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Burt Totaro

A basic problem of algebraic dynamics is to determine which projective varieties
admit an endomorphism of degree greater than 1. To avoid degenerate cases, we
focus on int-amplified endomorphisms f : X → X, meaning that there is an ample
divisor H such that f∗H −H is ample [Men20, MZ20]. Fakhruddin, Meng, Zhang,
and Zhong conjectured that a smooth complex projective rationally connected va-
riety that admits an int-amplified endomorphism must be a toric variety [Fak03,
Question 4.4], [MZZ22, Question 1.1]. Kawakami and I introduced a new approach
to this problem, showing that a variety with an int-amplified endomorphism must
satisfy Bott vanishing [KT23, Theorem C].

In this paper, we extend that result to a logarithmic version of Bott vanishing for
an endomorphism with a totally invariant divisor (Theorem 3.1). We also connect
log Bott vanishing with some related problems: which varieties are images of toric
varieties (Theorem 5.1)? Which varieties admit morphisms of unbounded degree
from some other variety (Theorem 4.1)?

We apply these results to Fano 3-folds. Meng, Zhang, and Zhong showed that
the only smooth complex Fano 3-folds that admit an int-amplified endomorphism
are the toric ones [MZZ22, Theorem 1.4]. Also, Achinger, Witaszek, and Zdanowicz
showed that the only smooth complex Fano 3-folds that are images of toric varieties
are the toric ones [AWZ21, proof of Theorem 4.4.1], [AWZ23, Theorems 6.9 and 7.7].
Using log Bott vanishing, we reprove both results and extend them to characteristic
p, for morphisms of degree prime to p (Theorems 6.1 and 7.2). This resolves [KT23,
Question 1.6]. For Fano 3-folds with Picard number 1, these extensions already
appeared in [KT23, Theorem A and Proposition 3.10].

1 Notation

A Weil divisor (with integer coefficients) on a normal projective variety is called
ample if some positive multiple is an ample Cartier divisor. A contraction of a
normal variety X over a field k is a proper morphism π : X → Y with π∗OX = OY .
For a projective variety X over k, N1(X) is the vector space of 1-cycles with real
coefficients modulo numerical equivalence, which has finite dimension. The Néron-
Severi space N1(X) is the space of R-Cartier divisors modulo numerical equivalence,
and so N1(X) = N1(X)∗.

A morphism of varieties f : Y → X over a field k is separable if it is dominant
and the function field k(Y ) is a separable field extension of k(X). For k algebraically
closed, f is separable if and only if the derivative of f is surjective at some smooth
point of Y . For an endomorphism f of a variety X, a closed subset S of X is totally
invariant under f if f−1(S) = S.
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For a normal variety X over a field k and i ≥ 0, we write Ωi
X for Ωi

X/k. The

sheaf of reflexive differentials Ω
[i]
X is the double dual (Ωi

X)∗∗. For a reduced divisor

D on X, Ω
[i]
X(logD) (reflexive differentials with log poles along D) denotes the sheaf

of i-forms α on the smooth locus of X −D such that both α and dα have at most a
simple pole along each component of D. For a reflexive sheaf M and a Weil divisor
E on X, we write M(E) for the reflexive sheaf (M ⊗OX(E))∗∗. If X is smooth over
k, then OX(E) is a line bundle, and M(E) is just the tensor product M ⊗OX(E).

2 The trace of a differential form with log poles

Here is the key lemma for this paper, extending the proof of [KT23, Theorem C] to
allow log poles.

Lemma 2.1. Let f : Y → X be a finite surjective morphism of normal varieties
over a perfect field k. Let A be a Weil divisor on X. Let EX and DX be reduced
divisors on X with 0 ≤ EX ≤ DX . Let DY be the sum of the components of
f−1(DX) along which the ramification degree e of f is invertible in k, and let EY

be the corresponding divisor inside f−1(EX). Then, for every i ≥ 0, the pullback
and pushforward of differential forms give maps of reflexive sheaves

Ω
[i]
X(logDX)(A− EX) → f∗(Ω

[i]
Y (logDY )(f∗A− EY )) → Ω

[i]
X(logDX)(A− EX),

with composition equal to multiplication by deg(f).

In characteristic p, even if the morphism f in Lemma 2.1 has degree prime to
p, it may be wildly ramified along some divisors. That requires the careful choice
of DY and EY in the statement, in order to get something true.

Proof. Since k is perfect, the normal varieties X and Y over k are geometrically
normal [SPA24, Tag 038O], hence smooth over k in codimension 1.

As in the statement, let DY be the sum of the components of f−1(DX) along
which the ramification degree e of f is invertible in k. (The ramification degree
e along a component D2 of f−1(DX) is the coefficient of D2 in the pullback Weil
divisor f∗DX , which is defined since f is finite and DX is generically Cartier. The
condition that e is invertible in k is not the same as f being tamely ramified along
D2; tame ramification would mean that e is invertible in k and that f : D2 → f(D2)
is separable.) Likewise, let EY be the sum of the components of f−1(EX) along
which the ramification degree of f is invertible in k.

We want to construct pullback and pushforward maps of reflexive sheaves:

Ω
[i]
X(logDX)(−EX) → f∗Ω

[i]
Y (logDY )(−EY ) → Ω

[i]
X(logDX)(−EX).

First consider the pullback map. Since we are mapping to a reflexive sheaf, it suffices
to define this map outside the subset Xsing ∪ f(Y sing), which has codimension at
least 2 in X. The map is the usual pullback of differential forms outside DX . So it
suffices to show that the pullback sends Ωi

X(logDX)(−EX) into Ωi
Y (logDY )(−EY )

near the generic point of each component D2 of f−1(DX). Let D1 = f(D2).
There are four cases.
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Case 1 D1 not in EX , e ∈ k∗. Then we need to show that Ωi
X(logD1) pulls back

into Ωi
Y (logD2) near the generic point of D2. Let g be a local defining function

of D1 in X and h a local defining function of D2 in Y . We have f∗(g) = heu
for some unit u ∈ O∗

Y,D2
. Then f∗(dgg ) = edhh + du

u , and so it is clear that forms

in Ωi
X(logD1) = Ωi

X + dg
g Ωi−1

X pull back to Ωi
Y (logD2) = Ωi

Y + dh
h Ωi−1

Y near
the generic point of D2.

