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LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS

KEVIN FORD, MIKHAIL R. GABDULLIN

ABSTRACT. We show that for any polynomial f : Z Ñ Z with positive leading coefficient and irreducible over Q, if

x is large enough then there is a string of plog xqplog log xq1{835 consecutive integers n P r1, xs for which fpnq is

composite. This improves the result in [6], which has the exponent of log log x being constant depending on f which

can be exponentially small in the degree of f .

1. INTRODUCTION

The first author, together with Konyagin, Maynard, Pomerance and Tao, showed in [6] that a general “sieved

set” contains long gaps. More precisely, for each prime p consider a set Ip of residue classes modulo p, and call

the collection of all sets Ip a sieving system. As in [6], assume the following regularity conditions:

(a) We have |Ip| ď p ´ 1 for all p;

(b) |Ip| is bounded; there is a B P N with |Ip| ď B for all p;

(c) |Ip| has average value 1, in the sense that

(1.1)
ź

pďx

ˆ
1 ´

|Ip|

p

˙
„

C1

log x
px Ñ 8q,

for some constant C1 ą 0.

(d) There is a ρ ą 0, so that the density of primes with |Ip| ě 1 equals ρ, that is,

lim
xÑ8

|tp ď x : |Ip| ě 1u|

x{ log x
“ ρ.

Now define the sieved set

Sx :“ Zz
ď

pďx

Ip,

so that Sx is a periodic set with period equal to the product of the primes p ď x. The main theorem from [6] states

that if (a)–(d) hold, then for any ε ą 0 and large x, the set Sx contains a gap of size xplog xqCpρq´ε, where

(1.2) Cpρq :“ sup
!
δ ą 0 :

6 ¨ 102δ

logp1{p2δqq
ă ρ

)
.

In particular, Cpρq decays exponentially in 1{ρ. One of the principal applications of this result in [6] is to

finding long strings of consecutive composite values of polynomial sequences. Consider a polynomial f : Z Ñ Z

of degree d ě 1, with positive leading coefficient and irreducible over Q. Let Ip “ H for p ď d and for p dividing

the leading coefficient of f , and

Ip :“ tn P Z{pZ : fpnq ” 0 pmod pqu

otherwise. Note that the polynomial need not have integer coefficients. Indeed, by Pólya’s theorem [11], f is

integer valued at integers if and only if f has the form fpxq “
řd

j“0 aj
`
x
j

˘
with every aj P Z. In particular,
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d!fpyq P Zrys and thus the sieving system is well-defined. We call the collection of all sets Ip a polynomial sieving

system.

By Lagrange’s theorem, |Ip| ď d ă p for all p ą d not dividing the leading coefficient of f , and hence (a) and

(b) hold. Item (c) holds by Landau’s Prime Ideal Theorem [9] (see also [4, pp. 35–36]), while (d) follows from the

Chebotarev Density Theorem [3] (see also [8]), with ρ “ ρpfq equal to C{|G|, where G is the Galois group of f ,

a subgroup of the symmetric group on d objects, and C is the number of elements of G having at least one fixed

point. We have ρpfq ě 1{d always, and sometimes ρpfq “ 1{d.

Examples. When fpxq “ x2 ` 1, we have |I2| “ 0, |Ip| “ 2 for all p ” 1 pmod 4q and |Ip| “ 0 for p ” 3

pmod 4q. Thus, ρpfq “ 1{2. Similarly, if d “ 2k for a positive integer k and fpxq “ xd ` 1, then |Ip| “ d for

p ” 1 pmod 2k`1q and |Ip| “ 0 for all other odd primes p, hence ρpfq “ 1{d “ 1{2k.

The connection with sieved sets comes from the obvious relation

tn P N : fpnq ą x, fpnq primeu Ă Sx.

Now let X be large and set x :“ 1
2
logX . The period of the set Sx is X1{2`op1q by the Prime Number Theorem.

Thus, writing gx for the longest gap in Sx, the interval rX{2, Xs contains a gap in Sx of length gx. For large X ,

fpnq ą x for all n P pX{2, Xs, and we conclude that

(1.3) maxtm : X{2 ă n ă n ` m ď X and fpnq, . . . , fpn ` mq compositeu ě gp1{2q logX .

From the main theorem of [6] we see that the left side of (1.3) is ě plogXqplog logXqCpρpfqq´op1q. In particular,

we have [6, Corollary 1], which states that the left side of (1.3) is at least of size ě plogXqplog logXqCp1{dq´op1q.

The exponent here decays exponentially in d (roughly Cp1{dq « e´6d).

It is still an open conjecture (of Bunyakovsky [2]) that there are infinitely many integers n for which fpnq is

prime. Moreover it is believed (see the conjecture of Bateman and Horn [1]) that the density of these prime values

on rX{2, Xs is —f 1{ logX , and so the gaps above would be unusually large compared to the average gap of size

—f logX .

Our main result is a stronger lower bound on the length of strings of consecutive composite values of polyno-

mials, with exponent of log log x being independent of f .

Theorem 1. Let f be as above. For all ε ą 0 and large X , there are n, n ` m P pX{2, Xs with m ě
plogXqplog logXqCp1q´ε and with fpnq, . . . , fpn ` mq all composite.

Numerically, 1{Cp1q “ 834.109 . . .. In particular, when fpxq “ x, our bound falls well short of the best known

lower bound for the maximal gap between the primes below x from [5], which is

" plogXqplog logXq
log log log logX

log log logX
.

However, as noted in [6], the methods used to find large gaps between primes do not apply to gaps in more general

sieved sets.

Our proof is based on the method developed in [6], but with one important difference. In [6], only one of the

elements of Iq is utilized for large q (for those q with |Iq| ě 1), whereas in this paper we utilize all of the set Iq .

This introduces a number of complications, which we get around using special properties of polynomial sequences.

Our methods do not apply for all of the sieved sets considered in [6], but they do generalize to sieved sets for which

the sizes of the Ip have a limiting distribution and for which the difference sets Ip ´ Ip :“ ta ´ a1 : a, a1 P Ipu,

interpreted as subsets of Z, do not have large overlap. To state our general theorem, we introduce further conditions,

Hypotheses (e), (f) and (g) (here and throughout the paper, the symbols p and q always denote primes):

(e) For each ν P t1, . . . , Bu, the density of those p with |Ip| “ ν exists. That is, for some non-negative real

numbers ρν , 1 ď ν ď B, we have

lim
xÑ8

#tp ď x : |Ip| “ νu

x{ log x
“ ρν .

(f) For non-zero v, define

Npvq “ #tp : v mod p P Ip ´ Ipu.

Then, for all v ě 1, we have Npvq ! v0.49.
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(g) There are positive constants c1, c2 such that the following holds. Let u ě 10, and for each prime q with

|Iq| ě 1, let mq be a nonzero integer with mq mod q P pIq ´ Iqq. If |w| ď u and k ě 1, then

#
 
q : |Iq| ě 1, 0 ă |mq| ď u,mq ` w ‰ 0, Npmq ` wq ě k

(
! uplog uqc1e´c2k.

Hypothesis (e) is stronger than Hypothesis (d) and will replace it. Furthermore, (e) implies that the average of

|Ip|, over p ď x, is asymptotically ρ1 ` 2ρ2 ` ¨ ¨ ¨ ` BρB , which, by the weak average assumption (c), equals 1.

