
Revisiting Random Points: Combinatorial Complexity and Algorithms

Sariel Har-Peled  Elfarouk Harb  

November 2, 2023

Abstract

Consider a set P of n points picked uniformly and independently from [0, 1]d, where d is a constant.
Such a point set is well behaved in many aspects and has several structural properties. For example,
for a fixed r ∈ [0, 1], we prove that the number of pairs of

(
P
2

)
at a distance at most r is concentrated

within an interval of length O(n log n) around the expected number of such pairs for the torus
distance. We also provide a new proof that the expected complexity of the Delaunay triangulation
of P is linear – the new proof is simpler and more direct than previous proofs.

In addition, we present simple linear time algorithms to construct the Delaunay triangulation,
Euclidean MST, and the convex hull of the points of P . The MST algorithm uses an interesting
divide-and-conquer approach. Finally, we present a simple Õ(n4/3) time algorithm for the distance
selection problem, for d = 2, providing a new natural justification for the mysterious appearance of
n4/3 in algorithms for this problem.

1. Introduction

Input model. Fix a constant dimension d ≥ 2. For i ∈ �n� = {1, . . . , n}, uniformly and independently

sample a point pi from [0, 1]d. Let P = {pi | i ∈ �n�}. The euclidean graph on P is G(P ) =
(
P,

(
P
2

))
,

with the edge pipj having weight ω(pipj) = ‖pipj‖, for pi, pj ∈ P , where
(
P
2

)
= {pq | p, q ∈ P}. This

graph has quadratic number of edges, but is defined by only O(n) input numbers. Natural questions to
ask about P and G(P ) include:

(A) What is the combinatorial complexity of the convex-hull/Delaunay triangulation of P?

(B) How quickly can one compute the convex-hull/Delaunay triangulation/MST/etc of P?

(C) What is the length of the median edge in G(P ), and how concentrated is this value?

All these questions have surprisingly good answers – linear complexity, linear running time algorithms,
and strong concentration, respectively. Here, we revisit these questions, presenting new simpler proofs
and algorithms for them.

1.1. Background

There is a lot of work in stochastic and integral geometry on understanding the behavior of random
point sets, and the structures they induce [ ,  ,  ,  ]. As the name suggests, for
many of the questions one states, an integral is set up whose solution is the desired quantity, and one
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remains with the (usually painful) task of solving the integral  . In this paper, we focus mainly on direct
combinatorial arguments of said results.

Closest pair and spread. The spread of a point set P ⊂ R
d is the ratio between the diameter

and the closest pair distance of P . Formally, it is the quantity Φ = Φ(P ) = diam(P )/cp(P ), where
diam(P ) = maxp,q∈P ‖pq‖ and cp(P ) = minp,q∈P :p �=q ‖pq‖ . For a set P of n points sampled uniformly at
random from [0, 1]d, It is not hard to verify [ ] that E[cp(P )] = Ω(1/n2/d). This intuitively suggests
that E[Φ(P )] = O(n2/d) - (a formal proof of this requires a bit more effort).

Convex-hull. The Convex-hull of n points in R
d has combinatorial complexity Θ(n⌊d/2⌋) in the worst

case (here, combinatorial complexity refers to the number of vertices and faces). It can be computed
in O(n log n+n⌊d/2⌋) time [  ]. Surprisingly, the expected complexity of the convex-hull of random
points picked from [0, 1]d is O(logd−1 n) [  ]. The exact bound depends on the underlying domain
from which the points are sampled. For example, if the sample is taken from a ball in R

d, the expected
complexity is O(n(d−1)/(d+1)) [  ]. See [ ] and references therein for more details. Dwyer
[  ] provides an expected linear time algorithm for computing the convex hull of a set of points
picked from [0, 1]d. As hinted to earlier, the analysis is not elementary and uses heavy tools to show the
result.

Delaunay triangulation. The Delaunay triangulation D of n points in R
d has combinatorial

complexity Θ(n⌈d/2⌉) in the worst case. It can be computed in O(n log n+ n⌈d/2⌉) time [  ]. Dwyer
[  ] show that when the points are uniformly sampled from a d-dimensional unit ball (instead of a
d-cube), the complexity of the Voronoi diagram (and consequently its dual, D) is also linear, and gave
an O(n) time expected time algorithm for constructing it. However, Dwyer’s algorithm is involved and
its analysis is nontrivial with reliance on algebraic and integral tools.

Minimum spanning trees. There is a lot of work on MST and EMST (Euclidean minimum spanning
tree). Since EMST is a subgraph of the Gabriel graph of P – that is, the graph where two points p, q ∈ P
are connected by an edge, if their diametrical ball does not contain any point of P in its interior. The
Gabriel graph is a subgraph (of the 1-skeleton) of DT (P ), the Delaunay Triangulation of P . Thus,
one can calculate DT (P ) (in linear time), and then run Karger et al. expected linear time MST
algorithm [  ] on DT (P ). The algorithm of Karger et al. uses as a black box a procedure to
identify all the edges in the graph that are too heavy to belong to a minimum spanning tree, given a
candidate spanning tree. Such spanning tree “verifiers” are relatively complicated to implement in linear
time [  ]. Developing deterministic linear time MST algorithm is still an open problem, although
Chazelle presented [ ] a O(n +mα(n,m)) time algorithm where n,m are the number of vertices
and edges respectively (as α(n,m) is at most 4 for all practical purposes, this is essentially a linear time
algorithm). More bizarrely, a deterministic optimal algorithm is known [ ], but its running time
complexity is not known. None of these algorithms can be described as simple.

For minor-closed graphs, Mareš [  ] gave two linear time algorithms to construct the MST in
O(n+m) time. In the plane, the Delaunay Triangulation is a planar graph, and thus given the Delaunay
triangulation the MST can be computed in linear time (this is no longer applicable, already in 3d).

1Historically, the field was not named integral geometry because it involved integrals in the calculus sense. The origin of the word,
which derives from the German ”Integralgeometrie”, was coined and popularized by Blaschke in their book. We thank an anonymous
reviewer for mentioning this.
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Distance selection. Given a set P of n points in the plane, and a number k, the distance selection
problem asks for the kth small distance in the

(
n
2

)
pairwise distances induced by the points of P . In the

plane, this can be computed in O(n log n+ k) time [  ], or alternatively in O(n4/3) time [  ] for
general sets of points. An (1± ε)-approximation can be computed in linear time [  ].

1.2. Our results

We provide simple and elementary proofs for several of the results mentioned above, and we also provide
(conceptually) simple algorithms for several of the problems mentioned above:

(A) kth distance concentration. Fix a value of r ∈ [0, 1]. Let fr = fr(P ) denote the
number of pairs pipj with ‖pipj‖T ≤ r, where ‖pipj‖T is the torus topology distance between
pi and pj (defined in  ). Note that fr(P ) ∈ {0, ...,

(
n
2

)
}. It is not hard to show that

P

[
|fr − E[fr]| > Ω̃(n3/2)

]
≤ 1/nO(1) using Chernoff’s inequality and the union bound, where

Ω̃ and Õ hide polylogarithmic terms in n. However, in  , we show a significantly
stronger concentration, namely that the interval has length Õ(n) with high probability  :

P

[
|fr − E[fr]| > Ω̃(n)

]
≤ 1/nO(1). The new concentration proof uses martingales together with

bounded differences concentration inequality that can handle low probability failure. To the best of
our knowledge this result is new, and is an interesting property of random points. (We conjectured
this claim after observing this behavior, of strong concentration, in computer simulations we
performed.). The proof is an interesting application of a McDiarmid’s inequality variant that
allows a (small) probability of large variation, when applying the standard McDiarmid’s inequality
would otherwise fail.

(B) Convex hull. In  , as a warm-up exercise, we provide an O(n) expected time algorithm
to construct C(P ), the convex hull of P . Dwyer [  ] presented a divide and conquer algorithm.
Our algorithm is somewhat different as it uses a quadtree for the partition scheme, and is the
building block for the later algorithms.

(C) Linear complexity of Delaunay triangulation. We provide a new proof that the expected
complexity of the Delaunay triangulation of P is linear, where P is a set of n points picked
uniformly and independently from [0, 1]d. The new proof, presented in  , is simpler and
more direct than existing proofs. The linear bound is quite easy to derive for points in the inner
part of the cube (we refer to this part of the cube as the fortress), but the outer part (i.e., the
moat) requires more work because of boundary issues.

(D) Linear time algorithm for Delaunay triangulation. In  , we present an expected
linear time algorithm for computing the Delaunay triangulation. The algorithm computes, for each
point, the points it might interact with, and the local Delaunay triangulation of these points. The
algorithm then stitch these local structures together to get the global triangulation.

