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LONG STRINGS OF CONSECUTIVE COMPOSITE VALUES OF POLYNOMIALS

KEVIN FORD, MIKHAIL R. GABDULLIN

ABSTRACT. We show that for any polynomial f : Z — Z with positive leading coefficient and irreducible over Q, if
a is large enough then there is a string of (log 2)(log log z)1/335 consecutive integers n € [1,x] for which f(n) is
composite. This improves the result in [6], which has the exponent of log log x being constant depending on f which
can be exponentially small in the degree of f.

1. INTRODUCTION

The first author, together with Konyagin, Maynard, Pomerance and Tao, showed in [6] that a general “sieved
set” contains long gaps. More precisely, for each prime p consider a set I, of residue classes modulo p, and call
the collection of all sets I, a sieving system. As in [6], assume the following regularity conditions:

(a) We have |I,| < p — 1 forall p;
(b) |I,] is bounded; there is a B € N with |I,,| < B for all p;
(¢) |Ip| has average value 1, in the sense that

By O R
(1.1) H(1 p) gz (z — ©),

p<x
for some constant C; > 0.
(d) Thereis a p > 0, so that the density of primes with |I,,| > 1 equals p, that is,

ST =
o psainl =1
T—00 x/logx

Now define the sieved set
Sp =2\ (] I,
p<z
so that .S, is a periodic set with period equal to the product of the primes p < x. The main theorem from [6] states
that if (a)—(d) hold, then for any ¢ > 0 and large x, the set .S, contains a gap of size z(log :E)C(p)*f, where

6-10%
log(1/(20)) ~ o}

In particular, C'(p) decays exponentially in 1/p. One of the principal applications of this result in [6] is to
finding long strings of consecutive composite values of polynomial sequences. Consider a polynomial f : Z — Z
of degree d > 1, with positive leading coefficient and irreducible over Q. Let I, = (& for p < d and for p dividing
the leading coefficient of f, and

(1.2) C(p) := sup {5 >0:

I,:={neZ/pZ: f(n) =0 (mod p)}
otherwise. Note that the polynomial need not have integer coefficients. Indeed, by Pdlya’s theorem [11], f is
integer valued at integers if and only if f has the form f(z) = Z?:o aj; (?) with every a; € Z. In particular,
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d'f(y) € Z[y] and thus the sieving system is well-defined. We call the collection of all sets I,, a polynomial sieving
system.

By Lagrange’s theorem, |I,,| < d < p for all p > d not dividing the leading coefficient of f, and hence (a) and
(b) hold. Item (c) holds by Landau’s Prime Ideal Theorem [9] (see also [4, pp. 35-36]), while (d) follows from the
Chebotarev Density Theorem [3] (see also [8]), with p = p(f) equal to C/|G|, where G is the Galois group of f,
a subgroup of the symmetric group on d objects, and C' is the number of elements of G having at least one fixed
point. We have p(f) > 1/d always, and sometimes p(f) = 1/d.

Examples. When f(z) = 22 + 1, we have |I5| = 0, |I,| = 2 forall p = 1 (mod 4) and |I,,| = 0 forp = 3
(mod 4). Thus, p(f) = 1/2. Similarly, if d = 2* for a positive integer k and f(z) = 2 + 1, then |I,,| = d for
p=1 (mod 2**1) and |I,,| = 0 for all other odd primes p, hence p(f) = 1/d = 1/2*.

The connection with sieved sets comes from the obvious relation

{neN: f(n) >z, f(n) prime} < S,.

Now let X be large and set z := 3 log X. The period of the set S, is X'/2+°(1) by the Prime Number Theorem.
Thus, writing g, for the longest gap in S,, the interval [ X /2, X contains a gap in S, of length g,,. For large X,
f(n) >z forall n € (X /2, X], and we conclude that

(1.3) max{m : X/2 <n <n+m< X and f(n),..., f(n +m) composite} > g(1/2)10g x -

From the main theorem of [6] we see that the left side of (1.3) is > (log X ) (log log X )¢ (*(/)=°(1) In particular,
we have [6, Corollary 1], which states that the left side of (1.3) is at least of size > (log X)(loglog X )¢ (1/d)=e(1),
The exponent here decays exponentially in d (roughly C(1/d) ~ e~%%).

It is still an open conjecture (of Bunyakovsky [2]) that there are infinitely many integers n for which f(n) is
prime. Moreover it is believed (see the conjecture of Bateman and Horn [1]) that the density of these prime values
on [X/2,X]is =; 1/log X, and so the gaps above would be unusually large compared to the average gap of size
=y log X.

Our main result is a stronger lower bound on the length of strings of consecutive composite values of polyno-
mials, with exponent of log log x being independent of f.

Theorem 1. Let f be as above. For all ¢ > 0 and large X, there are n,n + m € (X/2,X]| with m >
(log X)(loglog X)°M=¢ and with f(n),..., f(n + m) all composite.

Numerically, 1/C(1) = 834.109. . .. In particular, when f(z) = , our bound falls well short of the best known
lower bound for the maximal gap between the primes below x from [5], which is

loglogloglog X
log X)(loglog X ) ——————
» (log X)(loglog X) Tog log log X
However, as noted in [6], the methods used to find large gaps between primes do not apply to gaps in more general
sieved sets.

Our proof is based on the method developed in [6], but with one important difference. In [6], only one of the
elements of I, is utilized for large ¢ (for those ¢ with |I,| > 1), whereas in this paper we utilize all of the set I,.
This introduces a number of complications, which we get around using special properties of polynomial sequences.
Our methods do not apply for all of the sieved sets considered in [6], but they do generalize to sieved sets for which
the sizes of the I, have a limiting distribution and for which the difference sets I,, — I,, 1= {a — @' : a,a’ € I,,},
interpreted as subsets of Z, do not have large overlap. To state our general theorem, we introduce further conditions,
Hypotheses (e), (f) and (g) (here and throughout the paper, the symbols p and g always denote primes):

(e) Foreach v € {1,..., B}, the density of those p with |I,,| = v exists. That is, for some non-negative real
numbers p,, 1 < v < B, we have

<z =
lim #p<a:|h|=v} _
z—00 z/logx

v

(f) For non-zero v, define
Nw)=#{p:vmodpel,—I,}.
Then, for all v > 1, we have N (v) « v%-49.
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(g) There are positive constants c;, ca such that the following holds. Let v > 10, and for each prime ¢ with
|I;] = 1, let m, be a nonzero integer with m, mod g € (I; — I;). If |w| < wand k > 1, then

#{q: |1, = 1,0 < |mg| < u,mg +w # 0, N(mg +w) >k} « u(logu)e "

Hypothesis (e) is stronger than Hypothesis (d) and will replace it. Furthermore, (e) implies that the average of
|I,|, over p < z, is asymptotically p; + 2ps + - - - + Bpp, which, by the weak average assumption (c), equals 1.

