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Abstract—Many resources in the grid connect to power
grids via programmable grid-interfacing inverters that can
provide grid services and offer greater control flexibility
and faster response times compared to synchronous gen-
erators. However, the current through the inverter needs
to be limited to protect the semiconductor components.
Existing controllers are designed using somewhat ad
hoc methods, for example, by adding current limiters to
preexisting control loops, which can lead to stability issues
or overly conservative operations. In this letter, we study
the geometry of the feasible output region of a current-
limited inverter. We show that under a commonly used
model, the feasible region is convex. We provide an explicit
characterization of this region, which allows us to effi-
ciently find the optimal operating points of the inverter. We
demonstrate how knowing the feasible set and its convexity
allows us to improve upon existing grid-forming inverters
such that their steady-state currents always remain within
the current magnitude limit, whereas standard grid-forming
controllers can lead to instabilities and violations.

Index Terms—Power systems, optimization, inverter
control.

I. INTRODUCTION

MANY resources in the electric system, including solar
PV, wind, storage, and electric vehicles (EVs), are

connected to the grid through power electronic inverters. At
the same time, power systems were designed assuming the
presence of large spinning machines [1]. As fossil fuel-based
generation retires and inverter-based resources (IBRs) grow,
understanding whether the latter could successfully replace the
former in grid operations is becoming increasingly important.

A key difference between IBRs and synchronous generators
is their ability to handle current during normal and contingent
operations [2], [3]. Synchronous generators can typically sup-
ply more than 5 to 10 times their rated current with relatively
little damage [4]. In contrast, in order to protect semiconductor
devices, inverter currents can only marginally exceed their
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nominal rated currents [5], [6]. In recent years, significant
attention has been paid to how currents should be limited, for
example, see [2], [3], [7], [8] and the references within.

However, despite these results, the dispatch signals coming
from the system are often somewhat oblivious to the current
limits. In most cases, inverters are expected to track some set-
points, for example, current/power for grid following inverters
and voltage/power for grid-forming inverters [9], [10], [11].
These setpoints are optimized to maximize the efficiency of
the overall system, but they may not include the physical
constraint of the inverters. Even when the inverter constraints
are included, they are often presented in simple forms (e.g.,
upper and lower bounds on all quantities) which do not match
the geometry of the actual feasible operation regions.

Inverters achieve given setpoints using control loops (typi-
cally a current loop and a voltage loop). But if reaching these
setpoints leads to a violation of the current rating, the inverter
output current would saturate [3], resulting in a mismatch
between the higher-level commands and the physical limit of
the device. Depending on how the current limiter is designed,
the inverter could become dynamically unstable and could
cause severe problems in a grid [12], [13], [14], [15].

In this letter, we study the geometry of the feasible operating
region of a current-limited inverter. That is, given a current
limit and the inverter parameters, what is the region of all
achievable outputs? Answering this question is the natural
first step towards ensuring the safe operations of inverters
and designing controllers that optimize their performances.
We show that, under a commonly used model, the feasible
region is convex when two of active power, reactive power and
square of the voltage magnitudes1 are considered. We provide
an explicit characterization of this region using linear matrix
inequalities, so we can efficiently find the optimal operating
points of the inverter.

Because power and voltage magnitude depend quadratically
on the current, and the current is a vector in R2 (in the dq
frame), the feasible region is a quadratic map of a disk (current
magnitude is upper bounded). Unlike affine transformations,
a quadratic map of a convex set is not, in general, convex.
It turns out that the particular structure of the inverter circuit
preserves convexity, which we will explain in detail in this
letter. We demonstrate how knowing the feasible set and its
convexity allows us to improve upon existing grid-forming
inverters such that their steady-state currents always remain

1It is more common to consider the magnitude of voltage and not its square.
However, the squared magnitude is much easier to work with.
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Fig. 1. We model the inverter as a controllable voltage source in the
dq-frame connected via an RL filter to an infinite bus.

within the current magnitude limit, whereas standard grid-
forming controllers can lead to instabilities and violations.

