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Abstract

Given a set P ⊂ R
d of n points, with diameter ∆, and a parameter δ ∈ (0, 1), it is known that

there is a partition of P into sets P1, . . . , Pt, each of size O(1/δ2), such that their convex hulls all
intersect a common ball of radius δ∆. We prove that a random partition, with a simple alteration
step, yields the desired partition, resulting in a (randomized) linear time algorithm (i.e., O(dn)). We
also provide a deterministic algorithm with running time O(dn log n). Previous proofs were either
existential (i.e., at least exponential time), or required much bigger sets. In addition, the algorithm
and its proof of correctness are significantly simpler than previous work, and the constants are
slightly better.

We also include a number of applications and extensions using the same central ideas. For
example, we provide a linear time algorithm for computing a “fuzzy” centerpoint, and prove a
no-dimensional weak ε-net theorem with an improved constant.
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1 Introduction

Centerpoints

A point c is an α-centerpoint of a set P ⊆ R
d of n points, if all closed halfspaces containing

c also contain at least αn points of P . The parameter α is the centrality of c, while αn is its

Tukey depth. The centerpoint theorem [17], which is a consequence of Helly’s theorem [14],

states that a 1/(d + 1)-centerpoint (denoted cP ) always exists.

In two dimensions, Jadhav and Mukhopadhyay [16] presented an O(n) time algorithm for

computing a 1/3-centerpoint (but not the point of maximum Tukey depth). Chan et al. [4]

presented an O(n log n + nd−1) algorithm for computing the point of maximum Tukey depth

(and thus also a 1/(d + 1)-centerpoint). It is believed that Ω(nd−1) is a lower bound on

solving this problem exactly, see [4] for details and history.

This guarantee of 1/(d + 1)-centerpoint is tight, as demonstrated by placing the points

of P in d + 1 small, equal size clusters (mimicking weighted points) in the vicinity of the

vertices of a simplex. Furthermore, the lower-bound of
⌈
n/(d + 1)

⌉
is all but meaningless if

d is as large as n − 1.

Approximating centrality

A randomized Õ(d9) time algorithm for computing a (roughly) 1/(4d2) centerpoint was

presented by Clarkson et al. [9], and a later refinement by Har-Peled and Jones [11] improved

this algorithm to compute a (roughly) 1/d2 centerpoint in Õ(d7) time, where Õ hides polylog

terms. Miller and Sheehy [19] derandomized the algorithm of Clarkson et al., computing a
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Ω(1/d2) centerpoint in time nO(log d). Developing an algorithm that computes a 1/(d + 1)-

centerpoint in polynomial time (in d) in still open, although the existence of such an algorithm

with running time better than Ω(nd−1) seems unlikely, as mentioned above.

Tverberg partitions

Consider a set P of n points in R
d. Tverberg’s theorem states that such a set can be partitioned

into k =
⌊
n/(d + 1)

⌋
subsets, such that all of their convex-hulls intersect. Specifically, a point

in this common intersection is a 1/(d + 1)-centerpoint. Indeed, a point p contained in the

convex-hulls of the k sets of the partition is a k/n-centerpoint, as any halfspace containing p

must also contain at least one point from each of these k subsets. Refer to the surveys [10]

and [3] for information on this and related theorems.

This theorem has an algorithmic proof [20], but its running time is nO(d2). To understand

the challenge in getting an efficient algorithm for this problem, observe that it is not known,

in strongly polynomial time, to decide if a point is inside the convex-hull of a point set (i.e.,

is it 1/n-centerpoint?). Similarly, for a given point p, it is not known how to compute, in

weakly or strongly polynomial time, the centrality of p. Nevertheless, a Tverberg partition is

quite attractive, as the partition itself (and its size) provides a compact proof (i.e., lower

bound) of its centrality. If the convex-combination realization of p inside each of these sets is

given, then its k/n-centrality can be verified in linear time.

There has been significant work trying to compute Tverberg partitions with as many

sets as possible while keeping the running time polynomial. The best polynomial algorithms

currently known (roughly) match the bounds for the approximate centerpoint mentioned

above. Specifically, it is known how to compute a Tverberg partition of size O
(
n/(d2 log d)

)

(along with a point in the common intersection) in weakly polynomial time. See [13] and

references therein.

No-dimensional Tverberg theorem

Adiprasito et al. [1] proved a no-dimensional variant of Tverberg’s theorem. Specifically, for

δ ∈ (0, 1), they showed that one can partition a point set P into sets of size O(1/δ2), such

that the convex-hulls of the sets intersect a common ball of radius δdiam(P ). Their result is

existential and does not yield an efficient algorithm. However, as the name suggests, it has

the attractive feature that the sets in the partition have size that does not depend on the

dimension.

Choudhary and Mulzer [7] gave a weaker version of this theorem, but with an efficient

algorithm. Speculatively, given a set P ⊂ R
d of n points, and a parameter δ ∈ (0, 1), P can

be partitioned, in O(nd log k) time, into k = O(δ
√

n) sets P1, . . . , Pk, each of size Θ(
√

n/δ),

such that there is a ball of radius δdiam(P ) that intersects the convex-hull of Pi for every i.