Case 2 D1 not in EX , e = 0 ∈ k. Then we need to show that forms in Ωi
X(logD1)

pull back to Ωi
Y near the generic point of D2. This is clear by the formulas in

Case 1, using that e = 0 ∈ k.

Case 3 D1 in EX , e ∈ k∗. Then we need to show that Ωi
X(logD1)(−D1) pulls back

into Ωi
Y (logD2)(−D2) near the generic point of D2. This follows from Case

1, using that g pulls back to a unit times a positive power of h.

Case 4 D1 in EX , e = 0 ∈ k. Then we need to show that Ωi
X(logD1)(−D1)

pulls back into Ωi
Y near the generic point of D2. This is clear, using that

Ωi
X(logD1)(−D1) is contained in Ωi

X .

Next, we want to define the pushforward (or trace) map

f∗Ω
[i]
Y (logDY )(−EY ) → Ω

[i]
X(logDX)(−EX).

Outside DX ∪ Xsing ∪ f(Y sing), this trace map was defined by Garel and Kunz
[Gar84], [Kun86, section 16], [SPA24, Tag 0FLC]. (They assume that the finite
morphism f is flat with lci fibers; that holds on the open set mentioned, since both
X and Y are smooth there [SPA24, Tags 00R4 and 09Q7].) Since we are mapping
into a reflexive sheaf, it remains to check that the trace map above is regular near the
generic point of each component D1 of DX . It suffices to check this after replacing
X by an elementary étale neighborhood [SPA24, Tag 02LE] of the generic point
of D1, in such a way that Y becomes a disjoint union of varieties containing the
different components D2 of f−1(D1). (Then the trace from Y to X is the sum of
the traces for these different varieties.) We can work on one of these varieties; that
is, we can assume that f−1(D1) is an irreducible divisor D2.

There are four cases.

Case 1 D1 not in EX , e ∈ k∗. Then we need to show that the pushforward of a
form in Ωi

Y (logD2) lies in Ωi
X(logD1) near the generic point of D1. We have

Ωi
Y (logD2) = Ωi

Y + dh
h Ωi−1

Y . Since f∗(g) = heu in the notation above, we have

edhh = f∗(dgg )− du
u . Since e ∈ k∗, it follows that Ωi

Y (logD2) = Ωi
Y +f∗(dgg )Ωi−1

Y .
By the projection formula [SPA24, Tag 0FLC], the trace of these forms lies in
Ωi
X + dg

g Ωi−1
X = Ωi

X(logD1).

Case 2 D1 not in EX , e = 0 ∈ k. Then we need to show that forms in Ωi
Y push

forward to Ωi
X(logD1) near the generic point of D1. This is easy, since the

pushforward is contained in Ωi
X ⊂ Ωi

X(logD1).

For cases 3 and 4, we use the following property of the trace map on differential
forms [Hüb89, Remark 5.7]:
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Proposition 2.2. Let f : Y → X be a finite flat morphism with lci fibers over a
field k. Suppose that D1 is an irreducible divisor in X such that D2 := f−1(D1) is
also irreducible. Let e be the ramification degree of f along D2. Then the following
diagram commutes near the generic point of D1:

Ω∗
Y

→→

trf
↓↓

Ω∗
D2

e trf
↓↓

Ω∗
X

→→ Ω∗
D1

.

In our situation (above), the flatness and lci assumptions of Proposition 2.2 hold
near the generic points of D1 and D2, because X and Y are smooth there.

Case 3 D1 in EX , e ∈ k∗. Then we need to show that all the forms in Ωi
Y (logD2)(−D2)

push forward into Ωi
X(logD1)(−D1) near the generic point of D1. That is, we

want to show that the trace of hΩi
Y +hdh

h Ωi−1
Y is contained in g Ωi

X +g dg
g Ωi−1

X .
Proposition 2.2 gives that the trace of (h, dh)Ω∗

Y is contained in (g, dg)Ω∗
X ,

which proves the claim.

Case 4 D1 in EX , e = 0 ∈ k. Then we need to show that forms in Ωi
Y push forward

to Ωi
X(logD1)(−D1) near the generic point of D1. That is, we want trf (Ωi

Y )
to be contained in (g, dg)Ω∗

X . This follows from Proposition 2.2, using that
e = 0 ∈ k. Thus we have constructed the pushforward map in all cases.

We now return to the original morphism f : Y → X (before we restricted to
an étale neighborhood of X). The composition of pullback and pushforward is
multiplication by deg(f), as one can check on an open subset where X and Y are
smooth, by the projection formula: for a form α on Y , trf (f∗α) = trf (1)α =
deg(f)α [SPA24, Tag 0FLC].

Tensoring the maps above with OX(A) and taking double duals, we have pull-
back and pushforward maps

Ω
[i]
X(logDX)(A− EX) → f∗(Ω

[i]
Y (logDY )(f∗A− EY )) → Ω

[i]
X(logDX)(A− EX),

with composition equal to multiplication by deg(f), as we want. (Note that f∗A is
a Weil divisor (with integer coefficients), because f is a finite surjective morphism
between normal varieties.)

3 Endomorphisms and log Bott vanishing

Kawakami and I showed that a projective variety with a suitable endomorphism
must satisfy Bott vanishing [KT23, Theorem C]. (The endomorphism is assumed
to be int-amplified and of degree invertible in the base field.) We now prove a
logarithmic generalization, when the endomorphism has a totally invariant divisor.
This generalizes Fujino’s work on the case of toric varieties [Fuj08, Theorem 1.3].
Indeed, every toric variety has an action of the multiplicative monoid of positive
integers, and every toric divisor is totally invariant under those endomorphisms.

Theorem 3.1. Let X be a normal projective variety over a perfect field k. Suppose
that X admits an int-amplified endomorphism f whose degree is invertible in k. Let
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D be a reduced divisor on X such that f−1(D) ⊂ D. Then (X,D) satisfies log Bott
vanishing. That is,

Hj(X,Ω
[i]
X(logD)(A− E)) = 0

for every reduced divisor E with 0 ≤ E ≤ D, i ≥ 0, j > 0, and A an ample Weil
divisor.

It may seem artificially strong to assume that an endomorphism has a totally in-
variant divisor. But in fact, this property comes up naturally in classifying varieties
with endomorphisms. See [MZZ22] or the proof of Theorem 6.1.