II. MODEL AND PROBLEM FORMULATION

A. Inverter Model
In this letter, we consider a widely used model of a three-

phase inverter connected to a fixed grid voltage represented
by an infinite bus through an RL branch as shown in
Figure 1 [14], [16]. The model assumes a balanced three-
phase system and can thus use the direct-quadrature (dq)
frame transformation with reference to some angle θ rotating
at constant frequency ω to describe all the rotating physical
quantities in R2 rather than R3. We assume the grid-side
voltage is of constant magnitude, E, and define Edq with
respect to the grid-side voltage angle, θ , to get Edq = (E, 0).
The dynamics of a voltage-source inverter connected to Edq
through resistor R and inductor L are governed by

[
İd
İq

]
= A

[
Id
Iq

]
+ 1

L

[
Vd − E

Vq

]
, (1)

where A =
[
−R/L ω
−ω −R/L

]
, and Idq and Vdq are the inverter

current and voltage, respectively, in the dq-reference frame of
the grid [16]. This choice is mainly for notational convenience.
We show in Section III that our overall approach and main
results do not require the knowledge of the grid voltage angle
and in fact we can take any angle to be the reference. We will
treat Idq as the state and Vdq as the control input. The matrix
A being skew-symmetric with equal diagonal elements the key
structural property of the inverter that allows us to derive the
main results.

To protect the inverter from damaging current levels, the
magnitude of the current should be limited [17], [18]. Inverter
current limits arise from two aspects, thermal limits and
inductor saturation [19]. Thermal limits are “soft constraints,”
in the sense that they can be violated for short periods of time.
Inductor saturation is a hard constraint and has values that are
typically a few times larger than the thermal constraints [20].
We denote this limit as Imax, and we define the safe (or
feasible) current operating region as

I :=
{

Idq | ‖Idq‖2
2 ≤ I2

max

}
.

B. Inverter Output
Inverters in the grid are usually asked to optimize their

output, typically a combination of active power, reactive
power, and voltage magnitude. The natural question becomes
how well we can optimize these outputs given the constraint
that current needs to stay in the safe region I.

The inverter’s active power, reactive power, and the squared
voltage magnitude are all expressed as quadratic functions of
the current and the voltage:

P = 3
2

IT
dqVdq (2a)

Q = 3
2

IT
dqJVdq (2b)

V2
dq = VT

dqVdq, (2c)

where J =
[

0 1
−1 0

]
. We note that it is more common

to consider the voltage magnitude rather than the squared
magnitude as we do here. Of course, the two are equivalent
from the point of view of achieving a desired setpoint, but the
squared form in (2c) is much easier to work with.

The quantities in (2) are defined for all time t since Idq
and Vdq are functions of t, but we are usually interested in
optimizing the equilibrium values resulting from the dynamics
in (1). Assuming that (1) is asymptotically stable (we show
this in Section III-B), we denote the equilibrium of current
and voltage as Idq and Vdq, respectively. Substituting these
into (2), we get the equilibrium values of P, Q and V2

dq. We
are interested in two related questions: 1) finding the optimal
values of P, Q and V2

dq and 2) using these values to improve
the performance of existing grid-forming controllers.

We first look at the question of optimizing the equilibrium
values. Let S1, S2 ∈ (P, Q, V2

dq) denote some choice of two
out of the three quantities. We are interested in solving the
following problem:

minimize f (S1, S2)

subject to Idq ∈ I, (3)

where f : R2 → R is some objective function. For example,
suppose that we are interested in tracking some setpoints S∗

1, S∗
2

as closely as possible. The objective would be f (S1, S2) =
1
2 (S1 − S∗

1)
2 + γ 1

2 (S2 − S∗
2)

2 with γ being some tradeoff
parameter.

It is not immediately clear whether the problem (3) is easy
to solve. Even if f is a convex function, the quadratic forms
in (2) make the overall problem not convex in Idq.

