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Abstract
Grid-interfacing  inverters  allow  renewable

resources to be connected to the electric grid and
offer fast and programmable control responses.
However, inverters are subject to significant physical
constraints. One such constraint is a current magnitude
limit required to protect semiconductor devices. While
many current limiting methods are available, they can
often unpredictably alter the behavior of the inverter
control during overcurrent events leading to instability
or poor performance.

In this paper, we present a safety filter approach to
limit the current magnitude of inverters controlled as
voltage sources. The safety filter problem is formulated
with a control barrier function constraint that encodes
the current magnitude limit. To ensure feasibility of
the problem, we prove the existence of a safe linear
controller for a specified reference. This approach
allows for the desired voltage source behavior to be
minimally altered while safely limiting the current
output.

Keywords: current limits, grid-interfacing inverter,
stability, safety-critical control, control barrier function

1. Introduction

Electrical power systems are becoming more reliant
on renewable energy resources connected to the grid
through power electronic devices (Kroposki et al.,
2017). Historically, power electronic inverters were
solely designed to convert power from resources, such
as wind, solar, and battery energy storage, to be
compatible with the AC power system. Now, as these
inverter-based renewable energy resources gain higher
levels of participation in the grid it is still an open
question as to how inverters should be controlled to best
support the stability of an AC power system (Guo &
Summers, [2019; Matevosyan et al., 2019).

Many inverter control methods have been proposed
in literature with the aim of supporting the stability of
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the grid. One group of methods that have recently
gained traction are called grid-forming controllers,
which includes droop (Chandorkar et al.,|1993; Schiffer
et al., 2014), virtual synchronous machine (Driesen &
Visscher, 2008), and virtual oscillator control (Dhople
et al., 2013). Other approaches include training
neural-network based controllers (Cui et al., [2022), and
shaping the frequency response of the system through
inverter control (Jiang et al., 2020, [2021}).

However, many of these approaches assume the
inverter model to be ideal (i.e. the device can achieve
arbitrary voltage and current outputs) and do not model
physical limitations on the devices that are important in
practice. In reality, controlling an inverters connected
to the grid requires a trade-off between system stability
and self-protection (Hart et al., |2022). One of these
limitations needed for self-protection is the amount of
current that can pass through the switches of inverter
devices before they are damaged. A common strategy
to adapt these approaches for practical implementation
is to augment the inverter controller with a current
limiting module. While many current limiting methods
for grid-interfacing inverters have been proposed, there
are still open issues related to how to limit the current
when controlling an inverter as a voltage source (as is
the case with grid-forming control) (Fan et al.,{2022).

A current limiter saturates the reference of a
closed-loop current controller to avoid exceeding the
allowed current magnitude. This approach, although
simple, changes the behavior of an inverter, and makes
its stability and voltage support capability depend on
the exact operating conditions (Joswig-Jones & Zhang,
2024; Xing et al., 2021). To avoid these qualitative
behavioral changes, voltage limiters have been proposed
to directly limit the voltage difference across the inverter
filter, such that the current would not exceed its
magnitude limits (Bloemink & Iravani, 2012; L. Zhou
et al., 2021). Virtual impedance methods can also
be used to avoid changes in voltage leading to large
changes in current that exceed the current magnitude
constraint (Paquette & Divan, 2015, Wu & Wang,
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2022)). However, these methods require careful design
based on detailed knowledge of parameters or system
measurements. In addition, they invariably involve a
tradeoff between current limiting, and the performance
and stability of the inverter.