Theorem 2. Consider any sieving system satisfying conditions (a)–(c) and (e)–(g) above. For any ε ą 0 and large

enough x, Sx has a gap of size at least xplog xqCp1q´ε.

Clearly, Theorem 1 follows from Theorem 2, provided that we verify (e), (f) and (g) in the case of polynomial

sieving systems. This verification is accomplished in the next section. The following sections are devoted to the

proof of Theorem 2. As noted, the main new idea is to utilize all of the sets Iq for large q, which is encoded in a

certain weight function; see (3.12) for specifics. Hypothesis (f) will be needed at the end of Section 4 and near the

end of Section 6, while hypothesis (g) will be needed for the proof of the crucial Lemma 6.3.

2. VERIFYING THE HYPOTHESES OF THEOREM 2 FOR POLYNOMIAL SIEVING SYSTEMS

Item (e) is an immediate corollary of the Chebotarev density theorem. In fact, ρν is precisely the proportion of

elements of the Galois group of f which have exactly ν fixed points.

To verify (f) and (g), we introduce an auxiliary polynomial F which has roots which are the differences of the

roots of f . By Pólya’s theorem [11], f is integer valued at integers if and only if f has the form fpxq “
řd

j“0 aj
`
x
j

˘

with every aj P Z. In particular, there exists a minimal positive integer t|d! such that tf P Zrxs. Let also r1, ..., rd
be the complex roots of f . Writing

f̃pxq :“ tfpxq “ cxd ` cd´1x
d´1 ` ¨ ¨ ¨ ` c1x ` c0 “ c

dź

i“1

px ´ riq,

where c “ cd, c0, . . . , cd´1 P Z, we define the polynomial

(2.1) F pxq “ cd
2`d

ź

1ďi,jďd

´
x ´ pri ´ rjq

¯
“ cd

2

dź

i“1

f̃px ` riq,

so that degF “ d2. We will need the following properties of F .

Lemma 2.1. The polynomial F obeys the following properties:

(i) F P Zrxs;
(ii) If fpaq ” fpbq ” 0 pmod qq for some integers a and b, then F pa ´ bq ” 0 pmod qq;

(iii) F plq ‰ 0 for any l P Zzt0u.

Proof. Our proofs utilize the Fundamental Theorem of Symmetric Polynomials (FTSP) [10, p.20, Theorem (2.4)],

which states that any symmetric polynomial P P Zrus, with u “ pu1, . . . , ukq, is equal to a polynomial in

e1puq, . . . , ekpuq with integer coefficients, where ej is the j-th elementary symmetric polynomial. In particular,

by the definition of f̃ , cj “ p´1qj`dced´jprq for each 0 ď j ď d´1. Thus ejpcr1, . . . , crdq P Z for all 1 ď j ď d.

We start with the first claim. By (2.1),

F pxq “
dź

i“1

„ dÿ

j“0

cd´jpcx ` criq
jcj


,

whose coefficients are evidently symmetric polynomials in pcr1, . . . , crdq with integer coefficients. By FTSP,

F P Zrxs.
Now we turn to the second claim. Fix a P Z. We have

f̃pxq “ px ´ aqgpxq ` f̃paq
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for some polynomial g P Zrxs of degree d ´ 1 depending on a, and therefore by (2.1),

F pxq “ cd
2

dź

i“1

px ` ri ´ aqgpx ` riq ` f̃paqhpxq,

where, by another application of FTSP, h P Zrxs. A similar argument shows that

cd
2´1

dź

i“1

gpx ` riq P Zrxs

as well. Thus, for any b P Z,

F pa ´ bq “ cd
2´1p´1qdf̃pbq

dź

i“1

gpa ´ b ` riq ` f̃paqhpa ´ bq.

Therefore, fpaq ” fpbq ” 0 pmod qq implies f̃paq ” f̃pbq ” 0 pmod qq and hence q|F pa ´ bq for such q, as

needed.

For the third claim, let us assume for a contradiction that F plq “ 0 for some integer l ‰ 0. It means that there

is r0 P C so that fpr0 ` lq “ fpr0q “ 0. But then the polynomial

gpxq “ fpx ` lq ´ fpxq

also vanishes at the point x “ r0 and g ı 0 (otherwise r0 ` kl would be zero of f for any k, so that f ” 0).

Clearly, we also have deg g ă deg f . But this is impossible, since f is irreducible and thus the minimal polynomial

of r0 is f̃{c. �

We also need a classic theorem of Erdős [7] about the average size of the number of divisors of polynomials.

As is usual, τpnq stands for the number of positive divisors of n.

Lemma 2.2. For any irreducible polynomial g P Zrxs,
ÿ

kďx

τp|gpkq|q ! x log x.

Let ωpnq denote the number of distinct prime factors of the nonzero integer n. If q is prime and v mod q P

Iq ´ Iq , Lemma 2.1 (ii) implies that q|F pvq. Lemma 2.1 (iii) implies that F pvq ‰ 0 if v ‰ 0. Since |F pvq| ! vd
2

,

ωpF pvqq ! log v ` 1 and this proves (f).

Now we verify (g). If mq mod q P Iq ´ Iq then q|F pmqq by Lemma 2.1 (ii), and if mq ‰ 0 then F pmqq ‰ 0

by Lemma 2.1 (iii). We let m “ mq ` w. Thus, if m satisfies 0 ă |m| ď 2u, |w| ď u and m ‰ w, there are

Oplog uq primes dividing F pm ´ wq; that is, Oplog uq primes q with mq ` w “ m. Also, if m mod p P Ip ´ Ip
implies that p|F pmq. Also F is the product of at most d2 irreducible factors, say F “ F1 . . . Fs with each Fi

irreducible. Hence, if Npmq ě k then there are at least k distinct primes p dividing F pmq, and therefore, for some

i, at least k{s distinct primes dividing Fipmq. Hence, using Lemma 2.2,

#tu1{2 ă q ď u : Npmq ` wq ě ku ! #t0 ă |m| ď 2u : Npmq ě ku log u

ď plog uq
sÿ

i“1

#t0 ă |m| ď 2u : ωpFipmqq ě k{su

ď plog uq
sÿ

i“1

2´k{s
ÿ

0ă|m|ď2u

τpFipmqq

! 2´k{d2

u log2 u.

In the last inequality, the implied constant in the ! depends on d. This proves (g), with c1 “ 2 and c2 “ plog 2q{d2,

and completes the verification of the hypotheses of Theorem 2 for polynomial sieving systems.
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3. NOTATION AND BASIC SETUP

We use notation similar to that of [6], with the most important change being the modification of the weight

function λ (see (3.11) and (3.12) below). Throughout the proof, we will use positive parameters K, ξ, M which

we describe below; one may think of them as being fixed for most of the time (in fact, it is only the end of Section

4 where the exact choice of them is important). The implied constants in O, ! and related order estimates may

depend on these parameters, as well as on the constants B,C1, ρ, c1, c2 in conditions (a)–(c) and (e)–(g), and the

implied constants in the ! bounds in (f) and (g). We will rely on probabilistic methods; boldface symbols such

as S, λ, n, etc. will denote random variables (sets, functions, numbers, etc.), and the corresponding non-boldface

symbols S, λ, n will denote deterministic counterparts of these variables.