C. Feasible Operating Regions
We can rewrite (3) as an optimization over S1 and S2:

minimize f (S1, S2)

subject to (S1, S2) ∈ S (4)

where S is the set of all feasible points achieved by currents
Idq ∈ I. In the next section, we show that S is convex, and
consequently, (4) is a convex optimization problem if f is
convex. Using the tracking example again, (4) with f (S1, S2) =
1
2 (S1 − S∗

1)
2 + γ 1

2 (S2 − S∗
2)

2 can be solved efficiently at real-
time, allowing us to achieve perfect tracking if possible, and
the closest setpoints if not.

III. GEOMETRY OF THE FEASIBLE REGION

In this section, we study the geometry of the feasible set S .
The main result is given by Theorem 1.

Theorem 1: Let (S1, S2) be a pair of points formed by
choosing any two of the three quantities P, Q, V2

dq. Let S ∈ R2
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Fig. 2. The set of feasible inverter currents (I) (top left) always
forms a circle of radius Imax due to the magnitude constraint on
Idq. The shapes of feasible (P, Q)(topright), (P, V 2

dq)(bottomleft), and

(Q, V 2
dq)(bottomright) regions depend on specific network parameters,

namely RL filter impedance values and grid-side voltage magnitude
||Edq||2.

be the set of all achievable points (S1, S2) by Idq ∈ I. Then
S is convex.

The proof of this theorem is given in the next section.
Figure 2 plots what the regions look like for the combinations
of (P, Q), (P, V2

dq), and (Q, V2
dq). The convexity of the regions

do not depend on the values of R and L (as long as they
are positive) or Edq. The exact shape depends on R, L and
||Edq||2, but not the phase angle of Edq. Therefore, we do not
need a PLL to sense the grid voltage angle. We do assume
that inverters know their own RL filter specifications or can
estimate them, as well as ||Edq|| is measurable [21], [22].

A. Proof of Theorem 1
The first step in the proof is to write the quantities in (2)

just as a function of the current. At equilibrium, the steady
state voltage is

Vdq = Edq − LAIdq.

Substituting this into (2), we have

P = 3
2

I
T
dq

(
Edq − LAIdq

)
(5a)

Q = 3
2

I
T
dqJ

(
Edq − LAIdq

)
(5b)

V2
dq =

(
Edq − LAIdq

)T(
Edq − LAIdq

)
. (5c)

Using the fact that for any square matrix M and vector z,

zTMz = zT M+MT

2 z and A+AT

2 =
[−R

L 0
0 −R

L

]
= −R

L I2 (where

I2 is the 2 by 2 identity matrix), (5) becomes

P = 3
2

R||Idq||22 + 3
2

ET
dqIdq (6a)

Q = 3
2
ωL||Idq||22 + 3

2
ET

dqJIdq (6b)

V2
dq =

(
R2 + ω2L2

)
||Idq||22 + 2ET

dqAIdq + ||Edq||22. (6c)

Note the grid voltage, Edq, enters into these equations either
as ||Edq||22 or as a product with Idq. Because we are looking at
all possible Idq satisfying a magnitude constraint, all possible
angle differences between the inverter current (or voltage) and
the grid voltage are included, and the shapes of the regions
do not depend on the phase angle of the grid voltage.

Because of the particular form of these equations,
Theorem 1 follows directly from the following Lemma.

Lemma 1: Given linearly independent a, b ∈ R2 and α,β ∈
R+, the set C = {(αxTx + aTx,βxT x + bTx) | xTx ≤ 1} is
convex.

To apply Lemma 1 to our problem, first note that the
constant term, ||Edq||22, can be ignored. We also note that
a, b will always be linearly independent: the linear terms
in (6a) and (6b), proportional to Edq and JTEdq, respectively,
are orthogonal. The linear term in (6c) is proportional to
ATEdq which is a linear combination of the linear terms
in (6a) and (6b). Thus, each of the three vectors is linearly
independent with respect to any one of the other two vectors.