Theorem 3.1 is the most general vanishing property I know how to prove, for a
variety with an endomorphism. The idea of allowing any divisor 0 ≤ E ≤ D was
suggested by Fujino’s result for toric varieties [Fuj08, Theorem 1.3].

Remark 3.2. Bott vanishing can fail if we only assume that f is int-amplified and
separable (rather than of degree invertible in k), by [KT23, Proposition 5.1]. A
fortiori, log Bott vanishing can fail in that situation. (Bott vanishing clearly fails
for inseparable endomorphisms, since every projective variety over a finite field has
the Frobenius endomorphism, which is int-amplified.)

Proof. (Theorem 3.1) Since f is int-amplified, there is an ample Cartier divisor H
on X such that f∗H −H is ample. In particular, f∗H is ample, and so f does not
contract any curves. So f : X → X is finite. Since f−1(D) ⊂ D and f is surjective,
we have f−1(D) = D.

Since f−1(D) = D, f permutes the (finitely many) irreducible components of D.
After replacing f by a positive iterate, we can assume that f maps each component
of D to itself. So f−1(D1) = D1, for each component D1 of D. In particular, since
E is a reduced divisor with 0 ≤ E ≤ D, we now have that f−1(E) = E. (In what
follows, we use only that f−1(E) = E, not that f maps each component of D to
itself. This makes the proof clearer, in terms of notation.)

We are given that the degree of f is invertible in k. The inverse image of
each irreducible component D1 of D is a single irreducible component D2 of D.
Therefore, the degree of f : X → X is the product of the degree of f : D2 → D1

and the ramification degree of f along D2. It follows that this ramification degree
is invertible in k and that k(D2) is a finite separable extension of k(D1) via f . That
is, f is tamely ramified over each component of D.

Let A be an ample Weil divisor on X. By Lemma 2.1, we have pullback and
pushforward maps

Ω
[i]
X(logD)(A− E) → f∗(Ω

[i]
X(logD)(f∗A− E)) → Ω

[i]
X(logD)(A− E),

with composition equal to multiplication by deg(f). (Note that f∗A is a Weil divisor
(with integer coefficients), because f is a finite surjective morphism between normal
varieties.)

Given this, the proof of [KT23, Theorem C] works. Namely, since deg(f) is
invertible in k, it follows that the pullback map is split injective as a map of OX -
modules. Let j > 0. Taking cohomology (and using that f is finite), it follows that

Hj(X,Ω
[i]
X(logD)(A − E)) → Hj(X,Ω

[i]
X(logD)(f∗A − E)) is split injective. The

same argument works for any iterate f e with e ≥ 1.
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Using that f is int-amplified, we showed that the iterates (f e)∗(A) become
arbitrarily large in the ample cone of X, as e goes to infinity [KT23, proof of
Theorem C]. By Fujita vanishing for Weil divisors [KT23, Lemma 2.6], it follows

that there is an e ≥ 1 such that Hj(X,Ω
[i]
X(logD)((f e)∗A−E)) = 0. By the previous

paragraph, we have Hj(X,Ω
[i]
X(logD)(A− E)) = 0, as we want.

4 Morphisms

Let X and Y be projective varieties of the same dimension with Picard number 1.
If X does not satisfy Bott vanishing, then there is an upper bound on the degrees
of all morphisms Y → X with degree invertible in k [KT23, Proposition 2.7]. We
now prove a log version of that result.

Theorem 4.1. Let X and Y be normal projective varieties of the same dimension
over a perfect field k. Assume that X and Y have Picard number 1. Let DX ⊂ X
and BY ⊂ Y be reduced divisors. Suppose that there are morphisms f : Y → X of
arbitrarily high degree such that the degree is invertible in k and f−1(DX) ⊂ BY .
Then (X,DX) satisfies log Bott vanishing. That is, we have

Hj(X,Ω
[i]
X(logDX)(A− E)) = 0

for every reduced divisor 0 ≤ E ≤ DX , i ≥ 0, j > 0, and A an ample Weil divisor
on X.

The proof of Theorem 4.1 shows that one can drop the assumption that X and
Y have Picard number 1 if one replaces “f of arbitrarily high degree” by “f∗H
arbitrarily large in the ample cone of Y ”, for a fixed ample Cartier divisor H on X.

Proof. Since each morphism f : Y → X has degree invertible in k, the degree is
positive. Since Y has Picard number 1, the pullback of an ample Cartier divisor on
X is ample on Y , and so f is finite.

For each morphism f : Y → X, let DY be the sum of the components of f−1(DX)
along which the ramification degree of f is invertible in k, and likewise define EY ⊂
f−1(EY ). Since DY and EY are contained inside the fixed divisor BY , we can
assume (after passing to a subsequence of the morphisms f) that DY and EY are
the same for all the morphisms f : Y → X that we consider.

Let A be an ample Weil divisor on X. By Lemma 2.1, we have pullback and
pushforward maps

Ω
[i]
X(logDX)(A− E) → f∗(Ω

[i]
Y (logDY )(f∗A− EY )) → Ω

[i]
X(logDX)(A− E).

The composition is multiplication by deg(f), and so the pullback map is split injec-

tive. It follows that Hj(X,Ω
[i]
X(logDX)(A−E)) injects into Hj(Y,Ω

[i]
Y (logDY )(f∗A−

EY )). Since we have morphisms f of arbitrarily large degree, f∗A becomes arbitrar-
ily large in the ample cone of Y (here just one ray). Therefore, for f of sufficiently

large degree, Fujita vanishing for Weil divisors gives that Hj(Y,Ω
[i]
Y (logDY )(f∗A−

EY )) is equal to zero [KT23, Lemma 2.6]. It follows that Hj(X,Ω
[i]
X(logDX)(A −

E)) = 0, as we want.
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5 Images of toric varieties: log Bott vanishing

A projective variety that is an image of a toric variety (by a morphism of degree
invertible in k) must satisfy Bott vanishing [KT23, Proposition 3.10]. We now prove
a log version of that result.

Theorem 5.1. Let X be a normal projective variety over a perfect field k. Suppose
that there is a morphism f from a proper toric variety Y onto X. If Y → Y1 → X
is the Stein factorization of f , assume that the degree of Y1 → X is invertible in k.
Let DX ⊂ X be a reduced divisor such that f−1(DX) is a union of toric divisors.
Then (X,DX) satisfies log Bott vanishing. That is, we have

Hj(X,Ω
[i]
X(logDX)(A− E)) = 0

for every reduced divisor 0 ≤ E ≤ DX , i ≥ 0, j > 0, and A an ample Weil divisor
on X.