Note that the later (algorithmic) result is significantly weaker than the previous (existential)

result, as the subsets have to be substantially larger.

Thus, the question remains: Can one compute a no-dimensional Tverberg partition with

the parameters of Adiprasito et al. [1] in linear time?

Centerball via Tverberg partition

As observed by Adiprasito et al. [1], a no-dimensional Tverberg partition readily implies a no-

dimensional centerpoint result, where the central point is replaced by a ball. Specifically, they

showed that one can compute a ball of radius δdiam(P ) such that any halfspace containing

it contains Ω(δ2n) points of P .



S. Har-Peled and E. W. Robson 26:3

Centroid and sampling

The centroid of a point set P is the point mP =
∑

p∈P p/ |P |. The 1-mean price of

clustering P , using q, is the sum of squared distances of the points of P to q, that is

f(q) =
∑

p∈P ‖p − q‖2
. It is not hard to verify that f is minimized at the centroid mP .

A classical observation of Inaba et al. [15] is that a sample R of size O(1/δ2) of points

from P is δ-close to the global centroid of the point set. That is, ‖mP − mR‖ ≤ δdiam(P )

with constant probability. Applications of this observation to k-means clustering and sparse

coresets are well known, see Clarkson [8, Section 2.4] and references therein.

Our results

We show that the aforementioned observation of Inaba et al. implies the no-dimensional

Tverberg partition. Informally, for a random partition of P into sets of size O(1/δ2), most

of the sets are in distance at most δdiam(P ) from the global centroid of P . By folding the

far sets (i.e., “bad”), into the close sets (i.e., “good”), we obtain the desired partition. The

resulting algorithm has (expected) linear running time O(dn).

For the sake of completeness, we prove the specific form of the 1-mean sampling obser-

vation [15] we need in Lemma 3 – the proof requires slightly tedious but straightforward

calculations. The linear time algorithm for computing the no-dimensional Tverberg partition

is presented in Theorem 6, which is the main result of this paper.

In the other extreme, one wants to split the point set into two sets of equal size while

minimizing their distance. We show that a set P with 2n points can be split (in linear time)

into two sets of size n, such that (informally) the expected distance of their centroids is

≤ diam(P )/
√

n. The proof of this is even simpler (!), and the bound is tight; see Lemma 9.

We present several applications:

(I) No-dimensional Centerball. In Section 3.1, we present a no-dimensional general-

ization of the centerpoint theorem. As mentioned above, this was already observed by

Adiprasito et al. [1], but our version can be computed efficiently.

(II) Weak ε-net. A new proof of the no-dimensional version of the weak ε-net theorem

with improved constants, see Section 3.2.

(III) Derandomization. The sampling mean lemma (i.e., Lemma 3) can be derandomized

to yield a linear time algorithm, see Lemma 16. The somewhat slower version,

Lemma 15, is a nice example of using conditional expectations for derandomization.

Similarly, the halving scheme of Lemma 9 can be derandomized in a fashion similar to

discrepancy algorithms [18, 5]. The derandomized algorithm, presented in Lemma 17,

has linear running time O(dn).

This leads to a deterministic O(dn log n) time algorithm for the no-dimensional Tver-

berg partition, see Lemma 18. The idea is to repeatedly apply the halving scheme, in a

binary tree fashion, till the point set is partitioned into subsets of size O(1/δ2). Both

the running time and constants are somewhat worse than the randomized algorithm

of Theorem 6, but it is conceptually even simpler, avoiding the need for an alteration

step.

As an extra, another neat implication of the observation of Inaba et al. [15] is the dimension

free version of Carathéodory’s theorem [17], which we present in the full version.

SWAT 2024
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Simplicity

While simplicity is in the eyes of the beholder, the authors find the brevity of the results

here striking compared to previous work. In particular, our presentation here is longer than

strictly necessary, as we reproduce proofs of previous known results, such as Lemma 3 and

its variant Lemma 9, so our work is self contained.

2 Approximate Tverberg partition via mean sampling

In the following, for two points p, q ∈ R
d, let pq = 〈p, q〉 =

∑d
i=1 p[i]q[i] denote their dot-

product. Thus, p2 = 〈p, p〉 = ‖p‖2
. Let P be a finite set of points in R

d (but any metric

space equipped with a dot-product suffices), and let mP =
∑

p∈P p/ |P | denote the centroid

of P . The average price of the 1-mean clustering of P is

∇(P ) =

√∑
p∈P

‖p − mP ‖2
/ |P | ≤ diam(P ). (2.1)

The last inequality follows as mP ∈ CH(P ), and for any p ∈ P , we have ‖p − mP ‖ ≤ diam(P ).

This inequality can be tightened.