Proof: To see this, we first rewrite C as
{[

α||x||22
β||x||22

]
+

[
aT

bT

]
x | ||x||22 ≤ 1

}
. (7)

Then, we define a new set C′ as the image of set C under an
affine function given by:

C′ =
{[

aT

bT

]−1

s | s ∈ C
}

=
{
||x||22 c + x | ||x||22 ≤ 1

}
, (8)

for vector s = (S1, S2) ∈ C and arbitrary vector c ∈ R2,
determined by

c =
[

aT

bT

]−1[
α
β

]
.

The linear independence of a, b ensures the matrix inverse
exists. Since convexity is preserved under affine transforma-
tions [23], it suffices to show the convexity of C′.

We now apply the definition of convexity to prove C′ is
convex. We will show for any λ ∈ [0, 1] and any x1, x2 with
||x1||22 ≤ 1, ||x2||22 ≤ 1, ∃y ∈ C′ such that

‖y‖2
2 c + y =

(
λ‖x1‖2

2 + (1 − λ)‖x2‖2
2

)
c + λx1 + (1 − λ)x2,

and ‖y‖2
2 ≤ 1. (9)

Note that because λ = 0 and λ = 1 result in the trivial cases of
y = x1 and y = x2, we assume that 0 < λ < 1. We recognize
from (9) that y must be of the form:

y = µc + z, where (10)
µ = λ‖x1‖2

2 + (1 − λ)‖x2‖2
2 − ‖y‖2

2. (11)

and z = λx1 + (1 − λ)x2
The existence of y depends on finding µ that satisfies (11)

and results in ||y||22 ≤ 1. The following steps prove math-
ematically what is shown visually in Figure 3: at least one
solution for µ to (11) will always lie within the bounds on µ
determined by ||y||22 ≤ 1.

First, we define f1(µ) by substituting (10) into (11) and
f2(µ) by substituting (10) into ||y||22 ≤ 1:
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Fig. 3. Graphical representation of the quadratic equation f1(µ) with its
roots and quadratic inequality f2(µ) ≤ 0 that corresponds to the interval
µ ∈ [µ,µ]. Convexity of set C depends on at least one of µ−, µ+ falling
within this interval.

f1(µ) = ‖c‖2
2µ

2 +
(
2cTz + 1

)
µ +

(
‖z‖2

2 − ζ
)

= 0, (12)

f2(µ) = ‖c‖2
2µ

2 +
(
2cTz

)
µ +

(
‖z‖2

2 − 1
)

≤ 0, (13)

where ζ = λ‖x1‖2
2 + (1 − λ)‖x2‖2

2 ≤ 1, and ||z||22 ≤ ζ by the
triangle inequality for norms. Note that both parabolas open
upwards (||c||22 ≥ 0), and the constant terms of (12) and (13)
are both negative so each equation will have one positive and
one negative root. Denoting the roots of f1(µ) as µ− and µ+
and the roots of f2(µ) as µ and µ, we need at least one of µ−

or µ+ to fall within the interval [µ,µ] as shown in Figure 3.
We show µ+ ∈ [µ,µ] always holds by comparing the zeros

and derivatives of (12) and (13). Observe first that f1(0) =
||z||22 − ζ and f2(0) = ||z‖2

2 − 1, meaning f2(0) ≤ f1(0) ≤
0 because ζ ≤ 1. Next, for µ > 0, df1(µ)

dµ = 2‖c‖2
2µ +

2cTz + 1 will always be greater than df2(µ)
dµ = 2‖c‖2

2µ + 2cTz.
Geometrically, this means for µ ∈ R+, the quadratic f1(µ)
always lies above f2(µ) with greater slope, so it will reach
f1(µ+) = 0 for a lower (but still positive) value of µ than
f2(µ). Therefore, µ ≤ µ+ ≤ µ will always hold, proving y
from (9) exists and set C is convex.

Theorem 1 shows that for any two combinations of
P, Q, V2

dq, the feasible region is convex. But it does not
immediately provide a way to solve (4), since it does not
directly give an algebraic description of the set. However, as
the next theorem shows, we can describe the set using linear
matrix inequalities.

