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Abstract
Learning from demonstration (LfD) seeks to democratize robotics by enabling non-experts to intuitively program robots
to perform novel skills through human task demonstration. Yet, LfD is challenging under a task and motion planning
(TAMP) setting, as solving long-horizon manipulation tasks requires the use of hierarchical abstractions. Prior work has
studied mechanisms for eliciting demonstrations that include hierarchical specifications for robotics applications but
has not examined whether non-roboticist end-users are capable of providing such hierarchical demonstrations without
explicit training from a roboticist for each task. We characterize whether, how, and which users can do so. Finding that
the result is negative, we develop a series of training domains that successfully enable users to provide demonstrations
that exhibit hierarchical abstractions. Our first experiment shows that fewer than half (35.71%) of our subjects provide
demonstrations with hierarchical abstractions when not primed. Our second experiment demonstrates that users fail
to teach the robot with adequately detailed TAMP abstractions, when not shown a video demonstration of an expert’s
teaching strategy. Our experiments reveal the need for fundamentally different approaches in LfD to enable end-users
to teach robots generalizable long-horizon tasks without being coached by experts at every step. Toward this goal, we
developed and evaluated a set of TAMP domains for LfD in a third study. Positively, we find that experience obtained in
different, training domains enables users to provide demonstrations with useful, plannable abstractions on new, test
domains just as well as providing a video prescribing an expert’s teaching strategy in the new domain.
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Introduction

People exhibit the ability to learn to solve long-horizon
tasks – from learning to knit a sweater to learning to cook
a new recipe. These tasks can take from hours to days,
but humans still learn to sequence from smaller details,
like movements of the fingers, to higher level details, like
completing sections of a sweater to creating a sauce for a new
recipe. Additionally, these tasks are multi-task, humans can
learn to cook different types of soups or knit different types
of sweaters. The field of robot learning from demonstration
(LfD) seeks to enable robots to exhibit the human ability
to learn from end-user demonstration and scale the power
of robotics. Yet, to this day, robots do not have a general-
purpose ability to learn novel multi-task long-horizon tasks
from demonstrations, despite significant prior work (Argall,
Chernova, Veloso and Browning 2009). In this work, instead
of proposing algorithmic solutions for robot learning we
investigate different strategies with which people can teach
long-horizon, multi-task chores to robots. The goal here is
to identify strategies that help users teach tasks to robots,
which can inform future LfD algorithms that expect human
interactions when teaching robots.

Substantial emphasis in LfD has been placed on teaching
robots single, short-horizon skills, such as picking up or
making contact with an object (Haldar, Mathur, Yarats and
Pinto 2022; Ijspeert, Nakanishi, Hoffmann, Pastor and Schaal

2013; Konidaris and Barto 2009; Levine, Finn, Darrell and
Abbeel 2016). However, there is a lack of work enabling
robots to learn long-horizon tasks, such as learning in-home
assistive tasks or manufacturing process assembly operations,
from human demonstrations. Such tasks can be considered
multi-task problems. For example, setting a dinner table
would require a robot to set multiple place settings, dependent
on the number of guests, where each table setting consists
of multiple objects that each require a different manipulation
procedure. A demonstrator cannot be expected to provide
demonstrations for each task specification of these multi-tasks,
such as for each possible number of plate settings. These
multi-task scenarios might require the users to teach tasks with
multiple skills or multiple subtasks which can be repeated
in different sequence ordering. An open question here is
what abstractions should a teacher use to teach an agent? For
example, there are different types of abstractions an agent can
use sub-tasks, skills, options, sub-goals, plan hierarchies, etc.
In this work, we restrict ourselves to a robotics scenario and
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Enabling Non-Roboticists to Teach Hierarchically 3

choose Task and Motion Planning (TAMP) based abstractions
as they are a popular choice of abstractions for robots to solve
long-horizon, multi-task problem scenarios (Garrett, Chitnis,
Holladay, Kim, Silver, Kaelbling and Lozano-Pérez 2021;
Srivastava, Fang, Riano, Chitnis, Russell and Abbeel 2014;
Hauser and Latombe 2010).