Theorem 2. Consider any sieving system satisfying conditions (a)—(c) and (e)—(g) above. For any € > 0 and large
enough x, S, has a gap of size at least x(log x)©1)~¢,

Clearly, Theorem 1 follows from Theorem 2, provided that we verify (e), (f) and (g) in the case of polynomial
sieving systems. This verification is accomplished in the next section. The following sections are devoted to the
proof of Theorem 2. As noted, the main new idea is to utilize all of the sets I, for large g, which is encoded in a
certain weight function; see (3.12) for specifics. Hypothesis (f) will be needed at the end of Section 4 and near the
end of Section 6, while hypothesis (g) will be needed for the proof of the crucial Lemma 6.3.

2. VERIFYING THE HYPOTHESES OF THEOREM 2 FOR POLYNOMIAL SIEVING SYSTEMS

Item (e) is an immediate corollary of the Chebotarev density theorem. In fact, p, is precisely the proportion of
elements of the Galois group of f which have exactly v fixed points.

To verify (f) and (g), we introduce an auxiliary polynomial £’ which has roots which are the differences of the
roots of f. By Pélya’s theorem [11], f is integer valued at integers if and only if f has the form f(z) = Zj 0 @; ( )
with every a; € Z. In particular, there exists a minimal positive integer ¢|d! such that t f € Z[x]. Let also rq, ..., 7¢
be the complex roots of f. Writing

d
f(ac) =tf(x) = cx? + g1z + o F e = cn (x —1ry),
i=1

where ¢ = c¢q, cg, . .., cq—1 € Z, we define the polynomial
d
(2.1 F(x)=0d2+d n (xf(m—r])— d2H flx+ 1),
1<i,j<d i=1

so that deg F' = d2. We will need the following properties of F.

Lemma 2.1. The polynomial F obeys the following properties:
() FeZx);
@) If f(a) = f(b) =0 (mod q) for some integers a and b, then F(a — b) = 0 (mod q);
(iii) F(I) # 0 for anyl € Z\{0}.

Proof. Our proofs utilize the Fundamental Theorem of Symmetric Polynomials (FTSP) [10, p.20, Theorem (2.4)],

which states that any symmetric polynomial P € Z[u], with u = (uy,...,ug), is equal to a polynomial in

e1(u),. .., ex(u) with integer coefficients, where e; is the j -th elementary symmetric polynomial. In particular,

by the definition of f, ¢; = (—1)7T%cey_;(r) foreach 0 < j < d—1. Thus e;(cry, . .., crg) € Zforall1 < j < d.
We start with the first claim. By (2.1),

F(z) = ﬁ [ Zd: I (e + cri)fcj},

7=0

whose coefficients are evidently symmetric polynomials in (¢ry,...,crq) with integer coefficients. By FTSP,
F e Z[z].
Now we turn to the second claim. Fix a € Z. We have

f(z) = (x — a)g(z) + f(a)
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for some polynomial g € Z[x] of degree d — 1 depending on a, and therefore by (2.1),

(x+ 7 —a)g(x +7r;) + fa)h(z),

—

F(z) = &

i=1

where, by another application of FTSP, h € Z[z]. A similar argument shows that

d

c?1 ng(x + ;) € Z[x]

i=1
as well. Thus, for any b € Z,

d
Fla—b) =t (=1)f®) [T gla—b+r:) + fla)h(a —b).
i=1
Therefore, f(a) = f(b) = 0 (mod q) implies f(a) = f(b) = 0 (mod ¢) and hence ¢|F(a — b) for such ¢, as
needed.
For the third claim, let us assume for a contradiction that F'(I) = 0 for some integer [ # 0. It means that there
isrg € Csothat f(rg + 1) = f(ro) = 0. But then the polynomial

g9(x) = f(z +1) — f(z)

also vanishes at the point z = 7y and g # 0 (otherwise ry + kI would be zero of f for any k, so that f = 0).
Clearly, we also have deg g < deg f. But this is impossible, since f is irreducible and thus the minimal polynomial
of rois f/c. O

We also need a classic theorem of Erd6s [7] about the average size of the number of divisors of polynomials.
As is usual, 7(n) stands for the number of positive divisors of 7.

Lemma 2.2. For any irreducible polynomial g € Z[x],
Z 7(lg(k)]) « zlogx.

k<x

Let w(n) denote the number of distinct prime factors of the nonzero integer n. If ¢ is prime and v mod ¢ €
I, — I, Lemma 2.1 (ii) implies that g| F'(v). Lemma 2.1 (iii) implies that F'(v) # 0if v # 0. Since |F'(v)| « v?,
w(F(v)) « logv + 1 and this proves (f).

Now we verify (g). If m; mod ¢ € I, — I, then q|F(m,) by Lemma 2.1 (ii), and if m, # 0 then F'(m,) # 0
by Lemma 2.1 (iii). We let m = m, + w. Thus, if m satisfies 0 < |m| < 2u, |w| < wand m # w, there are
O(log u) primes dividing F'(m — w); that is, O(log w) primes ¢ with m, + w = m. Also, if mmod p € I, — I,
implies that p|F'(m). Also F is the product of at most d? irreducible factors, say F' = F} ... F, with each F;
irreducible. Hence, if N (m) > k then there are at least k distinct primes p dividing F'(m), and therefore, for some
i, at least k/s distinct primes dividing F;(m). Hence, using Lemma 2.2,

#{ut? < g<u:N(mg+w) =k} <« #{0 < |m| <2u: N(m) = k}logu

< (logu) Z #{0 < |m| < 2u: w(F;(m)) = k/s}

< (logu) ZS: 2 k/s Z T(F;(m))

i=1 0<|m|<2u

k/d?