(E) Euclidean MST. Since the MST of P is a subgraph of (the 1-skeleton) of DT (P ), the (general
but more complicated) expected linear time MST algorithm from [  ] could be applied to
DT (P ) to calculate the EMST of P in linear time. For d = 2, it is known that Bor̊uvka’s
algorithm implemented efficiently  takes linear time, since planarity is preserved between rounds.
In particular, we conjecture that Bor̊uvka’s algorithm takes linear time when run on DT (P ), in
higher dimensions, but we were unable to prove it.

2Here, an event An happens with high probability if P[An] ≥ 1− 1/nO(1).
3Some textbook implementations would run in O(n logn) time, even if the graph is planar.
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Instead, in  , we present an algorithm for constructing the EMST of P , in expected linear
time, using a simple algorithm that is the adaption of Bor̊uvka’s algorithm to use divide and
conquer over a quadtree storing the points. The correct propagation of subtrees of the MST that
can be computed when restricted to a subproblem, together with a “minimal” set of edges that
might participate in the MST, is the main new idea of our new algorithm. We believe the new
algorithm should be of interest when trying to compute MSTs, or similar structures, for huge
graphs where one has to distribute the computation across several computers/nodes.

(F) Distance selection. We show a simple algorithm for distance selection for P that works in
expected O(n4/3 log2/3 n) time. The new algorithm achieves this running time by partitioning the
problem into (roughly) O(n2/3) special instances involving (roughly) O(n1/3) points concentrated
in “tiny” disks, and a set of points that lies in a ring, of radius r, containing (roughly) O(n2/3)
points. Each of these instances can be solved by a direct point-location algorithm in (roughly)
O(n2/3) time. In the general case, one has to rely on a more complicated divide and conquer
strategy (implemented using cuttings3), together with duality, to reach such unbalanced instances
that can be solved using brute force (see [  ] and references therein). Thus, the new algorithm
provides a new elegant and intuitive explanation where the mysterious n4/3 term rises from,
in addition for providing a simple algorithm that might work better in practice than previous
algorithms.

A comment on the paper organization. Since this paper has many results, and is long, we ordered
our results in such a way, that (hopefully) the first ten pages convey our basic approach and ideas. We
did move some (more minor) proofs to an appendix.

2. Preliminaries

Notations. The O notation hides constants that depend (usually exponentially) on d.

2.1. VC dimension and the ε-net and ε-sample theorems

The main ingredient in almost all our results is the ε-net/sample theorems. In this subsection, we give
a quick introduction, see [  ] or [  ] for more details. We do not assume prior knowledge of this
topic.

Definition 2.1. A range space S = (C,F) is a pair, where C is a set, and F is a family of subsets of C.
The elements of C are points and the elements of F are ranges.

A subset B ⊆ C, is shattered by F if the |{r ∩B | r ∈ F}| = 2|C|. The Vapnik-Chervonenkis

dimension (or VC-dimension) of the range space S = (C,F) is the maximum cardinality of a shattered
subset of C.

Example 2.2. Suppose C = R
2 and F is the set of disks in R

2. For any set of three (not colinear) points
T = {p1, p2, p3} ⊆ C, and any subset T ′ ⊆ T , one can find a disk containing T ′, and avoiding the points
of T \ T ′. Thus, the VC dimension of disks in the plane is 3. It is easy to verify that no four points can
be shattered, and thus the VC dimension of this range space is 3.

Example 2.3. In general, for points in R
d and balls or halfspace ranges, the VC dimension is d + 1.

Another noteworthy range is axis-parallel rectangles which have VC dimension 2d.
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For simplicity of exposition, assume C to be a finite set of points. An ε-net captures all “heavy”
ranges. That is, if we sample a “sufficiently” large subset N ⊆ C, then any range r ∈ F containing
“enough points” from C must also contain a point from N with high probability. The ε-sample

is similar, asserting that for any range r ∈ F , the fractions |N∩r|
|N | and |C∩r|

|C| are ε-close, with high
probability. The formal definition is stated below.

Definition 2.4. Let (C,F) be a range space, and let C ⊂ C be a finite subset. For 0 < ε < 1, a subset
N ⊆ C, is an ε-net for C if for any range r ∈ F , we have |r ∩ C| ≥ ε |C| =⇒ r ∩N 
= ∅.

Definition 2.5. Let (C,F) be a range space, and let C be a finite subset of C. For ε ∈ (0, 1), a subset
N ⊆ C, is an ε-sample for C if for any range r ∈ F , we have

∣∣∣∣
|N ∩ r|
|N | − |C ∩ r|

|C|

∣∣∣∣ ≤ ε.

Finally, the ε-net and ε-sample theorems characterizes quantitatively the size of the sample needed to
have the desired property.

Theorem 2.6 (ε-net theorem, [  ]). Let (C,F) be a range space of VC-dimension d, let C ⊆ C
be a finite subset, and suppose ε > 0, δ < 1. Let N be a random sample from C with m independent

draws, where m ≥ max
(4
ε
log

2

δ
,
8d

ε
log

8d

ε

)
. Then N is an ε-net for C with probability at least 1− δ.

Theorem 2.7 (ε-sample theorem, [ ,  ]). Let (C,F) be a range space, where its VC-
dimension is d. Let C ⊆ C be a finite subset, and suppose ε > 0, δ < 1 are parameters. Let N be

a random sample of size m from C, where m ≥ min
(
|C| , 32

ε2

(
d log d

ε + log 1
δ

))
. Then, N is an ε-sample

for C, with probability at least 1− δ.

2.2. Bounding the moments

In the following, n is fixed, and let P be a set of n points picked randomly, uniformly and independently
from [0, 1]d. Throughout, we use the following fixed quantities:

ϕ =
cd lnn

n
and δ = ϕ1/d, (2.1)

where cd > 0 a sufficiently large constant that depend only on d.
Throughout the paper, we often need to bound the moments of the number of points of P that lie

in some measurable set Ξ. The following technical lemma bounds the expected number of such points.

Lemma 2.8. Let Ξ ⊆ [0, 1]d be a measurable set. If α = vol(Ξ) ≥ 1/n, then for t > 2e, we have

P[|P ∩ Ξ| > t · αn] ≤ 1/2tαn.

Furthermore, for any constant κ ≥ 1, we have that E
[
|P ∩ Ξ|κ

]
= O

(
(αn)κ) (the O hides here a constant

that depend on κ).

Proof: The number of points of P falling into Ξ, is a binomial distribution, and we have

P

[
|P ∩ Ξ| > t · αn

]
=

n∑

i=tαn+1

(
n

i

)
αi(1− α)n−i ≤

n∑

i=tαn+1

(nαe
i

)i
≤

n∑

i=tαn+1

( nαe

2eαn

)i
≤ 1

2tαn
,
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p

vic(p)

Figure 2.1: The green region is [0, 1]2 ∩ vic(p). The light blue region is [0, 1]2 \ vic(p).

since
(
n
i

)
≤

(
ne
i

)i
. Thus, we have

E

[
|P ∩ Ξ|κ

]
≤

∞∑

t=0

(
(t+ 1)αn

)κ
P

[
|P ∩ Ξ| > t · αn

]
≤ (2αn)κ

∞∑

t=0

tκ/2tαn = O
(
(αn)κ),

since
∑∞

t=0 t
κ/2tαn ≤ ∑∞

t=0 t
κ/2t = O(1).

2.3. Vicinities

For two points p, q ∈ R
d, let R(p, q) denote the axis parallel bounding box of p and q. The vicinity

of a point p ∈ [0, 1]d is vic(p) =
{
q ∈ [0, 1]d

∣∣ vol(R(p, q)) ≤ ϕ
}
, where ϕ is specified in (see

). For a number x > 0, let ⌈x⌉2 = 2⌈log2 x⌉, and observe that x ≤ ⌈x⌉2 ≤ 2x, and ⌈x⌉2 is a
power of two. This definition is used in the proof of the following claim.

The following claim can be proved using integration – we provide an alternative combinatorial proof
for the sake of completeness.

Lemma 2.9 ([ ]). For any p ∈ [0, 1]d, we have vol(vic(p)) = O( log
d n
n ).

Proof: Let o denote the origin. The area of a single quadrant of the vicinity is maximized when p = o.
There are 2d quadrants so we have that vol(vic(p)) ≤ 2dvol(vic(o)). To bound the later quantity, let
τ > 0 be an integer such that 2dϕ ≤ 2−τ ≤ 2d+1ϕ. As such, we have τ ≤ lg(1/ϕ)− d = O(log n).