It may seem unrealistically strong to assume that f−1(DX) is a union of toric
divisors. Nonetheless, the proof of Theorem 7.2 shows how Theorem 5.1 can be
used for classifying images of toric varieties.

Proof. Every contraction of a toric variety is toric [Tan22, Proposition 2.7]. (This
was known earlier for projective toric varieties [CLS11, Theorem 6.28 and exercise
7.2.3].) So, replacing Y by Y1, we can assume that the surjection f : Y → X is
finite. By our assumptions, the degree of f is invertible in k. Let DY be the sum of
the components of f−1(DX) along which the ramification degree e of f is invertible
in k. Likewise, let EY be the sum of the components of f−1(E) along which the
ramification degree of f is invertible in k. By our assumptions, DY and EY are
sums of toric divisors.

Let A be an ample Weil divisor on X. By Lemma 2.1, we have pullback and
pushforward maps

Ω
[i]
X(logDX)(A− E) → f∗(Ω

[i]
Y (logDY )(f∗A− EY )) → Ω

[i]
X(logDX)(A− E),

with composition equal to multiplication by deg(f). Since deg(f) is invertible in k,
it follows that the pullback map is split injective as a map of OX -modules. Let j > 0.

Taking cohomology (and using that f is finite), it follows that Hj(X,Ω
[i]
X(logDX)(A−

E)) → Hj(Y,Ω
[i]
Y (logDY )(f∗A − EY )) is split injective. Since f∗A is ample on Y ,

the latter cohomology group is zero by log Bott vanishing for toric varieties [Fuj08,
Theorem 1.3]. (Alternatively, this follows from Theorem 3.1, using the multiplica-

tion maps on a toric variety.) It follows that Hj(X,Ω
[i]
X(logDX)(A − E)) = 0, as

we want.

6 Endomorphisms of del Pezzo surfaces and Fano 3-
folds

Theorem 6.1. Let X be a smooth Fano 3-fold over an algebraically closed field k.
If X has an int-amplified endomorphism of degree invertible in k, then X is toric.
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The proof uses Tanaka’s theorem that the classification of smooth Fano 3-
folds has essentially the same form in every characteristic [Tan23b, Theorem 1.1],
[Tan23a, Theorem 1.1]. Without that, our proof applies to Fano 3-folds in any
characteristic that are given by the same construction as one of the Fano 3-folds
over C (classified by Iskovskikh and Mori-Mukai).

In characteristic zero, Theorem 6.1 was proved earlier by Meng, Zhang, and
Zhong [MZZ22, Theorem 1.4]. Here we give a new proof which works in any char-
acteristic. For Fano 3-folds with Picard number 1, this is [KT23, Theorem A]. We
also prove an analogous result for del Pezzo surfaces (Proposition 6.4).

To prove Theorem 6.1, our basic idea is to use that X satisfies Bott vanishing,
but that is not enough by itself: among the smooth complex Fano 3-folds, 18 are
toric while 19 others also satisfy Bott vanishing [Tot24]. In proving Theorem 6.1,
one key point is that when X has an endomorphism as above, not only X but also
every contraction of X satisfies Bott vanishing (Lemma 6.2).

Proof. (Theorem 6.1) Assume that X has an int-amplified endomorphism of degree
invertible in k. Then X satisfies Bott vanishing [KT23, Theorem C]. Among all
smooth Fano 3-folds, exactly 19 non-toric Fano 3-folds (up to isomorphism) satisfy
Bott vanishing [Tot24, Theorem 0.1]. In Mori-Mukai’s numbering [MM82, MM03,
IP99, Bel24], these are (2.26), (2.30), (3.15)–(3.16), (3.18)–(3.24), (4.3)–(4.8), (5.1),
and (6.1). (To be precise, the answer is a subset of this in characteristic 2, where only
9 non-toric Fano 3-folds on the known list satisfy Bott vanishing [Tot24, section 2].)
We need to show that none of these 19 varieties has an int-amplified endomorphism
f of degree invertible in k. Table 1 describes these 19 varieties, using information
from Mori-Mukai or the web site Fanography [MM82, Bel24]. In the table, V5 is the
smooth quintic del Pezzo 3-fold Gr(2, 5)∩P6 ⊂ P9, Q is the smooth quadric 3-fold,
W is the flag manifold GL(3)/B (or equivalently, a smooth divisor of degree (1, 1)
in P2 ×P2), (3.17) is a smooth divisor of degree (1, 1, 1) in P1 ×P1 ×P2, and S5

is the quintic del Pezzo surface.
For each of these 19 Fano 3-folds, the nef cone of X is the same as the (known)

nef cone in characteristic zero. In particular, it is rational polyhedral. (The nef
cone for every smooth complex Fano 3-fold is given in [CCGK16]. The nef cone was
re-computed for the 19 varieties above in any characteristic, yielding the same result
[Tot24]. The argument also shows that all nef divisors are semi-ample, and hence
the contractions of these varieties have the same description in every characteristic.)

Lemma 6.2. Let X be a normal projective variety over a perfect field k. Suppose
that X has only finitely many contractions (for example, this holds if X is a Mori
dream space, or if the nef cone is rational polyhedral). Assume that X has an
int-amplified endomorphism of degree invertible in k. Then:

(i) Every contraction of X admits an int-amplified endomorphism of degree in-
vertible in k.

(ii) Every contraction of X satisfies Bott vanishing for ample Weil divisors.

