 0.01

√
ΔoptΔtr for bandwidth ratios 1.5, 2, and 3 similarly to

Sec. III B 1. The absolute value of V3 was chosen using guess
and check method to maximize the current rise. The time depen-
dence of current for these specific parameters is shown in Fig. 10(a).
The anharmonic interaction V3 used in calculations is consistent
with our DFT estimate50 of anharmonic interactions of the optical
phonons belonging to the most wide rocking band24 and transverse
acoustic phonons in heptane and in the C5 molecule composed
of the alkane chain of five CH2 groups with carboxyl and azido
end groups, which was investigated experimentally.27 In both cases,
the typical interaction is of order of few inverse centimeters that is
around hundred times smaller than the typical bandwidth. In hep-
tane, around half of anharmonic interactions vanish possibly due to
the inversion symmetry, broken in C5 due to the end groups.

According to Fig. 10(a), the current rises in the fast stage taking
around 10 ps by a factor of 2 or even 2.5 depending on the specific
bandwidth ratio. The slow stage takes orders of magnitude longer,
yet it limits the maximum current raise. The strongest increase in
current is observed for a smallest considered bandwidth ratio of
r = 1.5.

The verification of the proposed interpretation of the experi-
mental data can be made modifying the temperature, which is the
only controlling parameter that can be changed relatively easily and
can be modeled using the present theory. The effect of temperature
is reported in Fig. 10(b). The rise of the current and, correspond-
ingly, maximum transport velocity is clearly seen with the reduction
in temperature, and it can be probed experimentally to validate the
present theory. This rise with decreasing the temperature could be
due to the suppression of slow backscattering processes limiting
the raise of the current. One should notice, however, that a fur-
ther reduction in temperature can reduce the transport rate due to
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FIG. 10. (a) Raise of current due to anharmonic interaction for the initial state with a small group velocity (N = 21, n = 10) and different bandwidth ratios r shown for each
graph. The temperature is fixed at kBT = 2hΔtr. (b) Current for the bandwidth ratio r = 1.5 at different temperatures. The ratio kBT/(hΔtr) is shown above each graph.

phonon redistribution toward lower energies corresponding to their
Boltzmann distribution.

VI. CONCLUSIONS
We examined the transport and decoherence of optical

phonons in periodic chains due to their interaction with transverse
acoustic phonons using three different levels of theory. Similarly
to earlier work,17 where the interaction with longitudinal acous-
tic phonons was considered, we found two distinguishable dynamic
regimes depending on the relationship between acoustic and optical
phonon bandwidths.

In the typical regime of a narrower optical phonon band com-
pared to acoustic phonon bands, an optical phonon relaxation
within the band emerges in two stages. The first stage takes sev-
eral picoseconds. It includes fast equilibration of the initially excited
optical phonon within the band states featuring similarly directed
group velocities by means of forward scattering accompanied by
absorption or emission of transverse acoustic phonons forbidden for
longitudinal phonons due to Cherenkov’s constraint.17 Importantly,
this forward only scattering supports the ballistic transport.

If the initial optical phonon group velocity is smaller than the
typical optical phonon velocity determined by its average absolute
value over all normal modes within the given band, then the phonon
accelerates due to forward scattering to the states with a higher veloc-
ity. The latter regime is possibly realized in the recent measurements
of energy transport through alkane chains, where the optical phonon
velocity increases with increasing the chain length.27 The anhar-
monic interaction needed to realize this regime is approximately
consistent with its numerical estimate for alkane chains. The the-
ory can be verified reducing the temperature that should lead to a
stronger increase in the optical phonon velocity.

The second stage of phonon relaxation involves its backscatter-
ing. It converts the ballistic transport regime to diffusive but takes
a much longer time. The backscattering occurs much slower com-
pared to the forward scattering in the first stage, because for narrow
optical bands, it requires higher order anharmonic interactions.

If the acoustic band is narrower (bandwidth ratio r less than
unity), then the optical phonon relaxes very quickly in about a

few picoseconds from its initial state to all other states within the
band. This relaxation leads to the substantial current reduction and
changing the transport from ballistic to diffusive.

Usually, acoustic phonon bands are wider compared to opti-
cal phonon bands.17,21 However, our results for the opposite regime
are also relevant for other systems of interest, including electrons
propagating in periodic molecules. The electron energy band can
be broader than any phonon band, so the situation of r < 1 is quite
realistic.
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