To optimize the tradeoff between satisfying current
limits and performance, a number of techniques have
been proposed. A common approach is to design
a “good” controller by looking at a system without
consideration for the current constraint, then modify
its control action as little as possible when current
limits are encountered. = Some research has been
presented for virtual impedance methods indicating that
the magnitude of the change of the inverter terminal
voltage is minimized when the phase angle of the
virtual impedance equals that of the passive impedance
composed by filter impedance and grid impedance (Wu
et al., 2024). This provides a method for selecting the
virtual impedance parameters, but requires knowledge
of the passive impedance which can change under
different operating scenarios and be challenging to
obtain exactly. Another relevant approach is the safety
filter framework presented in (Schneeberger et al.,
2024), which is demonstrated with a model of an
inverter connected to an infinite bus. This framework
can design safety filters (functions that modify control
actions) by solving a sum of squares optimization
problem and implement the resulting safety filter as a
quadratically constrained quadratic program. However,
finding these guarantees is computationally difficult and
would have to be computed separately for differing
inverter systems. Next, projected-droop control, a
control method that explicitly considers the current
limits of an inverter, is proposed in (Grof3 & Dorfler,
2019). This approach is designed specifically for the
dynamics of a droop controller and is not generally
applicable to other control methods. (Gro & Lyu,
2023)) presents a similar approach that uses primal-dual
gradient dynamics to develop a feedback controller for
a generic grid-forming control problem and considers
a range of constraints. However, this approach does
not guarantee constraint satisfaction for all times as
the model does not capture the circuit dynamics of the
system.

In this work we demonstrate a control barrier
function based safety filter method for current limiting
of inverter-based resources controlled as a voltage
source. The safety filter optimization problem is
formulated with a control barrier function constraint that
encodes the current magnitude limit. The feasibility of
this optimization problem is guaranteed by the existence
of a safe linear feedback controller for a given feasible
reference. To guarantee the existance of a safe linear

controller we use the dynamic properties of an inverter
connected to a voltage source through an RL branch.
This method aims to minimally alter the nominal control
action to try to preserve the performance of a nominal
controller, while safely limiting the current output at all
times. We provide a simple closed-form solution to the
safety filter problem that can be applied to a nominal
control action resulting in a safe controller. Simulations
are performed comparing an unsafe nominal controller
to the safety filter controller and a safe linear feedback
controller.

The rest of the paper is structured as follows:
In Section [2] the system model is introduced and
the safety and stability of this model are discussed.
Section introduces the current magnitude safety
filter formulation, which is then shown to always be
feasible using proofs provided in Section f] Numerical
simulations are presented in Section [5] to demonstrate
the ability of the safety filter to preserve the performance
of a nominal controller while limiting the current
magnitude. Lastly, Section [6]concludes the paper.

2. System Model and Control Objective

2.1. Inverter Model

In this paper, we consider a three-phase inverter
connected to an infinite bus via an RL branch. The
model assumes we have balanced three phase and
can use a direct-quadrature (dq) reference frame with
reference to some rotating angle to describe all the
rotating physical quantities (Yazdani & Iravani, 2010).
This model is commonly used when studying the
transient stability of inverters controlled as a voltage
source.
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Figure 1: Simplified inverter system model under study.

The dynamical system model of a voltage-source
inverter connected to a stiff grid through an RL filter is

=8 [ (] =)
(1)
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where R and L are the resistance and impedance of
the RL filter, respectively, Eqq is the grid-side voltage
with reference to some angle 6, w is the rotational
frequency of the reference frame, V is the inverter
voltage magnitude, and § is the angle difference between
the inverter voltage and #. Making a small-angle
assumption, such that cos(§) ~ 1 and sin(d) ~ 4,
assuming the reference frame rotates near to a nominal
value wnom, and assuming Eqq = (E,0), where E is the
grid-side voltage magnitude, this reduces to the linear
system (Joswig-Jones & Zhang, [2024; Pogaku et al.,
2007; S. Zhou et al.,|2015)

& = Ax + Bu, ()

where

- 0 I
A= L wnomyB:[ },x:[d],u:&
B IR

For this work, we set V = FE and take ¢ to be the
only control input to the system. The active and reactive
power outputs from the inverter are given by

pP= ; (V cos (0)1a + Vsin (6)1g) ,
Q=2 (Vsin(§)]a — V eos (9)T).

With the the above notation and assumptions , tracking
a given P*, Q™ is equivalent to tracking some /3 and .

