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Abstract

We introduce Geometric Neural Operators (GNPs) for data-driven deep learning of geometric
features for tasks in non-euclidean settings. We present a formulation for accounting for geometric
contributions along with practical neural network architectures and factorizations for training. We
then demonstrate how GNPs can be used (i) to estimate geometric properties, such as the metric
and curvatures of surfaces, (ii) to approximate solutions of geometric partial differential equations
on manifolds, and (iii) to solve Bayesian inverse problems for identifying manifold shapes. These
results show a few ways GNPs can be used for incorporating the roles of geometry in the
data-driven learning of operators.

1. Introduction

Many data-driven modeling and inference tasks require learning operations on functions [1-7]. Problems
involving mappings between function spaces include learning solution operators for partial differential
equations (PDEs) and integral operators [8—10], estimators for inverse problems [3, 11, 12], and data
assimilation [3, 13]. For many of these tasks, there are also significant geometric and topological

structures [1, 2, 14, 15]. Sources of geometric contributions can arise both directly from the problem
formulation [1, 5, 16, 17] or from more abstract considerations [4, 10, 15, 18]. For example, PDEs on
manifolds or with domains having complicated shapes [5, 19]. More abstract sources of geometric structure
also can arise, such as the subset of solutions of parametric PDEs arising from smooth parameterizations [4,
20-23] or from qualitative analysis of dynamical systems [24, 25]. Related geometric problems also arise in
many inference settings, learning tasks, and numerical methods [14, 15, 26, 27].This includes approaches for
handling point-cloud representations in shape classification [16], or in developing PDE solvers on
manifolds [4].Deep neural networks hold potential for these problems by providing new approaches for
non-linear approximations, learning representations for analytically unknown operations through training,
providing accelerations of frequent operations, or discovering geometric structures within problems [1, 2, 4,
5,26, 28, 29].

We introduce a class of deep neural networks for learning operators leveraging geometry referred to as
Geometric Neural Operators (GNPs). The GNPs introduce capabilities for incorporating geometric
contributions as features and as part of the operations performed on functions. This allows for handling
functions and operations on arbitrary shaped domains, curved surfaces and other manifolds. This includes
capturing non-linear and geometric contributions arising in computational geometry tasks, geometric PDEs,
and shape reconstruction inverse problems.

Related work has been done on function operators and parameterized PDEs, but primarily on euclidean
domains [6, 30-33]. Many of the methods also are based on using linear approaches, such proper orthogonal
decomposition [34, 35] or dynamic mode decomposition [36—38]. More recently, neural networks have been
used for developing non-linear approximation approaches. This includes the early work in [6], and more
recent work on Neural Operators [30, 31] and incorporating geometry in [29]. A few more specialized
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realizations of this approach are the Fourier neural operator (FNO) [29, 32, 39], Deep-O-Nets [30], and
graph neural operators [40]. GNPs handle the geometric contributions in addition to function inputs based
on network architectures building on Neural Operators [31, 40].

We organize the paper as follows. We discuss the formulation of GNPs in section 2. We then develop
methods for training GNPs for learning geometric quantities from point cloud representations of manifolds
in section 3. We show the GNPs can be used to approximate Laplace—Beltrami (LB) operators and to learn
solutions to Laplace—Beltrami—Poisson (LB-P) PDEs in section 4. We then show how GNPs can be used to
perform inference in Bayesian Inverse problems for learning manifold shapes in section 5. Our results show
how GNPs can be used for diverse learning tasks where significant contributions arise in operations from the
geometry.

2. Geometric neural operators

For learning general non-linear mappings between infinite dimensional function spaces on manifolds that
incorporate geometric contributions, we build on the neural operator framework [6, 31]. In contrast to more
conventional neural networks which map between finite dimensional vector spaces, we use approaches that
learn representations for operators that are not strictly tied to the underlying discretizations used for the
input and output functions.

We consider geometric operators of the form G[w, ®] — u. This operator takes as input a function w(-),
where w : R% — R% with w € W for some function space W, and a geometric description ® with
O :R4% 5 RE & €8, and gives as output a function u(-) with u : R% — R% 4y € l{. The operator can be
expressed as a mapping G : WW x & — U. This approach allows for flexibility in the formulation of the
geometry representation @ , and its influence on the output u. If the geometry is known beforehand, one
could provide information using parameterizations. In this case, one could leverage one of the most
common approaches using coordinate charts with ® : R%+! — R% where the extra component gives the
chart index I. In the case of a surface, we would have d; = 2 and w(z,I) and ®(z,1) € R® with z € R2.

As another approach, the geometry also could be described as the level set of some functions g;,

M= {x|gi(x)=0,i=1,...,k} embedded in R%. In the implicit level set case, w = w(x) has inputs x € M
and we could use ®(x) = x. In the special case when we already know the geometric quantities and
contributions in advance, such as an operator that only depends on the local principle curvatures k1, k;, we
can simplify learning by letting ®(-) = [k (), k2(-)]. These cases illustrate within a common framework a
few different ways to explicitly and implicitly incorporate the geometric contributions when learning
operators. Here, we will primarily use spatial data given in the form of point clouds {x; }iN:1 C R? and use
the geometric description ®(x) = x. In the notation, we denote the combination of input function and
geometric description by a(-) = [w(-), ®(-)] witha: R4 - R%, ac A=W x S.