& 27 ulog2 U.

In the last inequality, the implied constant in the « depends on d. This proves (g), with ¢; = 2 and ¢ = (log 2)/d?,
and completes the verification of the hypotheses of Theorem 2 for polynomial sieving systems.
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3. NOTATION AND BASIC SETUP

We use notation similar to that of [6], with the most important change being the modification of the weight
function A (see (3.11) and (3.12) below). Throughout the proof, we will use positive parameters K, &, M which
we describe below; one may think of them as being fixed for most of the time (in fact, it is only the end of Section
4 where the exact choice of them is important). The implied constants in O, « and related order estimates may
depend on these parameters, as well as on the constants B, C1, p, ¢1, c2 in conditions (a)—(c) and (e)—(g), and the
implied constants in the « bounds in (f) and (g). We will rely on probabilistic methods; boldface symbols such
as S, A\, n, etc. will denote random variables (sets, functions, numbers, etc.), and the corresponding non-boldface
symbols S, A, n will denote deterministic counterparts of these variables.

For a fixed § € (1/103,C(1)), we define

3.1 y = [z(log z)°]
and

yloglog x
32 =Z———.
G2 *~ (loga)”

As in [6], our goal is to find a number b so that S,. + b has no elements in [1, 3], which will show that S,, has a
gap of size at least y. This is accomplished in three stages:

(1) (Uniform random stage) First, we choose b modulo P(z) uniformly at random; equivalently, for each
prime p < z we choose b mod p randomly with uniform probability, independently for each p.

(2) (Greedy stage) Secondly, choose b modulo primes in (z, /2] randomly, but dependent on the choice of b
modulo p for p < z. A bit more precisely, for each prime ¢ € (2, z/2] with |I;| > 1, we will select b = b,
(mod q) so that {b; + a + kq : k € Z,a mod ¢ € I,} n [1,y] knocks out nearly as many elements of the
random set (S, + b) N [1,y] as possible. Unlike the argument in [6], we make use of all of the elements
of I, in this stage. This is the source of our improved theorems.

(3) (Clean up stage) Thirdly, we choose b modulo primes g € (x/2, x] to ensure that the remaining elements
m € (8,2 +b) n[1,y] donotlie in (S, +b) N [1,y] by matching a unique prime ¢ = g(m) with [, > 1
to each element m and setting b = m (mod ¢). Here we do use only a single element of I,, whereas
using all of I, would not improve our theorem at all.

To handle the Greedy stage (2), we divide the primes in (z, 2/2] into subsets, where the primes in each subset

are about the same size and with |1, is constant. Primes with rare values of || will play an insignificant role in
our arguments, thus we define

N={1<v<B:p, >0}
so that, by the remarks following Hypothesis (g),
(3.3) Z vp, = 1.
veN

For example, for the polynomial sieving system with f(z) = 22 + 1, we have A” = {2} since p; = 0.
Let £ > 1 be a real number (which we will finally choose to be close to 1), and define the set of scales

2 _2y Y
H= {He {1,£,¢,...}: ~ < HK 52}
so that

1/2
(34) sfoga)’ < H< = UBDT gy
z log log x

Foreach H € $and v € N, let

On., = {qe (5%7%] L] = 1/}.

Hypothesis (e) implies that for each fixed H, v we have the asymptotic

(3.5) 1Qm.| ~ pu(1—1/¢) H{ng

(z — o0).



6 KEVIN FORD, MIKHAIL R. GABDULLIN

Note that if we denote by p the density of primes p with |I,,| > 1, then by (e),

<z:|[,|=1
56 po i HRE LT
T—00 z/logx =
Let also
Yy vy
= — =] = v
o= o< (g ) 1mlex ) = U o
and, for v € NV,
QV = U QHJM
He$H
so that
9:=Jaon=J 2
He$H veN

We note that forall ¢ € Q, z < ¢ < x/2. Further, for each g € Q, let H, be the unique H such that ¢ € Qp, which
is equivalent to

Y Y
< qg< =,
§H, H,
Let also M be a number with
6<M<T7,
which we will eventually take to be very close to 6. We use the notation
Sz = Z\ U Ipv
Pz
and
S.a=7\ |J I
z<p<w
and also adopt the abbreviations
1,
(3.7) P=P(z) =[]p a=a(z):=ﬂ(1p>, S=85.+b,
Pz p<z p

where b is a residue class chosen uniformly at random from Z/P(z)Z; so, S is a random shift of S,. For a fixed
H € 5, we also define

(3.8) P= ] pn o1=0(HY), bi=b (modP), S;==Syu+by,
p<HM
and
(3.9) P= [] » o= o) b (mod Py), Sy = Sy, + bo,.
o(HM) ;
HM <p<z
Obviously, for each H € 9,
(310) ]3:1:)1]327 g = 0102, SZSl ﬁSQ.

Note that all the quantities defined in (3.8) and (3.9) depend on H and M; however, we will not indicate this
dependence for brevity (the values of H and M will always be clear from context).
Finally, let v, = |I,| for primes g. For primes ¢ € Q, let

I, = {a1,4mod g, ..., a, ; mod ¢} (@ige[lqlnZ, 1 <i<v).
We set

(3.11) AP(J;q,n) = <|_|{n+ai’q+hq:1<h<J}>me
i=1
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this being a significant departure from [6]. Here AP(J; ¢, n) is a portion of v, residue classes modulo g. Also
define

TapP(kH:qn)cS
(3.12) A(H;q,n) = W
02

where K is a positive integer which will be chosen large enough, and 1 x is the indicator function of a statement

X. So, for each g € Q, the weights A(H; ¢, n) are random functions which depend on b. Heuristically, A(H; ¢, n)

has mean approximately 1, since the probability that a given set Y lies in S5 is about J‘QY‘; see Lemma 6.1 below

for a precise statement.