◮ Lemma 1. We have ∇(P ) ≤ diam(P )/
√

2, and there is a point set Q in R
d, such that

∇(Q) ≥
(
1 − 1

d

)
1√
2
diam(Q)

(i.e., the inequality is essentially tight).

Proof. This claim only improves the constant in our main result, and the reader can safely

skip reading the proof. Let P be a set of n points in R
d, with ∆ = diam(P ) and ∇ = ∇(P ).

Assume that mP = 0, as the claim is translation invariant. That is
∑

q∈P q = 0, and

β =
∑

p,q∈P

〈p, q〉 =
∑

p∈P

〈
p,
∑

q∈P
q
〉

=
∑

p∈P

〈p, 0〉 = 0.

We have

n∇2 =
∑

p∈P

‖p‖2 =
∑

p,q∈P

‖p‖2 + ‖q‖2

2n
=
∑

p,q∈P

‖p‖2 − 2 〈p, q〉 + ‖q‖2

2n
+

2β

2n
=
∑

p,q∈P

‖p − q‖2

2n

≤
∑

p∈P,q∈P

∆2

2n
=

n2∆2

2n
.

Implying that ∇2 ≤ ∆2/2.

As for the lower bound, let ei be the ith standard unit vector1 in R
d, and consider

the point set Q = {e1, . . . , ed}. We have that diam(Q) =
√

2 and mQ = (1/d, . . . , 1/d).

Consequently,

∇(Q) =

√
1

|Q|

∑
q∈Q

‖q − mQ‖2 =
√

|Q|
|Q|

(
(1 − 1/d)2 + (d − 1)/d2

)
=

√
(d − 1)2 + d − 1

d2

=

√
d − 1

d
=

diam(Q)√
2

√
1 − 1

d
≥
(

1 − 1
d

)
1√
2

diam(Q). ◭

◮ Definition 2. A subset X ⊆ P is δ-close if the centroid of X is in distance at most

δdiam(P ) from the centroid of P – that is, ‖mX − mP ‖ ≤ δdiam(P ).

1 That is, ei is 0 in all coordinates except the ith coordinate where it is 1.
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2.1 Proximity of centroid of a sample

The following is by now standard – a random sample of O(1/δ2) points from P is δ-close

with good probability, see Inaba et al. [15, Lemma 1]. We include the proof for the sake of

completeness, as we require this somewhat specific form.

◮ Lemma 3. Let P be a set of n points in R
d, and δ ∈ (0, 1) be a parameter. Let R ⊆ P

be a random sample of size r picked uniformly without replacement from P , where r ≥ ζ/δ2

and ζ > 1 is a parameter. Then, we have P

[
‖mP − mR‖ > δ∇(P )

]
< 1/ζ.

Proof. Let P = {p1, . . . , pn}. For simplicity of exposition, assume that mP =
∑n

i=1
1
n pi = 0,

as the claim is translation invariant. For ∇ = ∇(P ), and we have ∇2 =
∑n

i=1
1
n p2

i . Let

Y =
∑

p∈R p =
∑n

i=1 Iipi, where Ii is an indicator variable for pi being in R. By linearity of

expectations, we have

E[Y ] =

n∑

i=1

E[Ii] pi =

n∑

i=1

r

n
pi = r

n∑

i=1

1

n
pi = r mP = 0.

Observe that, for i 6= j, we have

E

[
IiIj

]
= P

[
Ii = 1 and Ij = 1

]
=

(
n − 2

r − 2

)
/

(
n

r

)
=

(n − 2)!

(r − 2)!(n − r)!
· r!(n − r)!

n!
=

r(r − 1)

n(n − 1)
.

(2.2)

By the above, and since E

[
I2

i

]
= E[Ii], we have

E

[
‖Y ‖2]

= E

[
〈Y, Y 〉

]
= E

[( n∑

i=1

Iipi

)2
]

=
n∑

i=1

E[Ii] p2
i + 2

∑

i<j

E

[
IiIj

]
pipj

=

n∑

i=1

r

n
p2

i + 2
∑

i<j

r(r − 1)

n(n − 1)
pipj ≤ r∇2 +

r(r − 1)n

n − 1

( n∑

i=1

1

n
pi

)2

= r∇2, (2.3)

using the shorthand pipj =
〈
pi, pj

〉
and p2

i = 〈pi, pi〉. As (i) r = |R|, (ii) mR = Y/|R| = Y/r,

(iii) r ≥ ζ/δ2, and (iv) by Markov’s inequality, we have

P

[
‖mR‖ > δ∇

]
= P

[‖Y ‖
r

> δ∇
]

= P

[
‖Y ‖2

> (rδ∇)2
]

≤ E[‖Y ‖2
]

(rδ∇)2
≤ r∇2

(rδ∇)2
=

1

rδ2
≤ 1

ζ
.

◭

Lemma 3 readily implies the no-dimensional Carathéodory theorem, see the full version

for details.

2.2 Approximate Tverberg theorem

We now present the key technical lemma that will allow us to prove an approximate Tverberg

theorem.