We approximate the geometric operators G : A — U by developing methods for learning a neural
operator Gy : A — U with parameters 6. The Gy approximation consists of the following three learnable
components (i) performing a lifting procedure P for a € R% to a higher dimensional set of feature functions
vo € R with d, > d,, (ii) performing compositions of layers consisting of a local linear operator W, integral
operator /C, bias function b(-), and non-linear activation o(+), to obtain v,11 = o (Wv; + K[v;] + b), and (iii)
performing projection Q to a R%-valued function, see figure 1. The trainable components include the lifting
procedure P, kernel k, bias b function, and local operator W in the operator layers, and the projection Q. We
collect all of these parameters into . This gives a neural operator with T layers of the general form

G5" = Qoor(Wr+ Ky +br) oo e (W + Ko + o) o P. (1)

The activation of the last layer o7 is typically taken to be the identity. The special case of a neural operator

with a single layer has the form gg” = Qoo (W+ K +Db)oP. For the linear operators /C, we consider
primarily integral operators of the form

K () = / K(xp)v() du(y). @)

The p is a measure on D C R%, v: D — R% is the input function, and k is a kernel k(x, y) € R% x R% . For
each layer t, we consider a trainable kernel k = k(x, y; 0;) parameterized by 6, for fully connected neural
networks having layer-widths (d,,n/4,n/2,n,d2) for n € N, as in [40].

In practice, we fix d, to be the latent dimension of the nodal features within the hidden layers and we use
Lebesgue measure for p. For activation functions, we use the ReLU on all internal layers given their universal
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Figure 1. Deep Learning Methods for Operators. An operator layer is used as part of processing input functions. For a function
v(+), an affine operation is performed based on integration against a kernel k(x,y) and adding a bias b(-). An additional skip
connection with a local linear operator W is also added to the pre-activation output of the layer. These linear operations are then
followed by applying the activation function o (-) (left). In combination with the operations of lifting 7P and projection Q, these
layers are stacked to process input functions to obtain deep learning methods for approximating operators (right).

approximation properties and widely-established use in deep learning [31, 41]). Other choices and functional
forms for K and the kernels k also can be used to further adapt our techniques for special classes of problems.

2.1. Approximating the integral operations

For approximating the integral operations on general manifolds, we develop methods for approximating the
integral operations required to evaluate K building on graph neural operators [31]. We further develop
methods using sparse kernel evaluations and specialized constraints on the form of k in the learned kernels.
As an initial approximation of the integral operator K, consider using J sample points {xk}izl to obtain

]

K[v](xi)%%Zk(x,—,xj)v(xj), i=1,...,J. (3)

j=1

Here, we assume the measure p in K is normalized to have p(D) = 1. Direct evaluation of these expressions
gives a computational complexity O(J?).

To help manage these computational costs, we will approximate K using a few approaches to control the
size of ], and denote this approximation K. This includes (i) using a sparse sub-sampling of the points {x;},
and (ii) truncating the domain of integration to S(x), such as a ball B,(x) of radius r, see figure 2. Using these
approaches, we approximate the kernel operator IC by

KV (x)= /S( )k(x,y)v(y) dy, VxeD. (4)

The truncation S(x) C D is given by S : D — B(D) which maps x to the neighborhood S(x). The B(D)
denotes the subsets of D that are Lebesgue measurable. We denote the indicator function for such sets as
dp(x,y) = Tg(x)dy. While more general choices can also be made, we will primarily use S(x) = B,(x) for a
ball of radius r centered at x. We remark that while the truncations may seem to reduce the domain of
dependence of the operator to B,, in fact, the overall operator and information flow can still have
longer-range dependencies. In deep learning methods, the operator layers are stacked which successively in
the depth from the previous layers increases the domain of dependence of the overall operator, see figure 2.
We compute our approximations using random sampling and the following steps. First, a graph is

constructed using nodes {xi,...,xp} C D with features a(x;) at x;. We construct directed edges to all nodes
y € S(x) with edge features k(x, y). For a given node x; having value v;(x;) and neighborhood
N (xj) = S(xj) N {x1,..., %}, we update the value at node x; using the mean aggregation
~ 1
Kl (x) = —— Z k (xj, %) ve (xx) - (5)
V() |
kaN(x])

We remark that for such integration operations on manifolds, the accuracy of approximations depend on the
sample points {x;}, which must be taken sufficiently dense to capture both the local shape of the manifold
and the local surface fields. These properties can be characterized using quantities, such as the fill-distance
and estimated curvatures of the manifolds [5].
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Figure 2. Approximating K[v]: graph-based Approaches and Truncations. We develop methods for general manifolds, including
with point-cloud representations (middle). We approximate integral operations by using graph neural operators and message
passing. To evaluate K[v](x) at node x, we use mean aggregation. The nodes x and y have an edge connection in the graph when
[lx = y|| < r. The graph has node attributes v(y) and edge attributes k(x, ). We take the mean over all updates k(x, y)v(y) for
neighboring nodes A/ (x) to obtain the approximation of K[v]. To help make computations more efficient, we also truncate the
neighborhood to a ball B;(x) of radius r (left). In deep learning methods, stacking the operator layers increases successively in
depth from the previous layers the effective domain of dependence of the overall operator (right).

2.2. Kernel restrictions with factorizations and block-reductions
The sampling of the kernel evaluations correspond to evaluating a linear operator equivalent to the action of
ad, x d, matrix. In back-propagation, these calculations can readily exhaust memory during the gradient
computations during training. To help mitigate such computational issues as the latent dimension d,
becoming large, we have developed further specialized functional forms and restrictions for the trainable
kernels.