3.1. General notational conventions. The notation f = O(g) and f « g mean that f/g is bounded. The notation
f = O<(g) means that | f|/g < 1. The notation o(1) stands for a function tending to zero as x — 0, at a rate
which may depend only on the parameters £, K, M and §, which we consider to be fixed. The notation f ~ g
means f = g + o(1). As is usual, w(n) is the number of distinct prime factors of n.

4. REDUCTION TO CONCENTRATION OF A\(H; ¢, n)

In this section we deduce Theorem 2 from the following statement. Recall that S = S, + b with b chosen
uniformly at random from Z/P(z)Z.

Theorem 3. Let 6 < C(1), M >6, (> 1, K >0,0<¢e< %(M — 6), and assume that x is large enough
depending on 5, M, £, K, and e. Then there exist a choice of b (mod P(z)) and subsets R¥ = QY forv € N so
that:

(i) one has
4.1) 1S [1,y]] < 20y;
(i) forallge R =, RY one has
1
4.2) > AM(Hg; q,n) = (1 +O¢ ((I%I)M>> (K + 2)y;
—(K+1)y<n<y

(iil) for eachv € N andi € {1,...,v}, all but at most elements n of S ~ [1, y] obey

pT

8B2 log x
2

43 AHyqn—asg—gh) = (Coy+0c [ ——=—— ) ) (K +2)y,

7 B, 20, M =) (o + 0= (Ggaymss ) ) o+ 20

where Cs ,, is independent of n and i with

Kpu 1- 1/6
“4 Cow ~ (K +2)M logé

log (1/(28))  (x — o0).

We now commence with the deduction of Theorem 2 from Theorem 3. Let V' be the set of elements n of
S n [1,y] for which (4.3) holds for all v € N and ¢ = 1, ..., v. For each ¢ € R, we define the random integer n,
by the distribution

A Hy;q,mn)

P(n, =n) =
! Zf(K+1)y<n’<y A(Hq;qan/)

(-(K+1y<n<y).
For ¢ € R, define the random set

Vq
€q = |_| €i,q
i=1

where

4.5) eiq=Vn{n,+ai,+hqg:1<h<KH}}, i=1,..,1,
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Note that e; ; and e; , are disjoint for ¢ # j, since all a; 4 are distinct modulo g. To be able to make a clean-up
stage, we need to find a choice n, of n, (which corresponds to a choice e, of the random sets e,) for each ¢ € R,
so that for b satisfying b = n, (mod g) for ¢ € R, the estimate

px
4logx

(4.6) (Sz2 +0) N [Lyl] <

holds. Then by (3.6), the number of primes p € (z/2, z] with |I,,| > 1is ~ 21 — for x large, which guarantees that
clean-up stage is possible. To be precise, we may match each element m € (SE /2 +b) N [1,y] with a unique prime
p € (z/2,z] with |I,| > 1, and choose b = m — a1, (mod p) for each such pair. Then (S, +b) N [1,y] = &, as
desired.

Since S,/ + b avoids the v, = |I4| residues ng + a1,q, ..., ng + a,, 4 modulo ¢, we have, by the definition of
the set V' and (4.5),

(Safo +8) A [L3]| <[ (S + ) 0 L) V] + [ | e

geER
< Z 28B2log:c ‘ \Ueq

veN i=1 qeER
pT
~ 4logx’

thus verifying (4.6), provided that

A7)

W\ e

=R 810gx

To show (4.7), we need the following hypergraph covering lemma, which is Lemma 3.1 of [6].

Lemma 4.1 (Hypergraph covering lemma). Suppose that 0 < 6 < 1/2 and Ky = 1, and let y > yo(6, Ko) with
yo (6, Ko) sufficiently large, and let V' be a finite set with |V | < y. Let 1 < s < y, and suppose that eq, ..., e5 are
random subsets of V' satisfying the following:

Ka(l 1/2
48) o] < Kollos®) =y iy
loglogy
4.9) P(vee;) <y Y20 eV, 1<i<s),
s

(4.10) Z P(v,v' € e;) <y~ Y% (0,0 € Vv #0),

i=1
(4.11) dPuee)—Cyl<n (veV),

i=1
where Cy and 1 satisfy
1

4.12 10 < Cr, <100, 7> ————.
I ° "= (ogy) loglogy

Then there are subsets e; of V, 1 < i < s, with e; being in the support of e; for every i, and such that

4.13) el < Canlvy,
i=1

where C3 is an absolute constant.
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We apply this lemma with s = |R|, {e; : i =1,...,s} = {e; : g€ R}, Ko = BK, and

. 14
2001 C3(log )"

By (1.1) and (3.2), we have 0 = o(z) ~ C1/logz ~ C1/logx. The conclusion of the lemma (with the bound
(4.1)) implies that there is a choice of sets e, with

V\Ueq

geER

n

pVI _ poy  _ px
20C, (log )3 ~ 10C;(logx)® ~ 8loga’

< OanlV] =

which is enough for (4.7), so that we are left to verify the conditions of the lemma. First of all, by (3.4), we have

BEy _ BK (log z)'/? - BK (log y)'/?
z  loglogz —  loglogy

)

leq| = Z leiq| < vgKHg <
i=1
which gives us (4.8). For each n € V and ¢ € R, (4.2) together with the trivial bound A(H; ¢, n) < UQ_KBHQ <
y°W (from (3.4), (3.11) and (3.12)) gives us

P(nee,) = Z Zq: P(n, =n—a;q — hq)

I<h<KH,i=1
(4.14) 1

« = Z Zq An —a;q — hq)

Yi<h<rm,iz1

& y70‘999’

which verifies (4.9). Now we turn to (4.11). From (4.2), (4.3), and (4.4), followed by an application of (3.3), we
obtain

Z P(neeq) = Z Z P(neey) = Z vCy,, + O((logz)90+9)) =

gER veN qeRY veN

= VPVMmg(l/(%» +o1) = Gy + o(1),
veN

where we define ( )
K(1-1/¢
——————22 _log(1/(26)).
(K + M loge 281/(29)
Recalling that § < C/(1) together with the definition (1.2) of C(1), we see that Cs is at least 10%° provided that
M — 6 and £ — 1 are sufficiently small in terms of 6, K is sufficiently large in terms of 6,0 < & < (M — 6), and
x is large enough depending on §, M, &, K, e. Also Cy < 100 due to § > 1073, Thus, (4.11) follows.
It remains to check that (4.10) holds. We take any distinct v, v’ € V' and see that