For a fixed δ P p1{103, Cp1qq, we define

(3.1) y “ rxplog xqδs

and

(3.2) z “
y log log x

plog xq1{2
.

As in [6], our goal is to find a number b so that Sx ` b has no elements in r1, ys, which will show that Sx has a

gap of size at least y. This is accomplished in three stages:

(1) (Uniform random stage) First, we choose b modulo P pzq uniformly at random; equivalently, for each

prime p ď z we choose b mod p randomly with uniform probability, independently for each p.

(2) (Greedy stage) Secondly, choose b modulo primes in pz, x{2s randomly, but dependent on the choice of b

modulo p for p ď z. A bit more precisely, for each prime q P pz, x{2s with |Iq| ě 1, we will select b ” bq
pmod qq so that tbq ` a ` kq : k P Z, a mod q P Iqu X r1, ys knocks out nearly as many elements of the

random set pSz ` bq X r1, ys as possible. Unlike the argument in [6], we make use of all of the elements

of Iq in this stage. This is the source of our improved theorems.

(3) (Clean up stage) Thirdly, we choose b modulo primes q P px{2, xs to ensure that the remaining elements

m P pSx{2 ` bq X r1, ys do not lie in pSx ` bq X r1, ys by matching a unique prime q “ qpmq with |Iq| ě 1

to each element m and setting b ” m pmod qq. Here we do use only a single element of Iq , whereas

using all of Iq would not improve our theorem at all.

To handle the Greedy stage (2), we divide the primes in pz, x{2s into subsets, where the primes in each subset

are about the same size and with |Iq| is constant. Primes with rare values of |Iq| will play an insignificant role in

our arguments, thus we define

N “ t1 ď ν ď B : ρν ą 0u,

so that, by the remarks following Hypothesis (g),

(3.3)
ÿ

νPN

νρν “ 1.

For example, for the polynomial sieving system with fpxq “ x2 ` 1, we have N “ t2u since ρ1 “ 0.

Let ξ ą 1 be a real number (which we will finally choose to be close to 1), and define the set of scales

H “

"
H P t1, ξ, ξ2, ...u :

2y

x
ď H ď

y

ξz

*

so that

(3.4) 2plog xqδ ď H ď
y

z
“

plog xq1{2

log log x
pH P Hq.

For each H P H and ν P N , let

QH,ν “

"
q P

´ y

ξH
,
y

H

ı
: |Iq| “ ν

*
.

Hypothesis (e) implies that for each fixed H, ν we have the asymptotic

(3.5) |QH,ν | „ ρνp1 ´ 1{ξq
y

H log x
px Ñ 8q.



6 KEVIN FORD, MIKHAIL R. GABDULLIN

Note that if we denote by ρ the density of primes p with |Ip| ě 1, then by (e),

(3.6) ρ “ lim
xÑ8

#tp ď x : |Ip| ě 1u

x{ log x
“

ÿ

νPN

ρν .

Let also

QH :“

"
q P

´ y

ξH
,
y

H

ı
: |Iq| P N

*
“

ď

νPN

QH,ν

and, for ν P N ,

Qν :“
ď

HPH

QH,ν ,

so that

Q :“
ď

HPH

QH “
ď

νPN

Qν .

We note that for all q P Q, z ă q ď x{2. Further, for each q P Q, let Hq be the unique H such that q P QH , which

is equivalent to
y

ξHq

ă q ď
y

Hq

.

Let also M be a number with

6 ă M ď 7,

which we will eventually take to be very close to 6. We use the notation

Sz “ Zz
ď

pďz

Ip,

and

Sz,x “ Zz
ď

zăpďx

Ip,

and also adopt the abbreviations

(3.7) P “ P pzq “
ź

pďz

p, σ “ σpzq :“
ź

pďz

ˆ
1 ´

|Ip|

p

˙
, S “ Sz ` b,

where b is a residue class chosen uniformly at random from Z{P pzqZ; so, S is a random shift of Sz . For a fixed

H P H, we also define

(3.8) P1 “
ź

pďHM

p, σ1 “ σpHM q, b1 ” b pmod P1q, S1 “ SHM ` b1,

and

(3.9) P2 “
ź

HMăpďz

p, σ2 “
σpzq

σpHM q
, b2 ” b pmod P2q, S2 “ SHM ,z ` b2, .

Obviously, for each H P H,

(3.10) P “ P1P2, σ “ σ1σ2, S “ S1 X S2.

Note that all the quantities defined in (3.8) and (3.9) depend on H and M ; however, we will not indicate this

dependence for brevity (the values of H and M will always be clear from context).

Finally, let νq “ |Iq| for primes q. For primes q P Qν , let

Iq “ ta1,q mod q, ..., aν,q mod qu pai,q P r1, qs X Z, 1 ď i ď νq.

We set

(3.11) APpJ ; q, nq “

˜
νqğ

i“1

tn ` ai,q ` hq : 1 ď h ď Ju

¸
X S1,
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this being a significant departure from [6]. Here APpJ ; q, nq is a portion of νq residue classes modulo q. Also

define

(3.12) λpH; q, nq “
✶APpKH;q,nqĂS2

σ
|APpKH;q,nq|
2

,

where K is a positive integer which will be chosen large enough, and ✶X is the indicator function of a statement

X . So, for each q P Q, the weights λpH; q, nq are random functions which depend on b. Heuristically, λpH; q, nq

has mean approximately 1, since the probability that a given set Y lies in S2 is about σ
|Y |
2 ; see Lemma 6.1 below

for a precise statement.

3.1. General notational conventions. The notation f “ Opgq and f ! g mean that f{g is bounded. The notation

f “ Oďpgq means that |f |{g ď 1. The notation op1q stands for a function tending to zero as x Ñ 8, at a rate

which may depend only on the parameters ξ,K,M and δ, which we consider to be fixed. The notation f „ g

means f “ g ` op1q. As is usual, ωpnq is the number of distinct prime factors of n.

4. REDUCTION TO CONCENTRATION OF λpH; q, nq

In this section we deduce Theorem 2 from the following statement. Recall that S “ Sz ` b with b chosen

uniformly at random from Z{P pzqZ.

Theorem 3. Let δ ă Cp1q, M ą 6, ξ ą 1, K ą 0, 0 ă ε ă 1
7

pM ´ 6q, and assume that x is large enough

depending on δ,M, ξ,K, and ε. Then there exist a choice of b pmod P pzqq and subsets Rν Ď Qν for ν P N so

that:

(i) one has

(4.1) |S X r1, ys| ď 2σy;

(ii) for all q P R “
Ť

νPN Rν one has

(4.2)
ÿ

´pK`1qyănďy

λpHq; q, nq “

ˆ
1 ` Oď

ˆ
1

plog xqδp1`εq

˙˙
pK ` 2qy;

(iii) for each ν P N and i P t1, ..., νu, all but at most
ρx

8B2 log x
elements n of S X r1, ys obey

(4.3)
ÿ

qPRν

ÿ

hďKHq

λpHq; q, n ´ ai,q ´ qhq “

ˆ
C2,ν ` Oď

ˆ
2

plog xqδp1`εq

˙˙
pK ` 2qy,

where C2,ν is independent of n and i with

(4.4) C2,ν „
Kρν

pK ` 2qM

1 ´ 1{ξ

log ξ
log p1{p2δqq px Ñ 8q.