Since edges are more numerous than nodes, these contributions dominate the calculations, and we seek
restrictions that limit their growth. For this purpose, we consider kernels that can be factored as
k(x,y) = Wik(x,y) where k(x,y) is block diagonal

B, 0 0 0

~ 0 B, 0 0

k= (6)
0 0 . 0
0 0 0 B

This consists of ¢ blocks denoted by B; = B;(x, y) each having the shape d, x d,,. We remark that a block
form for kernels was also considered and found to be helpful in the setting of regular grids for a FNO in [42].
A notable feature of our factorized form is that the trainable Wy does not depend on the inputs (x, y). The
integral operator with this choice for k can be expressed as

K v =/Dk(x,y)V(y) dy = Wk/ch(x,y)V(y) dy:ZWk,i/DBi (x.)v(y) dy. (7)

i=1

We have the weights Wy € R% x R and W ; € R% x R% . Since the kernels are represented by fully
connected neural networks, our factorized kernel form also provides further savings through the ability to
use fewer total weights. Even if considering only the final layer of a general kernel k, this would consist of
w,d? parameters. The w, is the width of the kernel network. When we use k instead, the final layer becomes
wycd?, parameters, which given the quadratic dependence can be a significant savings. Further, moving the
matrix Wy outside of the integral avoids having to apply W directly to each edge weight k(x,y). The
factorization allows for only applying Wj on the nodes of the graph after the aggregation step of the edge
convolution, resulting in further savings. These approaches taken together are used in performing the steps
in the operator layer to obtain

Ver1 (x) = 0y (th (x) + K [v] + bt) . (8)

The K, uses the block diagonal kernel l~ct. The factorized form for the kernel allows for use of larger
latent-space dimensions and for deploying weights and computations into other parts of the neural operator
approximation. The approach also allows for overall savings in memory and computational time during
training.
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Figure 3. Geometric Quantities for Manifolds with Point-Cloud Representations.We develop geometric neural operators (GNPs)
to estimate geometric quantities, such as the metric and curvatures, from manifolds with point-cloud representations. Shown are
a few example shapes and their Gaussian curvatures (left). The methods are trained on random shapes obtained by using
barycentric coordinates to combine a collection of reference manifolds A, B, C depicted at the vertices with functional forms given
in [45] (right).

3. Learning geometric quantities for manifolds with point-cloud representations

Important contributions are made by geometry in many machine learning tasks, such as classifying shapes or
approximating solutions of PDEs on manifolds. We develop geometric neural operators (GNPs) for
estimating geometric quantities, such as the metric and curvatures, from point-cloud representations of
manifolds. To demonstrate the methods, we consider the setting of radial manifolds M, and an embedding
o (0, ¢) taking values from a coordinate chart (, ¢) into R?, [43]. We focus on learning the first I and second
II fundamental forms of differential geometry [44]. These can be expressed in terms of the embedding map
o as

E F 040y Oy Oy L M Opp N Opp- N
I— _ , o= = . 9)
F G g9 -0y gy 09 Ogp N Opg - Nn

The o9 = 0p0, 04 = 04 0, and similarly for higher-order derivatives. The outward normal n is given by

J¢ (07¢) X 09 (07¢)
HJ¢ (07¢) X 09 (0,¢)|| .

These forms can be used to construct the Weingarten map as W = I"'II. We use W to compute the Gaussian
curvature

n(0,¢9) = (10)

K(0,¢) = det(W(0,9)). (11)

We consider the learning tasks for a collection of different radial manifold shapes given by combinations
using barycentric coordinates arranged as in figure 3. Each of the radial manifolds are represented by a
collection of spherical harmonic coefficients for the radial function r(6, ¢), as in our prior work [43]. These
manifold shapes are sampled by using uniform random variables u;,u; ~ 1[0, 1), to obtain coefficients
d=(1—-/ur)a+ (1 —uy)\/u1b+ /uju,c where a,b,c,d are vectors for the collection of spherical
harmonic coefficients. For our training dataset we sample 500 manifold shapes. We also sample 200 manifold
shapes as a test dataset. We should mention these intrinsic manifold shapes from the spherical harmonics
will primarily be used in our analysis and are treated distinct from the sampled point-cloud representations
of the shapes used in training and testing.

To obtain point-cloud representations for each of the manifold shapes we use the vector of spherical
harmonic coefficients d and a separate random sampling of N = 1024 points {x;}}_, on the sphere with x;
projected to the manifold surface. We then use the spherical harmonic interpolation to obtain training data
for the geometric quantities z = z(x;;d) = (x,y,z,E, F, G,L,M, N, K) for the manifold surface with shape d
and point-cloud sample at location x; = (x,y,2), and E,F,G,L, M, N, K from the first and second
fundamental forms I, II.

We also add noise to the datasets to obtain training samples Z =z + £ = (x,y,z,E,F,G,L,M,N,K) + &,
where &€ ~ N(0,€2A) is Gaussian noise. The € gives the relative noise for the reference scales A given by
A= dlag({)‘l}) with \; = ||(x,y,z)|\%, i=1,23;\ = H(E’F’G)H%’ 1 =456\ = ||(L7M7N)H%7
i =7,8,9;\; =|KJ?, i = 10. To further test robustness of the methods, we also consider two additional
datasets with (i) uniform noise at 1% added to all data components for each manifold shape, and (ii) by
creating noisy perturbed outlier points by adding noise at 10% to 50 randomly chosen data points in each
manifold shape.
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We train the geometric neural operators (GNPs) to learn the geometric quantities from the point cloud
representation {x; }szl C R? with N = 1024 surface points for a manifold M. The GNP u = Gy [{x;}] must

learn from the point cloud {x;} using coordinates from the embedding space R>. The task is to estimate the
fundamental forms I, I by learning a mapping u which can be expressed as

xj— (E(x) ,F(x) G (x) ,L (x;) ,M (x7) N (%) ,K () (12)

In the training, we also include learning the Gaussian curvature K. We use a few different architectures for
our GNPs. These are (i) use of a kernel approximation as in equation (5) which we call the full kernel and (ii)
use of a factorization and block-reductions as in equation (7) which we call the factorized block kernel. In
each case, we consider networks with d, = 64, kernel width up to w,, = 256, and depth up to d,, = 10 integral
operator layers. In our studies, we found that the latent dimension d, and the depth d,, had the strongest
influence on performance. Increasing the kernel width beyond w, = 256 did not appear to lead to
performance gains in general. We use for our loss function the L?>-norm for comparing the GNP predicted
values of the model Gy with the true values from the shapes obtained from the spherical harmonics
representations. We trained using optimization methods based on stochastic gradient descent with
momentum using the Adam method [46].