Z P(v,v' € e;) < Z (Zq: P(v,v" € €;4) + Z P(veEe;qv € ej}q)>.

qeR geR \i=1 1<i,j<vg
i#]

Cy =

If both v, v’ both belong to some e; 4, then ¢ divides v — v/; but 0 < |v — v'| < Ky and ¢ is a prime greater
than z > y**, hence there is at most one such ¢. Further, if v € €, 4 and V' € e, 4 for some g and i # j, then
v—v" = a;4—a;q4 (mod ¢) and hence v — v’ mod ¢ € I, — I,. By hypothesis (f) and the bound |[v — v'| < Ky,
the number of such ¢ is « y%4°. Thus, by (4.14),

Z P(v,v' € e,) « y**° - maxP(v e e;,) « y °?%,

,i,q
geER
which gives (4.10).
Thus, we verified the conditions of Lemma 4.1, and (4.7) follows. This completes the proof of Theorem 2
assuming Theorem 3.
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5. CONCENTRATION OF \(H;q,n)

In this section we reduce Theorem 3 to the following assertion.

Theorem 4. Let M > 2, K > 0, and £ > 1. Then
(1) One has

5.1) s o [l =ows B8 ol = (140 (1)) o

(1) For every H € $), everyv € N and j € {0,1,2},

62 E 2( 5 A(H;q7n>>j—(1+0(}§i[€))((K+2>y)j|QH,V|;

q€Qmu,» \ —(K+1)y<n<y

(1i3) For every H € $), everyv e N, i € {1,...,v}, and j € {0,1,2},

(5.3) E Z ( Z Z )\(H;q,n—ai,q—qh)> =

neSn([l,y] \ ¢€Qmn,, h<KH

(1+0(lzh)) <|QH,VL-2LKHJ>Z@,.

Deduction of Theorem 3 from Theorem 4. Fix 6 < C(1), M > 6, > 1, K > 0,and also 0 < ¢ < %(M —6).
From Theorem 4 (i) we have

2 2
E||S n [1,y]| — Uy’ < M.
logy
Hence by Chebyshev’s inequality, we see that
(5.4) P(S A [1,]] < 20y) = 1 - O(1/log ),

showing that (4.1) in Theorem 3 holds with probability 1 — o(1).
Now we work on parts (ii) and (iii) of Theorem 3. For each H € § and v € N, we have from (5.2)

2

2
(5.5) E D] D AH;q,n) — (K +2)y | « %
q€Qmu,» \ —(K+1)y<n<y
Now let R, be the (random) set of ¢ € Q ., for which
Yy
(5.6) D, AHign) = (K +2)y| < g5z

—(K+1)y<n<y

By estimating the left-hand side of (5.5) from below by the sum over ¢ € Qg ,\R .., we find that

|QH,V‘
(5.7) ElQu \Ruyv| < gyr—izs:-
We let
RV = U RH,IM

He$H
and then Theorem 3 (ii) follows from the lower bound on H given in (3.4).
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We now turn to the condition (iii) of Theorem 3. Similarly to (5.6), for each H € $, v € M, and i € {1, ..., v},
from (5.3) we have

1Qu.v| - | KH|

02

<

58 E > DD AH;qn—aig —qh) -

neSn[l,y] \¢€Qmu,, h<KH

HM—2—¢ o9

(ol LKHJ)ZW

Let £g,,; be the setof n € S N [1, y] such that

_1Quy|-|KH]| _ |Qny|- |KH]
g9 - ('1'21{1""8

(5.9) D> AH;gn—aig —qh)

q€Qmn,» h<KH

Then, since M > 6 and ¢ < (M — 6)/7, (5.8) implies that
oy ay
E|£H,l/,i| < m < m,
and, hence, |E ;| < oy/H'™¢ with probability 1 — O(H ~'*¢).
Now we estimate the contribution from “bad” primes ¢ € Qg ,\Rp,. For any h < KH, we get from
Cauchy-Schwarz inequality for vector functions

E Z Z AH;q,n—a;q—qh) <
q€Qm,,\Ru,, neSn[1,y]

o\ 1/2

(ElQu, \Ru,))* |E )] > A(H:gn) :

q€QHu,,\Ru,» |—(K+1)y<n<y

where we extended the range of summation of A(H; g, -) to the larger interval (—(K +1)y, y] (note that a; o +gh <
g+ Ky < (K + 1)y and the weights A(H; ¢, -) are non-negative). Further, by the triangle inequality, (5.5) and
(5.7),

E D,

q€QHu,,\RH,v

2
<

>, AlH:qn)

—(K+1)y<n<y

2
2

2, 2 Y| Qu,w

+ (K +2)%y > < YTA—a-3e-

2E Y (' Y. AlH:gn) - (K +2)y

q€QH,.\RH,» —(K+1)y<n<y
Combining two latter estimates, using (5.7) again, and summing over all h < K H, we get
y1Qm.u|
E Z Z Z }\(H;q,n—aiﬁq—qh) < m
neSn[l,y] ¢€Qmu,.\Ru,» hR<KH

Let F g ,; be the set of n € S N [1, y] such that

Qn.|-|KH

(5.10) D D AH;qn - aig — qh) = %
4€Qu,,\Ru,, h<KH 72
Then ou I
o2y oy log
B[ F bl « M54 & gM—5-4e’
and, by Markov’s inequality,
ay
F il < 55

with probability 1 — O(H~(M~6-62))_Since ¢ < (M — 6)/7, we have M — 6 — 6 > ¢, and the last probability
becomes 1 — O(H ~¢).
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Since Y}y H™° « (log x) 7%, with probability 1 — o(1) we have that forall H € §, v € N, and i € {1, ..., v}
that both sets € 1., F p,,,,; have size at most (oy)H ¢,

Now we make a choice of b (mod P(z)). We consider the event that [S[1, y]| < 20y and that for each H, v, i,
the sets 7,4, F ir,,,; have size at most (oy)H —1=¢_ By the above discussion, this event holds with probability
at least 1 — o(1) as x — o0 (so this probability is at least, say, 1/2 whenever z is large enough depending on
0, M, &, K, and €). From now, we fix a b mod P(z) such that it is so, and thus all of our random sets and weights
become deterministic. With this choice of b we verify condition (iii) in Theorem 3.