If we only assume that X has a separable int-amplified endomorphism, then every
contraction of X also has a separable int-amplified endomorphism.
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Fano 3-fold Description

(2.26) the blow-up of V5 ⊂ P6 along a general line in it
(2.30) the blow-up of Q ⊂ P4 at a point
(3.15) the blow-up of Q along a disjoint line and conic
(3.18) the blow-up of Q along a conic and then along a fiber in the excep-

tional divisor
(3.19) the blow-up of Q at 2 non-collinear points
(3.20) the blow-up of Q along 2 disjoint lines
(3.23) the blow-up of Q along a line and then along a fiber of the excep-

tional divisor
(4.4) the blow-up of Q along a conic and then along 2 fibers of the

exceptional divisor
(5.1) the blow-up of Q along a conic and then along 3 fibers of the

exceptional divisor
(3.16) the blow-up of W ⊂ P2 ×P2 along a curve of degree (2, 1)
(3.24) the blow-up of W along a curve of degree (1, 0)
(4.7) the blow-up of W along disjoint (1, 0) and (0, 1) curves
(4.3) the blow-up of (3.17) in P1 × P1 × P2 along a curve of degree

(1, 1, 0)
(3.21) the blow-up of P1 ×P2 along a curve of degree (2, 1)
(3.22) the blow-up of P1 ×P2 along a curve of degree (0, 2)
(4.5) the blow-up of P1 ×P2 along disjoint (2, 1) and (1, 0) curves
(4.6) the blow-up of P3 along 3 disjoint lines
(4.8) the blow-up of (P1)3 along a curve of degree (0, 1, 1)
(6.1) P1 × S5

Table 1: The 19 non-toric Fano 3-folds that satisfy Bott vanishing
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One can get around the assumption that X has only finitely many contrac-
tions by considering only contractions that reduce the Picard number by 1 [MZ20,
Definition 5.2 and Theorem 7.9].

Proof. Let f : X → X be a separable int-amplified endomorphism, and let π : X →
Z be a contraction. Every curve on X is the image of a curve under f . It follows that
the pullback linear map f∗ : N1(X) → N1(X) is injective, hence an isomorphism. It
also follows that f∗(Nef(X)) = Nef(X). A contraction is determined by a face of the
cone of curves, or equivalently by a face of the nef cone in N1(X); so f permutes
the set of contractions of X. Since X has only finitely many contractions, after
replacing f by a positive iterate, we can assume that f preserves the contraction π.
That is, we have a commutative diagram

X
f

→→

π
↓↓

X
π

↓↓

Z
g

→→ Z,

for an endomorphism g of Z. Here g is separable since f is.
An endomorphism f of a normal projective variety over a field k is int-amplified

if and only if all eigenvalues of f∗ on N1(X)C have absolute value greater than 1
[Men20, Theorem 1.1]. (Meng assumes that k has characteristic zero, but his proof
works in any characteristic.) In our situation, the pullback π∗ : N1(Z) → N1(X)
is injective (because every curve on Z is the image of some curve on X). Since all
eigenvalues of f∗ on N1(X)C have absolute value greater than 1, the same holds
for the eigenvalues of g∗ on N1(Z)C. That is, g is an int-amplified endomorphism
of Z. That completes the proof for a separable int-amplified endomorphism f .

Suppose in addition that f has degree invertible in k. The degree of g divides
the degree of f and hence is invertible in k. It follows that Z satisfies Bott vanishing
by [KT23, Theorem C] (generalized as Theorem 3.1 above).

This immediately rules out 13 of the 19 Fano 3-folds above, since they contract
to other varieties where Bott vanishing fails, by Table 1. Namely, by [Tot24, section
2] (or earlier work), Bott vanishing fails for the quintic del Pezzo 3-fold V5, the
quadric 3-fold Q, the flag manifold W = GL(3)/B, and the 3-fold (3.17), a smooth
divisor in P1 ×P1 ×P2 of degree (1, 1, 1).

That leaves: (3.21), (3.22), (4.5), (4.6), (4.8), and (6.1). To analyze these, we
will use:

Lemma 6.3. Let f : Y → X be a finite surjective morphism of normal varieties over
an algebraically closed field k. Let πX : X → X1 and πY : Y → Y1 be contractions,
and suppose that there is a morphism g : Y1 → X1 making the diagram commute:

Y
f

→→

πY
↓↓

X
πX

↓↓

Y1
g

→→ X1.

Let ∆X be the set of points P ∈ X1(k) with π−1
X (P ) reducible, and likewise define

∆Y ⊂ Y1(k). Then g−1(∆X) ⊂ ∆Y .
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Proof. For each k-point P in Y1, I claim that the fiber of Y over P maps onto
the fiber of X over g(P ). This is fairly clear geometrically; to be precise, we can
imitate the proof of [CMZ20, Lemma 7.3]. Namely, suppose that YP → Xg(P ) is not

surjective. Let S = g−1(g(P ))−{P}, a finite set. Then S ̸= ∅ and U := Y −π−1
Y (S)

is an open dense subset of Y not equal to Y , using that Y is irreducible. Since
X is normal, the finite surjection f : Y → X is an open map [SPA24, Tag 0F32],
and so f(U) is an open dense subset of X. In particular, f(U) ∩Xg(P ) is open in
Xg(P ). Note that f(U) = (X − Xg(P )) ∪ f(YP ). So f(YP ) is open in Xg(P ). It is
not empty, since YP is not empty. Since f is proper, f(YP ) is also closed in Xg(P ).
Since πX : X → X1 is a contraction, Xg(P ) is connected, and so f(YP ) = Xg(P ), as
we want.

An irreducible scheme cannot map onto a reducible scheme. Therefore, g−1(∆X)
is contained in ∆Y .

Let us continue the proof of Theorem 6.1, that a Fano 3-fold with an int-amplified
endomorphism of degree invertible in k is toric. Of the 6 remaining cases, we start
with (6.1), which is P1 times the quintic del Pezzo surface X. By Lemma 6.2, it
suffices to show that X has no int-amplified endomorphism of degree invertible in
k. This was shown by Nakayama [Nak10, Proposition 4.4]. We prove a bit more,
namely that X has no separable int-amplified endomorphism.

Proposition 6.4. A smooth del Pezzo surface over an algebraically closed field k
that admits a separable int-amplified endomorphism must be toric.

Proof. The classification of smooth del Pezzo surfaces has the same form in any
characteristic [Kol96, section III.3]. In particular, a smooth del Pezzo surface X is
toric if and only if its degree (−KX)2 is at least 6. (Then X is P1 ×P1 or else the
blow-up of P2 at 3 or fewer points in general position.) And every smooth del Pezzo
surface of degree at most 5 is a blow-up of the quintic del Pezzo surface (the blow-up
of P2 at 4 points in general position). By Lemma 6.2, it suffices to show that the
quintic del Pezzo surface X does not have a separable int-amplified endomorphism.