A canonical box , is a box of the form B =
∏d

i=1[0, αi] such that vol(B) =
∏

i αi = 2−τ , where αi

is a power of two, for all i. For any point q = (q1, . . . , qd) ∈ [0, 1]d, let pv(q) =
∏d

i=1 qi be the point

volume . Consider all the points of q = (q1, . . . , qd) ∈ vic(o) (i.e., these are points with pv(q) ≤ ϕ), and
let ⌈q⌉2 = (⌈q1⌉2 , . . . , ⌈qd⌉2). Observe that pv(⌈q⌉2) ≤ 2dϕ. In particular, there exists a canonical box
that contains q.

Consider a side [0, αi] of a canonical box. The number αi is a power of 2, and 1 ≥ αi ≥ 2−τ . That
is, αi ∈ {1, 1/2, 1/4, . . . , 2−τ}. Namely, there are at most 1 + τ choices for the value of each coordinate
of a canonical box. As such, the number of canonical boxes is (1 + τ)d−1, as fixing d − 1 coordinates
forces the value of the last coordinate. The volume of a canonical box is ≤ 2d+1ϕ. We conclude vic(o)
is covered by the union of these boxes, and as such, vol(vic(o)) ≤ τd−1ϕ, which implies the claim.

The intuition for vicinities is that for a lot of the problems discussed in the introduction, any point
p ∈ P only needs to locally consider other points in its vicinity when making decisions of building the
desired structures (i.e. points outside the vicinity of p are not relevant for p)
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3. Sharp concentration of the kth pairwise distance

Let P = {p1, . . . , pn} be a random sequence of points, where pi is picked uniformly and independently
from [0, 1]d. For two numbers x, y ∈ [0, 1] their toroidal distance is |x− y|T = min

(
|x− y| , 1− |x− y|

)
.

Let r be a fixed value in [0, 1]. Let fr(P ) denote the number of pairs pipj in P with ‖pipj‖T ≤ r.
Formally, we have

‖pipj‖T =

√∑d

ℓ=1

∣∣pi[ℓ]− pj [ℓ]
∣∣2
T

and fr(P ) =
∣∣{pipj

∣∣ i < j and ‖pipj‖T ≤ r
}∣∣ . (3.1)

is the toroidal distance between pi and pj , and p[ℓ] denotes the ℓth coordinate of a point p ∈ R
d. We

denote the space [0, 1]d under this toroidal topology by [0, 1]dT . Intuitively, this is the space where we
allow “wrap-around” in [0, 1]d, and the shortest distance between two points can be the wrap-around
distance. Using this distance allows us to ignore artifacts that are generated by the boundary of the
hypercube [0, 1]d.

The claim is that the value of fr, which is a number in {0, . . . ,
(
n
2

)
}, is strongly concentrated. Namely,

the interval of integers containing fr, with high probability, is “short”. Showing a bound of Õ(n3/2) on
the number of values in this interval is doable via Chernoff’s inequality and using the union bound. The
resulting guarantee is of the form P

[
|fr − E[fr]| > Ω̃(n3/2)

]
≤ 1/nO(1). Here, we show a significantly

stronger concentration with the interval containing Õ(n).
We conjecture this result is true for the Euclidean distance, but handling the boundary cases proved

to be quite challenging. Hence the simplifying Toroidal topology assumption. We observed this strong
concentration, for both the Toroidal and Euclidean case, in computer simulations.

Consider the closed ball bT (p, r) =
{
x ∈ [0, 1]d

∣∣ ‖px‖T ≤ r
}

in [0, 1]dT . We next bound the VC
dimension of such balls (as a side, Gillibert et al. [  ] bounded the VC-dimension of axis-parallel
boxes in this space by O(d log d)).

Lemma 3.1. For A =
{
bT (p, r)

∣∣ p ∈ R
d
}
, the VC dimension of the range space ([0, 1]d,A) is O(1).

Proof: A toroidal ball consists of at most O(22d) regions Ri, each region being the intersection of a
ball and at most 2d half spaces (corresponding to the boundaries of [0, 1]d). The VC dimension of balls
and halfspaces is d + 1, so the VC dimension of their intersection (and hence each region) is O(1).
Taking the union of the at most O(22d) regions, implies the VC dimension is at most O(1), via standard
argumentation [  ].

Next, we would like to apply Chernoff-like style inequalities to bound the probability of deviation
from the expectation. The most relevant inequality here is McDiarmid’s inequality for bounded
differences of martingales. Unfortunately, one cannot use McDiarmid’s inequality directly because by
“sliding” a ball b in [0, 1]d, the number of points inside b might change by O(n). Of course for random
point set P , this is highly unlikely (the change is more likely to be O(

√
n)) and so we will have to use a

variation of McDiarmid’s inequality that allows a “bad” event, where the difference might be large but
happening with a small probability, and a “good” typical event where the difference is bounded.

Consider the following extension of McDiarmid’s inequality (for bounded differences of martingales)
where the differences are only bounded with high probability [  ]. It will be useful to view P from
two different views  , one as a set of individual points, and the second as a product Ω =

∏
1≤i≤dnΩi of

dn probability spaces for each coordinate.

4As with most things in life.
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Definition 3.2 ([ ]). Let Ω1, ...,Ωm be probability spaces. Let Ω =
∏

iΩi, and let X be a random
variable on Ω. The variable X is strongly difference-bounded by (b, c, ς) if the following holds. There is
a “bad” subset B ⊆ Ω, where ς = P[w ∈ B]. In addition, we require that

(i) If ω, ω′ ∈ Ω differ only in the kth coordinate, and ω 
∈ B then |X(ω)−X(ω′)| ≤ c.

(ii) Furthermore, for any ω, ω′ ∈ Ω differing only in the kth coordinate, |X(ω)−X(ω′)| ≤ b.

To decipher this definition consider the case that c < b: the difference between “bad” pairs can
be large, but the difference between “good” (or mixed) pairs is small. The quantity b behaves like the
“worst” case difference, c is the “typical” difference, and ς is the probability of the bad event happening.

Lemma 3.3 ([ ], Corollary 3.4). Let Ω1, ...,Ωm be probability spaces. Let Ω =
∏

1≤i≤mΩi and
let X be a random variable on Ω which is strongly difference-bounded by (b, c, ς). Let µ = E[X]. Then,

for any τ > 0, and any α > 0, we have P

[
|X − µ| ≥ τ

]
≤ 2

[
exp

(
− τ2

2m(c+bα)2

)
+ m

α ς
]
.

In the following, let P + p = P ∪ {p} and P − p = P \ {p}.
Lemma 3.4. The random variable fr is strongly difference-bounded by

(b, c, ς) := (n− 1, O(
√

n log n), 1/nO(1)).

Proof: If one moves only one point of P , at most n− 1 pairwise distances involved with this point can
change, implying that b ≤ n− 1.

By the  , and  , a sample of size O
(
ε−2 log n

)
is an ε-sample for Toroidal

balls, with high probability. Interpreting P as an ε-sample for [0, 1]d, implies that this holds for P

with ε =
√
ϕ =

√
cd lnn

n for sufficiently small constant cd > 0. Let vd = vol
(
bT (q, r)

)
, for any point

q ∈ [0, 1]d. The number of points in distance ≤ r from a point p ∈ [0, 1]d, is Xp = |P ∩ bT (p, r)|. Hence,
for any Toroidal ball we have

|Xp − E[Xp]| =
∣∣|P ∩ bT (p, r)| − vdn

∣∣ ≤ εn =
√

cdn log n = Õ(
√
n) (3.2)

assuming P is indeed an ε-sample. Note that the bound above crucially uses the Toroidal distance
properties. Furthermore, the set P − p, formed by removing any point p ∈ P , is an ε-sample, and this
holds with high probability for all such subsets.

This readily implies that for any two points p, p′ ∈ [0, 1]d, we have
∣∣Xp −Xp′

∣∣ ≤ |Xp − vdn|+
∣∣vdn−Xp′

∣∣ = O(
√

n log n).

Picking a point p ∈ P , and a point p′ ∈ [0, 1]d, and setting P ′ = P − p + p′, we are interested in
bounding the “typical” difference between fr(P ) and fr(P

′) (this would be the value of c). We have
∣∣fr(P )− fr(P

′)
∣∣ ≤

∣∣Xp −Xp′
∣∣+O(1) = O(

√
n log n).

This implies that c = O(
√
n log n). This calculation fails, only if P fails to be an ε-sample, which

happens with probability ς ≤ 1/nO(1).

Theorem 3.5. For constant c′ sufficiently large, we have P[|fr − E[fr]| > c′n log n] ≤ 1/nO(1).