2.2. Safety and Stability

To protect internal switching devices, the inverter’s
output current cannot exceed a given limit (Fan et al.,
2022)). This leads to a bound on the magnitude of
the inverter’s output current in the dq reference frame,
|7|max- To satisfy this bound we must always have
l2]l2 < |I|max- We define a set of safe states in terms
of the currents magnitude bounds as S := {z | h(z) >
0}, where

W) = |11

max

= Jlli3,

and the set of states at the boundary of this set as
0S = {z | h(zr) = 0}. We want the inverter to be
able to operate near or at this bound to maximize the use
of the inverter’s capabilities especially during faults or
transients when the grid requires support.

A control action is safe if it pushes the states such
that they do not leave the safe set anytime they are at
the boundary of the safe set. Mathematically, the set
of safe control inputs for some x € S, with dynamics

& = f(z) + g(z) - u, can be defined as the values of u
that satisfy the control barrier function (CBF) constraint

h(z) = Vh(z)" (f(2)+g(z)u) = —a(h(z)) ¥ x €S,
3)
where Vh(z) is the gradient of h(z) with respect to
x, and « is a class K function (strictly increasing and
a(0) = 0) (Ames et al., [2017). The inclusion of the
term a(h(z)) allows the safety condition to be applied
to the entire safe region instead of just at its boundary.
We note that for our system f(z) = Az and g(x) = B.
To control the power output of the inverter to a
desired value, we need the system to be able to track
to a given set point, z*. Formally, we require the
control to be asymptotically stable with respect to
some control Lyapunov function (CLF) (Artstein, [1983;
Sontag, |1983)). Given a CLF, V' (z), the set of stabilizing
control inputs for some x € S can be defined as the
values of u satisfying the constraint

V(z) = VV(2) " (f(z) +g(x)-u) <0. (4

We want to control our system such that S is an
invariant set and the control is stabilizing (i.e. given
an initial condition zy € S the system will converge to
a feasible x* without the states leaving S at any point
during their trajectory). Typically, a nominal voltage
controller uyom () that is stabilizing will not satisfy
the safety constraint for references near the current
magnitude boundary and will produce unsafe control
actions.

3. Current Limiting Safety Filter

We assume that the reference point is feasible:
l2*]l2 < |I|max, and u*, z* satisfy

Ax* + Bu* = 0. 5)

Our goal is to design a feedback controller such that the
system in ([2) is stable with respect to a given setpoint z*
(x(t) — z* ast — 00), and is safe with respect to the
current magnitude limit.

3.1. Safety Filter Formulation

A nonlinear control method often used to achieve
safety guarantees with a well performing controller is a
safety filter. A safety filter is a function that is applied to
some control action that can detect unsafe control inputs
that may lead to constraint violations and minimally
modifies them to ensure safety (Wabersich et al., 2023).
In this section we introduce how such a safety filter can
be applied to our system and provide guarantees on the
feasibility of the safety filter problem constraints.
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We can formulate this safety filter as a quadratic
program (QP) as follows (Ames et al.,2014).

i = arg min||u — tnom (7|3 (QP)
u

st. Vh(z)"(f(z) + g(z) - u) > —ah(x)
(CBF)

VV(z)" (f(x) + g(x) -u) <0, (CLF)

where w is the filtered voltage control action, and we
select « to be a positive constant. For this paper we use
the CLF V(z) = z " x.

Although QPs are considered to be simple
optimization problems, using iterative solvers in
real-time on inverters themselves is not trivial, because
of microprocessor limitations and sampling/input
delays (Buso & Mattavelli, 2015 Singletary et al.,
2020). However, this form of QP has a closed-form
solution (Ames et al., 2017). In our case, because the
optimization is over a scalar variable u, there is actually
a simple closed-form solution (see Algorithm [I).
This algorithm comes from projecting a point into an
interval, and can be implemented on existing inverter
microcontrollers.