Suppose that the quintic del Pezzo surface X has a separable int-amplified endo-
morphism f . Let πX be one of the contractions of X to P1. By the proof of Lemma
6.2, after replacing f by a positive iterate, the contraction πX is f -equivariant,
giving a separable int-amplified endomorphism g of P1.

The point is that the contraction πX from the quintic del Pezzo surface to P1

has 3 singular fibers, and these fibers are reducible (namely, the union of two copies
of P1). Let ∆X ⊂ P1 be the discriminant locus of πX , consisting of 3 points. By
Lemma 6.3, g−1(∆X) is contained in ∆X . Then pulling back differential forms gives
a map

Ω1
P1(log ∆X) → g∗Ω

1
P1(log ∆X).

Equivalently, we can view this as a map of line bundles from g∗(KP1 + ∆X) to
KP1 + ∆X , hence as a section of KP1 + ∆X − g∗(KP1 + ∆X). Since g is separable,
this section is not identically zero. But KP1 + ∆X has degree 1, so KP1 + ∆X −
g∗(KP1 + ∆X) has degree 1 − deg(g) < 0, a contradiction. Thus the quintic del
Pezzo surface does not have a separable int-amplified endomorphism.

11



Since the 3-fold (6.1) is P1 times the quintic del Pezzo surface, Lemma 6.2
and Proposition 6.4 give that (6.1) does not admit a separable int-amplified endo-
morphism. A fortiori, it does not have an int-amplified endomorphism of degree
invertible in k, as considered in Theorem 6.1.

The proof for (4.8), the blow-up X of (P1)3 along a curve F of degree (0, 1, 1),
is somewhat similar. We can take F to be a point in P1 times the diagonal ∆2

P1 in

(P1)2. Suppose that X has an int-amplified endomorphism of degree invertible in
k. The contraction π of X to (P1)2 (corresponding to the last two P1 factors) has
discriminant locus the diagonal ∆P1 , and the fibers over ∆P1 are reducible. After
replacing f by an iterate, π is f -equivariant, by Lemma 6.2. Write g : (P1)2 → (P1)2

for the resulting endomorphism of (P1)2, which is int-amplified and has degree
invertible in k. By Lemma 6.3, ∆P1 is totally invariant under g.

By Theorem 3.1, it follows that ((P1)2,∆P1) satisfies log Bott vanishing. In par-
ticular, taking A = O(1, 1) and E = ∆P1 ∼ A, we have H1(X,Ω1

(P1)2
(log ∆P1)) = 0.

But in fact, this cohomology group is not zero. Indeed, for any smooth divisor D in
a smooth variety X over k, we have an exact sequence of coherent sheaves [SPA24,
Tag 0FMW]:

0 → Ω1
X → Ω1

X(logD)
Res−−→ OD → 0.

So we have an exact sequence of cohomology groups H0(D,OD) → H1(X,Ω1
X) →

H1(X,Ω1
X(logD)). For X = (P1)2 and D = ∆P1 , we have h0(D,OD) = 1 and

h1(X,Ω1
X) = 2, and so H1(X,Ω1

X(logD)) ̸= 0 as claimed. This contradiction shows
that the Fano 3-fold (4.8) does not have an int-amplified endomorphism of degree
invertible in k.

Next, we exclude the 3-fold (4.6), the blow-up of P3 along three pairwise disjoint
lines L1, L2, L3 over k. Here X has three contractions to P1, using that the blow-
up of P3 along each line Li is a P2-bundle over P1. Let π : X → (P1)2 be the
contraction given by the morphisms to P1 associated to L1 and L2. For clarity, first
consider the blow-up Y of P3 along L1 and L2; then the contraction Y → (P1)2

is a P1-bundle. The line L3 ⊂ Y maps to a curve of degree (1, 1) in (P1)2, which
we can take to be the diagonal ∆P1 . Since X is the blow-up of Y along L3, the
discriminant locus of π : X → (P1)2 is the curve ∆P1 . The fibers of π over that
curve are reducible (the union of two copies of P1).

If X has an int-amplified endomorphism of degree invertible in k, then the pair
((P1)2,∆P1) satisfies log Bott vanishing. But this is false, as shown above. So the
Fano 3-fold (4.6) does not have an int-amplified endomorphism of degree invertible
in k.

Next, we rule out (3.22), the blow-up X of P1×P2 along a conic in p×P2, for a k-
point p in P1. The contraction of X to P2 has discriminant locus a conic F in P2. As
in the arguments above, if X has an int-amplified endomorphism of degree invertible
in k, then so does P2, and F is totally invariant. Therefore, the pair (P2, F ) satisfies
log Bott vanishing. But this is false. Namely, let A = O(1) and E = F ∼ O(2);
then we will show that H1(P2,Ω1

P2(logF )(A − E)) = H1(P2,Ω1
P2(logF )(−1)) is

not zero. Use the exact sequence of coherent sheaves on P2:

0 → Ω1
P2 → Ω1

P2(logF )
Res−−→ OF → 0.

By the exact sequence 0 → Ω1
P2(−1) → O(−2)⊕3 → O(−1) → 0 on P2, Ω1

P2(−1)

12



has zero cohomology in all degrees. So we have an isomorphism

H1(P2,Ω1
P2(logF )(−1)) ∼= H1(F,O(−1)|F ).

Since the conic F is isomorphic to P1 and O(−1) has degree −2 on F , h1(F,O(−1)|F )
is 1, not 0. So log Bott vanishing fails for (P2, F ). It follows that the 3-fold (3.22)
does not have an int-amplified endomorphism of degree invertible in k.

The last cases are (3.21) and (4.5). These are handled by:

Lemma 6.5. The Fano 3-folds (3.21) and (4.5) contract to the quintic del Pezzo
3-fold with one node, which does not satisfy Bott vanishing.

Proof. Here (4.5) is a blow-up of the Fano 3-fold of type (3.21). Next, the Fano
3-fold X of type (3.21) is the blow-up of P1 ×P2 along a curve F of degree (2, 1).
There is a contraction from X to the quintic del Pezzo 3-fold Y with one node
[Pro13, section 5.4.2]. It remains to show that Y does not satisfy Bott vanishing.