Proof: This follows readily by plugging the parameters of  into  . Note that in our
case, m = n, b = n − 1, and c =

√
cdn log n. Choosing α = 1/n and ς ≤ 1/dn3 (which can be ensured

by making cd sufficiently large), and τ = Ω(n log n), the result follows by straightforward calculations
from  . For example, plugging τ = 100

√
cdn log n into  yields (for sufficiently large

cd): P
[
|fr(P )− E[fr(P )]| > 100

√
cddn log n

]
≤ 2

[
exp

(
− 10000cddn

2 log(n)2

2dn(2
√
cdn logn+1)2

)
+ dn2

dn3

]
≤ 4

n .
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4. Warm-up: Computing the convex hull in linear time

We present here an algorithm for computing the convex hull of P in O(n) time. This will serve as a
warm-up as the tools here will be used later on.

Algorithm. Given P , we build T , a quadtree of height h = ⌈(log2 n)/d⌉ and insert the points P in
O(n) time to its leaves – this can readily be done by storing the points in the grid formed by the leafs
using hashing (or just direct array indexing).

The algorithm computes the convex hull via a bottom-up traversal of the tree. It starts by computing
the convex hull (potentially empty) for each leaf of the quadtree using any brute force algorithm. For
a node v at level k, the algorithm takes the computed convex-hulls of its children, extracts all their
vertices and stores it in a set S, and computes the combined convex-hull of S, using off-the-shelf
algorithm [  ] in O(|S| log |S|+ |S|⌊d/2⌋) time.

Analysis. The algorithm correctness is immediate. We next prove an inferior upper bound on the
expected complexity of the random convex-hull that holds with higher moments.

Lemma 4.1. Let |C(P )| denote the number of vertices in the convex hull of P . For any integer κ > 0,
we have E[|C(P )|κ] = O(logO(κd) n) (the constant hidden by the O depends on both κ and d).

Proof: Let p be a vertex of the convex-hull C(P ), and consider a tangent (hyper)plane h to C(P ) that
passes through p. The plane h separates C(P ) from one of the vertices of the [0, 1]d, say q. Let R be
the axis parallel box with p and q as antipodal vertices.

The VC dimension of axis aligned boxes is 2d; see [  ]. By the ε-net theorem, a sample
of size O(dε−1 log n) is an ε-net for axis aligned boxes, with probability ≥ 1 − 1/nO(d). Setting
ε = ϕ = cd(log n)/n, it follows that R contains a point of P with high probability. It follows that
all the vertices of C(P ) are in the vicinity of some vertex of [0, 1]d. Let Ξ be the union of the vicinities of
the vertices of [0, 1]d. By  , we have that α = vol(Ξ) = O((log n)d/n). Applying  

to |Ξ ∩ P |κ now implies the claim.

Lemma 4.2. The above algorithm computes C(P ) is O(n) expected time.

Proof: Consider the root of the quadtree – it has 2d children, and let Pi be the set of points of P stored
in the ith child. Let ni = |Pi| and mi = |V (C(Pi))|. We have that

∑
i ni = n, and E[ni] = n/2d. In

particular, using Chernoff’s inequality we have that ni ≤ (7/8)n with high probability. Similarly, we
have that E[mκ

i ] = O(logO(κd) n) by  . Let m =
∑

imi, and observe that computing the
convex-hull at the top most level takes O(m logm +m⌊d/2⌋) = O(md) = O(2d

∑
im

d
i ). Thus, ignoring

the construction time of the quadtree itself, we have the recurrence

T (n) = O
(
E

[∑
im

d
i

])
+

∑

i

T (ni) = logO(d2) n+
∑

i

T (ni),

and the solution to this recurrence is O(n).

5. Complexity of the Delaunay triangulation of random points

Here we show that the Delaunay triangulation of P has linear complexity in expectation.
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δ

δ

δ

δ

SM

F

Figure 5.1: The inner fortress F in
red. The moat M in light blue. Here

δ = d

√
cd lnn

n .

c1

c2
c3

c4

c5
c6

n3

n2

n1

n6n5

n4

ℓ(p)

p

Figure 5.2: Definitions of ni = nci(p)
and ℓ(p).

Background on Delaunay triangulations. A simplicial complex D over a set P is a set system
with the (hyper) edges being subsets of P , such that for any σ, σ′ ∈ D, we have that σ∩σ′ ∈ D. An edge
of D is a simplex . A simplex is k dimensional if the affine space its points span is k dimensional.
Simplices of dimension 0, 1 and 2 are vertices, edges and (two dimensional) faces, respectively.

For a point p ∈ R
d, and a radius r > 0, let b(p, r) denote the open ball of radius r centered at p. For

any points p1, . . . , pk ∈ R
d, let pen(p1, . . . , pk) denote the pencil of p1, . . . , pk: the set of all open balls

b in R
d, such that their boundary sphere passes through p1, . . . , pk. If k = d+ 1, and the points are in

general position, the pencil is a single ball circum(p1, . . . , pk) bounded by the circumscribed sphere

of these points.
The Delaunay triangulation D = D(P ) of P is a simplicial complex, where ∇ ∈ D ⇐⇒ there

is a ball b ∈ pen(∇) such that b ∩ P = ∅. The Delaunay triangulation has the property that if the
set of points P is a random set then the points are in general position with probability 1 (i.e., almost

surely), and it is then uniquely defined.

5.1. A linear bound in the interior of the hypercube

Let F = [δ, 1− δ]d be the fortress of [0, 1]d, and M = [0, 1]d \ F be its moat , where δ = d

√
cd lnn

n . See

and .

Definition 5.1. Consider a ray emanating from a point q in a direction v in R
d. A cone of angle α is

the set of all points p ∈ R
d, such that the angle between p − q and v is at most α. The point q is the

apex of the cone.

One can cover space around a point with Od(1) cones, with angle π/12, to cover all of Rd

Lemma 5.2 ([ ]). For any point p ∈ R
d, one can construct a set Cp of 2O(d) cones with apex p

and angle π/12, such that ∪Cp = R
d.

The following shows that all these cones are not empty, if the apex p is in the fortress.

Lemma 5.3. For any p ∈ F , and any cone c ∈ Cp, we have P[c∩ (P − p) = ∅] < 1/nO(1).
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Proof: Since p ∈ F , it is at a distance of at least δ from the boundary of [0, 1]d. Thus, α = vol
(
c∩ [0, 1]d

)

= Ω(δd) = Ω(ϕ) = Ω
(
(log n)/n

)
, by . This implies that the probability that c does not contain

any of the points of P − p is at most

(1− α)n−1 ≤ exp
(
−α(n− 1)

)
≤ exp(−c lnn) =

1

nO(1)
,

where c is a constant that can be made to be arbitrarily large by increasing the value of cd. The result
now follows by applying the union bound to all the cones in Cp.

Definition 5.4. For a point p ∈ P ∩ F and a cone c ∈ Cp, let nc(p) denote the nearest neighbor to p in
c∩ (P − p). The reach of p is ℓ(p) = maxc∈Cp

‖pnc(p)‖ , see .

The following bounds (in expectation) ℓ(p) and the distance between p and nc(p) for c ∈ Cp.

Lemma 5.5. For any point p ∈ P ∩ F , a cone c ∈ C(p) and t ≤ δ, we have:
(I) P[‖pnc(p)‖ > t] ≤ exp(−c tdn), where c is constant that depends only on the dimension.
(II) P[ℓ(p) > t] ≤ f(t, n) = exp

(
O(d)− c tdn

)
,

(III) E[ℓ(p)] = Θ(1/ d
√
n), and

(IV) the reach of all the points of P ∩ F is bounded by δ, with probability 1/nO(d).

Proof: (I) If ‖pnc(p)‖ > t then the set R = c∩b(p, t) contains no points of P . The volume of c∩b(p, t),
for t ≤ δ, is α = Ω(td). In this case, all the points of P −p must avoid R. This happens with probability
at most (1− α)n−1 ≤ exp

(
−α(n− 1)

)
≤ exp

(
−ctdn

)
.

(II) By the union bound, and , we have P[ℓ(p) > t] ≤ ∑
c∈C(p) P[nc(p) > t] ≤ f(t, n).

(III) Observe that b(p, 1/2 d
√
n) contains no other points of P − p with constant probability. This

implies that E[ℓ(p)] = Ω(1/ d
√
n). The upper bound E[ℓ(p)] = O(1/ d

√
n) follows by the above exponential

decay, as a straightforward calculation shows.
(IV) Setting t = δ, and using the union bound implies this part.