We show results for training the GNPs with different choices for the neural network architectures and
other hyper-parameters in table 1. We varied in the studies the width w,, of the neural networks between 128
and 256. We also varied the depth T of the network from 8 to 10 layers which from stacking increases the
effective range of the domain of dependence of the overall operator, see figure 2. The results show the GNPs
can learn from the point-cloud accurate representations simultaneously the metric components E, F, G of the
first fundamental form I and the curvatures components L, M, N, K of the second fundamental form II and
Gaussian curvature. This provides the basis for performing further many downstream tasks and analysis
using concepts from differential geometry and the trained GNPs. The trained GNPs had an overall L*-error
around 5.19 x 10~2 when there were no noise perturbations. In the case of 1% noise perturbations in the
training dataset, we find an L?-error of around 9.55 x 10~2. We find in the case of outliers the L*-error
becomes around 1.49 x 10!, While there is some degradation in accuracy when noise is added to the
dataset, the results show the methods are overall robust providing decent estimates of the geometric
quantities. We also find our factorized block-kernel methods can train to a comparable level of accuracy as
the full kernel and run about three times faster during training. In particular, using 10 layers with a kernel
width of w,, = 256, the full kernel GNPs trained over an average of 16 hours while the factorized-block GNPs
trained over 7 hours. Further, the memory requirements were reduced from 24GB with the full kernel to 8GB
with the factorized block-kernel. These results indicate the GNPs can be trained effectively to obtain robust
methods for estimating the metrics and curvatures of manifolds from their point-cloud representations.

4. Learning solution maps of PDEs on manifolds: LB-P problems

We develop GNPs to learn the solution map for LB PDEs on manifolds. We consider LB-P problems of the

form
ALBM 7f
{fMu(x) dx = 0 } (13)

The M denotes the manifold, Ay the LB operator, u the solution, and f the right-hand-side (rhs) data. In
contrast to Euclidean operators, computing the forward or backward LB operator requires the geometric
information such as the first fundamental form given in equation (9) and it is derivatives. Therefore, in
approximating either of the operators it a necessary that the data-driven methods learn features capturing
geometric properties of the manifold M. When considering closed manifolds M, there can be additional
constants required in geometric PDEs related to the topology [43, 45]. For the spherical topology here, there
is one additional constant which we determine by imposing that the solution integrates to zero. For
additional discussions and details, see appendix.

The task here is to learn an operator for the solution mappings u = —A;/'f for the PDE on the manifold
surface for each of the reference shapes defined in figure 4. We will train separate GNPs for each manifold to
effectively learn a solution operator u = Gy [{x;}, —f]. For this geometric elliptic PDE, learning such an
operator for a sufficiently rich set of source functions f can be combined with super-position principles or
Green’s function representation formulas to construct more general solutions on the manifold. For such
non-constant coefficient linear PDEs, there often are not tractable analytic expressions for the Green’s
functions which pose practical challenges in obtaining representations for general solutions. We show how
the data-driven methods of GNPs can be utilized to learning solution operators for f. For this purpose, we

6



Table 1. Results for Learning Joint Geometric Properties. The GNPs were trained with full and factorized kernels to estimate metrics and curvatures from manifolds with point-cloud representations. The methods were tested on
random shapes obtained by sampling from shapes in figure 3. Results are reported in relative error for cases with and without noise €, with the most accurate result in bold for each study. We report the mean = the standard
deviation of the results over 5 training runs. The sampling resolution for each shape was N = 1024 and a radius of r = 0.4 for the kernel integrations. The GNPs were trained for 500 epochs with an initial learning rate of 10~* which
was halved every 100 epochs. ReLU activations were used both in the kernel networks and in the operator layers.

Depth Neurons Training error Test error Training error Test error
Architecture Full kernel Factorized block-kernel

10 256 2.52%x 1072 +6.5%x 107 3.82x 1072 +1.7x107% 4.23%x 1072 +7.6%x 107" 5.19 X 1072 4+9.3 x 107

10 128 436%x 1072 +6.0x107™ 5.57 x 107 +5.9 x 107 7.73x 1072 +£3.9x 107% 8.54 x 1072 +3.1 x 107

8 256 2.83x 1072 +23x 107 413%x 1072 +13x%x107% 5.08 x 1072 +1.0 x 107 6.00 x 1072 +9.9 x 10~

8 128 5.08x 1072 +1.3x107% 6.29 x 1072+ 1.7 x 107* 8.94x 1072 +23x 107 9.59x 1072+ 1.8 x 107

1% noise for all points

10 256
10 128
8 256
8 128

6.31 x 1072 +6.3x 107"
8.00 x 1072 +8.1 x 10~
6.68 x 1072 +9.8x 107
8.75x 1072 +5.7 x 107

8781072 +1.6 x 107"
9.83x 1072 +7.0 x 107
8.97 x 1072 +7.1 x 107
1.03x 107" +£1.4x107%

8.11x 1072 +1.1x107%
1.11x 107" +2.5x 1079
8.63x 1072 +9.7x 107
1.18x 107 +£3.1 x107%

9.55x 1072 +9.8 x 10~ *
1.20x 107" +1.2x107%
9.79 x 1072+ 8.3 x 107
1.26 x 107 +£3.8x107%

10% noise for 5% of points

10 256
10 128
8 256
8 128

1.00x 107" +6.2 x 107%™
1.22x 107" +1.6 x 1079
1.06 x 107 +£51x107™
1.28x 107" +1.6 x107%

1.49x 107 +1.9%x 107%
1.54%x 107" +£2.5x 1079
1.48 X 107" +7.2 x 107*
1.59 x 107 +3.6 x 107

1.26 x 107" +6.4 x 107%™
1.49% 107" +1.1x 1079
131 x 107" +1.3%x107%
1.58x 107" +1.4x107%