Indeed, I claim that the Euler characteristic χ(Y,Ω
[2]
Y (1)) is −2 < 0. This is harder

than previous cases because Y is singular, but it is still manageable.
To prove this, it is convenient to know how the sheaf Ω2

Y is related to its reflexive

hull Ω
[2]
Y , for a 3-fold Y with a node. More generally, let Y be a normal hypersurface

in a smooth variety W with dim(W ) = n + 1, so that locally Y is the zero locus of
a regular function g. Define the torsion and cotorsion of a coherent sheaf M to be
the kernel and cokernel of the natural map M → M∗∗. Consider the complex K:

0 → Ω0
W |Y → Ω1

W |Y → · · · → Ωn+1
W |Y → 0,

with differentials given by ∧dg. Graf described the torsion and cotorsion of the
sheaves Ωj

Y in terms of this complex: we have Hj(K) ∼= tor Ωj
Y and Hj(K) ∼=

cotor Ωj−1
Y [Gra15, Theorem 1.11]. For Y the 3-fold node, we can take W = A4 and

g = xy − zw. The complex above is the Koszul complex for the regular sequence
∂g/∂x = y, ∂g/∂y = x, ∂g/∂z = −w, ∂g/∂w = −z, tensored over OW with OY .
These four functions generate the ideal of the origin P in W = A4; so tor Ωi

Y
∼=

TorOW
4−i (OY , OP ) and cotor Ωi

Y
∼= TorOW

3−i (OY , OP ). These Tor groups are easy to

compute, using the free resolution 0 → OW
g−→ OW → OY → 0 of OY as an OW -

module. Namely, it follows that TorOW
∗ (OY , OP ) is the homology of the complex

0 → OP
0−→ OP → 0,

which is a 1-dimensional k-vector space in degrees 1 and 0, and zero in other de-
grees. Therefore, Ω1

Y is reflexive, while Ω2
Y is torsion-free and its cotorsion is a

1-dimensional vector space, supported at the node P . That is, we have a short
exact sequence of sheaves on a nodal 3-fold Y :

0 → Ω2
Y → Ω

[2]
Y → OP → 0.

Hence, for Y the quintic del Pezzo 3-fold with one node, we have χ(Y,Ω
[2]
Y (1)) =

1 + χ(Y,Ω2
Y (1)). It remains to show that χ(Y,Ω2

Y (1)) = −3.
For a nodal 3-fold Y in a smooth 4-fold W over k (as for any effective Cartier

divisor), we have an exact sequence of coherent sheaves on Y [SPA24, Tag 00RU]:

O(−Y )|Y → Ω1
W |Y → Ω1

Y → 0.
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Taking exterior powers, we have an exact sequence Ωj−1
Y (−Y ) → Ωj

W |Y → Ωj
Y → 0

for any j. For j = 2, the map Ω1
Y (−Y ) → Ω2

W |Y is clearly injective outside the
node. Since Ω1

Y (−Y ) is torsion-free (by the analysis above), this map is actually
injective as a map of sheaves on all of Y . That is, we have an exact sequence
0 → Ω1

Y (−Y ) → Ω2
W |Y → Ω2

Y → 0. Likewise, we have an exact sequence 0 →
OY (−Y ) → Ω1

W |Y → Ω1
Y → 0 on Y . Finally, we can tensor the exact sequence

0 → OW (−Y ) → OW → OY → 0 with any vector bundle on W , giving 0 →
Ω1
W (−Y ) → Ω1

W → Ω1
W |Y → 0 and 0 → Ω2

W (−Y ) → Ω2
W → Ω2

W |Y → 0.
Apply this to the quintic del Pezzo 3-fold Y ⊂ P6 with a node, which is a

codimension-3 linear section of the Grassmannian Gr(2, 5) ⊂ P9. The quintic del
Pezzo 3-fold with one node is unique up to isomorphism, with explicit equations
labelled X5,2,4 in [KP23, section A.1.6]. By the equations, Y is a hyperplane section
of a smooth codimension-2 linear section W ⊂ P7. By the previous paragraph, we
can rewrite χ(Y,Ω2

Y (1)) in terms of Euler characteristics on W ; but this formula
would be exactly the same with Y replaced by a smooth hyperplane section V5 ⊂ P6.
Therefore, χ(Y,Ω2

Y (1)) = χ(V5,Ω
2
V5

(1)) = −3 [Tot24, section 2]. As discussed

above, it follows that χ(Y,Ω
[2]
Y (1)) = −2, and so Y does not satisfy Bott vanishing.

Lemma 6.5 is proved.

It follows that neither (3.21) nor (4.5) admits an int-amplified endomorphism of
degree invertible in k. Theorem 6.1 is proved.

7 Images of toric varieties: del Pezzo surfaces and Fano
3-folds

Occhetta and Wísniewski conjectured that a smooth complex projective variety X
that admits a surjective morphism from a proper toric variety must be toric [OW02].
(This is known for contractions, and so it suffices to consider a finite surjective
morphism.) Occhetta-Wísniewski’s conjecture was proved by Achinger, Witaszek,
and Zdanowicz for X of dimension at most 2, and also for X a Fano 3-fold [AWZ21,
proof of Theorem 4.4.1], [AWZ23, Theorems 6.9 and 7.7]. Using Bott vanishing,
we will reprove this result for Fano 3-folds and extend it to positive characteristic
(Theorem 7.2). Kawakami and I proved this extension earlier for Fano 3-folds with
Picard number 1 [KT23, Proposition 3.10].

Another approach to Theorem 7.2 appeared after the first version of this paper.
Namely, Kawakami and Takamatsu used Lemma 2.1 above to show that the image
of an F -liftable variety in characteristic p by a morphism of degree prime to p is
F -liftable [KT24, Corollary 3.13]. In particular, the image of a toric variety by
a morphism of degree prime to p is F -liftable. But Achinger-Witaszek-Zdanowicz
showed that a smooth Fano 3-fold that is F -liftable must be toric. So a Fano 3-fold
that is an image of a toric variety by a morphism of degree prime to p must be toric.

We will prove Theorem 7.2 using log Bott vanishing rather than F -liftability.
Thus our method for analyzing images of toric varieties closely parallels our ap-
proach to finding which varieties have nontrivial endomorphisms (Theorem 6.1).

We start with the analogous result in dimension 2.

Proposition 7.1. A smooth del Pezzo surface over an algebraically closed field k
that is the image of a proper toric variety must be toric.
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Surprisingly, Proposition 7.1 works in any characteristic with no assumption on
the degree of the morphism f ; f may even be inseparable. The proof does not use
Bott vanishing.