Prior work in LfD has shown that users can provide
demonstrations at some level of abstractions, such as
keyframes (Akgun, Cakmak, Jiang and Thomaz 2012) or sub-
task specifications for a hierarchical task network (Mohseni-
Kabir, Rich, Chernova, Sidner and Miller 2015). However, in
these studies, participants were given explicit instructions on
how to teach the robot each and every task. Such an approach
is untenable for scaling up to a vision of ubiquitous robotics,
as it is impractical for experts to teach every end-user how
to program robots each and every desired task. Instead, we
examine how people teach novel tasks to robots in the absence
of a roboticist’s explicit tutelage.

Our major contributions are the following. We first develop
a human-subjects experiment to investigate whether people
naturally teach using abstractions without explicit priming*.
Next, we test the efficacy of different modes of end-user
instructions and feedback in soliciting robot demonstrations
exhibiting hierarchical abstractions. Finally, we measure the
effect of accumulating robot teaching experience in different,
training domains on the degree of hierarchical abstractions
exhibited in user demonstrations in a novel domain. We
develop design guidelines to enable users to generalize their
training towards teaching novel tasks without needing an
expert to show them how. In other words, instead of training
demonstrators from scratch in each domain users encounter,
we train users such that the knowledge the demonstrator
learns about providing demonstrations in one domain is
transferable to novel domains. This is a positive result for
the democratization of robot LfD.

Our work’s contributions include the following:

• We first conduct a n = 28 user study to demonstrate that
the majority of the participants (64.29%) do not naturally
teach tasks to robots with any type of abstractions. They can
be induced with different strategies to provide abstractions
(p < 0.05).

• In a second experiment (n = 24), we find that - relative
to participants primed with text-based instructions on an
analog task, an expert demonstration on an analog task,
and a debugging demonstration in the current task - only a
video presenting an optimal teaching strategy in the current
task allows 100% of the participants to create necessary
and sufficient abstractions. This study demonstrates
the challenge of eliciting task-specific abstraction-based
demonstrations from users without showing them the exact
expert solution.

• Our third multi-domain study, n = 28, we develop and
evaluate novel LfD training domains to test the role of
experience in teaching robots to perform new, test tasks.
As novice users teach tasks across multiple domains and
gain teaching experience, we find that participants are
better able to generalize knowledge about teaching TAMP
abstraction from one domain to the next in their training
sequence zero shot (p < .001). Further, teaching efficiency

(p < .001) increases and redundancy (p < .05) decreases
in novel domains.

• Our post-analysis demonstrates that after obtaining
experience teaching robots in different domains the quality
of abstractions provided by users is indistinguishable
from that of users who are prescribed how to provide
demonstrations in the same domain from an expert
video (p < .001). This finding suggests that, instead
of prescribing how users should provide the robot
demonstrators in all possible domains from experts, users
can learn how to provide abstracted demonstrations by
practicing providing demonstrations in a few training
domains.

• Finally, we obtain feedback from the robotics community
at large to inform our work’s limitations and avenues of
future work. We believe such feedback can inform future
research questions and collaborations between the human-
robot interaction and task and motion planning communities
within robotics.

Background
In this section, we define terms pertaining to our work. We
will then introduce our studies and discuss them one after
another in the following sections.

Multi-task problems – In multi-task problems, the objects
that the robot interacts with remain the same. However, the
number of objects, their locations, or the order in which the
robot interacts with the objects changes between sub-tasks
(Caruana 1998). This is often accomplished by leveraging
similarities between the sub-tasks (Zhang and Yang 2018).