1.49 X 107 +2.5 x 107
1.67x 107" +£2.5x107%
1.52x 107" +£2.7x107%
1.76 x 107 £3.0 x 1079

3uysiiand dol
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f(x) u(x) f(x) u(x) f(x) u(x)

Figure 4. Training Geometric Operators for Solving PDEs on Manifolds. We train neural geometric operators (GNPs) for the
solution map of the Laplace—Beltrami PDE. For the reference manifolds A, B, C, we use radial functions

ra(0,¢) =1,r8(0,¢) = 1+ 0.4sin(3¢) cos(0),rc(6,¢) = 1+ 0.4sin(7¢) cos(#). For additional details on radial manifolds, see
appendix. We show some example right-hand-sides (rhs) f(x) and the corresponding solutions u(x). We train with locations of
the Gaussian for the rhs varied over the surface and over the collection of shapes.

will train by generating input functions f that approximate Dirac J-functions sampled at a collection of
randomized locations on the manifold. We use a Gaussian having the modified form

1 1
faz) = exp (~ 5l 3 ) o (o). (14

The f have parameters o = 0.15 and X. For the training data, we interpolate f using spherical harmonics with
2030 Lebedev nodes and hyper-interpolation [43, 45]. To obtain random samples for f, we sample Gaussians
y ~ N(0,1) that are radially projected onto the manifold M to obtain samples for X. We further choose ¢y(o)
so that the spherical harmonic interpolations of f always have a zero spatial average ﬁ S f(x)dx = 0. To
obtain the input-solution pairs (f, u) for the training data, we solve the LB equation (13). This is done
numerically by building on our prior work on spectral methods for spheres based on Galerkin truncations
over the spherical harmonics with N = 2023 Lebedev nodes [45, 47]. We remark that one could in principle
start with u and compute the action of the differential operator —A[u] to obtain f. However, in practice, we
find from the differentiations involved that this is much more sensitive to noise resulting in poorer quality
training sets. This indicates when performing operator training, it is preferred to learn by sampling the
underlying approximation of the solution map when it is available.

To train and test our GNPs, we use 1000 random samples of f to obtain the training set and another 200
samples for testing. We consider the final resolutions for the input-solution pairs (f, u) using point-clouds
with N = 1024 spatial sample locations. Our loss function are based on the L*-norm integrated over the
manifold surface for the difference u — & between the GNP predicted solution # and the spectral solution of
the PDE u. We trained using optimization methods based on stochastic gradient descent with momentum
using the Adam method [46]. We used 300 epochs with a batch size of 1 along with an initial learning rate of
10~* that was halved every 75 epochs. During training, using 10 layers with a kernel width of w,, = 256, the
full kernel GNPs averaged 21 h utilizing approximately 24GB of GPU memory. The factorized block-kernel
averaged 7 h for training and required approximately 8GB of memory on the same hardware.

We show results of our training of GNPs for each of the manifolds M in table 2 and figure 5. We
considered GNPs with a few different choices for the neural network architectures. We find our factorized
block-kernel methods perform comparable to the full kernel GNPs. The accuracy over all the manifolds is
found to be 9.03 x 10~ 2. The most accurate results of 1.07 x 10~ 2 were obtained for Manifold A. In this case,
the manifold is a sphere and the GNPs appear to benefit from the symmetry. We further see in this case the
depth and width of the neural networks do not have as much impact on the accuracy. As the shapes become
more complicated, such as for Manifold B and Manifold C, the learning problem becomes more challenging.
This would be expected given the more heterogeneous contributions of the curvature within the differential
operators in the LB equation (13). Relative to Manifold A, the Manifold B is less symmetric and we find an
accuracy of 3.75 x 1072, We see the depth and width of the GNPs has a more significant impact on the
accuracy, especially for the factorized case. This could in part arise from the role depth plays in increasing the
domain of dependence of the operator. For geometric quantities and computing differential operations, there
could be benefits from having a wider range of points over which to make estimates. In the case of the more
complicated Manifold C, we find an accuracy of 9.03 x 10~2. We see the depth and width of the neural
network again has a significant impact on the accuracy. Overall, the results indicate that GNPs can learn
solution maps over a wide variety of shapes for geometric PDE:s.




Table 2. Results for Learning Laplace—Beltrami Solution Operator. For the manifolds A, B, C, we show relative training and test errors of GNPs for the learned solution operator for the Laplace—Beltrami PDE in equation (13). We
report the mean = the standard deviation of the results over 5 training runs. We show a few different choices for the GNP architectures with the most accurate results shown in bold for each study.

Neurons Depth Training error Test error Training error Test error
Manifold A Full kernel Factorized block-kernel

256 10 7.50x 107 +7.1 x 107 8.98 X107 ® +8.5x 107" 9.72x 107 % +£4.5x 107 % 1.07 X 1072 +3.9 x 10~*
128 10 8.25x 107 +5.8 x 107 9.66 x 107 +6.5x 107 1.29x 1072 +3.6x 107%™ 1.37x 1072 +4.3x 107%™
256 8 9.42 x 107 +7.0 x 107 1.09x 1072 +7.5x 107%™ 1.13x 1072 +8.6 x 107™ 1.23x 1072 +9.3x 107*
128 8 1.03x 1072 +4.6 x 107" 1.16 x 1072 +4.7 x 107" 1.50x 1072 +7.4x 107%™ 1.59x 1072 +7.7x 107%™
Manifold B

256 10 1.85x 1072 +1.1x 107 3.32%x 1072 +6.9x 107" 2.74x 1072 +13x107% 3.75 X 1072 + 1.4 x 1079
128 10 245x 1072 +1.2x107% 3.74x 1072 + 1.4 x 107 3.75x 1072+ 1.0 x 107* 440 x 1072 +9.1x 107%™
256 8 243%x 1072 4+9.7 x 107 3.84x 1072 +7.9x 107 341 x 1072 4+ 1.0x 107% 4241072 +1.0x 1079
128 8 3.07 x 1072 + 4.5 x 107 419%x 1072 +6.0x 107%™ 4.40 x 1072 +8.7 x 107 493 %1072 +8.8x 107"
Manifold C