Algorithm 1 Closed-form solution to@with u € R!

cbf pcbf clf pclf
ag™, b, agt, by

Input: 2z, us,
QOutput:
asPt « Vh(x) Tg(xy)
bsPt « —ah(zy) — Vh(z) T f(2¢)
a$ «— VV (zy) Tg(y)
bglf — —VV(.’L‘t)Tf(.fL't)
Uy < —00
Uyp < OO
if a$Pfuy > bPf and a§'fu; < 0§ then
Ut < Ut
else
if a$® > 0 then
ugp < max (ugp, 5Pt /asP)
else
Uyp 4 Min (wyp, b /aPF)
end if
if aff > 0 then
Uyp — Min (wyp, b5E/agh)
else
ugp +— max (ugp, b /as™h)
end if
Uy — min (typ, max (ug, up))
end if

When using an optimization-based controller it is
important to ensure that there exists at least one feasible

solution at any possible state of the system. This is
especially relevant to our problem where the safety
and stability constraints often can seem to be working
towards opposite goals (we want a controller that can
track current references near the current magnitude
limit, but never exceeds this current magnitude limit).
In general, there is no guarantee that there is a feasible
input to this safety filter problem for a generic linear
system, but given the properties of our system and
safety constraint we can guarantee the existence of a
feasible solution. In the following section we prove that
there always exists a feasible control action that satisfies

(CBE) and (CLF) for (2).

3.2. Safety Filter Feasibility

The theorem below states the main result of the
paper.

Theorem 1. Given the linear system in and assume
that the setpoints x* and u* are feasible. Consider the
magnitude barrier function h(x) = |12, — ||=|]3. If
A+ AT <0, and A~'B # 0, then a safe and stable
control actions always exists such that if h(xg) > 0 then

h(zy) > 0and xy — x*.

Our approach to proving that there always exists
a feasible solution to the safety filter problem is to
prove the existence of a safe and stable linear feedback
controller, K, for a given z*, u*. Because this controller
exists, there is at least one feasible action w that satisfies
(CBF) and (CLF), namely, the linear control action,
u = u* — K(x — 2*). The main condition on the
system is that the A matrix is “’stable” enough, namely
A+ AT < 0 (this can be seen as the Lyapunov stability
condition for linear systems with a Lyapunov function
of ||z||3). This result is intuitive in the following sense.
Because the level sets of the Lyapunov function and
the barrier function have the same shape—they are both
circular—the tension between stability and safety can be
resolved. The formal proof of this theorem is nontrivial,
and the details are given in Section 4]

Even though a safe and stable linear controller exists,
there may be more optimal control actions that are safe
and stabilizing. Imposing a safe linear controller over
the entire safe region is overly conservative and can
result in a suboptimal performance. Therefore, we are
motivated to look at the nonlinear safety filter controller
when the control objective includes safety constraints
and performance specifications. The ability of this
safety filter to provide more optimal safe control actions
compared to a safe linear controller can be seen in
Section[3]
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4. Proof of Theorem /1]

We have two major lemmas that establishes the
existence of a safe and stable K.

Lemma 1 (Conditions for a safe & stable system).
Given M € RP*P, y € RP, and z € RP, where
and M + M7 > 0, then

2 Mz — zTMy > 0.

Lemma 2 (Existence of a safe & stable K). Given
A € RP*P B € RPXL. Given x* and u*, satisfying
Ax* + Bu* = 0, if A+ AT <0, and A'B # 0,
then there exists a K € RY*P, such that the closed-loop
system N := A — BK has the properties N " x* = \z*,
Aax(N+NT) <N and N+ NT <0.

We can apply these lemmas to prove Theorem
as follows. Since we have z*,u* satisfying (5, then
the closed-loop dynamics of with control u =
u* — K(x — z*) can be equivalently represented as
i = —A(z — z*), where A = —(A — BK). For safety
of this equivalent system we require to hold for all
x € 08, with f(z) = —A(x — 2*),g(z) = 0. This is
equivalent to the inequality

2 Az — 2" Az* >0V z € 0S.

We can show this inequality holds using Lemma [1]

where M = A, z = z and y = z*, if we can find a
K that satisfies the following criteria:

(@) (A= BE)=(a")"A,  (Ta)
Amax((A — BK) + (A — BK)T) <\, (7b)
(A— BK)+(A—-BK)" <0, (7c)

where A € R is the eigenvalue associated with x*. With
Lemma[2] we can see that for our system a K satisfying
always exists, as the A matrix of (2) meets the SDP
condition, A + AT < 0, and the system is controllable.