Lemma 2: Let W be a 3 by 3 matrix whose (i, j)th element
is denote by Wij and define Ĉ as

Ĉ = {(Tr(M1W), Tr(M2W)|W11 + W22 ≤ 1, W33 = 1, W + 0},

where ζ1, ζ2 are arbitrary constants and I2 is the 2 by 2 identity
matrix and

M1 =
[

I2
1
2 a

1
2 aT ζ1

]
and M2 =

[
I2

1
2 b

1
2 bT ζ2

]
, (14)

Then with C defined as in Lemma 1, we have C = Ĉ.
Proof: We first show that Conv(C) = Ĉ, where Conv(C)

is the convex hull of C. Observe we can write the equation

in (6) in the form of
[

x
1

]T

M
[

x
1

]
for some matrix M. Then note

that the feasible set of W is the convex hull of the feasible
set for x:

{W11 + W22 ≤ 1, W33 = 1, W + 0}
= Conv

({[
x
1

]
, ||x||22 ≤ 1

})
.

Then by the linearity of the trace operator, Conv(C) = Ĉ. By
Lemma 1, C is convex, so we have C = Conv(C) = Ĉ.

Lemma 2 shows that we can find optimal steady-state
current values by solving

min f (Tr(M1W, ) Tr(M2W)) (15a)
s.t. W11 + W22 ≤ I2

max (15b)
W33 = 1 (15c)
W + 0, (15d)

where M1, M2 can be chosen to be

[
3
2 RI2

3
4 Edq

3
4 ET

dq 0

]

for

P,

[
3
2ωLI2

3
4 JTEdq

3
4 ET

dqJ 0

]

for Q and
[
(R2 + ω2L2)I2 ATEdq

ET
dqA ||Edq||22

]

for V2
dq.

So far we have shown that given a feasible W to (15), we
can find a feasible current Idq that achieves the same objective
value. However, the optimal solution to (15) may not be rank
1. We can easily solve a quadratic equation (cf. proof of
Lemma 1) to find the corresponding Idq, but an interesting
observation from simulations is that the solution to (15) is
always rank 1 (possibly with a small regularization term on
the nuclear norm of W). An important part of our future work
is to rigorously prove this observation.

We also remark that (15) can be solved with data that are
easy to obtain in practice. The grid voltage magnitude ||Edq||2
is easy to measure and R, L values can be estimated with
existing inverter hardware if not already known. Since the
feasible region in (15) is invariant to the rotation of the angle
in Eeq, an arbitrary phase angle (e.g., 0) can be chosen.

B. Inverter Control
Given the steady-state values Idq for (1), we need to find

a controller such that the current will reach this equilibrium.
If we have full information, including the phase angle of the
grid voltage, we could use a linear feedback control on Vdq:

V̇dq = −kv

(
Vdq − Vdq

)
, (16)

where kv is a positive proportional gain constant. It is easy
to show that the closed-loop system is always stable (e.g., by
computing the eigenvalues), and the trajectories remain within
I with a correctly chosen kv [15].

If full information is not available, the following sec-
tion demonstrates how our approach can be used to provide
an optimal setpoint to existing grid-forming controllers that
do not need to know the system parameters [24], [25]. Thus,
our approach advances the grid-forming control technology by
guaranteeing safe and optimal steady-state setpoints.

IV. CASE STUDY

To demonstrate our approach, we solve (15) for both
feasible and infeasible reference setpoints, then use different
controllers to achieve the optimal setpoints. We evaluate
the performance of a standard grid-forming droop controller
adapted from [26] given an infeasible setpoint against the
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TABLE I
SIMULATION PARAMETERS

TABLE II
P∗, Q∗, V 2∗ SETPOINTS USED IN SIMULATIONS

Fig. 4. The two plots compare the current magnitude response (top)
and (P, V 2) region trajectory (bottom) for the same droop controller
tracking two different setpoints: the original infeasible setpoint (dashed
blue line) and the best feasible setpoint output from the optimization
problem (solid blue line). Providing an updated, optimized setpoint to
the droop controller instead of the original reference setpoint ensures
it achieves a safe steady-state value regardless of whether the original
setpoint was within the feasible operating region. The transient response
violates the current constraints for a short time, which might be tolera-
ble [20], [28] or can be mitigated with other techniques [2], [13].

same controller provided with an updated, optimal setpoint
from (15). We then implement the linear controller in (16) to
show that both transient and steady-state currents remain safe
in the idealized case when full system information is available.