◮ Lemma 4. Let P be a set of n points in R
d, and δ ∈ (0, 1) be a parameter, and assume that

n ≫ 1/δ4. Let ∇ = ∇(P ). Then, one can compute, in O(nd/δ2) expected time, a partition

of P into k sets P1, . . . , Pk, and a ball b, such that

(i) ∀i |Pi| ≤ 4/δ2 + 6,

(ii) ∀i CH(Pi) ∩ b 6= ∅,

(iii) radius(b) ≤ δ∇, and

(iv) k ≥ n/(4/δ2 + 6).

SWAT 2024
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Proof. Let b = b(mP , δ∇). Let ζ = 2(1 + δ2/8), and M = ⌈ζ/δ2⌉. We randomly partition

the points of P into t =
⌊
n/M

⌋
> M sets Q1, . . . , Qt, all of size either M or M + 1 (this can

be done by randomly permuting the points of P , and allocating each set a range of elements

in this permutation). Thus, each Qi, for i ∈ JtK = {1, . . . , t}, is a random sample according

to Lemma 3 with parameter ≥ ζ. Thus, with probability ≥ 1 − 1/ζ, the set Qi, for i ∈ JtK, is

δ-close – that is,
∥∥mQi

− mP

∥∥ ≤ δ∇, and Qi is then considered to be good.

Let Z be the number of bad sets in Q1, . . . , Qt. The probability of a set to be bad is at

most 1/ζ, and by linearity of expectations, E[Z] ≤ t/ζ. Let β = t(1 + δ2/8)/ζ = t/2. By

Markov’s inequality, we have

P

[
Z ≥ t/2

]
= P[Z ≥ β] ≤ E[Z]

β
≤ t/ζ

(1 + δ2/8)t/ζ
=

1

1 + δ2/8
≤ 1 − δ2

16
. (2.4)

We consider a round of sampling successful if Z < β = t/2. The algorithm can perform

the random partition and compute the centroid for all Pi in O(nd) time overall. Since a

round is successful with probability ≥ δ2/16, after ⌈16/δ2⌉ rounds, the algorithm succeeds

with constant probability. This implies that the algorithm performs, in expectation, O(1/δ2)

rounds till being successful, and the overall running time is O(nd/δ2) time in expectation.

In the (first and final) successful round, the number of bad sets is < t/2 – namely, it is

strictly smaller than the number of good sets. Therefore, we can match each bad set B in

the partition to a unique good set G, and replace both of them by a new set X = G ∪ B.

That is, every good set absorbs at most one bad set, forming a new partition with roughly

half the sets. For such a newly formed set X, we have that

|X| = |B|+|G| ≤ 2(M +1) ≤ 2⌈ζ/δ2⌉+2 = 2

⌈
2(1 + δ2/8)

δ2

⌉
+2 ≤ 2

(
2

δ2
+ 2

)
+2 ≤ 4

δ2
+6.

The point mG is in CH(G) ⊂ CH(X), and mG is in distance at most δ∇ from the centroid

of P . Thus, all the newly formed sets in the partition are in distance ≤ δ∇ from mP , and

CH(X) ∩ b 6= ∅.

Finally, we have that the number of sets in the merged partition is at least k ≥ n
4/δ2+6 . ◭

◮ Remark 5. The mysterious requirement that n ≫ 1/δ4, in Lemma 4, is used in the partition

implicitly – the number of sets in the partition needs to be even. Thus, one set might need

to be absorbed in the other sets, or more precisely two sets, because of the rounding issues.

Namely, we first partition the set into groups of size M , and we need at least 2M + 2 sets in

the partition to have size M (one additional last set can have size smaller than M). Thus,

the proof requires that n ≥ (2M + 2)M + M = (2M + 3)M . This is satisfied, for example, if

n ≥ 27/δ4.

◮ Theorem 6. Let P be a set of n points in R
d, and δ ∈ (0, 1/

√
2) be a parameter, and

assume that n ≫ 1/δ4. Then, one can compute, in O(nd/δ2) expected time, a partition of P

into sets P1, . . . , Pk, and a ball b, such that

(i) ∀i |Pi| ≤ 2/δ2 + 6,

(ii) ∀i CH(Pi) ∩ b 6= ∅,

(iii) radius(b) ≤ δdiam(P ), and

(iv) k ≥ n/(2/δ2 + 6).

Proof. Let ∆ = diam(P ). Use Lemma 4 with parameter
√

2δ. Observe that

radius(b) ≤
√

2δ∇ ≤
√

2δ(∆/
√

2) = δ∆,

by Lemma 1, where ∇ = ∇(P ).
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Observe that the algorithm does not require the value of diam(P ), but rather the value

of ∇(P ), which can be computed in O(nd) time, see Eq. (2.1). ◭

◮ Corollary 7. The expected running time of Theorem 6 can be improved to O(nd), with two

of the guarantees being weaker:

(I) The sets are bigger: ∀i |Pi| ≤ 3/δ2 + 9.

(II) And there are fewer sets: k ≥ n/(3/δ2 + 9).