Once these two lemmas are established we can
conclude that there exists a safe linear feedback
controller such that there always exists at least one
feasible solution for the safety filter with our

system (2).

4.1. Proof of Lemma 1

Proof of Lemmal(l] We start by noting that 2TMz —
2T My > 0 is equivalent to (z — y)TM(z — y) >
y My — y"Mz. Since y is a left eigenvector of M
with eigenvalue ) this inequality is equivalent to

(z—y) " Mz-y) =M "y— My 2

. T
Noting that (z—y) " M (2 —y) = (2 —y) " ¥H— (2 —y),
we have

TM+MT

5 (z—y) = ATy — Ay z.

(z—v)

We define vy, v2 and Aq, A2 to be the eigenvectors and

M4+MT
f 2

eigenvalues o , and note that we can pick vy, vo

. T,
to form an orthonormal basis as % is real and

symmetric. We define ¢; = (2—y) v, c2 = (2—y) "vo
such that (z — y) = c1v1 + covy and our inequality is
equal to

Alcf + )\203 > )\yTy — )\yTz

Rearranging (z — y) = c1v1 + covg we have z = y +
c1v1 + covo which we substitute in for the remaining z
to get

)\1C§ + )\203 > —)\(yT(clm + Cou2)).

Using our assumption that A, Ay > % we can see that

the left-hand side of the inequality is lower bounded as

po | >

MeE 4 Xacs > S+ c3) > =My (crvr + cav2)),

which is equivalent to showing that
A+ e3> =2cry v+ cay o),

as )\10%,/\26% > 0(1\44‘]\4—r -0 = )\1,/\2 > 0).
This can be shown using Lemma[3] with { = 2,7 =y,
and {w;,ws} = {v1,vy}, as by assumption ||z||s >
[yll2. ]

Lemma 3. Given an orthonormal basis {wy, w2}, and

v, ¢ € R2 such that ||C||2 > [|7]]2,

42> —2(cib + cad),

where ¢y, = a—b, co = c—d, and a = (Twl,b =
T T T
vy wy,c=C( wy,d ="y wa.

Proof. Plugging the definitions for ¢; and ¢y into the
inequality and expanding we have

(a*—2ab+b*)+(c* —2cd+d?) > —2(ab—b*+cd—d?).

Noting that a® + ¢? = ||¢||3 and b? + d? = |73, as
w1 L wa, this reduces to

ISH3 + 117113 > 2[1v13,

which is true as we assume ||C||2 > ||7]|2- |
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4.2. Proof of Lemma 2

Because of space constraints, we only show this
lemma when the control input is scalar (i.e., u € R). The
proof for the vector case is considerably more involved
and not needed for the results in this paper.

Proof of Lemma[2] First we note that z* = A1 Bu*
such that NTz* = \v* <= uw*BTA"T(A—-BK) =
Au*BTA~T. Assuming v* # 0 and dividing it out we
get

BTA"T(A-BK)=XB'A™ T,

Solving for K, noting that BT A~ T B is a scalar, we get

1

K=—
BTA B

(BTA™T(A—- D).
Plugging this into our expression for N we have

A-BK=A- (BBTA"T(A- D),

BTA-TB

which can be substituted into the inequality A — BK +
(A—BK)T < M to get

My — AMsy <0,
where
M, =A+ AT
1 TA-T T 4-1 T
_ T A-T -1 T
MQ—I_m(BBA + A" "BB )

We will show the following such that we can always
choose \ < 0, sufficiently small, to have M7 — AMs <
0: M; =< 0, with a single zero eigenvalue associated
with the eigenvector z (i.e. M1z = 0), and 2T Mz < 0.

First, we show that M; =< 0, using the fact that if
X < 0, then PTXP < 0V P. To construct this

. -1 T A—T .
form consider P = I — % By direct

computation, M; = PT(A + AT)P. This implies that
M; =0as(A+ A7) <0.