We now commence with the deduction of Theorem 2 from Theorem 3. Let V be the set of elements n of

S X r1, ys for which (4.3) holds for all ν P N and i “ 1, ..., ν. For each q P R, we define the random integer nq

by the distribution

Ppnq “ nq “
λpHq; q, nqř

´pK`1qyăn1ďy λpHq; q, n1q
p´pK ` 1qy ă n ď yq.

For q P R, define the random set

eq “

νqğ

i“1

ei,q,

where

(4.5) ei,q “ V X tnq ` ai,q ` hq : 1 ď h ď KHqu, i “ 1, ..., νq.
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Note that ei,q and ej,q are disjoint for i ‰ j, since all ai,q are distinct modulo q. To be able to make a clean-up

stage, we need to find a choice nq of nq (which corresponds to a choice eq of the random sets eq) for each q P R,

so that for b satisfying b ” nq pmod qq for q P R, the estimate

(4.6)

ˇ̌
ˇpSx{2 ` bq X r1, ys

ˇ̌
ˇ ď

ρx

4 log x

holds. Then by (3.6), the number of primes p P px{2, xs with |Ip| ě 1 is „ ρx
2 log x

for x large, which guarantees that

clean-up stage is possible. To be precise, we may match each element m P pSx{2 ` bq X r1, ys with a unique prime

p P px{2, xs with |Ip| ě 1, and choose b ” m ´ a1,p pmod pq for each such pair. Then pSx ` bq X r1, ys “ H, as

desired.

Since Sx{2 ` b avoids the νq “ |Iq| residues nq ` a1,q, ..., nq ` aνq,q modulo q, we have, by the definition of

the set V and (4.5),
ˇ̌
ˇpSx{2 ` bq X r1, ys

ˇ̌
ˇ ď

ˇ̌
ˇ
`
pSx{2 ` bq X r1, ys

˘
zV

ˇ̌
ˇ `

ˇ̌
ˇV z

ď

qPR

eq

ˇ̌
ˇ

ď
ÿ

νPN

νÿ

i“1

ρx

8B2 log x
`

ˇ̌
ˇ̌
ˇV z

ď

qPR

eq

ˇ̌
ˇ̌
ˇ

ď
ρx

4 log x
,

thus verifying (4.6), provided that

(4.7)

ˇ̌
ˇ̌
ˇV z

ď

qPR

eq

ˇ̌
ˇ̌
ˇ ď

ρx

8 log x
.

To show (4.7), we need the following hypergraph covering lemma, which is Lemma 3.1 of [6].

Lemma 4.1 (Hypergraph covering lemma). Suppose that 0 ă δ ď 1{2 and K0 ě 1, and let y ě y0pδ,K0q with

y0pδ,K0q sufficiently large, and let V be a finite set with |V | ď y. Let 1 ď s ď y, and suppose that e1, ..., es are

random subsets of V satisfying the following:

(4.8) |ei| ď
K0plog yq1{2

log log y
p1 ď i ď sq,

(4.9) Ppv P eiq ď y´1{2´1{100 pv P V, 1 ď i ď sq,

(4.10)

sÿ

i“1

Ppv, v1 P eiq ď y´1{2 pv, v1 P V, v ‰ v1q,

(4.11)

ˇ̌
ˇ̌
ˇ

sÿ

i“1

Ppv P eiq ´ C2

ˇ̌
ˇ̌
ˇ ď η pv P V q,

where C2 and η satisfy

(4.12) 102δ ď C2 ď 100, η ě
1

plog yqδ log log y
.

Then there are subsets ei of V , 1 ď i ď s, with ei being in the support of ei for every i, and such that

(4.13)

ˇ̌
ˇ̌
ˇV z

sď

i“1

ei

ˇ̌
ˇ̌
ˇ ď C3η|V |,

where C3 is an absolute constant.
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We apply this lemma with s “ |R|, tei : i “ 1, ..., su “ teq : q P Ru, K0 “ BK, and

η “
ρ

20C1C3plog xqδ
.

By (1.1) and (3.2), we have σ “ σpzq „ C1{ log z „ C1{ log x. The conclusion of the lemma (with the bound

(4.1)) implies that there is a choice of sets eq with
ˇ̌
ˇ̌
ˇV z

ď

qPR

eq

ˇ̌
ˇ̌
ˇ ď C3η|V | “

ρ|V |

20C1plog xqδ
ď

ρσy

10C1plog xqδ
ď

ρx

8 log x
,

which is enough for (4.7), so that we are left to verify the conditions of the lemma. First of all, by (3.4), we have

|eq| “

νqÿ

i“1

|ei,q| ď νqKHq ď
BKy

z
ď

BKplog xq1{2

log log x
ď

BKplog yq1{2

log log y
,

which gives us (4.8). For each n P V and q P R, (4.2) together with the trivial bound λpHq; q, nq ď σ
´KBHq

2 ď

yop1q (from (3.4), (3.11) and (3.12)) gives us

Ppn P eqq “
ÿ

1ďhďKHq

νqÿ

i“1

Ppnq “ n ´ ai,q ´ hqq

!
1

y

ÿ

1ďhďKHq

νqÿ

i“1

λpn ´ ai,q ´ hqq

! y´0.999,

(4.14)

which verifies (4.9). Now we turn to (4.11). From (4.2), (4.3), and (4.4), followed by an application of (3.3), we

obtain
ÿ

qPR

Ppn P eqq “
ÿ

νPN

ÿ

qPRν

Ppn P eqq “
ÿ

νPN

νC2,ν ` Opplog xq´δp1`εqq “

“
ÿ

νPN

νρν
Kp1 ´ 1{ξq

pK ` 2qM log ξ
logp1{p2δqq ` op1q “ C2 ` op1q,

where we define

C2 “
Kp1 ´ 1{ξq

pK ` 2qM log ξ
logp1{p2δqq.

Recalling that δ ă Cp1q together with the definition (1.2) of Cp1q, we see that C2 is at least 102δ provided that

M ´ 6 and ξ ´ 1 are sufficiently small in terms of δ, K is sufficiently large in terms of δ, 0 ă ε ă 1
7

pM ´ 6q, and

x is large enough depending on δ,M, ξ,K, ε. Also C2 ď 100 due to δ ě 10´3. Thus, (4.11) follows.

It remains to check that (4.10) holds. We take any distinct v, v1 P V and see that

ÿ

qPR

Ppv, v1 P eqq ď
ÿ

qPR

˜
νqÿ

i“1

Ppv, v1 P ei,qq `
ÿ

1ďi,jďνq

i‰j

Ppv P ei,q, v
1 P ej,qq

¸
.

If both v, v1 both belong to some ei,q , then q divides v ´ v1; but 0 ă |v ´ v1| ď Ky and q is a prime greater

than z ą y3{4, hence there is at most one such q. Further, if v P ei,q and v1 P ej,q for some q and i ‰ j, then

v ´ v1 ” ai,q ´ aj,q pmod qq and hence v ´ v1 mod q P Iq ´ Iq . By hypothesis (f) and the bound |v ´ v1| ď Ky,

the number of such q is ! y0.49. Thus, by (4.14),
ÿ

qPR

Ppv, v1 P eqq ! y0.49 ¨ max
v,i,q

Ppv P ei,qq ! y´0.509,

which gives (4.10).