Proof. We use Lemma 4 as before, but now requiring only third of the sets to be good, and

merging triples of sets to get one final good set. The probability of success is now constant,

as Eq. (2.4) becomes

P

[
Z ≥ 2

3
t
]

= P

[
Z ≥ 4

3
· t

2

]
= P

[
Z ≥ 4

3
β
]

≤ E[Z]

(4/3)β
≤ 3

4
.

Namely, the partition succeeds with probability at least 1/4, which implies that the algorithm

is done in expectation after O(1) partition rounds. ◭

◮ Remark 8. The (existential) result of Adiprasito et al. [1, Theorem 1.3] has slightly worse

constants, but it requires some effort to see, as they “maximize” the number of sets k (instead

of minimizing the size of each set). Specifically, they show that one can partition P into k

sets, with the computed ball having radius (2 +
√

2)
√

k/n diam(P ) (intuitively, one wants k

to be as large as possible). Translating into our language, we require that

(2 +
√

2)

√
k

n
≤ δ =⇒ (2 +

√
2)2 k

n
≤ δ2 =⇒ k ≤ n

δ2

(2 +
√

2)2
.

Our result, on the other hand, states that k is at least (over-simplifying for clarify) n δ2

2 (for

δ sufficiently small). Adiprasito et al. mention, as a side note, that their constant improves

to 1 +
√

2 under certain conditions. Even then, the constant in the above theorem is better.

This improvement in the constant is small (and thus, arguably minor), but nevertheless,

satisfying.

2.3 Tverberg halving

An alternative approach is to randomly halve the point set and observe that the centroids

of two halves are close together. In this section, we show this line of thinking leads to

various algorithms that can be derandomized efficiently. Foundational to this approach is

the following lemma (which is a variant of Lemma 3).

◮ Lemma 9. Let U = {u1, . . . , u2n} be a set of 2n points in R
d with ∆ = diam(U). For

i = 1, . . . , n, with probability 1/2, let pi = u2i−1, qi = u2i, or otherwise, let pi = u2i, qi =

u2i−1. Let P = {p1, . . . , pn} and Q = {q1, . . . , qn}. For any parameter t ≥ 1, we have

P

[∥∥mP − mQ

∥∥ ≥ t√
n

∆
]

≤ 1
t2 .

Proof. This follows by adapting the argument used in the proof of Lemma 3, and the details

are included here for the sake of completeness.

Let vi = u2i−1 − u2i. Consider the random variable Y = mP − mQ =
∑n

i=1
Xivi

n , where

Xi ∈ {−1, +1} is picked independently with probability half. We first observe that

(i) E[Y ] =
∑n

i=1 E[Xi] vi/n = 0,

(ii) E

[
X2

i

]
= 1, and

(iii) for i < j, E
[
XiXj

]
= 0.

SWAT 2024
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Thus, we have

E

[
‖Y ‖2]

= E

[
〈Y, Y 〉

]
= E

[〈∑n

i=1

Xivi

n
,
∑n

i=1

Xivi

n

〉]

=
1

n2

n∑

i=1

E

[
X2

i

]
v2

i + 2
1

n2

∑

i<j

E

[
XiXjvivj

]

=
1

n2

n∑

i=1

v2
i ≤ n∆2

n2
=

∆2

n
, (2.5)

since ‖vi‖ = ‖u2i−1 − u2i‖ ≤ diam(U) = ∆. By Markov’s inequality, we have

P

[
‖Y ‖ > t

∆√
n

]
= P

[
‖Y ‖2

> t2 ∆2

n

]
≤ E[‖Y ‖2

]

t2∆2/n
≤ 1

t2
. ◭

Remarks.

(A) Lemma 9 can be turned into an efficient algorithm using the same Markov’s inequality

argument used in Theorem 6. Specifically, for any parameter ξ ∈ (0, 1), one can compute

a partition into two sets P and Q with
∥∥mP − mQ

∥∥ ≤ (1+ξ)∆/
√

n, in O(nd/ξ) expected

time.

(B) Lemma 9 implies that there exists a partition P and Q of U such that

∥∥mP − mQ

∥∥ ≤ ∆/
√

n.

Note that this is tight. To see this, let U be the standard basis of R
2n, with its

diameter ∆ =
√

2. For any partition P and Q of U with |P | = |Q| = n, we have that∥∥mP − mQ

∥∥ =
√

2
∑n

i=1 1/n2 =
√

2/n = ∆/
√

n.

(C) As in the standard algorithm for computing a δ-net via discrepancy [5, 18], one can apply

repeated halving to get the desired Tverberg partition until the sets are the desired size.

This provides a method for a deterministic algorithm, which we present in Section 4.3.

3 Applications

3.1 No-dimensional centerball

We present an efficient no-dimensional centerpoint theorem; the previous version [1, The-

orem 7.1] did not present an efficient algorithm.