For fixed v € N and i € {1, ..., v}, we set

M= (S 0 L)\ | Ertans 0 Firs)-
He$H
Now we verify (4.3) with given v and ¢ for n € M, ;. By (3.4), ZHG& H=17¢ « (log x)~(1+€)% and so the
number of exceptional elements satisfies

9y

U (EHwi U FHp)| € (log z)(1+2)8”

He$

which, by (3.2), is smaller than wg’iﬁ')g'x for large x. We fix arbitrary n € M, ;. For such n, the inequalities (5.9)
and (5.10) both fail, and therefore for each H € §),

. 2 ‘QH,V| ! [KHJ
Z Z )\(Haqvn — Qg — qh) = (1 + O< ((10g$)(1+6)5)> o2 :

q€Ru., h<KH

Summing over all H € §), we have
2
Z Z AMHgq,n—a; q — gh) = <1 + O¢ <16)> Cy (K +2)y
4eR” h<KH, (log ) (1<)

with (recall that o2 depends on H)

1 ‘QHI/| lKHJ
“ov = K12 2

Yy e 02

Note that C3 ,, depends on x, K, M, £, and 4, but not on n. Since
|KH|=KH(1+O(1/H)) = KH(1 + O(log z)°)

and |
—1 1 og z
= 1—1I ~__9o%
02 1—[ ( | P|/p) MlOgH7

HM <p<z

we get, using (3.5),
K y/H Hlogz K(1-1/¢)
Cow ~ o pp(1=1/8) ) L / Z
(K +2)y Hey)Ing MlogH K+2 logH
as x — o0. Recalling the definition of $), we see that
K(1- 1/{
Cy, ~ -
2 M K +2)logé Z
where j runs over the interval
dloglogx <j< (1/2 + 0(1))10g10g33.
log & log &

We thus obtain K- 1))

Pv -

Cyp ~ ————1log(1/(29)), — 0,
20~ V(K + 2 loge 08/(20), =0

and the claim (4.3) follows. g

It remains to establish Theorem 4. This is the aim of the last section of the paper.
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6. COMPUTING CORRELATIONS

In this section we prove Theorem 4. The claim (i) is exactly (5.1) and (5.2) of Theorem 3 from [6]. To verify
the claims (ii) and (iii), we must rework the argument from [6] using our new weight function A from (3.12). For
H € 9, let Dy be the collection of square-free numbers D, all of whose prime divisors lie in (H* z]. For each
D € Dy, let Ip c Z/DZ be defined as Ip = ﬂp|D I,. Further, for A > 0, let

Aw(D)
(6.1) Ea(m;H) = (Limzo) Z ) Lin mod Delp—1Ip-
DeDi\{1}

Note that E4(m; H) = E4(—m; H) for all m € Z. Also, this notation differs slightly from that in [6], in that we
include the factor 1,,,.( here. Our notation then makes in unnecessary to explicitly exclude the case m = 0 from
summations.

We need the following lemmas, which are Lemma 5.1 and Lemma 5.2 of [6], respectively.
Lemma 6.1. Let 10 < H < 2/M 1 <1 < BKH, andU < V be two finite sets of integers with |V| = . Then
PU c S,) = ol (1 + O(\UFH*M +172 ) Bypp(v - H)))
v,v'eV

We note that in Lemma 5.1 of [6] the slightly different range 1 < I < 10K H is stated, but actually the same
proof gives the above Lemma 6.1.

Lemma 6.2. Let 10 < H < 2™ 0 < AB? < HM and (my)ser be a finite sequence such that

X
(62) ]lm =a (mod D) K —F77v T+ R
2 = ot ) <
for some X, R > 0, and all D € Dy\{1} and a € Z/DZ. Then for any integer j
. XA 9
Z Ea(my+j;H) « ol + Rexp(AB~loglogy).
teT

For the rest of the paper we use the notation
A=A(H)=8B*K*H?*
for the brevity, and also for prime ¢, define the set

Ag = {ai,q—a.m|1 i< <’/q}-

Recalling that a; 4 € [1, ¢], we see that A; < [1 —¢,q — 1].
We will need the following bound, which is where we deploy Hypothesis (g).

Lemma 6.3. Letv € N and H € . For q € Qp,,, suppose that mg mod q € I, — I, with 0 < |mg| < xlogz,
and suppose that w € 7 with |w| < xlog x. Then

|QH,V|1OgH

q€EQH, v

Proof. If mq mod D € Ip — Ip, then m, mod p € I, — I, for each p|D. Thus, if m, + w # 0 then

A
Ea(mg+w;H) = H <1+)_1
mg+w mod pe I,—1I, p
HM<p<z

(6.3)

< exp (A > 1) 1.

mg+w mod pe I,—1I,
oM <p<z



14 KEVIN FORD, MIKHAIL R. GABDULLIN

Recall the notation N(m) from Hypothesis (f). Thus, the number of primes p with HM < p < z and with
mg +wmod p € I, — I, is at most N (m, + w). Let c3 be a sufficiently large constant, depending on ¢; and ¢
from Hypothesis (g), and let

Omy ={q€ Quy: N(my +w) < c3log H}.