256 10 3.93x 1072 +1.9x 107* 8.31 x 1072 +2.1x107% 6.48 x 1072 +2.8 x 107 9.03x 1072 +1.1x107%
128 10 5.31 x 1072 +3.5 x 107* 8.61 x 1072 +2.2x107% 8.58 x 1072 +7.8 x 10~ 1.03x 107" +£1.3x107%
256 8 5.61 x 1072 +1.5x 107 9.14x 1072 +13x 107 8.02x 1072 +1.5x%x107% 1.00x 107 +1.4x 107%
128 8 6.84 x 1072 +2.6 x 107* 9.39 x 1072 +2.0 x 107 9.97 x 1072 +1.3x 107 1.14x 107" +£1.7x 1079
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Error:
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Figure 5. We show a few example predictions of the full kernel GNPs for the Laplace—Beltrami PDE solutions and their absolute
errors for manifolds A, B, C.

5. Estimating manifold shapes: Bayesian inverse problems using observations of LB
responses

We developed GNPs for estimating manifold shapes from observations of the action of the LB operator on
the manifold. We use as observations the input-solution pairs (u, f) for the LB-P PDE in equation (13). For
this purpose, we train GNPs to be used in conjunction with solving a Bayesian Inverse Problem. This consists
of the following steps (i) formulate a prior probability distribution over the shape space, (ii) observe the LB
responses for a collection of samples { (1), A7)} (iii) use Bayes’ rule to obtain a posterior probability
distribution, (iv) perform optimization to find the most likely manifold shape under the posterior
distribution. We train GNPs over both manifold shapes and LB responses. The GNPs serve to map manifold
shapes to LB responses to compute likelihoods in place of a traditional solver. In comparison, GNPs are able
to perform inference more rapidly, making them an efficient surrogate for obtaining a posterior distribution.
As we shall discuss in more detail below, the likelihoods p(M|(u,f)) are taken as Gaussians based on the
L*-norm for the difference # — u between the GNP predicted solution & = Gy [{XJM}, f] and the data u. We
use this in conjunction with Bayesian inference to assign a posterior distribution and obtain a maximum a
posteriori (MAP) estimate for the shape M. We can also use the GNPs to obtain an estimate of the full
posterior distribution by using them for Monte-Carlo sampling.

We consider the inverse problem of using observation data D to recover M. We consider radial
manifolds M and the responses of LB operators A [u; M] when applied to functions u : M — R. The
observation data is D = {(u/(x;),f'(x;)) }ij forj = 1,...,N with {x;} sampled uniformly on $* and radially
projected to M and where Ayg[u'; M] = —f'. The manifold shapes use the barycentric coordinates in
figure 3. As discussed in section 3, the manifold shapes can be described by spherical harmonic coefficient
vectors d. We obtain responses by considering rhs-functions f as in equation (14). To obtain the response
training data pairs {(u/,f')}, we use the spectral solvers in our prior work [43, 45]. We obtain f’ by sampling
X' in equation (14) at M = 194 Lebedev nodes for the order 12 hyper-interpolation [45]. Our spectral solver
then yields a spherical harmonics representation of 4. We further sample 21 manifold shapes from the
barycentric coordinates as in figure 3. This is used to construct the full set of LB response pairs { (u/, ')}
across all shapes. This yields a training set consisting of 4074 samples of LB response pairs. We remark that
this problem requires that the GNP learn meaningful geometric features in order to approximate how the
solution operator of equation (13) changes as the geometry is varied.

We train our factorized block-kernel GNPs by using data samples of the from (M, 4®) (). This
consists of a point-cloud sampling of the manifold geometry M) = {xj} ;=1 and a LB response pair

(u, f()). We sample the geometry and responses using a collection of N = 1024 points xj(i) € MW to yield
(x]@ ,ul (xj(i)), i (xJ@)) and add 3% Gaussian noise relative to the function values. The GNPs are trained to
learn the solution operator on the noisy data (x]@ SO (x;i))) ) (xj(i)) . We use for the loss function the

L%-norm of the difference & — u between the GNP prediction of the solution # and the solution u obtained
from the spectral solvers. For our GNP architectures we used d, = 64 with 4 diagonal blocks in the kernel
network output, kernel widths of w,, = 256, and depths of d,, = 10 for the integral operator layers. For the
optimization we use stochastic gradient descent with momentum based on Adam [46]. We trained using 300
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Figure 6. Manifold Shape Estimation: Prior Distribution. The prior distribution over manifolds M based on the radial shape
covariances when 8 = 1. This is used in combination with Bayes’ Rule and the geometric neural operators (GNPs) to obtain a
posterior distribution over manifold shapes. We show density functions for our prior distribution given by equation (18), and
posterior computed using our GNP and Bayes’ Rule.

epochs with a batch size of 4. Our learning rate was set to 10~ and was decreased to 10~° over 60 epochs
using cosine annealing [48]. In our cosine annealing, we cycled the learning rate every 60 epochs to be
restarted back at 10, Training required 25GB of GPU memory and an average of 18 h.