◮ Corollary 10 (No-dimensional centerpoint). Let P be a set of n points in R
d and δ ∈ (0, 1/2)

be a parameter, where n is sufficiently large (compared to δ). Then, one can compute, in

O(nd/δ2) expected time, a ball b of radius δdiam(P ), such that any halfspace containing b

contains at least Ω(δ2n) points of P .

Proof. Follows by applying Theorem 6 and the observation that, for any halfspace containing

the computed ball b, it must also contain at least one point from each set of the partition

P1, . . . , Pk, where k = Ω(δ2n). Thus, the ball b is as desired. ◭

3.2 No-dimensional weak ε-net theorem

Originally given by Adiprasito et al. [1, Theorem 7.3], we prove a version of the no-

dimensional weak ε-net theorem with an improved dependence on the parameters. For a

sequence Q = (q1, . . . , qr) ∈ P r, let mQ =
∑r

i=1 qi/r. We reprove Lemma 3 under a slightly

different sampling model.
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◮ Lemma 11. Let P be a set of n points in R
d, and δ ∈ (0, 1/2) and ζ > 1 be parameters.

Let r ≥ ζ/δ2. For a random sequence Q = (q1, . . . , qr) picked uniformly at random from P r,

we have that P
[∥∥mP − mQ

∥∥ > δ∆
]

≤ 1/ζ, where ∆ = diam(P ).

Proof. The argument predictably follows the proof of Lemma 3, and the reader can safely

skip reading it, as it adds little new. Assume that mP =
∑n

i=1
1
n pi = 0. Let ∇2 =

∑n
i=1

1
n p2

i

and Y =
∑r

i=1 qi. Then, E[Y ] =
∑r

i=1 E[qi] = 0. As ‖Y ‖2
= 〈Y, Y 〉, it follows that

E

[
‖Y ‖2]

= E

[( r∑

i=1

qi

)2
]

=
r∑

k=1

E

[
q2

k

]
+ 2

∑

i<j

E[qiqj ]

=

r∑

k=1

n∑

i=1

1
n p2

i + 2
∑

i<j

E[qi]E[qj ] = r∇2.

Since mR = Y/r, r ≥ ζ/δ2, and by Markov’s inequality, we have

P

[
‖mR‖ > δ∇

]
= P

[‖Y ‖
r

> δ∇
]

= P

[
‖Y ‖2

> (rδ∇)2
]

≤ E[‖Y ‖2
]

(rδ∇)2
≤ r∇2

(rδ∇)2
=

1

rδ2
≤ 1

ζ
.

◭

A sequence Q ∈ P r collides with a ball b if b intersects CH(Q). In particular, if∥∥mP − mQ

∥∥ ≤ δ∆, then Q collides with the ball b(mP , δ∆), where ∆ = diam(P ).

◮ Lemma 12 (Selection lemma). Let P be a set of n points in R
d and δ ∈ (0, 1) be a parameter.

Let r = ⌈2/δ2⌉. Then, the ball b = b(mP , δ∆) collides with at least nr/2 sequences of P r.

Proof. Taking ζ = 2, by Lemma 11, a random r-sequence from P r has probability at least

half to collide with b, which readily implies that this property holds for half the sequences in

P r. ◭

◮ Theorem 13 (No-dimensional weak ε-net). Let P be a set of n points in R
d, with diameter

∆, and δ, ε ∈ (0, 1) be parameters, where 2/δ2 is an integer. Then, there exists a set F ⊂ R
d

of size ≤ 2ε−2/δ2

balls, each of radius δ∆, such that, for all Y ⊂ P , with |Y | ≥ εn, F

contains a ball of radius δ∆ that intersects CH(Y ).

Proof. Our argument follows Alon et al. [2]. Let r = 2/δ2. Initialize F = ∅, and let H = P r.

If there is a set Q ⊂ P , with |Q| ≥ εn, where no ball of F intersects CH(Q), then applying

Lemma 12 to Q, the algorithm computes a ball b, of radius δ∆, that collides with at least

(εn)r/2 sequences of Qr. The algorithm adds b to the set F , and removes from H all the

sequences that collide with b. The algorithm continues till no such set Q exists.

As initially |H| = nr, the number of iterations of the algorithm, and thus the size of F , is

bounded by nr

(εn)r/2 = 2/εr. ◭

◮ Remark 14. In the version given by Adiprasito et al. [1, Theorem 7.3], the set F has size

at most (2/δ2)2/δ2

ε−2/δ2

, while our bound is 2ε−2/δ2

.

4 Derandomization

4.1 Derandomizing mean sampling

Lemma 3 can be derandomized directly using conditional expectations. We also present a

more efficient derandomization scheme using halving in Section 4.2.

SWAT 2024



26:10 No-Dimensional Tverberg Partitions Revisited

◮ Lemma 15. Let P be a set of n points in R
d. Then, for any integer r ≥ 1, one can

compute, in deterministic O(dn3) time, a subset R ⊂ P of size r, such that ‖mP − mR‖ ≤
∇(P )/

√
r ≤ diam(P )/

√
2r, where ∇ = ∇(P ), see Eq. (2.1).