Thus, we verified the conditions of Lemma 4.1, and (4.7) follows. This completes the proof of Theorem 2

assuming Theorem 3.
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5. CONCENTRATION OF λpH; q, nq

In this section we reduce Theorem 3 to the following assertion.

Theorem 4. Let M ą 2, K ą 0, and ξ ą 1. Then

piq One has

(5.1) E

ˇ̌
ˇS X r1, ys

ˇ̌
ˇ “ σy; E

ˇ̌
ˇS X r1, ys

ˇ̌
ˇ
2

“

ˆ
1 ` O

ˆ
1

log y

˙˙
pσyq2;

piiq For every H P H, every ν P N and j P t0, 1, 2u,

(5.2) E
ÿ

qPQH,ν

˜
ÿ

´pK`1qyănďy

λpH; q, nq

¸j

“

ˆ
1 ` O

ˆ
logH

HM´2

˙˙`
pK ` 2qy

˘j
|QH,ν |;

piiiq For every H P H, every ν P N , i P t1, ..., νu, and j P t0, 1, 2u,

(5.3) E
ÿ

nPSXr1,ys

˜
ÿ

qPQH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq

¸j

“

ˆ
1 ` O

ˆ
logH

HM´2

˙˙ˆ
|QH,ν | ¨ tKHu

σ2

˙j

σy.

Deduction of Theorem 3 from Theorem 4. Fix δ ă Cp1q, M ą 6, ξ ą 1, K ą 0, and also 0 ă ε ă 1
7

pM ´ 6q.

From Theorem 4 (i) we have

E

ˇ̌
ˇ|S X r1, ys| ´ σy

ˇ̌
ˇ
2

!
pσyq2

log y
.

Hence by Chebyshev’s inequality, we see that

(5.4) Pp|S X r1, ys| ď 2σyq “ 1 ´ Op1{ log xq,

showing that (4.1) in Theorem 3 holds with probability 1 ´ op1q.

Now we work on parts (ii) and (iii) of Theorem 3. For each H P H and ν P N , we have from (5.2)

(5.5) E
ÿ

qPQH,ν

¨
˝

ÿ

´pK`1qyănďy

λpH; q, nq ´ pK ` 2qy

˛
‚
2

!
y2|QH,ν |

HM´2´ε
.

Now let RH,ν be the (random) set of q P QH,ν for which

(5.6)

ˇ̌
ˇ̌
ˇ̌

ÿ

´pK`1qyănďy

λpH; q, nq ´ pK ` 2qy

ˇ̌
ˇ̌
ˇ̌ ď

y

H1`ε
.

By estimating the left-hand side of (5.5) from below by the sum over q P QH,νzRH,ν , we find that

(5.7) E|QH,νzRH,ν | !
|QH,ν |

HM´4´3ε
.

We let

R
ν “

ď

HPH

RH,ν ,

and then Theorem 3 (ii) follows from the lower bound on H given in (3.4).



LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS 11

We now turn to the condition (iii) of Theorem 3. Similarly to (5.6), for each H P H, ν P N , and i P t1, ..., νu,

from (5.3) we have

(5.8) E
ÿ

nPSXr1,ys

¨
˝

ÿ

qPQH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq ´
|QH,ν | ¨ tKHu

σ2

˛
‚
2

!

1

HM´2´ε

ˆ
|QH,ν | ¨ tKHu

σ2

˙2

σy.

Let EH,ν,i be the set of n P S X r1, ys such that

(5.9)

ˇ̌
ˇ̌
ˇ̌

ÿ

qPQH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq ´
|QH,ν | ¨ tKHu

σ2

ˇ̌
ˇ̌
ˇ̌ ě

|QH,ν | ¨ tKHu

σ2H1`ε
.

Then, since M ą 6 and ε ă pM ´ 6q{7, (5.8) implies that

E|EH,ν,i| !
σy

HM´4´3ε
!

σy

H2
,

and, hence, |EH,ν,i| ď σy{H1`ε with probability 1 ´ OpH´1`εq.

Now we estimate the contribution from “bad” primes q P QH,νzRH,ν . For any h ď KH , we get from

Cauchy-Schwarz inequality for vector functions

E
ÿ

qPQH,νzRH,ν

ÿ

nPSXr1,ys

λpH; q, n ´ ai,q ´ qhq ď

pE|QH,νzRH,ν |q1{2

¨
˚̋
E

ÿ

qPQH,νzRH,ν

ˇ̌
ˇ̌
ˇ̌

ÿ

´pK`1qyănďy

λpH; q, nq

ˇ̌
ˇ̌
ˇ̌

2
˛
‹‚

1{2

,

where we extended the range of summation of λpH; q, ¨q to the larger interval p´pK`1qy, ys (note that ai,q`qh ď
q ` Ky ď pK ` 1qy and the weights λpH; q, ¨q are non-negative). Further, by the triangle inequality, (5.5) and

(5.7),

E
ÿ

qPQH,νzRH,ν

ˇ̌
ˇ̌
ˇ

ÿ

´pK`1qyănďy

λpH; q, nq

ˇ̌
ˇ̌
ˇ

2

ď

2E
ÿ

qPQH,νzRH,ν

˜ˇ̌
ˇ̌
ˇ

ÿ

´pK`1qyănďy

λpH; q, nq ´ pK ` 2qy

ˇ̌
ˇ̌
ˇ

2

` pK ` 2q2y2

¸
!

y2|QH,ν |

HM´4´3ε
.

Combining two latter estimates, using (5.7) again, and summing over all h ď KH , we get

E
ÿ

nPSXr1,ys

ÿ

qPQH,νzRH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq !
y|QH,ν |

HM´5´3ε
.

Let FH,ν,i be the set of n P S X r1, ys such that

(5.10)
ÿ

qPQH,νzRH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq ě
|QH,ν | ¨ tKHu

σ2H1`ε
.

Then

E|FH,ν,i| !
σ2y

HM´5´4ε
!

σy logH

HM´5´4ε
,

and, by Markov’s inequality,

|FH,ν,i| ď
σy

H1`ε

with probability 1 ´ OpH´pM´6´6εqq. Since ε ă pM ´ 6q{7, we have M ´ 6 ´ 6ε ą ε, and the last probability

becomes 1 ´ OpH´εq.
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Since
ř

HPH H´ε ! plog xq´δε, with probability 1´op1q we have that for all H P H, ν P N , and i P t1, ..., νu
that both sets EH,ν,i,FH,ν,i have size at most pσyqH´1´ε.

Now we make a choice of b pmod P pzqq. We consider the event that |SXr1, ys| ď 2σy and that for each H, ν, i,

the sets EH,ν,i,FH,ν,i have size at most pσyqH´1´ε. By the above discussion, this event holds with probability

at least 1 ´ op1q as x Ñ 8 (so this probability is at least, say, 1{2 whenever x is large enough depending on

δ,M, ξ,K, and ε). From now, we fix a b mod P pzq such that it is so, and thus all of our random sets and weights

become deterministic. With this choice of b we verify condition (iii) in Theorem 3.

For fixed ν P N and i P t1, ..., νu, we set

Mν,i “
´
S X r1, ys

¯
z
ď

HPH

pEH,ν,i Y FH,ν,iq .