Definition 5.6. For p ∈ P ∩ F , the influence of p is �p = {q ∈ P | ‖pq‖ ≤ 2ℓ(p)}

ℓ(p)
c

u

p′
z p

ℓ(p)
c

u

p′
p

Figure 5.3: Sketch of proof of

Importantly, all the Delaunay edges adjacent to a point p ∈ F are contained in p’s region of
influence. Hence, locally, it is sufficient to only consider points in the influence when computing the
Delaunay triangulation.

Lemma 5.7. For any point p ∈ P ∩ F , If pq ∈ D, then q ∈ �p.
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Proof: Consider the largest (open) ball b with p on its boundary, that does not contain any point of P
in its interior, and let r be its radius and z be its center, see  . We claim that r ≤ ℓ(p), which
would imply that ‖pq‖ ≤ 2r ≤ 2ℓ(p). Assume that r > ℓ(P ), and consider any cone c ∈ Cp, such that
z ∈ c. Let p′ be the diametrical point on ∂b to p. Consider any point u ∈ c \ b. The distance pu is
minimized if u ∈ ∂b, but then ∠pup′ forms the right angle of a right triangle. Observe that ∠upp′ < 30◦

since the cone angle is at most 30◦. But then

‖pu‖ =
∥∥pp′

∥∥ cos∠p′pu = 2r cos∠p′pu > 2ℓ(p) cos 30◦ = (2
√
3/2)ℓ(p) > ℓ(p).

However, b∩ (P − p) = ∅ implies that the closest point in (P − p)∩c to p has distance larger than ℓ(p),
which contradicts the definition of ℓ(p).

We next bound the moments of the size of the set of points inside the influence of a point.

Lemma 5.8. For p ∈ P ∩ F , and any constant κ ≥ 1, we have E

[
| �p |κ

]
= Oκ(1), see  .

Proof: Let L = |�p|. We break P into two roughly equal sets P1 and P2 (this is done before sampling
the locations of the points). Let ℓi = ℓ(p, Pi) be the reach of p in Pi for i ∈ {1, 2}. Arguing as above,
as p ∈ F , this quantity is well defined. Let Ui be the number of points of P3−i in the ball bi = b(p, ℓi).
Clearly, E[L] ≤ E[U1] + E[U2], as bi contains more points of P3−i than the ball defined by the reach of
the whole set.

So, let ψ be the minimum value such that f(ψ, n/2) ≤ 1/2, where f is the function defined
in  . It is easy to verify that ψ = O(1/n1/d). Let b0 = b(p, ψ), and, for i > 0, let
ri = b(p, iψ) \ b(p, (i− 1)ψ). Observe that vol(b0) = O(1/n), and vol(ri) = O(id/n). By  ,
we have that N0 = E

[
|P2 ∩ b0|κ

]
= O(1), and Ni = E[|P2 ∩ ri|κ] = O(idκ). We have that E

[
Lκ

]
= O(T ),

where

T =

∞∑

i=0

Ni P[ℓ > iψ] ≤
∑

i=0

Oκ(i
κdf(iψ, n/2)) =

∑

i=0

Oκ(i
κd/2i) = Oκ(1),

since f(iψ, n/2) = exp
(
O(d)− c idψdn

)
≤

(
exp

[
O(d)− c ψdn

])id ≤ 1/2i
d
.

Combining everything, we get the main result for points in the fortress.

Lemma 5.9. Let D be the Delaunay triangulation of P . The expected number of simplices that include
any point of P ∩ F is O(n).

Proof: Let τ = |�p |. All the vertices of a simplex of the Delaunay triangulation containing p must have
all its vertices in �p by  . Thus, the number of such simplices, of all dimensions, is bounded

by
∑d+1

i=0

(
τ
i

)
= O(τd). By  , we have E

[
O(τd)

]
= O(1).

5.2. The complexity of the Delaunay triangulation near the boundary

We are now left with the tedious technicality of handling points that are too “close” to the boundary .
The idea is to use a similar argumentation to the above, but to replace the influence ball induced by
the reach by a different region. This inflated region contains significantly more points, but since the
number of points in the moat is small, this would still be linear overall. We remind the reader that the
moat is the area M = [0, 1]d \ [δ, 1− δ]d, see  and  .

The following is an immediate consequence of  and  .

5Ha, the boundary! A source of unmitigated delight to the authors, and hopefully also to the readers.
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Lemma 5.10. For any point p ∈ P , we have X = |vic(p) ∩ P | = O(logd n) with probability ≥
1− 1/nO(1).

Lemma 5.11. Consider an axis parallel box B =
∏d

i=1[pi, qi], and assume that there is a ball b that
contains the points p = (p1, . . . , pd) and q = (q1, . . . , qd). Then b contains a d-dimensional simplex ∇
defined by d+1 vertices of B, such that the volume of this simplex is ≥ vol(B)/d!. More generally, this
holds for any ball that contains two diametrical vertices of B.

Proof: The proof is by induction on d. The claim is immediate if d = 1.

B
b

hp

hq

bq

bp

p

q

q′
Figure 5.4

For d > 1, the idea it to provide a path along the edges of the box B between the two vertices that
is contained in b – the convex-hull of this path would provide the desired simplex. So, consider the two
hyperplanes hp ≡ xd = pd and hq ≡ xd = qd, see . Consider the two balls bp = b ∩ hp and
bq = b ∩ hq. Both balls have the same center if we ignore the dth coordinate, and one of them must
have a bigger (or equal) radius to the other. Assume that bp has the bigger radius, and observe that
it as such must contain the point q′ = (q1, . . . , qd−1, pd). This implies that the segment qq′ ⊆ b. By
induction there is a path on the edges of B ∩hp between p and q′, which implies that there is a path on
the edges of B between p and q that lies inside b.

For points p ∈ M, as the following testifies, one needs to consider only simplices and points that
are in vic(p). This is indeed a larger region than the influence region used before, but is small enough
for our purposes.

Lemma 5.12. Let p be any point in P . With high probability, there are at most O(logd
2
n) simplices

in D = DT (P ) that contains p as a vertex. Furthermore, all the points neighboring p in D must be in
vic(p), with probability ≥ 1− 1/nO(d).

Proof: The VC dimension of simplices in R
d is O(d2 log d) as it is the intersection of d + 1 halfspaces,

each of VC dimension d+ 1, see [ ]. By the ε-net theorem, a sample of size O
(
(d2 log d)ε−1 log n

)

is an ε-net for simplices, with high probability. Interpreting P as an ε-sample for [0, 1]d, implies that
this holds for P with ε = ϕ/d!, where ϕ = (cd lnn)/n, see (by making cd sufficiently large).

Consider a point q ∈ P , such that q /∈ vic(p), and assume that pq ∈ DT (P ). This implies that
there is a close ball b that has p and q on its boundary, and no other points of P in its interior. By

, there is an (open) simplex ∇ of volume ≥ vol(R(p, q))/d! ≥ ε that contains p and q on
its boundary, and it is contained inside [0, 1]d ∩ b. But since P is an ε-net for simplices, it follows that
there is a point of P in ∇, which is a contradiction.

We conclude that all the edges adjacent to p in D must be to points in vic(p). But there are at most
t = O(logd n) such points, by . Since any simplex involving p in D must use only points
that are in the vicinity, it follows that the number of simplices (of all dimensions) adjacent to p in D is
bounded by

∑d
i=0

(
t
i

)
= O(td).

Finally, we show that the complexity of the Delaunay triangulation in the moat is sublinear.

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited

256

D
o
w

n
lo

ad
ed

 0
7
/0

1
/2

5
 t

o
 2

0
4
.1

4
1
.6

2
.6

6
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



Lemma 5.13. Let D be the Delaunay triangulation of P . The expected number of simplices in D that
include any point of P ∩M is o(n).

Proof: We have α = vol(M) ≤ 2dδ = O( d
√

(log n)/n), see  . Thus, the expected number of
points of P in M is αn = O(n1−1/d log n). (As usual, this bound holds with high probability.) By

 , the total number of simplices in the Delaunay triangulation of P involving points in the
moat is bounded by O(αn logO(d2) n) = o(n), with high probability.

The result. Combining  and  implies the following.

Theorem 5.14. For fixed d, the complexity of the Delaunay triangulation of a set of n random points
picked uniformly and independently in [0, 1]d is O(n) in expectation.

6. Constructing the Delaunay triangulation in linear time

6.1. Algorithm

We established above that the (expected) complexity of the Delaunay triangulation is linear by giving
a (linear sized) superset of vertices/simplices that are a superset of the features of D. We are now left
with the task of extracting the features that do appear in D. Recall, that the input is a set P of n
random points from [0, 1]d.