Now, we can show that M; has only one zero
eigenvalue using this same PTXP form. If v is a
zero eigenvector of M, then we have that v PT (A +
AT)Pv = 0. Since we assume A + AT < 0, then
this implies that Pv = 0. Note that P is the sum of
a rank n matrix, /, and a rank 1 matrix, which implies
that P is at least rank n — 1 and can have at most one
zero eigenvalue. We see that this zero eigenvalue is
associated with the eigenvector z = A~'B by direct

Table 1: Inverter & RL filter system parameters.

Parameter Value Param. Value
Viom 120V E 120V
Shom 1.5 kVA Wnom | 2m60 rads™!
Lhom 417 A R 1.3Q
|7 | max 5A L 3.5mH

computation; M,z = 0 using the equality BT A~'B =
BT A~T B, which holds as BT A~! B is a scalar.
Lastly, we can show that 2" Myz < 0 as

2T Myz =(A"'B)T My (A1 B)
=BTA"TA'B

1

TA-T T A-T 4-1

+BTATAT'B(BTA™'B))

—~

@) _BTATA B

=—[lA7'B[3 <0

where (a) follows from BTA"'B=B"A"TB. &
5. Simulation Results

To test this approach we simulate the response of
the inverter system for a range of initial conditions
and power references. We test the system with an
LQR controller, a safe linear K controller, and the
LQR controller with CBF safety filter. The parameters
used for the system in these simulations can be found
in Table The code used to generate these results
is available at https://github.com/TragerJoswig-Jones/
Safe-Current-Magnitude- Limit- Inverter-Control.

The nominal LQR controller is computed with
Q = I, R = Viom/(10 - L) and is found to be
Kiqr = [0.0009 0.0099] . To design a safe linear
feedback controller we use the conditions of Lemma [I]
to formulate the optimization problem

min || K]l
st. (¢")T(A—BK) = (z%)" ), &
Amax((A — BK) + (A— BK) ") < A,
(A- BK)+(A—-BK)" <0,

where we choose to minimize the spectral norm of
K as the objective. Note that it is difficult to select
an objective that designs a controller for performance
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Table 2: Average cost with z* = (3.56 A,3.51 A) and
T € Xp.

controller K CBF | LQR
cost | 82.22 | 59.16 | 58.57

with this form of static controller optimization problem.
We also note that these constraints are convex in
K and X\.  We solve (8) using CVXPY (Agrawal
et al., 2018, Diamond & Boyd, 2016) to get K =
[—0.0111 0.0111]. The CBF safety filter, (QP), is
ran with the nominal control action, upem = u* —
Kiqr(z — z*), and @ = 1000, and is solved using
Algorithm Simulations are performed using the
odeint solver from SciPy with a sampling time of
At = 10 ps and simulation length of ¢.,q = 50 ms.
The costs for these tests are calculated as

tend
cost; = 1000+ Y~ At (&, Q& + i), Riliy) ,
t=0

where z;; = w;r — x, and u;; = u;¢ — uj, are the
state and input errors at time ¢ for test 4.

In the following we use the function lin(a, b, n) =
a+ % (b— a) to define a list of evenly spaced numbers
over a specified interval.

5.1. x € OS tests

We test the three controllers for a range of
initial conditions from OS, specifically X, =
{({Tmax S10(6), [ [max cos(6]) | ¢ € 1lin(0,27 —
2%.,100)}. We select a single 2* reference value for
these tests, that is * = (3.56 A, 3.51 A), by selecting a
feasible «* value from (5) with magnitude | 7| ax.