Now we verify (4.3) with given ν and i for n P Mν,i. By (3.4),
ř

HPH H´1´ε ! plog xq´p1`εqδ , and so the

number of exceptional elements satisfies
ˇ̌
ˇ̌
ˇ
ď

HPH

pEH,ν,i Y FH,ν,iq

ˇ̌
ˇ̌
ˇ !

σy

plog xqp1`εqδ
,

which, by (3.2), is smaller than ρx
8B2 log x

for large x. We fix arbitrary n P Mν,i. For such n, the inequalities (5.9)

and (5.10) both fail, and therefore for each H P H,

ÿ

qPRH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq “

ˆ
1 ` Oď

ˆ
2

plog xqp1`εqδ

˙˙
|QH,ν | ¨ tKHu

σ2

.

Summing over all H P H, we have

ÿ

qPRν

ÿ

hďKHq

λpHq; q, n ´ ai,q ´ qhq “

ˆ
1 ` Oď

ˆ
2

plog xqp1`εqδ

˙˙
C2,νpK ` 2qy

with (recall that σ2 depends on H)

C2,ν “
1

pK ` 2qy

ÿ

HPH

|QH,ν | ¨ tKHu

σ2

.

Note that C2,ν depends on x,K,M, ξ, and δ, but not on n. Since

tKHu “ KH
`
1 ` Op1{Hq

˘
“ KH

`
1 ` Oplog xq´δ

˘

and

σ´1
2 “

ź

HMăpďz

p1 ´ |Ip|{pq´1 „
log z

M logH
,

we get, using (3.5),

C2,ν „
K

pK ` 2qy
¨ ρνp1 ´ 1{ξq

ÿ

HPH

y{H

log x
¨
H log z

M logH
„

ρνKp1 ´ 1{ξq

MpK ` 2q

ÿ

HPH

1

logH
,

as x Ñ 8. Recalling the definition of H, we see that

C2,ν „
ρνKp1 ´ 1{ξq

MpK ` 2q log ξ

ÿ

j

1

j
,

where j runs over the interval
δ log log x

log ξ
ď j ď

p1{2 ` op1qq log log x

log ξ
.

We thus obtain

C2,ν „
ρνKp1 ´ 1{ξq

MpK ` 2q log ξ
logp1{p2δqq, x Ñ 8,

and the claim (4.3) follows. �

It remains to establish Theorem 4. This is the aim of the last section of the paper.
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6. COMPUTING CORRELATIONS

In this section we prove Theorem 4. The claim (i) is exactly (5.1) and (5.2) of Theorem 3 from [6]. To verify

the claims (ii) and (iii), we must rework the argument from [6] using our new weight function λ from (3.12). For

H P H, let DH be the collection of square-free numbers D, all of whose prime divisors lie in pHM , zs. For each

D P DH , let ID Ă Z{DZ be defined as ID “
Ş

p|D Ip. Further, for A ą 0, let

(6.1) EApm;Hq “
`
✶m‰0

˘ ÿ

DPDHzt1u

AωpDq

D
✶m mod D P ID´ID .

Note that EApm;Hq “ EAp´m;Hq for all m P Z. Also, this notation differs slightly from that in [6], in that we

include the factor ✶m‰0 here. Our notation then makes in unnecessary to explicitly exclude the case m “ 0 from

summations.

We need the following lemmas, which are Lemma 5.1 and Lemma 5.2 of [6], respectively.

Lemma 6.1. Let 10 ă H ă z1{M , 1 ď l ď BKH , and U Ă V be two finite sets of integers with |V| “ l. Then

PpU Ă S2q “ σ
|U |
2

˜
1 ` O

´
|U |2H´M ` l´2

ÿ

v,v1PV

E2l2Bpv ´ v1;Hq
¯¸

.

We note that in Lemma 5.1 of [6] the slightly different range 1 ď l ď 10KH is stated, but actually the same

proof gives the above Lemma 6.1.

Lemma 6.2. Let 10 ă H ă z1{M , 0 ă AB2 ď HM and pmtqtPT be a finite sequence such that

(6.2)
ÿ

tPT

✶mt”a pmod Dq !
X

ϕpDq
` R

for some X,R ą 0, and all D P DHzt1u and a P Z{DZ. Then for any integer j

ÿ

tPT

EApmt ` j;Hq !
XA

HM
` R exppAB2 log log yq.

For the rest of the paper we use the notation

A “ ApHq “ 8B3K2H2

for the brevity, and also for prime q, define the set

Aq “
!
ai,q ´ aj,q

ˇ̌
1 ď i ď j ď νq

)
.

Recalling that ai,q P r1, qs, we see that Aq Ă r1 ´ q, q ´ 1s.
We will need the following bound, which is where we deploy Hypothesis (g).

Lemma 6.3. Let ν P N and H P H. For q P QH,ν , suppose that mq mod q P Iq ´ Iq with 0 ă |mq| ď x log x,

and suppose that w P Z with |w| ď x log x. Then

ÿ

qPQH,ν

EApHqpmq ` w;Hq !
|QH,ν | logH

HM´2
.

Proof. If mq mod D P ID ´ ID, then mq mod p P Ip ´ Ip for each p|D. Thus, if mq ` w ‰ 0 then

EApmq ` w;Hq “
ź

mq`w mod p P Ip´Ip

HMăpďz

ˆ
1 `

A

p

˙
´ 1

ď exp

˜
A

ÿ

mq`w mod p P Ip´Ip

HMăpďz

1

p

¸
´ 1.

(6.3)
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Recall the notation Npmq from Hypothesis (f). Thus, the number of primes p with HM ă p ď z and with

mq ` w mod p P Ip ´ Ip is at most Npmq ` wq. Let c3 be a sufficiently large constant, depending on c1 and c2
from Hypothesis (g), and let

rQH,ν “
 
q P QH,ν : Npmq ` wq ď c3 logH

(
.

Clearly, for q P rQH,ν we have

ÿ

mq`w mod p P Ip´Ip

HMăpďz

1

p
ď

c3 logH

HM
.

Therefore, using the fact that A “ OpH2q,

ÿ

qP rQH,ν

EApmq ` w;Hq ! | rQH,ν |
´
exppOpplogHqH´pM´2qqq ´ 1

¯
!

|QH,ν | logH

HM´2
.

Using Hypothesis (g), for some positive constants c1, c2 (depending only on the sieving system),

ÿ

qPQH,νz rQH,ν

EApmq ` w;Hq ď
ÿ

kąc3 logH

#
 
q P QH,ν : mq ` w ‰ 0, Npmq ` wq “ k

(
eAk{HM

! xplog xqc1`1
ÿ

kąc3 logH

e´c2k exp
´
OpkH´pM´2qq

¯

! xplog xqc1`1e´c2c3 logH

! |QH,ν |H´pM´2q,

if c3 is large enough, using the lower bound H ě plog xqδ from (3.4) and the asymptotic (3.5); recall also that

6 ă M ď 7. This concludes the proof. �

Now we fix H P H and ν P N for the rest of the paper. We start with the proof of part (ii) in the case j “ 1 (the

case j “ 0 being trivial), which is

(6.4) E
ÿ

qPQH,ν

ÿ

´pK`1qyănďy

λpH; q, nq “

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
pK ` 2qy|QH,ν |.