Multi-modal tasks – A mode is a sub-manifold of
robot motion within which the robot’s contact specification,
with respect to different objects in the world, remains
constant (Alami, Siméon and Laumond 1991; Alami,
Laumond and Siméon 1995; Hauser and Latombe 2010;
Hauser and Ng-Thow-Hing 2011). A multi-modal task is
one where the robot transitions between at least two modes to
solve a task. For example, to pick up a block, the robot first is
restricted to a mode where all its motion is confined to a sub-
manifold within which the robot’s gripper is not in contact
with any object. After picking up the block, the mode of the
robot is the sub-manifold within which it is in continuous
contact with the block. Similarly, a Long Horizon Task is a
task where the robot needs to perform multiple mode switches
to solve the task. Thus, per our definition, multi-modal tasks
have at least one mode switch (≥ 1), and long-horizon tasks
have several (> 2) mode switches. In our work, the robot is
solving multi-modal tasks.

Task and Motion Planning (TAMP) – Robotics problems
require an interplay between symbolic and continuous
domains. For example, to pass medicines to a patient, the
robot needs to make a high-level symbolic plan to know which
boxes of medicines to pick up and pass to a patient. This plan
and its corresponding state are symbolic and discrete over
the type and quantities of medicine box objects required.

∗We employ the following definition of priming: “to tell someone something
that will prepare them for a particular situation“ (Prime. 2024).
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However, to pick up a box the robot needs to create a
continuous motion plan without collisions such that the box
is in the robot’s hand. This motion planning problem occurs
over the continuous state of the robot’s joints. Such problems,
that exhibit an interplay between symbolic and continuous
plans, are TAMP problems. We choose to define our domains
as TAMP problems, as they require an interplay between
symbolic goal states and continuous motion from the robot.

Sub-task based abstraction – Transitions between the
symbolic states of a TAMP problem are called sub-
tasks† (Garrett, Chitnis, Holladay, Kim, Silver, Kaelbling and
Lozano-Pérez 2021). For example, when a robot moves to
pick up a cup, the state of the world transitions symbolically,
such that the cup is in the robot’s hand. In TAMP formulations,
the sub-tasks are described by preconditions (pre) and effects
(eff), as well as constraints (con) that must hold for all
continuous actions for the duration of time the action is being
taken. We provide a sample mathematical TAMP formulation
for the sub-tasks of the medicine dispensing domain in the
Appendix.

Sufficient sub-tasks – In our domains, a sub-task is
deemed sufficient if the sub-task changes the symbolic state
of the world and results in at most one mode change. For
a sub-task to change the symbolic state of the world, the
change must go beyond a negligible change in the robot’s
pose. Moreover, limiting the sub-task to at most one mode
change ensures that the robot can change its interaction with
only one object within the sub-task. Such design of sub-tasks
ensures that a sub-task transition affects only a small set of
symbolic state variables at a time. These sub-tasks can then
be sequenced by a task planner to reach a larger set of the
symbolic state space, allowing maximal generalizability in
the tasks that can be solved within the domain.

Redundant sub-tasks – A sub-task is deemed redundant
if its goal can be met by another sufficient sub-task or a
combination of sufficient sub-tasks previously taught. Sub-
task redundancy is defined with respect to a given set of
demonstrations being taught.

Necessary sub-tasks – Similarly, a sub-task is deemed
necessary if its goal can not be met by another sufficient sub-
task or a combination of sufficient sub-tasks previously taught.
Sub-task necessity is defined with respect to a given set of
demonstrations being taught. A sub-task is deemed necessary
if it is not a redundant sub-task.

Domain experience – We define domain experience, a
metric for demonstrator training, as the number of domains
experienced thus far in the user study. Note that for each
domain, this experience entails participants first providing
demonstrations to the robot, and then observing the optimal
teaching sub-task breakdown in the form of a video.