We used our trained GNPs Gy to perform Bayesian inference. This requires developing a prior
distribution p(M) and likelihood distribution p(D|M). We then seek to estimate a posterior distribution
p(M|D) from the observation data D to assign a probability that the manifold shape was M. We use Bayes’
Rule to obtain

p(MID) = Zp(DIM)p(M), (15)

where Z is a normalization factor so the probabilities total to one.
We solve the inverse problem in practice by using our GNPs Gy as surrogate models for the LB responses.
We obtain likelihoods by considering

er g lma bl

[Ju®]]?

i=1

The sum here is taken over the M samples of the responses. We approximate the L*-norms by performing
further summation over the point-cloud samples at {x;}. This yields the likelihood

2
p(DIM) = (2#02)_1/2 exp (;;‘2) . (17)

We take here 02 = 1073, We develop a prior distribution for use over the manifolds M of the form

p(M) xexp (=BF(M)). (18)

We choose F to characterize the complexity of the manifold geometry by using the radial shape functions
ram (0, 0). We use the covariance of the radial function r to obtain

F(M) = / (1 (0.0) — 1r) 6o,

The mean radius is given by i, = [ rr((60,¢)d0d¢. The F can be thought of as a free energy for the manifold

shapes. The 3 acts like an inverse temperature that controls the characteristic scales at which to put emphasis

on the differences in the radial covariances. We use as our default value 5 = 1. This provides a prior

distribution that serves to regularize results toward simpler shapes, such as a sphere which has the smallest

radial covariance. We show our prior distribution over the barycentric interpolated shape space in figure 6.
We test our GNP-Bayesian methods by considering an underlying target true manifold M* and

constructing M observation samples for the LB responses D = {(u(f) D) }?4:1’ for M = 3, 5. For each sample
i =1,...,M, we sample the manifold geometry to obtain a point-cloud representation {xj }]ILI with
N = 1024 points. These were used to construct observation data D for testing our inference methods.

We show results of our GNP-Bayesian methods for manifold shapes in table 3 and figure 7. We
considered the cases for both 5 and 3 samples of the LB response pairs (1, f). We report in our results the top

two predictions P1, P2 for the manifold. We also give the Bayesian posterior likelihood associated with the
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Table 3. Results for Manifold Shape Identification: Bayesian Inference based on Laplace—Beltrami Responses.We show GNPs can be used for Bayesian estimates of manifold shapes using observations of the Laplace—Beltrami
responses. We show results for both 5 and 3 samples of Laplace—Beltrami pairs (u, f). The first column M gives the true manifold, and the P1 and P2 give the top two predictions for the manifold. The columns L1 and L2 give the
Bayesian posterior likelihood associated with the predictions of the manifold shape. We report the mean = the standard deviation of the results over 5 training runs. We highlight in bold the case where the first prediction disagreed
with the true manifold. We see the case with only 3 samples had only one error. The case with 5 samples did not have any errors when using the GNPs to predict the shape.

M P1 P2 L1 L2 P1 P2 Ll L2
5 Samples 3 Samples
0 0 6 2.82x 107 +4.7 x 107 2.43x 107 +3.5 x 107% 6 0 2.65%x 107 +4.9 x 107 2.51 x 107 +4.2 x 107%
1 1 7 2.64x 107+ 1.4 x 107 1.73x 107" +7.7 x 107% 1 7 3.13x 107"+ 1.7 x 107 1.87x 107 +1.5x 107
2 2 8 3.19 x 107" + 1.9 x 107% 2.60 x 107 +1.3 x 107 2 8 3.47 x 107 £ 1.2 x 107 243x 107" +7.4 x 107*
3 3 9 5.18 x 1071+ 1.8 x 10~% 3.29x 107+ 1.9 x 107 3 9 4.48 x 107 +2.5 x 107% 3.75x 107 + 1.5 x 107
4 4 10 5.67 x 1070 +2.1 x 107% 3.93x 107 + 1.6 x 107 4 10 5.40 x 1070 +4.1 x 107% 430%x 107 £2.9x 107
5 5 10 6.97 x 1071 + 8.6 x 107 2.69 x 107" +7.2 x 107% 5 10 6.53x 107" +2.0x 107" 3.18x 107" + 1.7 x 107
6 6 11 2.57x 1070 +£2.5 x 107% 1.96 x 107 +3.2x 107% 6 7 244 x 107 +2.5 x 107% 1.82%x 107 +1.8x 107
7 7 12 2.14%x 107 +9.4 x 107 151 x 107 +1.1 x 107 7 12 2.57x 107 +1.1 x 107 141 x 107 +1.2x 107
8 8 13 3.16 x 107" + 6.0 x 107 2.32x107" +1.3x 107 8 13 2.96 x 107 +1.2 x 107% 231x107" +8.6 x 107
9 9 3 4.61 x 1079 +2.8 x 107 2.72x 107 + 4.5 x 107 9 3 473 x 107 +2.5 x 107 3.01 x 107 +3.7 x 107
10 10 4 5.24 x 107" +3.2 x 107* 3.86 x 107 +2.6 x 10~% 10 4 5.61 x 107" +5.3 x 10~% 3.42 x 107 +3.5 x 107%
11 11 12 2.17x 107 +1.7 x 107 1.58x 107 +2.4x 107% 11 15 2.23x 107 +2.6 x 107% 1.76 x 107 + 1.6 x 107
12 12 16 2.45x 107 +1.4 x 107 191 x 107" +1.1 x 107 12 16 244 x 107 +1.3x 107 1.94%x 107 +£1.0x 107
13 13 17 3.01 x 107" + 1.4 x 107% 2.09 x 107 +2.0 x 107 13 17 3.25x 1070 +3.0 x 107 2.40 x 107 +2.9 x 107
14 14 9 3.90 x 107" +7.1 x 107% 3.31 x 107 +3.8 x 107% 14 9 3.70 x 107" + 1.1 x 107" 3.34 x 107 + 6.6 x 107%
15 15 16 243 x 107 +£1.3x 1079 1.67x 107" +£7.0x 1079 15 18 255x 107 +£1.2x 1079 1.82x 107" +£23x107%
16 16 19 2.09%x 107 +9.0x 107% 1.75x 107 +5.3 x 107% 16 19 1.95x 107" +7.1 x107% 1.69x 107 +2.1 x 107%
17 17 13 3.19 x 107" +£ 1.2 x 107% 2.78 x 107 + 1.5 x 10~% 17 13 3.51 x 107" + 1.9 x 10~% 3.06 x 107 +2.4 x 107%
18 18 20 3.05x 1077+ 1.8 x 107% 2.38x 107 +1.1 x 107% 18 20 3.00 x 1070 + 1.4 x 107% 2.38x 107 + 1.5 x 107%
19 19 16 2.08%x 107 +3.4%x 107 1.92x 107" +5.6 x 107 19 16 1.98x 107" +£6.3x 107" 1.81 x 107 +8.0x 107%
20 20 18 3.44x 107+ 1.4 x 107% 2.82x 107"+ 1.3 x 107 20 18 3.60 x 1070+ 1.2 x 107% 2.98 x 107 +8.8 x 107*
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Figure 7. We show the GNP predictions based on MAP estimates for the shape along with the true manifold shape. We also show
how the local absolute errors of the predictions vary over the surface of the manifold.