By (3.12), the left-hand side expands as

E
ÿ

qPQH,ν

ÿ

´pK`1qyănďy

✶APpKH;q,nqĂS2

σ
|APpKH;q,nq|
2

.

Recall that, according to the definitions (3.8) and (3.9), b1 and b2 are independent, and so are APpKH; q, nq
and S2. With b1 fixed, APpKH; q, nq is also fixed and we will denote it as AP pKH; q, nq. Then the above

expression equals

ÿ

qPQH,ν

ÿ

´pK`1qyănďy

ÿ

b1 mod P1

Ppb1 “ b1q

σ
| APpKH;q,nq|
2

PpAPpKH; q, nq Ă S2q.

For fixed q, n, and b1, we apply Lemma 6.1 to the sets U “ APpKH; q, nq and

V “
νğ

i“1

tn ` ai,q ` qh : 1 ď h ď KHu,
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so that l “ |V| “ νtKHu — H . Since EApm;Hq is an increasing function of A, we find that the left-hand side of

(6.4) is equal to

(6.5)
ÿ

qPQH,ν

ÿ

´pK`1qyănďy

”
1 ` O

`
H´pM´2q

˘ı
`

` O

ˆ
yH´2

ÿ

qPQH,ν

ÿ

aPAq

ÿ

1ďh,h1ďKH

EApHqpa ` qh ´ qh1;Hq

˙
.

We note that |a ` qph ´ h1q| ď pK ` 1qy ď x log x for a P Aq and large x. When h and h1 are fixed, we apply

Lemma 6.3 with w “ 0 and mq “ a ` qh ´ qh1, where we’ve chosen one of the Op1q elements a P Aq for each

q. Thus, we see that the second line in (6.5) is

! pyH´2qH2|QH,ν | ¨ plogHqH´M`2 “
y|QH,ν | logH

HM´2
.

This proves the j “ 1 case of part (ii) in Theorem 4, that is, (6.4).

Now we turn to the case j “ 2 of (ii), which is

E
ÿ

qPQH,ν

ˆ ÿ

´pK`1qyănďy

λpH; q, nq

˙2

“

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
pK ` 2q2y2|QH,ν |.

The left-hand side is expanded as

E
ÿ

qPQH,ν

ÿ

´pK`1qyăn1,n2ďy

✶APpKH;q,n1qYAPpKH;q,n2qĂS2

σ
|APpKH;q,n1q|`|APpKH;q,n2q|
2

.

For fixed q, n1, n2, we will apply Lemma 6.1 with

U “ APpKH; q, n1q Y APpKH; q, n2q

and

V “ V1 Y V2,

where

Vj “
νğ

i“1

tnj ` ai,q ` qh : 1 ď h ď KHu, j “ 1, 2.

We first estimate the contribution of the triples pn1, n2, qq for which V1 and V2 have non-empty intersection. This

implies that pn1 ´ n2q mod q P Aq , and, hence, there are OpyHq such pairs n1, n2 for each q. Each of them

contributes at most σ´2BKH
2 “ yop1q, so the total contribution of such triples is Opy1`op1q|QH,ν |q, which is

negligible. Thus we may restrict our attention to those triples pn1, n2, qq for which the sets V1 and V2 do not

intersect; let us call these triples good. In particular, for any good triple pn1, n2, qq, the sets APpKH; q, n1q and

APpKH; q, n2q also do not intersect. Then it is enough to show that

(6.6) E
ÿ

qPQH,ν

ÿ

´pK`1qyăn1,n2ďy
pn1,n2,qq good

✶APpKH;q,n1q\APpKH;q,n2qĂS2

σ
|APpKH;q,n1q|`|APpKH;q,n2q|
2

“

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
pK ` 2q2y2|QH,ν |.

Arguing as in the case j “ 1, we see that the left-hand side of (6.6) equals

ÿ

qPQH,ν

ÿ

´pK`1qyăn1,n2ďy
pn1,n2,qq good

´
1 ` O

´ 1

HM´2

¯¯
`

` O

˜
1

H2

ÿ

qPQH,ν

ÿ

´pK`1qyăn1,n2ďy

R0pn1, n2, qq

¸
,

(6.7)
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where

R0pn1, n2, qq :“
ÿ

v,v1PV

EApHqpv ´ v1;Hq

!
ÿ

1ďh,h1ďKH

ÿ

aPAq

EApHqpn1 ´ n2 ` a ` qph ´ h1q;Hq

!
ÿ

1ďh,h1ďKH
aPAq

a‰0 or h‰h1

EApHqpn1 ´ n2 ` a ` qph ´ h1q;Hq ` H EApHqpn1 ´ n2q

“ R1pn1, n2, qq ` H EApHqpn1 ´ n2q,

say. Recalling that all but OpyHq pairs pn1, n2q are good, we get the main term pK ` 2q2y2|QH,ν | from the first

line of (6.7), with an acceptable error term.

We next estimate the contribution from R1pn1, n2, qq. With n1, n2, h1, h2 fixed and also fixing one of the Op1q
choices for a P Aq for each q P QH,ν , we estimate

ř
qPQH,ν

R1pn1, n2, qq using Lemma 6.3 with w “ n1 ´ n2

and mq “ a ` qph ´ h1q. Since either a ‰ 0 or h ‰ h1, we have mq ‰ 0. Also, for large x, |w| ď x log x and

|mq| ď x log x. Therefore,

ÿ

n1,n2

ÿ

qPQH,ν

R1pn1, n2, qq ! H2y2
|QH,ν | logH

HM´2
,

which is acceptable for (6.6). To estimate the contribution from EApHqpn1 ´n2;Hq, we apply Lemma 6.2, by first

fixing n2 and observing that (6.2) holds with X “ y and R “ 1. Therefore, recalling that ApHq ! H2,

ÿ

qPQH,ν

ÿ

´pK`1qyăn1,n2ďy

EApHqpn1 ´ n2;Hq ! |QH,ν | y

ˆ
y

HM´2
` eAB2 log log y

˙

!
y2|QH,ν |

HM´2
,

which is also acceptable for (6.6). This gives (6.6), as desired, completing the j “ 2 case of (ii).

Proof of (iii). Fix H P H, ν P N and 1 ď i ď ν. The case j “ 0 follows from part (i), so we focus on the case

j “ 1, which states

E
ÿ

nPSXr1,ys

ÿ

qPQH,ν

ÿ

hďKH

λpH; q, n ´ ai,q ´ qhq “

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
|QH,ν | ¨ tKHuσ1y.

It is enough to show that, for any h ď KH ,

(6.8) E
ÿ

nPSXr1,ys

ÿ

qPQH,ν

λpH; q, n ´ ai,q ´ qhq “

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
|QH,ν |σ1y.