Negative Results on the Use of Abstractions
with Training Robots
In this section, we discuss the first two human-subjects
experiments together as they are both conducted on the same
domain. Our first study investigates whether participants
teach tasks to robots using abstractions naturally. This is an
important question as we expect users to provide abstract,
hierarchical task demonstrations to robots but we do not
know if users innately want to provide demonstrations with

abstractions. We call this study “Investigating Abstraction Use
in Robot Teaching" (AUT). We further investigate what types
of priming can enable participants to provide abstractions for
a single task with a second study. We call the second human-
subjects experiment, “Investigating Priming Strategies for
Abstractions in Teaching" (PSA). Additionally, we define the
metrics used in these experiments and justify the metrics we
created to measure the performance of our participants.

Experiment design
We conduct two human-subjects experiments: (1) a 1 × 4
within-subjects experiment to test if users can be primed to
provide sufficient sub-tasks and (2) a 1 × 4 mixed within-
between-subjects experiment with different paradigms to
teach users to provide sufficient sub-tasks. We will first
describe our research questions, our experiment domain, and
the user interface, and we then provide additional details to
set up the experiment.

Research Questions We will first establish our research
questions and then state our experimental design and
study procedures. We formally state the following Research
Questions (RQs):

• RQ 1: Do people naturally provide abstractions for
learning and planning? Given that robots need people
to provide sub-task-based abstractions, we want to know
whether people are already naturally primed to provide such
demonstrations.

• RQ 2: Can external factors/ inducements elicit abstraction-
based teaching ( e.g., ad nauseum repetition, or variation
in task composition)? We also sought to determine whether
people naturally chose to use sub-task-based abstractions to
teach robots when faced with teaching tasks with numerous,
repetitive components or a multi-task scenario where the
robot has to solve different tasks in different instances for
which the tasks share common sub-tasks.

• RQ 3: Can participants be explicitly taught using textual
descriptions of an analog task to provide (more helpful)
abstractions? Requests to provide demonstrations using
textual descriptions with figures for an analog task are
the simplest teaching guide. We wanted to see if these
descriptions are enough to provide correct sub-task-based
demonstrations.

• RQ 4: What demographic subject or objective factors and
covariates influence how well people used abstractions for
teaching? We sought to examine if demographic covariates
help people teach sub-task-based abstractions to robots.

• RQ 5: What explicit teaching guides if any might help
the subjects learn to provide sufficient abstractions? Is
this teaching guide generalizable to novel scenarios?
We created our second experiment specifically to
answer this research question. We know that certain
teaching guides work better than others when people are

†Sub-tasks are referred to as actions in Garrett, Chitnis, Holladay, Kim, Silver,
Kaelbling and Lozano-Pérez (2021); however, we refer to these actions as
sub-tasks to prevent confusion between low-level robot actions and TAMP
level actions.
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given direct instructions to teach robots with specific
abstractions (Cakmak and Takayama 2014a). In this work,
we seek to determine how little information about the
current task needs to be provided to induce participants
to provide correct sub-task-based abstractions

Figure 1. Jaco robot setup: Subjects were required to teach the
robot to create different types of soil mixtures in the mixing bowl
using the sand, lime, and manure available.

Experimental Setup Task Domain We designed a robot
task domain setup in which we could create multi-task
settings relatively easily with readily available raw materials.
Hence, we consider a gardening task in which participants
are required to teach the robot to create soil mixtures for
different plants as shown in Figure 1. The setup consists of
a robot arm, a pot of sand, a pot of manure, a pot of lime
(calcium), and a mixing bowl. The subjects teach the agent
to create soil mixtures required for three similar or different
plants. The action space for this domain is continuous, and
the locations of the objects are assumed to be known. The soil
mixture domain allows for a multi-task setting and creates
opportunities for constrained TAMP problems as described
next.