Clearly, for q € @ H,» We have

1  c3logH
Z =S HM

mg+w mod pe I, —1,
HM<p<z

Therefore, using the fact that A = O(H?),

« |QH,V|10gH

Y} Balmy +wi H) « | Q| (exp(O((log HYHM2)) = 1) « FHES

q€QH v

Using Hypothesis (g), for some positive constants c;, co (depending only on the sieving system),

Z Eis(mg+w; H) < Z #{qEQH,V cmg +w # 0, N(mg +w) :k}eAk/HM
quH,V\QH,I/ k>cs3log H
& az(log .13)61+1 Z e—C2k exp (O(k,H—(JW—Q)))
k>cgz log H
« x(logz)crTlecacalos

< |Qpr | H-M=2)

if c3 is large enough, using the lower bound H > (log x)° from (3.4) and the asymptotic (3.5); recall also that
6 < M < 7. This concludes the proof. g

Now we fix H € $ and v € N for the rest of the paper. We start with the proof of part (ii) in the case j = 1 (the
case j = 0 being trivial), which is

(6.4) E ) S A(Hign) = <1 +0 (;ii)) (K +2)y|Qu.|.

q€Qm,, —(K+1)y<n<y

By (3.12), the left-hand side expands as
TaP(KHgn)cS,
E Z 2 |AP(KH;q,n)| °
q€Qn, —(K+1)y<n<y 92

Recall that, according to the definitions (3.8) and (3.9), by and b are independent, and so are AP(K H;q,n)
and So. With by fixed, AP(K H;q,n) is also fixed and we will denote it as AP(K H;q,n). Then the above
expression equals

P(b; = b1)
> > Y. Tar(Rimaa PAPKH; q,n) < Ss).
q€QH,, —(K+1)y<n<y b1 mod P; (o))
For fixed ¢, n, and by, we apply Lemma 6.1 to the sets / = AP(K H;¢q,n) and

V=||{n+a,+qh:1<h<KH}

i=1
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sothat! = |V| = v|KH| = H. Since E4(m; H) is an increasing function of A, we find that the left-hand side of
(6.4) is equal to

€5 > Y 1o )+

q€QH,» —(K+1)y<n<y
+O(yH2 oy > EA(H)(a+qhqh’;H)>.
q€Qm,, acAy 1<hhW'<KH

We note that |a + ¢g(h — h')| < (K + 1)y < xzlogz for a € A, and large z. When h and A’ are fixed, we apply
Lemma 6.3 with w = 0 and my = a + gh — gh’, where we’ve chosen one of the O(1) elements a € A, for each
q. Thus, we see that the second line in (6.5) is

y‘QH,V| IOgH

< (yH*)H?|Qpp| - (log H)H "2 = Z=2s—

This proves the j = 1 case of part (ii) in Theorem 4, that is, (6.4).

Now we turn to the case j = 2 of (ii), which is

EZ< 3 A(H;q,n)>2:(1+0(;g£>)(K+2)2y2|QH,U|.

q€Qm,, ~—(K+1)y<n<y

The left-hand side is expanded as

E Z Z I]-AP(KH;q,nl)uAP(KH;q,nz)CSQ
|AP (K H;q,n1)|+|AP(KH;q,n2)| *
4€Qn,, —(K+1)y<nina<y 92

For fixed ¢, ny, ns, we will apply Lemma 6.1 with
U=AP(KH;q,n1) v AP(KH;q,no)

and
V= Vl U‘/Qa

where

Vi=| [{nj +aiq+qh: 1<h<KH}, j=1.2
i=1
We first estimate the contribution of the triples (n1, na, ¢) for which V; and V5 have non-empty intersection. This
implies that (n; — no) mod ¢ € Ay, and, hence, there are O(yH) such pairs nq,ny for each ¢. Each of them
contributes at most o, 2PXH = (1) 50 the total contribution of such triples is O(y'+°™)|Qy ,|), which is
negligible. Thus we may restrict our attention to those triples (n1,ns2,q) for which the sets V; and V5 do not
intersect; let us call these triples good. In particular, for any good triple (n1,n2, q), the sets AP(K H; q,n1) and

AP(K H;q,ns) also do not intersect. Then it is enough to show that

(6 6 E ]lAP(KH;q,nl)uAP(KH;q,ng)CSQ
6) Z Z |[AP(K H;q,n1)|+|AP(KH;q,n2)|
q€Qn,, —(K+1)y<ni,na<y 92

(n1,n2,q) good

log H
- <1 +0 <;f4_2)> (K +2)%2|Qu .

Arguing as in the case j = 1, we see that the left-hand side of (6.6) equals
1
XN (14 0(pm))r

q€QH,» —(K+1)y<ni,na2<y
,n2, d
6.7) (n1,m2,q) goo

+O<}}2 > > Ro(n17n27Q)>,

q€QH,» —(K+1)y<ni,na2<y
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where

Ro(n1,n2,q) := Z E (v —v's H)
v,w'eV
< Z Z EA(H)(nl—n2+a+q(h—h’);H)
I<hW<KH acA,
« Y EBagn(m—na+a+qh—h); H) + HEagg(ny —ng)

1<h,h'<KH
aeA,
a0 or h#h'

= Ri(n1,n2,q) + H Eay(n1 —n2),

say. Recalling that all but O(yH) pairs (n1,ns2) are good, we get the main term (K + 2)2y?|Qy .| from the first
line of (6.7), with an acceptable error term.

We next estimate the contribution from R;(n1, ne, q). With ny, na, hy, he fixed and also fixing one of the O(1)
choices for a € A, for each ¢ € Qp ., we estimate quQH Ry (n1,n9,q) using Lemma 6.3 with w = ny — ny
and my = a + g(h — k’). Since either a # 0 or h # I/, we have m, # 0. Also, for large z, |w| < zlogx and
|mg| < xlog x. Therefore,

|QHI/|1OgH
Z Z Ri(n1,m2,q) < H2 QW’
ni,n2 q€QH

which is acceptable for (6.6). To estimate the contribution from £ 4y (n1 — n2; H ), we apply Lemma 6.2, by first
fixing ny and observing that (6.2) holds with X = y and R = 1. Therefore, recalling that A(H) « H?,

Yy 2
Z Z Eamy(n1 —ng; H) < |Qp,.| y(HM—2 + 1B 1°g1°gy>
q€QH,» —(K+1)y<ni,n2<y
<Y ¥ |Qm |
gM—2

which is also acceptable for (6.6). This gives (6.6), as desired, completing the j = 2 case of (ii).

Proof of (iii). Fix H € $, v € N and 1 < i < v. The case j = 0 follows from part (i), so we focus on the case
7 = 1, which states

E Y > D AH;qn ;,qqh)=<1+o(lﬁi>>

neSn[l,y] ¢€Qu,» hR<KH

| KH|oyy.