Proof. We derandomize the algorithm of Lemma 3. We assume for simplicity of exposition

that mP = 0. Let R be a sample of size r without replacement from P , and let Ii ∈ {0, 1}
be the indicator for the event that pi ∈ R.

Let Y =
∑n

i=1 Iipi. Then, mR = Y/r, and thus ‖mR − mP ‖ = ‖Y ‖/r. Consider the

quantity

β = Z(x1, . . . , xt) = E

[
‖Y ‖2

∣∣∣ E
]

, E ≡ (I1 = x1, . . . , It = xt),

where the expectation is over the random choices of It+1, . . . , In. At the beginning of the

(t + 1)th iteration, the values of x1, . . . , xt were determined in earlier iterations, and the task

at hand is to decide what value to assign to xt+1 that minimizes Z(x1, . . . , xt, xt+1). Thus,

the algorithm computes β0 = Z(x1, . . . , xt, 0) and β1 = Z(x1, . . . , xt, 1).

Using conditional expectations, Eq. (2.3) becomes

β = E

[
‖Y ‖2

∣∣∣ E
]

=

n∑

i=1

E[Ii | E ] p2
i + 2

∑

i<j

E

[
IiIj

∣∣ E
]

pipj . (4.1)

Let α =
∑t

k=1 xk, and observe that r − α points are left to be chosen to be in R after E . As

such, arguing as in Eq. (2.2), for i < j, we have

E[Ii | E ] =





xi i ≤ t
r−α
n−t i > t,

and E

[
IiIj

∣∣ E
]

=





xixj i < j ≤ t

xi
r−α
n−t i ≤ t < j

(r−α)(r−α−1)
(n−t)(n−t−1) t < i < j.

(4.2)

This implies that the algorithm can compute β in quadratic time directly via Eq. (4.1).

Similarly, the algorithm computes β0 and β1. Observe that

β = Z(x1, . . . , xt) =
r − α

n − t
β1 +

n − t − (r − α)

n − t
β0.

Namely, β is a convex combination of β0 and β1. Thus, if β0 ≤ β then the algorithm sets

xt+1 = 0, and otherwise the algorithm sets xt+1 = 1.

The algorithm now performs n such assignment steps, for t = 0, . . . , n − 1, to compute

an assignment of x1, . . . , xn such that Z(x1, . . . , xn) ≤ E[‖Y ‖2
]. Overall, this leads to a

O(dn3) time algorithm. Specifically, the algorithm outputs a set R ⊆ P of size r, such that

R = {pi | xi = 1, i = 1, . . . , n} . Observe that Z(x1, . . . , xn) = ‖rmR‖2 ≤ E[‖Y ‖2
]. Thus, by

Eq. (2.3) and Lemma 1, we have

‖mR − mP ‖ = ‖mR‖ ≤

√
E[‖Y ‖2

]

r2
≤
√

r∇2

r2
=

∇√
r

≤ diam(P )√
2r

. ◭

With some care, the running time of the algorithm of Lemma 15 can be improved to

O(dn) time, but the details are tedious, and we delegate the proof of the following lemma to

the full version.

◮ Lemma 16. Let P be a set of n points in R
d. Then, for any integer r ≥ 1, one can

compute, in O(dn) deterministic time, a subset R ⊂ P of size r, such that ‖mP − mR‖ ≤
∇(P )/

√
r ≤ diam(P )/

√
2r.
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4.2 Derandomizing the halving scheme

The algorithm of Lemma 9 can be similarly derandomized.

◮ Lemma 17. Let U = {u1, . . . , u2n} be a set of 2n points in R
d with ∆ = diam(U). One

can partition U , in deterministic O(dn) time, into two equal size sets P and Q, such that∥∥mP − mQ

∥∥ ≤ ∆/
√

n.

Proof. We follow Lemma 9. To this end, let vi = u2i−1 − u2i, for i = 1, . . . , n. Let

Y =
∑n

i=1
Xivi

n , where Xi ∈ {−1, +1}. Next, consider the quantity

Z(x1, . . . , xt) = E

[
‖Y ‖2

∣∣∣ E
]

, E ≡ (X1 = x1, . . . , Xt = xt),

where the expectation is over the random choices of Xt+1, . . . , Xn. By Eq. (2.5), we have

Z(x1, . . . , xt) = 1
n2

∑n
i=1 v2

i + 2
n2

∑
i<j E

[
XiXjvivj

∣∣ E
]

. The latter term is

∑

i<j

E

[
XiXjvivj

∣∣ E
]

=
∑

i<j:i,j≤t

xixjvivj +
∑

i<j:i≤t<j

E

[
xiXjvivj

]
+

∑

i<j:t<i,j

E

[
XiXjvivj

]

=
∑

i<j≤t

xixjvivj ,

as E[Xi] = E

[
XiXj

]
= 0. Thus, Z(x1, . . . , xt) = 1

n2

∑n
i=1 v2

i + 2
n2

∑
i<j≤t xixjvivj . The key

observation is that

Z(x1, . . . , xt) =
Z(x1, . . . , xt, −1) + Z(x1, . . . , xt, +1)

2
.