Feasible Task and Motion Planning sub-tasks for the Soil
Mixture Domain Here we pick an example problem within
our soil mixture domain: “create a soil mixture with one scoop
of sand, and one scoop of manure.” We then describe feasible
abstractions that a user can provide to solve this task in our
domain at different levels of granularity, going from coarser
to finer-grained TAMP abstractions. These abstractions span
the breadth of sub-tasks that our users could demonstrate. We
will also describe the relative merits of these abstractions for
solving all possible tasks in the soil mixture domain.

Coarsest sub-task can be to create the complete soil mixture,
one scoop of sand, and one scoop of manure, as a single sub-
task, that is, use no abstractions at all when teaching as shown
in Fig 2(a). The pre-condition for this sub-task would be that
the scoop is empty. The constraints would be that the agent
never collides and the goal condition would be to deposit one
scoop of sand and one scoop of manure to the bin. However,
given this sub-task, the robot can only solve tasks that are
multiples of the base level task, e.g., four scoops of sand and
four scoops of manure, but not all possible tasks.

A finer sub-task-based abstraction would be to teach the
robot to pick and pour one scoop of sand, and one scoop
of manure as shown in Fig 2(b). The pre-condition for each

Figure 2. An example of three different types of demonstration
strategies to complete the task of “create a soil mixture with one
scoop of sand, and one scoop of manure.”. (a) If the subject
gives a complete end-to-end demonstration as in the case of no
abstraction, there is very little generalization to other novel tasks,
e.g., creating a soil mixture with two scoops of sand and three
scoops of manure. (b) If the participant breaks the task into
sub-tasks where pick and place are a single sub-task unit, there
is no constraint on picking materials, so if for example, the sand’s
location changes, the the agent cannot generalize solve tasks. (c)
Breaking down the sub-tasks such that picking a material is a
different sub-task and pouring a material is another sub-task.
Such a TAMP abstraction is sufficient and can solve an
un-demonstrated, novel task within the soil domain, without
requiring the object locations to be held consistent.

task would be to have an empty scoop, the constraint would
be to avoid collisions, and the goal condition would be to
deposit the scoop of sand or manure into the bowl. This
abstraction is a more generalizable sub-task abstraction as
it allows the agent to solve novel tasks that are not present in
the demonstrations given by the user. For example, once the
robot learns how to pick and pour one scoop of sand and one
scoop of manure, it can easily repeat these sub-tasks with the
help of a task planner to solve the novel task of one scoop
of sand, and four scoops of manure. The task planner is used
to plan for the right sequence of sub-tasks that will complete
the goal of a novel task. However, there is no constraint or
condition in this demonstration that the robot picks up the
scoop of sand or manure from the correct location, as the
location of the sand or manure is not represented in the pre-
condition, or the constraints, or the goal condition. If the
location of the sand or manure were changed, the planner will
ask the robot to perform the scoop gesture where the sand
or manure was present during the demonstration and pour an
empty scoop of sand or manure in the bowl, never satisfying
the sub-tasks goal condition.

The finest feasible sub-task abstraction would be to teach
the robot to pick sand and manure, and then teach the robot
to pour the sand and manure as shown in Fig 2(c). To teach
the pick sand sub-task, the pre-condition would be an empty
scoop, the constraint would be to avoid collisions, and the
goal would be to have sand in the scoop. To teach the pour
task, the pre-condition would be to have a scoop with sand,
the constraint would be to avoid collisions and the goal would
be to drop the scoop of sand in the bowl. Such a sub-task
demarcation allows the robot to understand the right pre-
and post-conditions for each sub-task. Specifically, the robot
learns to pick up the sand from any location as a sub-goal
allowing the agent to pick up and pour objects to and from any
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location on the table. Moreover, the robot can again combine
multiple pick-and-pour actions to deliver any required ratio
of sand, and manure. This is a sufficient sub-task partition
allowing the robot to solve the entire multi-task soil mixture
domain with changing locations.