Proof. A smooth del Pezzo surface X is toric if and only if its degree (−KX)2 is at
least 6. And every smooth del Pezzo surface of degree at most 5 is a blow-up of the
quintic del Pezzo surface (the blow-up of P2 at 4 points in general position). So it
suffices to show that there is no surjection f from a proper toric variety Y to the
quintic del Pezzo surface X.

Let Y → Z → X be the Stein factorization of f ; then Z is also toric, since every
contraction of a toric variety is toric [Tan22, Proposition 2.7]. Replacing Y by Z,
we can assume that f : Y → X is finite and surjective.

Let πX be one of the contractions of X to P1. Let Y → Y1 → P1 be the
Stein factorization of the composition Y → X → P1, where we write πY : Y → Y1
and g : Y1 → P1. Then Y1 is a proper toric curve, hence isomorphic to P1, and
g : Y1 → P1 is finite and surjective.

As we used in the proof of Proposition 6.4, the contraction πX from the quintic
del Pezzo surface to P1 has 3 singular fibers, and these fibers are reducible (namely,
the union of two copies of P1). Let ∆X ⊂ P1 be the discriminant locus of πX ,
consisting of 3 points. By Lemma 6.3, g−1(∆X) is contained in the discriminant
locus ∆Y of πY : Y → Y1. But Y → Y1 is a toric morphism, so its discriminant
locus is contained in the toric divisor of Y1, which consists of 2 points. Since
g : Y1 → P1 is surjective, this is a contradiction (2 points cannot map onto 3 points).
We have shown that the quintic del Pezzo surface is not the image of a proper toric
variety.

Theorem 7.2. Let X be a smooth Fano 3-fold over an algebraically closed field k.
If X is the image of a proper toric 3-fold by a morphism of degree invertible in k,
then X is toric.

As in Theorem 6.1, the proof uses Tanaka’s theorem that the classification of
smooth Fano 3-folds has essentially the same form in every characteristic [Tan23b,
Theorem 1.1], [Tan23a, Theorem 1.1]. Without that, our proof applies to Fano
3-folds in any characteristic that are given by the same construction as one of the
Fano 3-folds over C (classified by Iskovskikh and Mori-Mukai).

Proof. Assume that X is the image of a proper toric 3-fold Y by a morphism f
of degree invertible in k. After replacing f by its Stein factorization, we can also
assume that f : Y → X is finite. Here Y is still toric, because every contraction of
a toric variety is toric [Tan22, Proposition 2.7]. Then X satisfies Bott vanishing,
by Theorem 5.1. There are exactly 19 non-toric Fano 3-folds (up to isomorphism)
that satisfy Bott vanishing [Tot24, Theorem 0.1]. In Mori-Mukai’s numbering, these
are (2.26), (2.30), (3.15)–(3.16), (3.18)–(3.24), (4.3)–(4.8), (5.1), and (6.1). (To be
precise, the answer is a subset of this in characteristic 2, where only 9 non-toric
Fano 3-folds on the known list satisfy Bott vanishing [Tot24, section 2].) We need
to show that none of these 19 varieties can be the image of a toric variety Y by a
finite morphism f of degree invertible in k.
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Of these 19 varieties, 15 have contractions that do not satisfy Bott vanishing, by
the proof of Theorem 6.1, including Lemma 6.5. This excludes all the cases except
four: (3.22), (4.6), (4.8), and (6.1).

Here (6.1) is P1 times the quintic del Pezzo surface. That surface is not an
image of a toric variety, by Proposition 7.1. So (6.1) is not the image of a toric
variety.

Next, we rule out (3.22), the blow-up X of P1 × P2 along a conic in q × P2,
for a k-point q in P1. The contraction of X to X1 := P2 has discriminant locus a
conic F ⊂ P2, and the fibers over points of F are reducible (a union of two P1’s).
Suppose that there is a proper toric 3-fold Y over k with a morphism f : Y → X
such that deg(f) is invertible in k.

Let Y → Y1 → X1 be the Stein factorization of the composition Y → X → X1:

Y
f

→→

↓↓

X

↓↓

Y1 →→ X1.

Then Y1 is a proper toric surface over k, and h : Y1 → X1 is finite, of degree invertible
in k. The discriminant locus of Y → Y1 is contained in the union of the toric divisors.
By Lemma 6.3, h−1(F ) is contained in the discriminant locus of Y → Y1, hence in
the union of the toric divisors in Y1.

By Theorem 5.1, it follows that the pair (X1, F ) = (P2, F ) satisfies log Bott
vanishing. But that is false, by the proof of Theorem 6.1. Thus (3.22) is not the
image of a toric 3-fold by a morphism of degree invertible in k.

A similar argument rules out (4.8), the blow-up X of (P1)3 along a curve of
degree (0, 1, 1). The contraction of X to X1 := (P1)2 (corresponding to the last
two P1 factors) has discriminant locus a curve F of degree (1, 1), which we can
take to be the diagonal ∆P1 in (P1)2. The fibers over points in F are reducible (a
union of two P1’s). Let Y → Y1 → X1 be the Stein factorization of the composition
Y → X → X1:

Y
f

→→

↓↓

X

↓↓

Y1 →→ X1.

Then Y1 is a proper toric surface over k, and h : Y1 → X1 is finite, of degree invertible
in k.

By the same argument as in the previous case, h−1(F ) must be a toric divisor
in Y1. By Theorem 5.1, it follows that the pair (X1, F ) = ((P1)2,∆P1) satisfies log
Bott vanishing. But that is false, by the proof of Theorem 6.1. Thus (4.8) is not
the image of a toric 3-fold by a morphism of degree invertible in k.

Finally, let X be the Fano 3-fold (4.6), the blow-up of P3 along three pairwise
disjoint lines L1, L2, L3 over k. Suppose that there is a proper toric 3-fold Y over
k with a morphism f : Y → X such that deg(f) is invertible in k. By the proof
of Theorem 6.1, X has a contraction to X1 := (P1)2 with discriminant locus the
diagonal F := ∆P1 in (P1)2. The fibers over F are reducible (the union of two
P1’s). Then the same argument in the previous case (using that ((P1)2,∆P1) does
not satisfy log Bott vanishing) yields a contradiction. So the Fano 3-fold (4.6) is
not the image of a toric 3-fold by a morphism of degree invertible in k.
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