Our goal is to compute the assignment of x1, . . . , xn that minimizes Z. Observe that

Dt = Z(x1, . . . , xt, +1) − Z(x1, . . . , xt) =
2

n2

( ∑

i<t+1

xivi

)
vt+1.

If Dt ≤ 0, then the algorithm sets xt+1 = +1, otherwise the algorithm sets xt+1 = −1.

The algorithm has to repeat this process for t = 1, . . . , n, and naively, each step takes

O(dn) time. Observe that if the algorithm maintains the quantity Vt =
∑t

i=1 xivi, then

Dt can be computed in O(d) time. This determines the value of xt+1, and the value of

Vt+1 = Vt + xt+1vt+1 can be maintained in O(d) time. As each iteration takes O(d) time,

the algorithm overall takes O(dn) time. By the end of this process, the algorithm will have

computed an assignment x1, . . . , xn, with an associated partition of U into P and Q. By

Eq. (2.5), we have
∥∥mP − mQ

∥∥2 ≤ E

[
‖Y ‖2] ≤ ∆2/n. ◭

4.3 A deterministic approximate Tverberg partition

◮ Lemma 18. Let P be a set of n points in R
d, and δ ∈ (0, 1/4) be a parameter. Then, one

can compute, in O(nd log n) deterministic time, a partition of P into sets P1, . . . , Pk, and a

ball b, such that

(i) ∀i |Pi| ≤ 8/δ2,

(ii) ∀i CH(Pi) ∩ b 6= ∅,

(iii) radius(b) ≤ δdiam(P ), and

(iv) k ≥ nδ2/8.
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Proof. Assume for the time being that n is a power of 2. As done for discrepancy, we halve

the current point set, and then continue doing this recursively (on both resulting sets), using

the algorithm of Lemma 17 at each stage. Conceptually, this is done in a binary tree fashion,

and doing this for i levels breaks the point set into 2i sets. Let ℓi be an upper bound on

the distance of the centroid of a set in the ith level from the centroid of its parent. By

Lemma 17, we have 2ℓi ≤ ∆/
√

n/2i (where i = 1 in the top level). Thus, repeating this

process for t levels, we have that the distance of any centroid at the leaves to the global

centroid is bounded by

Lt =

t∑

i=1

ℓi ≤
t∑

i=1

∆

2
√

n/2i
=

∆√
2n

t−1∑

i=0

√
2i =

∆√
2n

(
2t/2 − 1√

2 − 1

)

≤ 5∆

2
√

2n
2t/2 =

5∆

2
√

2

√
1

n/2t
. (4.3)

Solving for 5
2

√
2

√
1

n/2t ≤ δ, we get that this holds for n/2t ≥ 3.2/δ2. We stop our halving

procedure once t is large enough such that the preceding inequality no longer holds, implying

the stated bound on the size of each set.

If n is not a power of 2 then we apply the above algorithm to the largest subset that has

size that is a power of two, and then add the unused points in a round robin fashion to the

sets computed. ◭

◮ Remark 19. If instead of keeping both halves, as done by the algorithm of Lemma 18, one

throws one of the halves away, and repeats the halving process on the other half, we end up

with a single sample. One can repeat this halving process until the “sample” size is Θ(1/δ2).

Using the same argument as in Eq. (4.3) to bound the error, we obtain a sample R of size

Θ(1/δ2), such that ‖mR − mP ‖ ≤ δ diam(P ). The running time is
∑

i O(dn/2i) = O(dn).

Namely, we get a deterministic O(dn) time algorithm that computes a sample with the

same guarantees as Lemma 16 – this version is somewhat less flexible and the constants are

somewhat worse.

5 Conclusions

Given a data set, archetypal analysis [6] aims to identify a small subset of points such that

all (or most) points in the data can be represented as a sparse convex-combination of these

“archtypes”. Thus, for a sparse convex-combination of points, generating a point can be

viewed as an “explanation” of how it is being induced by the data. It is thus natural to ask

for as many independent explanations as possible for a point – the more such combinations,

the more a point “arises” naturally from the data. Thus, an approximate Tverberg partition

can be interpreted as stating that high dimensional data has certain points (i.e., the centroid)

that are robustly generated by the data.

From a data-analysis point of view, an interesting open question is whether one can do

better than the “generic” guarantees provided here. If, for example, a smaller radius centroid

ball exists, can it be approximated efficiently? Can a sparser convex-combination of points

be computed efficiently?

While these questions in the most general settings seem quite challenging, even solving

them in some special cases might be interesting.
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In addition, prior works consider other no-dimensional results, such as a no-dimensional

version of Helly’s theorem [1], and a no-dimensional version of the colorful Tverberg the-

orem [7]. Our work did not address these problems because of the focus on simplicity, and a

possible further direction is to address these variants with extensions of the techniques used

here.
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