Robot Platform For our first experiment, we used Sawyer, a
seven degrees-of-freedom (DoF) arm from Rethink Robotics.
We switched to using a Kinova JACO seven (DoF) arm for the
second experiment (Figure 1) because of mechanical failures
on the Sawyer robot. Both robots can play back different
demonstrated trajectories with high precision enabling non-
expert users to teach the robot. We record the 2D location of
objects (sand, manure, lime and the mixing bowl) on the table
before we start the task and provide it as input to the TAMP
problem. The only other variables are robot’s joint positions.
We use our TAMP planner with DMPs as specified in the
appendix to plan on the robot given an input state space.
User Interface We designed a user interface that allows
participants to save demonstration trajectories and reuse them
to solve tasks. The design of the interface was fine-tuned
using iterative design methods during the pilot studies. The
image of the interface is shared in the supplementary appendix
A.2 ‡. The interface enables subjects to create and name
sub-tasks, and then give a fixed number of demonstrations
per sub-task. The sub-tasks can be reused by participants
as many times as needed. Moreover, there is a procedure
column for each occasion where subjects can create tasks by
adding the demonstrated sub-tasks to the column sequentially
to satisfy the occasion’s task. The interface allows subjects
to use abstractions, thereby creating shorter, repeatable, sub-
tasks if so chosen.

All study participants were given equivalent training using
the interface via a training video. Modulo latent confounders
we have done our best to reduce confounds created by the
interface itself during the experiment using iterative design,
keeping the interface common across the conditions, and
using training videos to provide equal training. Our results in
the Section titled “Results for AUT and PSA Experiments"
show that our interface and training were sufficient for
participants to create abstractions. All our instruction videos
and documents are provided in the supplementary website *.

AUT Experiment: Investigating Abstraction Use in Robot
Teaching In the AUT experiment, we investigate whether
subjects are intrinsically motivated to provide abstractions
when giving demonstrations to the robot or can be primed to
do so. We conducted a 1 × 4 within-subjects experiment with
28 participants (39.3% Female, Mean age = 21.42, Standard
Deviation = 2.61) where the independent variable is the phase
of the experiment. We also vary the order in which the phases
are introduced to control learning effects. Each study phase
corresponds to the type of task or amount of training the
subject receives when teaching the agent. In each phase, the
subject has to create three soil mixtures for different plants;
we call these “occasions” in the study so the subject treats
them as three distinct occasions of creating plant soil mixtures.
The four phases are the Baseline phase, the Multi-task phase,
the Large Number of Repeats phase, and the Multi-task via
Written Instructions phase.

• Baseline (B): Participants teach the agent a single task on
three occasions with a few repetitions within this phase.
The demonstration task for this phase involves creating a
mixture of two cups of sand and one cup of manure.

• Multi-task (MT): The subject has to teach the agent
different tasks for each of the three occasions in the MT
phase. These tasks range from creating a soil mixture with
the following number of scoops of objects for each of
the three occasions: two of sand and one of lime, one of
manure and one of lime, and one of sand and one of manure,
respectively.

• Large Number of Repeats (LR): The subject has to teach
the same task for each of the three occasions in the LR
phase, but the task itself has a lot of repetitions within it.
The task for this phase involved creating a soil mixture of
ten scoops of sand and three scoops of lime.

• Multi-task with Explicit Teaching via Written Instruc-
tions (MT+W): The trainer gets explicit written instruc-
tions to use abstractions when training the agent. In the
instructions, we describe abstractions in an unrelated task of
cooking eggs. We also attempt to solicit correct abstractions
by describing the robot’s learning constraint in text.

As this is a within-subjects study with predictable learning
effects across conditions, the ordering of the phases plays an
important role in understanding subjects’ ability to provide
abstractions. Since we want to study whether the participants
naturally tend to provide abstractions or not, the subjects
always begin with the baseline (B) phase. To establish which
phase induces abstractions faster we introduced the study
phases to the participants in one of two possible orders. Order
1: B, MT, LR, MT+W. Order 2: B, LR, MT, MT+W. We
only change the order with the MT and LR phases as giving
instructions upfront, i.e., MT+W will bias the subjects to
provide abstractions in the prior phases. We study the effect
of introducing the two MT and LR in the results of this
experiment in the section titled "Results for AUT and PSA
Experiments", where we address RQ 2.