I: Computing the Delaunay simplices attached to points in P ∩ F . Let N =
⌈
n1/d

⌉
. The

algorithm throws the points of P into a N × · · · ×N uniform grid covering [0, 1]d. This can be done in
linear time using hashing, where one can retrieve a list of all the points stored in a grid cell in constant
time. Here a grid cell is uniquely represented by an integer tuple from {0, 1 . . . , N − 1}d. Formally, we
map a point p = (p1, . . . , pd) ∈ [0, 1)d, to the grid cell with id id(p) = (⌊p1N⌋ , . . . , ⌊pdN⌋); see [  ].

For a point p ∈ P ∩ F , the algorithm computes the reach ℓ(p) by performing a marching cubes
algorithm computing the intersection of the grid with the ball b(p, ri), where initially ri = 2i/N , for
i = 0, 1, . . .. The algorithm uses scanning to compute the point set Qi = b(p, ri) ∩ P by extracting
all the points stored in the intersecting grid cells. The algorithm stops in the ith iteration, if all cones
in Cp contains at least one point of P . At this point one can compute the reach of p by computing
for each cone c ∈ Cp the closest point in c ∩ Pi to p. The algorithm then computes the point set
Pp = P ∩ b(p, 2ri), and computes the Delaunay triangulation of Pp using any standard algorithm for
computing Delaunay triangulation. Finally, the algorithm extract the star of p from the computed
triangulation, and store it. As a reminder, the star of p, denoted by �p, is the set of all the simplices
in the triangulation that contains p. The algorithm repeats this process for all the points of P ∩F , and
returns the union of all the stars computed.

II: Computing the Delaunay simplices attached to points in P ∩ M. The algorithm builds
an orthogonal range searching data structure on the points P ∩ M (and not on all the whole point
set P ). Next, for each p ∈ P ∩ M, the algorithm constructs the set of O(logd−1 n) canonical boxes
Bp (as defined in the proof of  ) that their union covers vic(p). Then for each r ∈ Bp,
it queries the data structure for points set Pr = r ∩ M ∩ P . Next, it loops over q ∈ Pr and adds
points in Pr ∩ vic(p) to the computed set NM(p) = P ∩ M ∩ vic(p). Next, using the above grid, it
computes the set NF (p) = P ∩ b(p, 2δ). Finally, the algorithm computes the Delaunay triangulation
of Pp = NM(p) ∪NF (p) using a standard algorithm and extracts the star �p of p, from the computed
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triangulation, and stores it. The algorithm repeats this for each p ∈ P ∩M and returns the union of
all stars computed for all p.

6.2. Analysis

In the following, we prove that the output of the algorithm is correct with probability ≥ 1 − 1/nO(d)

and the expected running time is O(n).

Part I: The fortress. The correctness of the algorithm is implied by the following claim.

Lemma 6.1. For p ∈ P ∩ F , we have that ∇ ∈ �p if and only if ∇ ∈ DT (P ).

Proof: If ∇ ∈ DT (P ), then by  , ∇ ⊆ �p. This implies that ∇ ∈ DT (�p), which implies that
∇ is in the computed set �p.

If ∇ ∈ �p, then the circumball of ∇ does not contain any point of �p in its interior. If this ball
contained any point of P in its interior, then it must be further than 2ℓ(p), but this is not possible by
the argument used in the proof of  .

Lemma 6.2. The above algorithm runs in expected O(n) time.

Proof: The Delaunay triangulation of n points in R
d, can be computed in O(n⌈d/2⌉ + n log n) = O(nd)

[  ]. As such, we have that the expected running time is E

[∑
p∈P∩F O(| �p |d)

]
= O(n), by

 .

II: The moat. Let DT (P )M denote the set of simplices in DT (P ) with some vertices in M. The
correctness of the algorithm is implied by the following.

Lemma 6.3. For all p ∈ P ∩ M, we have ∇ ∈ �p if and only if ∇ ∈ DT (P )M with probability
≥ 1− 1/nO(d).

Proof: Consider a simple ∇ ∈ DT (P )M with p ∈ V (∇). If ∇ contains a point q ∈ V (∇) that is in
the fortress F , and is outside b(p, 2δ), then ℓ(q) > δ, and  implies that this happens with
probability < 1/nO(d). Thus, we have that V (∇) ⊆ P ∩

(
(M∩vic(p))∪b(p, 2δ)

)
⊆ Pp. Thus, the empty

ball b in DT (P )M that circumscribes ∇ is still empty in Pp, V (∇) ⊆ Pp, and thus ∇ ∈ �p.
If ∇ ∈ �p, then there is an empty ball b that circumscribes ∇ and is a witness to this. Assume

for the sake of contradiction that b is not empty, and let q be the closest point to p in b∩ (P \ Pp). If
q ∈ M, then q /∈ vic(p) (as P ∩M ∩ vic(p) ⊆ Pp). The probability for that this happens is < 1/nO(d)

by  . If q ∈ F , then the cone c ∈ Cq that contains p, can not contain any closer point to
q (than p) from P . Namely, the reach of q is bigger than 2δ, and probability for that is ≤ 1/nO(d), by

 .

Lemma 6.4. The above algorithm runs in expected O(n) time.

Proof: We have nM = E[|P ∩M|] ≤ n ·d · δ = O(n1−1/d log n). Building the orthogonal range searching
data-structure of P ∩M takes O(n+ nM logd n) = O(n).

For any p ∈ P ∩M, computing b(p, 2δ) ∩ P (using the grid) takes O(log n) time (and this bound
holds with high probability). Computing the points in the vicinity of p in the moat takes O(logO(d) n)
time – indeed each orthogonal range query takes O(logd n) time, and there are O(logd n) such queries.

Finally, the time to compute the Delaunay triangulations Pp, is O(logO(d2) n).
Putting everything together, we have that the expected running time of the second part of the

algorithm is O(n+ nM logO(d2) n) = O(n).
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Theorem 6.5. For fixed d, and a uniformly and independently sampled point set P ⊆ [0, 1]d of size
n, the above algorithm computes the Delaunay triangulation DT (P ) of P in expected O(n) time. The
algorithm succeeds with high probability.

7. Constructing the MST in linear time

7.1. Preliminaries

Lemma 7.1. Let T be the MST of P . The longest edge in T has length ≤ δ = d
√
cd(log n)/n (see

 ), with probability ≥ 1− 1/nO(d), where cd is a sufficiently large constant.

Proof: Let pq be the longest edge in T . Observe that diametrical ball b defined by p and q can not contain
any points of P in its interior, as such a point z, would induce a cycle pzq with pq being the longest edge,
which implies that it is not the MST. The volume of b is minimized if its center lies in one the corners
of [0, 1]d. We conclude that the region R = b ∩ [0, 1]d has vol(R) = Ωd(‖pq‖d /2d) = Ωd(‖pq‖d).
Furthermore, R is formed by the intersection of a hyperbox with ball, and the VC dimension of
such ranges is O(d) [  ]. The point set P can be interpreted as an ε-net for such ranges, with
ε = δd/2d = Ωd

(
(log n)/n), with high probability. We conclude that if ‖pq‖ ≥ δ, then P fails as an

ε-net, which implies the claim.

Definition 7.2. The Yao graph G∠ = G∠(P ) [  ] of P formed by connecting two points p, q ∈ P by
an edge if q is the nearest point to p in one of the cones of C(p) (see  ). Let G∠,δ(P ) be the
graph G∠ after removing from it all the edges with length ≥ δ.

It is well known that this graph contains the MST of P [  ].

Lemma 7.3. Let P be a set of n points picked uniformly at random from [0, 1]d. One can compute the
graph G∠,δ(P ) in O(n) expected time.

Proof: We store the points of P in a uniform grid with roughly Θ(n) cells in [0, 1]d. For every point
p ∈ P , and every cone c ∈ Cp, we perform a marching cube algorithm to compute the closest point to
p in c∩ P . If the search distance exceeds δ, we abort the search.

For a point p in the fortress F , computing the edges around p takes O(1) time in expectation, by
 . For points in the moat, their number is O(n1−1/d log n), with high probability, and the
search for each point is truncated after the distance exceeds δ. Per point, such a search takes O(log n)
time. It follows that the overall expected running time is O(n+ n1−1/d log2 n) = O(n).

A refresher on Bor̊uvka’s algorithm. Let G = (V,E) be an undirected graph with n vertices
and m ≥ n edges, and weights on the edges. Bor̊uvka’s algorithm creates an empty forest F0 over the
vertices. Let Ci−1 be the set of connected components of Fi−1. For p ∈ P , let σi−1(v) ∈ Ci−1 denote
the connected component of v in Fi−1. While |Ci−1| ≥ 2, for each connected component C ∈ Ci−1, the
algorithm adds the cheapest edge leaving V (C) to some other connected component of Fi−1. Let Fi be
the resulting forest from Fi after adding these edges. The final forest is the desired MST.