It is enough to show that, forany h < K H,

log H
(6.8) E YD A(H;q,nai,qqh)=<1+0(;§4_2>)

neSn[1l,y] ¢€Qmu,v

According to (3.12), the left-hand side is equal to

E Z Z ]]-AP (KH;q,n—ai,q—qh)cSs
\AP(KH,q,n ai,q—qh)|
neSn(1l,y] ¢€Qmu v

By (3.10), the condition n € S n [1,y] implies that n € S; N [1,y]. On the other hand, if n € S;, then
n € AP(KH;q,n — a; 4 — qh), and thus the condition n € S is contained in the condition AP(K H;q,n —
a; ¢ — qh) < Sa. So the left-hand side of (6.8) can be rewritten as

B Z Z LAP(KH; g n—ai.q—qh)cSs
\AP(Kan ai q—qh)|

neS1n|[1,y] ¢€Qm,v
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Recalling that S, is independent of S; and of AP(K H; ¢, n —a; ; — gh), we may apply Lemma 6.1 as before and
find that the left-hand side of (6.8) is

1 _
E D > <1+O<HM_2+H SIS EA(H)(a+qh’—qh")>>.
neS1n[1,y] ¢€Qm,v acAy h',W'<KH

Recall that E|S; n [1,y]| = o1y by Theorem 4 (i). Thus, we see that (6.8) follows from Lemma 6.3, applied with
n, ', h" fixed, w = 0, some choice of a € A, for each ¢, and m, = a + gh’ — gh".

Now we turn to the case j = 2 of (iii), which states

69 > E > D1 AH;qn — aig, — qh)AH; q2,n — @i g, — 2h2)

hi,ho<KH neSn[l,y] q1,92€Qm,v
(140 (Lt \Y g, P xkH2
= HM72 H,v 02y'

Arguing as in the j = 1 case, the left-hand side equals

(6.10) Z E Z Z :H'AP(KHWlan_a'i.ql_q1h1)UAP(KH;‘Z2an_ai,q2_q2h2)cs2 .
: |[AP(K H;q1,m—ai,q; —q1h1)|+|AP(K H;q2,n—ai,q5 —q2h2)| ’

hi,ho<KH neS;n[l,y] ¢1,42€Qmu,» 92

Note that here we again replace the condition n € S n [1,y] by n € S; n [1,y] for the same reason as in j = 1
case. Further, by (5.1), the contribution from ¢; = g» is

2 —2BKH 14o(1
« H?0, 1Qnvlo1y < |Qmuly +o(1)

)

which, by (3.5), is an acceptable error term.
We call a pair (¢q1,¢2) € Q%{,u with ¢1 # g2 good, if for all Sy, all n € S; N [1,y] and all hy, he < KH we
have

{n} = AP(KH;q1,n — aiq, — q1h1) 0 AP(KH;q2,n — a4, — g2h2),
and call (q1, g2) bad otherwise; recall that for any n € S; n [1,y], n lies in both AP(KH; q1,m — a4, — g1h1)

and AP(KH;q2,mn — a;,4, — q2h2). We need to estimate the number of bad pairs. First of all, if a pair (¢1, g2) is
bad then there is a choice of h1, ho so that both sets

|_| {a’jl:th — Giq T ql(hll/ - hl) : hll/ < KH}

ji=1
and
v
|_| {ajz)»fh — Qjqy + qQ(hg - h2) : hg < KH}
jo=1
contain the same nonzero number, say, ng. Fix ¢, jo2, ho and kY so that

ng = Gjy,q; — Qiygy T qQ(hg - h2)
Then we have ng mod ¢; € I, — I, . By Hypothesis (f), the number of such g; is O(y%4?). Therefore, the number
of bad pairs (q1,¢2) is « y'*H? « y®. Since each of them contributes y o) to the left side of (6.10), the
contribution from these bad pairs is negligible.
It remains to estimate the contribution to (6.10) from good pairs (g1, g2). Note that if (¢1,¢2) is a good pair,
then, for any S1, k1, ho, n the set

AP(KH;q1,n — aiq —qh1) O AP(KH;q2,n — a4, — g2h2)
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has size |AP(KH;q1,n—a; 4, —q1h1)| + |AP(KH;q2,n — a; 4, — g2h2)| — 1. Then, as before, we can apply
Lemma 6.1 to rewrite the terms in (6.10) corresponding to good (g1, g2) as

oy 1
6 % Y % (140(gm=))+

(q1,92) good hi,ho<KH

oy
O\ oo > (HQE/(%)+H2E'(Q2)+E"(Q1,QQ)> ,
2
q1,92€QH,v

where again we used that E[S; N [1,y]| = o1y from (5.1), that 01 /o2 = 0/03 and where we define

E(q)= ) > Eaula+qh—qh'iH)
acA, h,hW<KH

and
E'(q1,q2) = Z Z Z Eagm (a1 — a2 + qihy — qihi — @2hy + qa2hos H).
I<hi,ho<KH a1€Aq; hy,hy,<KH
agGAq2

As the number of bad pairs (g1, g2) is very small, the first line of (6.11) produces the main term in (5.3) with an
acceptable error.
By Lemma 6.3 with w = 0,

& H2 |Q}I;V|2 1OgH

(6.12) > (Eq) + E(g) i

q1,92€QH,v

For the sum on E” (), if we have a1 = as = h} — h; = hl, — hy = 0 then the summand is zero for any ¢, go.
Consider now the summands with either a; # 0 or hy # h}. Fix hq, ha, b}, h%, g2, a2 and also a choice a; € Ag,
foreach g1 € Qp ... Apply Lemma 6.3 to the sum over ¢q, with w = —ag —gaohh +gaho and my = a1 +¢1 (k) —h1)
so that m, # 0. A similar argument handles the case when as # 0 or he # h5, that is, fixing ¢1, a; and summing
over -, and we conclude that

|Qp . |* log H
(6.13) Z E"(q1,q2) H4w-

q1,92€QH v

Inserting (6.12) and (6.13) into (6.11) establishes the desired bound (6.9).
This completes the proof of the case j = 2, and Theorem 4 (iii) follows.
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