PSA Experiment: Investigating Priming Strategies for
Abstractions in Teaching From our AUT experiment, we
found that although participants learned to provide some form
of demonstrations the participants generally failed to provide
sufficient abstractions in those demonstrations to solve multi-
task domains with constraints. Thus, we conduct a follow-
up experiment where we consider direct teaching modes:
(1) a robot’s debugging demonstration, (2) a video of an
analog task, and (3) an expert demonstration video of the
same task the participants are teaching. The PSA experiment
is a 1 × 4 mixed within-between-subjects study with 24
subjects (45.83% Female, Mean age = 20.875, Standard
deviation = 2.69). The experiment has three different teaching
modes along with a baseline condition of no teaching. All
participants experience the baseline phase and the phase
which shows an expert demonstration video of the same
task that the participants are teaching the robot. Moreover,
half the participants observe the video demonstration of an

‡https://sites.google.com/view/investigating-strategies-1/home
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analog task, and the other half of the participants observe
a debug demonstration that shows the consequence of their
demonstration strategy. The experiment was constructed in
this way to avoid learning effects between the teaching mode
and to avoid fatigue by keeping the length of the experiment
to less than 2.5 hours. In all modes, the subject attempts to
teach the robot in a multi-task scenario where each occasion
has a different task. Moreover, the sand, lime, and manure
pots’ locations are changed between demonstrations. The
object locations are changed to emphasize the need to teach
constraint-based sub-tasks with their demonstrations. The
four conditions are as follows:

• No teaching (NT): Here no instructions are provided to the
subjects. The subjects are free to use any strategy to teach.

• Debug demonstration (DD): The subjects are first
provided with written instructions with diagrams showing
sufficient abstractions in a similar task of touching two
blocks. Further, the users are shown the consequence of
the abstractions they provided in the “No Teaching” phase
using a trajectory demonstration on the robot. Additionally,
we also move the mixing bowl and the pot of sand to a
new location. We used the demonstration strategies we
observed in the first experiment to create these Wizard of
Oz, debugging demonstrations. They have been designed
to be informative about every sub-task a participant could
have taught to successfully complete the overall task.

• Video of analog task (VA): We provided the users with
a video that demonstrated using our interface to teach the
robot a related constraint-based task of touching different
blocks in a specific sequence.

• Expert demonstration video of the Soil Mixture Task
(EV): We also wanted to see if providing a video
demonstrating sufficient abstractions for parts of the soil
mixing task would aid the subjects to extrapolate and
provide sufficient abstractions for the entire task.

All participants started off with a phase of no teaching
mode. They then either completed a debug demonstration
or a video for an analog task for their second phase in the
experiment. Then all subjects finished with a final phase where
they were shown a video showing parts of the soil mixture
task. More details about the PSA Experiment conditions
are provided in Appendix A.3. We know from prior work
that showing a video tutorial for a task is sufficient to teach
abstractions (Cakmak and Takayama 2014a). Hence, we
chose to show videos of partial task solving towards the end to
establish that people can provide sufficient abstractions with
a little help from an expert in the problem domain without the
complete solution. We conducted a between-subjects study,
comparing a debugging demonstration and the video of an
analog task to prevent learning effects between the two modes
and to keep the study duration fatigue-free for participants.

Study Procedure Prior to the start of both the first and
second experiments, we obtained approval for human-subjects
experimentation from the Institutional Review Board (IRB),
protocol #H21036 at our affiliated institution. We recruited
all participants through university mailing lists for both of our
studies. Due to the COVID-19 pandemic, we were unable to

conduct large-scale user studies with off-campus participants.
Nonetheless, we were able to recruit 28 and 24 participants
for the first and second studies, respectively. All participants
were compensated with a $25 and a $35 Amazon gift card
for the first and second studies, respectively. No participant
from the AUT experiment was allowed to take part in the PSA
experiment. The procedure for both the user studies was quite
similar and took a maximum of 2.5 hours to complete.