O map estimate @ true value 0 j—
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Figure 8. Manifold Shape Estimation: Solutions of the Bayesian Inverse Problem. We estimate the shape of manifolds by solving a
Bayesian inverse problem based on observation of Laplace-Beltrami (LB) responses. Shown is the density of the posterior
distribution over the shape space when using for the empirical data 5 samples of the LB-responses. The results are shown when
the ground-truth shape has index 7 ranging from i = 0,1,2,...,20 with ordering top-to-bottom and left-to-right. The combined
results for the cases 19,20 are shown on the lower right.
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predictions of the manifold shape, denoted by L1 and L2. We report the mean =+ the standard deviation of
the results over 5 training runs. We highlight in bold the case where the first prediction disagreed with the
true manifold. We find in the case of using 5 samples for the LB responses, we are able to identify shapes well.
In this case, there were no errors over the 21 test shapes. We can see in some cases, such as 16, 19 the
posterior likelihoods are similar, indicating potentially similar LB responses. Interestingly, we do see in both
sample cases the same two manifolds appear in the top-two predictions, including the correct manifold. We
find when reducing the number of response samples to 3, one manifold is misidentified, but the case with 5
samples did not have any errors when using the GNPs to predict the shape. These results show that GNPs are
capable of learning surrogate models for Bayesian inference tasks involving significant geometric
contributions.

We also show the full posterior distribution in figure 8. The full posterior distribution can be used to
obtain some further insights into the predictions. We find for many shapes there is a wide range in the
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posterior distribution for several shapes. This indicates these likely have similar responses. These results
reinforce that for some predictions, even if correctly identified, there may be less overall certainty in the
predicted shape. This highlights the need for enough sampling and for sufficient richness of the responses to
obtain correct shape identification. The overall results show GNPs can be used within Bayesian inverse
problems to capture the roles played by geometry.

6. Conclusions

We have shown how deep learning can be leveraged to develop methods for incorporating geometric
contributions into data-driven learning of operators. Further, we have developed new architectures using
factorizations and block-reductions to make training more efficient without degrading performance. We
showed how geometric operators can be learned from manifolds including with point-cloud representations.
We showed how geometric operators can be developed for estimating the metric and curvatures of surfaces,
differential operators on manifolds, and solution maps for geometric PDEs. We also showed how GNPs can
be combined with Bayesian inference to solve inverse problems for shape identification. In the context of
linear PDEs, our methods also can be used readily to obtain more general families of solutions from the
super-position principle or data-driven learning of approximations to the collection of Green’s functions.
The presented results provide a few ways GNPs can be used for learning tasks in non-euclidean settings
where there are significant contributions from geometry.
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Appendix. Differential geometry of radial manifolds

A radial manifold is defined as a surface having the property that each point on the surface can be connected
by a line segment to the origin only intersecting the surface at one point. This provides for a convenient
parameterization x of the surface in spherical coordinates as a function of the azimuth angle 6 and the polar
angle ¢ with

x(0,¢) =0 (0,0) =r(0,0)r(0,9). (19)

The r is a positive scalar function and the r is the unit vector from the origin to the point on the sphere with
spherical coordinates (0, ).

In practice, when performing coordinate-based calculations at least two charts are required for radial
manifolds in order to overcome singularities that occur from the topology in the surface coordinate frames,
such as poles when using spherical angles. To this end, when using our numerical methods we consider two
coordinate charts as in [43, 45]. The first chart we call Chart A and has coordinate singularities at the north
and south pole, while the latter chart we call Chart B which has coordinate singularities at the east and west
poles, see [43, 45]. In practice, for a given (0, ¢) € [0,27) x [0, 7], we typically restrict usage of a chart for

T 4m

¢ € [Z,%F]. For chart A, we parameterize the manifold in the embedding space R’ as

(30) =r(00)r(09).  1(30) = [10(3)s(5) s (3)sn ) (9] o

For Chart B, we use

x(é,qz) = r(é,gﬁ)r(éﬁ), r(é@) = [cos (q@) ,sin (q@) sin (é) ,sin (q@) cos (é)] . (21)
Using these parameterizations, we can compute the basis 0y, Js for the tangent space as
04(0.0)=rs(0,0)r(0,0) +1(0,0)ry (0,0), (22)
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09 (6’ (b) =Te (97¢) r<97 ¢) + T(9,¢) o (97 ¢) : (23)

Expressions for r,rg can be found using equations (20) and (21) depending on which chart is being used.
These can also be used to compute the metric and shape tensors as in equation (9) and the Gaussian
curvature using equation (11). The metric tensor I is often denoted interchangeably with g, and is used to
compute differential operators like the scalar LB used in section 4. It can be computed in coordinates using
Einstein summation as

1

A i (47./20;) . (24)
LB \/@ (gl\/g J)

The g;; denotes the metric tensor and g” denotes the terms of the inverse metric tensor for i,j € {¢,6}. In
this way, we can parameterize our manifolds for coordinate-based calculations during training and
numerical methods.
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