The average cost for each controller can be found in
Table [2] The nominal LQR controller always performs
optimally, but also always has a trajectory that is
unsafe in these tests. The safe K controller is always
safe, but performs poorly for the given LQR costs.
Lastly, the CBF safety filter controller has a similar,
yet slightly worse, performance to the LQR controller,
but the trajectory always remains safe due to the safety
filter. A selected example trajectory can be seen in
Fig 2| Notably, the CBF trajectory aligns with the
LQR trajectory up until the safety constraint would be
violated and the safety filter intervenes. The alteration
of the control action that causes this divergence in
trajectories can be seen in Fig

5.2. Sampled zg, z* tests

We then test these controllers with randomly
sampled zg and z* values. We sample z* reference

20
< —— CBF
= 0.0 -- LQR
K

2.0 1 : : :
< 0.0

-5.0 - : : :

5.0 = F ==—=F
< 40 —————=
=N —.—;-‘—.—
g 3.0 A Z
T 2.0

T T T
0 5 10 15 20

t (ms)

Figure 2: 14, trajectories for CBF, LQR, and K,
controllers with zyp = (—1.55 A, —4.76 A),z* =
(—3.56 A, —3.51 A). The LQR control is seen to
exceed the safety bound, the safe K control has costly
performance, and the CBF control performs well and
remains safe.

values by selecting a feasible z* value from (3]
and scaling the magnitude to a uniformly sampled
value from the range [—|I|max, |I|max].- 2o values
are calculated as xg = (rgcos (¢o), rosin (¢dg)) with
70, ¢o uniformly sampled from the ranges [0, |I|max]
and [0, 27], respectively.

Testing with 1,000 randomly sampled zo and z*
values we see a similar trend in the average costs with /'
performing the worst, LQR control performing the best,
and the CBF control performing slightly worse than the
LQR controller. The distribution of costs from these
tests can be seen in Fig ] Of these tests 24 of them
had unsafe trajectories with LQR control, while all tests
were safe with the other two controllers. The difference
in the LQR and CBF controller costs are small, but
for all tests the CBF controller cost is equal or slightly
higher than the LQR controller cost due to the safety
filter intervening.

5.3. Small-angle assumption

Lastly, we test the validity of the small-angle
assumption with the CBF control. In this section we
compare the linear system used for analysis to the
nonlinear system without the small-angle assumption
(I). For the nonlinear system we use the CBF control
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Figure 3: ¢ input values for CBF, LQR, and K,
controllers with zyp = (—1.55 A, —4.76 A),z* =
(3.56 A,3.51 A).

formulated for the linear system. We subject the two
systems to the same range of initial conditions as in
Section but take z* to be (3.42 A,3.64 A), a feasible
reference value for the nonlinear system (T).

An exemplary case can be seen in Fig 5] The
trajectories of the two systems do not differ significantly
for any of the test cases, demonstrating that the
small-angle assumption holds well with the CBF
control. However, the trajectories do differ and the
nonlinear system slightly exceeds the current magnitude
bound by up to 0.5% in some of the tests. Further the
nonlinear system is seen to not fully converge to the
reference value due to the safety filter. Fig[6]shows the
input trajectories are nearly aligned, but when the safety
filter activates at 2 ms it introduces an offset between the
inputs which prevents the states of the nonlinear system
from completely approaching the magnitude bound.

These issues seen when applying the linear CBF
control to the nonlinear system are small, but may not be
tolerable. The boundary violation issue can be mitigated
by setting the boundaries to be slightly tighter than
the actual current limit values. A solution to resolve
both issues would be to formulate the CBF control for
the nonlinear system. However, this would introduce
nonlinearity into the constraints of the safety filter
problem making it more computationally expensive to
solve in real time.

6. Conclusions

In this work we demonstrate a method for current
limiting of inverter-based resources controlled as a
voltage sources that can safely limit the current
while minimally altering the nominal control action.
This safety filter approach is proven to always be
feasible with the dynamics of a RL branch and can
nearly maintain the performance of an unsafe nominal

150 A

100 A

150 A

Total cost

100 A

State cost
I
I

30

20 A

10 A

Input cost
I
I

] = =L

T T
K CBF LQR

Figure 4: Costs of CBF, LQR, and K, controllers for
1,000 randomly sampled zy and z* values.

controller. Future work includes considering the impact
of disturbances and parameter uncertainty, extending
these results to include voltage magnitude control,
modifying this method for integral control, and studying
the stability of networks of inverters using this approach.
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