Each rounds takes time O(m), and for any i we have |Ci| ≤ |Ci−1| /2. Thus, Bor̊uvka’s algorithm
takes O(m log n) time.
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7.2. An O(n log n) time algorithm

The underling graph in our case is G(P ) =
(
P, {uv | u, v,∈ P}

)
where the weight of each edge is the

distance between its endpoints. A naive implementation of Bor̊uvka on G(P ) would require roughly
quadratic time.

Lemma 7.4. For a set P of n random points in [0, 1]d, one can compute, in O(n log n) time, the
euclidean minimum spanning tree of G(P ).

Proof: One can compute the graph G∠,δ(P ), see  , in O(n) expected time, using  .
By  , this graph contains the MST, which can be computed in O(n log n) time using Bor̊uvka’s
algorithm.

We did some experiments on Bor̊uvka’s algorithm, depicted in  .

7.3. Adapting Bor̊uvka to divide and conquer

The algorithm precomputes the graph H = G∠,δ(P ). Next, we turn Bor̊uvka into a geometric divide
and conquer algorithm. To this end, let C ⊆ [0, 1]d be some axis-parallel cube, and consider computing
the MST of P ∩ C. Without any outside information, the output can only be a forest that is part of
the final MST, and a set of candidate edges that might participate in the final MST. To this end, the
algorithm splits C into ν = 2d identical subcells C1, . . . ,Cν .

The algorithm recursively computes the MST of Pi = P ∩ Ci, for all i. Specifically, the edges of the
MST are edges of H, and as such, all the edges of the MST with exactly one endpoint in Pi are in the
cut Γ(Pi) = {uv ∈ E(H) | u ∈ Pi, v ∈ P \ Pi}. Intuitively, the size of this cut is quite small (roughly)
O(n1−1/d), and we can identify the vertices in Pi adjacent to such edges. These vertices are portals,
the set of all portals in Pi is denoted by ∂(Pi).

Bor̊uvka’s algorithm with portals. Imagine running Bor̊uvka only on the points of Pi. In every
round, each connected component (in the current spanning forest) chooses the shortest edge in the cut
it defines, and add it to the constructed forest. The catch is that if a connected component contains a
portal point, then it might be part of a larger tree (in the larger forest) that is outside Pi. As such, this
cut is no longer well defined (as it involves vertices and edges outside Pi). Thus, a connected component
that contains a portal is frozen – it can no longer choose edges to add to the spanning tree. During
a Bor̊uvka round, all the components that are active (i.e., not frozen), each chooses the shortest edge
in the cut they induce – note, that an active component might choose an edge connected to a frozen
component. Thus, a frozen component might grow by active components attaching themselves to it.
The algorithm continue doing rounds till all components are frozen.

A natural implementation of Bor̊uvka is via collapsing each tree in the forest being constructed into
a single node, and among parallel edges with the same endpoints, preserving the cheapest edge of the
bunch. Thus, the execution on the modified Bor̊uvka on Pi results in an induced graph Gi over ∂(Pi) –
where the surviving edges are potential edges for use by the MST later on.

Pruning. The number of edges of Gi is potentially too large. The algorithm computes the MST of
Gi (treating it as its own graph, ignoring portals) running the standard Bor̊uvka algorithm on Gi. The
algorithm deletes from Gi all the edges that do not appear in the computed MST.

To recap – every vertex of Gi is a collapsed tree forming part of the final MST. All the edges of Gi

are candidate edges that might appear in the final MST– all these edges form a spanning tree of Gi.
See  and  for a toy dry run on the Bor̊uvka step and the pruning step.
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Figure 7.1: We randomly sample 20 samples Pi, 1 ≤ i ≤ 20 where Pi ⊆ [0, 1]d and |Pi| = 5000. We run
Bor̊uvka algorithm with DT (Pi) as input for d ∈ {2, 3, 4, 5}. In each iteration of Bor̊uvka algorithm, we
record the current average degree of the components, and plot the average degree progression for the
20 different samples.
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: (a) shows the axis parallel cube (in blue) and the points inside that we restrict ourselves to.
(b) shows some of the edges of G∠,δ(P ) inside the cube. (c) shows the portal vertices in red, and all
other points in blue. (d) shows the connected components initially for Bor̊uvka algorithm. (e) shows
the edges in cyan that were added by restricted Bor̊uvka to EMST of P in the first round. (f) Shows
the new components after round one of Bor̊uvka algorithm (note the previous blue vertex is now red
because it joined a component with a portal). See for the rest.

The conquer stage. The algorithm recursively computes the (collapsed) graphs G1, . . . , Gν , for
i = 1, . . . , ν. Next, the algorithm computes the set of portals ∂ = ∂(C ∩ P ), which is contained
in ∪i∂(Pi). Let E1 =

⋃
i<j(Pi, Pj) be the set of all possible edges between the subproblems. Let

E2 = E1 ∩ E(H). Next, the algorithm computes the graph GC = ∪iGi ∪ E2. The algorithm runs the
modified Bor̊uvka with portals, described above, on the graph GC, with ∂ being the set of portals (thus,
all the vertices comping from the children are portals in their own subproblem, but some of them lose
their portal status as they migrate to the parent subproblem).

The overall algorithm. We apply the above algorithm to [0, 1]d and P . Note that the root has no
portals, so the output is a single tree which is the MST.

Some low level implementation details. We throw the points into a uniform grid over [0, 1]d,
with each cell having volume Θ(1/n). We construct the quadtree over this grid in the natural way. We
register each edge of H with the lowest node of the quadtree that contains both endpoints. This can
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(g) (h) (i)

(j) (k)

Figure 7.3: (g) again shows the new edges added to EMST in the second round of Bor̊uvka. (i) shows
the final connected components since all components have a portal. (j) shows the edges of the minimum
spanning tree of the components which might be in the EMST of P . (k) shows the final graph returned
by the restricted Bor̊uvka algorithm.

be done in O(1) time per edge using a data-structure for LCA queries in O(1) time. Now, scanning
the edges, each vertex can compute the level in the quadtree where it stops being a portal. The LCA
operation can be replaced by computing the level of the grid that contains a segment – using the floor
operation and bit operations, this can be done in O(1) time, see [ ]. The rest of the algorithm
implementation is as described above.

7.4. Analysis of the new MST algorithm

Clearly, edges that are added to an active component are edges that are minimal in their respective
cuts, and thus must appear in the final MST. The more mysterious step in the pruning stage – let pq
be an edge that was deleted by the pruning stage from Gi. Observe that there is a path π between p
and q in the graph of Gi using edges that are shorter than pq. Namely, pq is the longest edge in a cycle,
and can not appear in the final MST.
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7.4.1. Running time analysis

Lemma 7.5. Let C be a quadtree cell of depth i. Then, the number of portals in C ∩ P is bounded by
O((n/2id)1−1/d log2 n), with high probability. This also bounds the total number of edges in H adjacent
to these vertices.

Proof: A point of p ∈ C that is in distance larger than δ from the boundary of C can not be a portal,
since H does not contain such long edges. The volume of the moat MC containing such points is
bounded by the surface area of C multiplied by δ. That is α = (2d · /2id)δ. Each such moat point
has with high probability O(log n) edges in H. It follows that the expected number of portal edges is
O(αn) = O((n/2id)1−1/d log2 n), as long as α > (log n)/n, by  ,

Lemma 7.6. The above algorithm runs in O(n) expected time.

Proof: Let ν = 2d, and P1, . . . , Pν be the points sent to the children of the root of the quadtree. Let
n′
i = |∂(Pi)|, for all i. By  , ni = O(n1−1/d log2 n) with high probability, and this also bounds

the number of edges these portals have. Note, that each Gi has exactly n′
i − 1 edges. Thus, the graph

created in the root has
∑

i ni vertices, and O(2dn1−1/d log2 n) edges. Running Bor̊uvka algorithm on
this graph takes O(n1−1/d log3 n) time. We thus get the recurrence

T (n) = O(n1−1/d log3 n) +
∑

i

T (ni).

It is easy to verify that the solution to this recurrence is O(n), as
∑

i ni = n and ni < n/2
with high probability. (To convince yourself of this, consider the over-simplified recurrence S(n) =
O(n1−1/d) + 2dS(n/2d).)

Remark 7.7. Note that the linear time MST algorithm can also be extended to a linear time MST
algorithm for graphs with small separators. In that case, the portals are the separator vertices in the
separator hierarchy, and we run the restricted Bor̊uvka bottom up on the separator decomposition tree.