To solve (15) for different (P∗, Q∗), (P∗, V2∗
dq ) and (Q∗, V2∗

dq )
setpoints, we select the appropriate matrices M1, M2 and
use the CLARABEL solver in CVXPY [27]. From the optimal
solution W∗, we extract I

∗
dq and solve for the corresponding

Fig. 5. The top plot is the response of the optimal controller current
magnitude to a feasible (P∗, Q) setpoint and the bottom plot is the
response of the optimal controller to an infeasible (P∗, V 2∗) setpoint. In
both simulations, the inverter current magnitude remains within the safe
operating region. The infeasible setpoint in the bottom plot causes the
inverter current to settle at the boundary of the safe operating region.

power and/or voltage equilibrium values that the controller
needs to track.

All simulations are conducted using the SciPy odeint
solver with a sampling time of (t = 100µs and simulation
period of tend = 1s. Reference setpoints used in the simulations
are provided in Table II where the disturbance is modeled as
an update to the setpoint values at time t0 from pre- to post-
disturbance values.

A. Grid-Forming Droop Control Comparison
The PQ droop controller first filters the inverter’s active and

reactive power (P,Q) through a low-pass filter with cut-off
frequency ωc to measure P̃ and Q̃. These filtered values have
dynamics ˙̃P = ωc(P − P̃),

˙̃Q = ωc(Q − Q̃).
Then, voltage magnitude droop and frequency droop are

implemented as V̇dq = mqωc(Q̃−Q) and (ωi = −mp(P̃−P∗),
where (ωi is the deviation of inverter frequency from grid
frequency, and mp and mq are proportional gain parameters.
These follow from (Vdq = −mq(Q̃ − Q∗), where (Vdq is the
deviation in voltage magnitude from a desired Vdq,nom value.

The PV2 droop controller has the same low-pass PQ filter
and power-frequency dynamics as the PQ droop controller,
but it replaces the reactive power-voltage dynamics with linear
feedback on V2

dq as V̇2
dq = −mv2(V2

dq − V2∗
dq ). Parameters for

the PQ and PV2 droop controllers are listed in Table I (adapted
from [26]).

Figure 4 shows the unsafe transient and steady-state
response of the original PV2 droop controller to an infeasible
setpoint of P∗ = 850W, V2∗

dq = 1202V . In contrast, when we
solve (15) to provide an updated, safe (P∗, V2∗

dq ) setpoint for
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the droop controller, we allow the grid-forming inverter to
settle to the optimal feasible operating point. This prevents a
consistent and unsafe violation of current limits in steady-state.

B. Linear Feedback Optimal Controller (OC)
The linear feedback controller in (16) tracks V

∗
dq = Edq −

LAI
∗
dq. We implement feedback on Vdq with the value of kv

listed in Table I. We simulate two simple examples of the
optimal controller tracking PQ and PV2 setpoints. Figure 5
shows the inverter current response following a feasible change
in the PQ tracker’s setpoint and the current response following
an infeasible change in the PV2 tracker’s setpoint (see Table II
for details). The linear feedback controller ensures both the
transient and steady-state currents remain within the safe
operating region of the inverter.

These advantages of the optimal controller motivate further
investigation into whether we can control the inverter to
achieve safety at all times without knowing the grid voltage
magnitude or the RL filter values. We believe our methods can
be adapted to the case where the parameters are not known,
and we address this in a follow-up work.

V. CONCLUSION

In this letter, we studied the geometry of the feasible
output region of a current-limited inverter. We showed that
this region is convex and can be described using linear matrix
inequalities. We demonstrated how to use this fact to improve
grid-forming controllers such that steady-state currents remain
within the current magnitude limit. Some future directions
include showing the semidefinite program always returns a
rank 1 solution, and how the controllers can be designed when
the detailed parameters are not known.
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