According to (3.12), the left-hand side is equal to

E
ÿ

nPSXr1,ys

ÿ

qPQH,ν

✶APpKH;q,n´ai,q´qhqĂS2

σ
|APpKH;q,n´ai,q´qhq|
2

By (3.10), the condition n P S X r1, ys implies that n P S1 X r1, ys. On the other hand, if n P S1, then

n P APpKH; q, n ´ ai,q ´ qhq, and thus the condition n P S2 is contained in the condition APpKH; q, n ´
ai,q ´ qhq Ă S2. So the left-hand side of (6.8) can be rewritten as

E
ÿ

nPS1Xr1,ys

ÿ

qPQH,ν

✶APpKH;q,n´ai,q´qhqĂS2

σ
|APpKH;q,n´ai,q´qhq|
2

.
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Recalling that S2 is independent of S1 and of APpKH; q, n´ai,q ´ qhq, we may apply Lemma 6.1 as before and

find that the left-hand side of (6.8) is

E
ÿ

nPS1Xr1,ys

ÿ

qPQH,ν

˜
1 ` O

˜
1

HM´2
` H´2

ÿ

aPAq

ÿ

h1,h2ďKH

EApHqpa ` qh1 ´ qh2q

¸¸
.

Recall that E|S1 X r1, ys| “ σ1y by Theorem 4 (i). Thus, we see that (6.8) follows from Lemma 6.3, applied with

n, h1, h2 fixed, w “ 0, some choice of a P Aq for each q, and mq “ a ` qh1 ´ qh2.

Now we turn to the case j “ 2 of (iii), which states

(6.9)
ÿ

h1,h2ďKH

E
ÿ

nPSXr1,ys

ÿ

q1,q2PQH,ν

λpH; q1, n ´ ai,q1 ´ q1h1qλpH; q2, n ´ ai,q2 ´ q2h2q

“

ˆ
1 ` O

ˆ
logH

HM´2

˙˙
|QH,ν |2 ¨ tKHu2

σ1

σ2

y.

Arguing as in the j “ 1 case, the left-hand side equals

(6.10)
ÿ

h1,h2ďKH

E
ÿ

nPS1Xr1,ys

ÿ

q1,q2PQH,ν

✶APpKH;q1,n´ai,q1
´q1h1qYAPpKH;q2,n´ai,q2

´q2h2qĂS2

σ
|APpKH;q1,n´ai,q1

´q1h1q|`|APpKH;q2,n´ai,q2
´q2h2q|

2

;

Note that here we again replace the condition n P S X r1, ys by n P S1 X r1, ys for the same reason as in j “ 1

case. Further, by (5.1), the contribution from q1 “ q2 is

! H2σ´2BKH
2 |QH,ν |σ1y ! |QH,ν |y1`op1q,

which, by (3.5), is an acceptable error term.

We call a pair pq1, q2q P Q2
H,ν with q1 ‰ q2 good, if for all S1, all n P S1 X r1, ys and all h1, h2 ď KH we

have

tnu “ APpKH; q1, n ´ ai,q1 ´ q1h1q X APpKH; q2, n ´ ai,q2 ´ q2h2q,

and call pq1, q2q bad otherwise; recall that for any n P S1 X r1, ys, n lies in both APpKH; q1, n ´ ai,q1 ´ q1h1q
and APpKH; q2, n ´ ai,q2 ´ q2h2q. We need to estimate the number of bad pairs. First of all, if a pair pq1, q2q is

bad then there is a choice of h1, h2 so that both sets

νğ

j1“1

taj1,q1 ´ ai,q1 ` q1ph2
1 ´ h1q : h2

1 ď KHu

and
νğ

j2“1

taj2,q2 ´ ai,q2 ` q2ph2
2 ´ h2q : h2

2 ď KHu

contain the same nonzero number, say, n0. Fix q2, j2, h2 and h2
2 so that

n0 “ aj2,q2 ´ ai,q2 ` q2ph2
2 ´ h2q.

Then we have n0 mod q1 P Iq1 ´Iq1 . By Hypothesis (f), the number of such q1 is Opy0.49q. Therefore, the number

of bad pairs pq1, q2q is ! y1.49H2 ! y1.5. Since each of them contributes y1`op1q to the left side of (6.10), the

contribution from these bad pairs is negligible.

It remains to estimate the contribution to (6.10) from good pairs pq1, q2q. Note that if pq1, q2q is a good pair,

then, for any S1, h1, h2, n the set

APpKH; q1, n ´ ai,q1 ´ q1h1q Y APpKH; q2, n ´ ai,q2 ´ q2h2q
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has size |APpKH; q1, n ´ ai,q1 ´ q1h1q| ` |APpKH; q2, n ´ ai,q2 ´ q2h2q| ´ 1. Then, as before, we can apply

Lemma 6.1 to rewrite the terms in (6.10) corresponding to good pq1, q2q as

(6.11)
σy

σ2
2

ÿ

pq1,q2q good

ÿ

h1,h2ďKH

ˆ
1 ` O

ˆ
1

HM´2

˙˙
`

` O

˜
σy

σ2
2H

2

ÿ

q1,q2PQH,ν

ˆ
H2E1pq1q ` H2E1pq2q ` E2pq1, q2q

˙¸
,

where again we used that E|S1 X r1, ys| “ σ1y from (5.1), that σ1{σ2 “ σ{σ2
2 and where we define

E1pqq “
ÿ

aPAq

ÿ

h,h1ďKH

EApHqpa ` qh ´ qh1;Hq

and

E2pq1, q2q “
ÿ

1ďh1,h2ďKH

ÿ

a1PAq1

a2PAq2

ÿ

h1

1
,h1

2
ďKH

EApHqpa1 ´ a2 ` q1h
1
1 ´ q1h1 ´ q2h

1
2 ` q2h2;Hq.

As the number of bad pairs pq1, q2q is very small, the first line of (6.11) produces the main term in (5.3) with an

acceptable error.

By Lemma 6.3 with w “ 0,

(6.12)
ÿ

q1,q2PQH,ν

pE1pq1q ` E1pq2qq ! H2 |QH,ν |2 logH

HM´2
.

For the sum on E2p¨q, if we have a1 “ a2 “ h1
1 ´ h1 “ h1

2 ´ h2 “ 0 then the summand is zero for any q1, q2.

Consider now the summands with either a1 ‰ 0 or h1 ‰ h1
1. Fix h1, h2, h

1
1, h

1
2, q2, a2 and also a choice a1 P Aq1

for each q1 P QH,ν . Apply Lemma 6.3 to the sum over q1, with w “ ´a2´q2h
1
2`q2h2 and mq “ a1`q1ph1

1´h1q
so that mq ‰ 0. A similar argument handles the case when a2 ‰ 0 or h2 ‰ h1

2, that is, fixing q1, a1 and summing

over q2, and we conclude that

(6.13)
ÿ

q1,q2PQH,ν

E2pq1, q2q ! H4 |QH,ν |2 logH

HM´2
.

Inserting (6.12) and (6.13) into (6.11) establishes the desired bound (6.9).

This completes the proof of the case j “ 2, and Theorem 4 (iii) follows.

�

REFERENCES

[1] P. T. Bateman and R. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962),

363–367.
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[11] G. Pólya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915), 1–16.



LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS 19

DEPARTMENT OF MATHEMATICS, 1409 WEST GREEN STREET, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL

61801, USA

Email address: ford126@illinois.edu

DEPARTMENT OF MATHEMATICS, 1409 WEST GREEN STREET, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL

61801, USA; STEKLOV MATHEMATICAL INSTITUTE, GUBKINA STR., 8, MOSCOW, 119991, RUSSIA

Email address: gabdullin.mikhail@yandex.ru, mikhailg@illinois.edu