7.5. The result

The details of the following results are described in  .

Theorem 7.8. For fixed constant d, the MST of n uniformly and independently sampled points from
[0, 1]d can be computed, by the above algorithm, in O(n) expected time.

8. Simple distance selection in O(n4/3 log2/3 n) time in d = 2

The task. The input is a set P of n points picked randomly in [0, 1]2. For two sets X,Y , let

X ∗ Y =
{{

x, y}
∣∣ x ∈ X, y ∈ Y, x 
= y

}

be the set of all unordered pairs in X × Y . Let Π = P ∗ P , and for a fixed radius λ, let
Π≤r = {{p, q} ∈ Π | ‖pq‖ ≤ r} be the number of all pairs in P that are in distance at most r from
each other. The task at hand is to compute |Π≤r|.
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Basic idea and some tools. Let K be a uniform N × N grid K, where N =
⌈
(n/ log n)1/3

⌉
. Let

Pi,j denote the points of P that fall in the grid cell Ci,j = [i/N, (i + 1)/N] × [j/N, (j + 1)/N]. Let
∆ = diam(Ci,j) =

√
2/N be the diameter of a grid cells. We assume here that r > 8∆. The case for

r ≤ 8∆ can be handled simply by bruteforce search of a fine grid.
Let ξi,j = |{pq ∈ Π≤r | p ∈ Pi,j}|. Observe that |Π≤r| =

∑
i,j |ξi,j |/2. Thus, we restrict our attention

to computing the values of ξi,j , for all i, j. For a grid cell C ∈ K, consider the sets

bK(C) =
{
D ∈ K

∣∣ D ⊆ b(c(C), r − 2∆)
}

and BK(C) =
{
D ∈ K

∣∣ D ∩ b(c(C), r + 2∆) 
= ∅
}
,

where c(C) is the center of C. All the grid cells of bK(C) are contained in any disk of radius r centered at
a point of C. Similarly, BK(C) is a super set of all the grid cells that cover any disk of radius r centered
at any point of C.

Let αi,j = |(bK(Ci,j) ∩ P ) ∗ Pi,j | and βi,j = |(BK(Ci,j) ∩ P ) ∗ Pi,j |. Observe that αi,j ≤ ξi,j ≤ βi,j .
The set Oi,j = BK(Ci,j) \ bK(Ci,j) is formed by all the grid cells intersecting a ring with outer radius
r + 2∆ and inner radius r − 2∆. Let Qi,j = (∪Oi,j) ∩ Pi,j . Observe that Pi,j and Qi,j are disjoint.
Consider the set of pairs they induce Pi,j ∗Qi,j , and let τi,j be the number of pairs in Pi,j ∗Qi,j of length
at most r. We have that ξi,j = αi,j + τi,j . Thus, the algorithm would compute the quantities αi,j and
τi,j for all i, j. The algorithm would then compute

∑
i,j ξi,j/2, which is the desired quantity.

Low level procedures. In the following, we assume that ni,j = |Pi,j | = O(n/N2).

Lemma 8.1. After O(n + N2) preprocessing, given a query of numbers i, j, one can compute αi,j in
O(N) time.

Proof: The algorithm computes the grid K, the subset of points in P in each grid cell, and their number.
The algorithm then preprocess the grid so that given an a contiguous range of cells in a row (of the
grid), the algorithm can report the number of points in this range in O(1) time. This can be done using
prefix sums for each row of the grid.

The desired quantity is αi,j = |(bK(Ci,j) ∩ P ) ∗ Pi,j | = ni,j
∑

Cu,v∈bK(Ci,j)
nu,v − n2

i,j +
(ni,j

2

)
. The set

bK(C) in a row (of the grid) is just an contiguous box, and one can compute the number of points of P
inside this box in O(1) time. Thus, computing

∑
Cu,v∈bK(Ci,j)

nu,v can be done in O(N) time.

Lemma 8.2. After O(n + N2) preprocessing, given a query numbers i, j, one can compute the set
Qi,j = (∪Oi,j) ∩ Pi,j in O(n/N) time (this also bounds its size).

Proof: The set O is a “ring” of the grid of with 4, and thus |Oi,j | = O(N). In particular, the set Oi,j can
be computed in O(N) time. The set Qi,j is formed by collecting all the point sets Pi,j for cells Ci,j ∈ Oi,j .
By assumption, |Pi,j | = O(n/N2), which readily implies that |Qi,j | = O(N · n/N2) = O(n/N)

Lemma 8.3. Let Q and U be two disjoint point sets in the plane, with |Q| < |U |. Then one can
compute the number of pairs of points in Q ∗ U that are in distance at most r from each other in
O(|Q|2 + |U | log |Q|) time.

Proof: Let D be the set of disks of radius r centered at the points of Q. Compute the arrangement

A = A(Q), and compute for every face of A how many disks of D contain it. Furthermore, preprocess
this arrangement for point-location queries in logarithmic time. This is all standard, and can be done
in O(|Q|2) time [  ]. Now compute for each point of U how many points of Q are in distance at
most r from it, by performing a point-location query in A, and returning the depth of the query point.
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Algorithm restated. The algorithm computes αi,j , Pi,j , Qi,j for all i, j using the above procedures.
It then computes for all i, j, the quantity τi,j by using  . The algorithm now computes directly∑

i,j(αi,j + τi,j)/2 and return it as the desired quantity.

Analysis.

Lemma 8.4. Assuming N = O(
√
n/ log n), with probability ≥ 1 − 1/nO(1), each grid cell contains

O(n/N2) points of the random point set P .

Proof: Each grid cell in the grid, in expectation, has n/N2 = Ω(log2 n) points of P in it. Now
using Chernoff’s inequality it follows that this quantity is concentrated (say up to 1 ± 1/2 around
its expectation) with probability ≥ 1− 1/nO(1). Using the union bound on the N2 grid cells, imply the
claim.

Running time analysis. Computing the sets Qi,j , for all i, j ∈ �N�, takes O(nN) time, using
 . Computing τi,j , using  , takes

O(|Pi,j |2 + |Qi,j | log |Pi,j |) = O
(
(n/N2)2 + (n/N) log n

)

time. doing this for all i, j ∈ �N� takes O
(
n2/N2 + nN log n

)
time. Clearly, this dominates the running

time. Solving for n2/N2 = nN log n, we get N = (n/ log n)1/3. Clearly, the last step dominates the
overall running time, which is o(nN log n) = O(n4/3 log2/3 n).

Theorem 8.5. Let P be a set of n points picked uniformly and independently from [0, 1]2, and let r be
a parameter. One can compute, using the algorithm described above, the number of pairs of points in
P in distance ≤ r from each other, in O(n4/3 log2/3 n) time. The result returned by the algorithm is
always correct, and the bound on the running time holds with probability ≥ 1− 1/nO(1).

9. Conclusions

To get Bor̊uvka’s algorithm to run in O(n) time for MST, we had to restrict its growth phase in each
recursive call. This feels unnatural in many ways since it is intentionally slowing down the algorithm’s
progress, but is necessary for a complete analysis. It remains open whether there is a method of
showing Bor̊uvka algorithm takes linear time in three or higher dimensions on random points. One
possible direction would be to show that the average degree of the connected components in G∠,δ(P ), see
 , increases (for d ≥ 3) extremely slowly compared to the halving of connected components.
This is an observation the authors noted in numerical simulations, yet were unable to prove. See
 . If the average degree increase in every round of Bor̊uvka’s algorithm can be bounded to a
multiplicative constant ξ < 2 in each round then that would imply that Bor̊uvka’s algorithm runs in
linear time.
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. J. Complexity, 68: 101600, 2022.

[Hag09] T. Hagerup.  .
35th Int. Work. Graph-Theo. Concepts Comp. Sci., vol. 5911. 178–189, 2009.

[Har11a] S. Har-Peled.  . Vol. 173. Math. Surveys & Mono-
graphs. Boston, MA, USA: Amer. Math. Soc., 2011.

[Har11b] S. Har-Peled.  . CoRR, abs/1111.5340,
2011.

[HJ20] S. Har-Peled and M. Jones.  . Discret. Comput. Geom., 63(3):
705–730, 2020.

[HR15] S. Har-Peled and B. Raichel.  

. J. Assoc. Comput. Mach., 62(6): 44:1–44:35, 2015.

[HW87] D. Haussler and E. Welzl.  . Discrete Comput. Geom., 2:
127–151, 1987.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan.  

. J. Assoc. Comput. Mach., 42(2): 321–328, 1995.

[Kut02] S. Kutin.  

. Tech. rep. TR-2002-04. U. Chicago, Apr. 2002.
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