Upon arrival, the participants were asked to complete a pre-
experiment questionnaire assessing demographic information,
and pre-surveys that include the Big-5 personality test
and their previous experience in teaching children or
students. Subjects then participated in a practice round to
get familiarized with the user interface while providing
kinesthetic demonstrations to the robot. The experimenter
then explained the soil-mixture task and the user interface
to the participants. In the AUT experiment, the participants
begin with the baseline condition and follow either Order 1 or
Order 2. The order for each trial is chosen at random. After
each phase, the participants also filled out a questionnaire
to measure their workload using the NASA-TLX (Hart and
Staveland 1988b). At the end of teaching tasks for all the
phases in the first experiment, the participants took an online
IQ test (FSIQ 2019).

In the second experiment, the participants follow the
same pre-study procedures. Participants perform three soil
mixture tasks with different teaching modes to help them
provide sufficient abstractions. The subjects will begin
with the NT condition, followed by either DD or VA (the
between-subjects component). They will conclude with the
EV condition. Participants also filled out the NASA-TLX
workload questionnaire after each condition. The between-
subjects variable (DD or VA) for each trial was randomized
at the start of the trial.

Metrics
We used the following metrics to measure the performance of
the users teaching our robots within the two experiments in
this study.

Pre-study Questionnaire

• Demographic Information: We collect participants’ age,
gender, education, and race/ethnicity.

• Personality At the start of the study, participants filled out
the Big-5 personality questionnaire (John and Srivastava
1999) on a five-point Likert scale.

• Prior Robotics Experience We ask a hand-crafted single-
item question rated on a scale from 0 to 10+ years.

• Prior Teaching Experience We obtain participants’ prior
teaching experience through a hand-crafted, 5-question
survey.

• Negative Attitude towards Robotics We employ the
Negative Attitudes Towards Robotics (NARS) Scale
(Syrdal, Dautenhahn, Koay and Walters 2009), composed
of 14-questions rated on a seven-point scale (Strongly
Disagree=1 to Strongly Agree=7). We report results on
the three sub-scales: negative situations, negative social
influence, and negative emotions.
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(a) Reaching for sand. (b) Picking up sand. (c) Move to bowl. (d) Dumping sand.

Figure 3. Series of images demonstrating the plan created from learned trajectories on the robot to pick and drop sand from the set
of 10 tasks created to test the learned policies from different demonstrations. For more details refer Appendix B.1.

Objective Metrics

• Task Completion Time: The duration of each phase was
measured and was known to the participants.

• Abstraction Score: We also created an abstraction rubric
to measure the performance of the participant in providing
useful abstractions. The rubric provided a point for every
valid TAMP abstraction provided by the user as described
in the Section titled “Experiment design." Moreover, a point
is also provided for every valid TAMP abstraction that can
be created from the abstractions provided by the user, i.e.,
if the user provided finer-grained TAMP abstractions, such
as picking sand and pouring sand, the rubric also provided
points for other coarser TAMP abstractions that can be
satisfied by the finer abstractions, such as pick and pour
one cup of sand.

This scoring strategy is important, as if valid and
generalizable low-level abstractions are provided to the
robot it can solve more tasks. However, we do not award
points for extremely low-level abstractions, e.g. move 1 cm
to the left, which would not be efficient in solving the task.
All the valid abstractions that a user can provide to the
robot in the soil mixture domain have been described in the
Section titled “Experiment design."

We show in the section titled "Validation of the Abstraction
Metric," and with Fig. 4 that this is a valid scoring strategy
to measure the generalizability of a given demonstration to
solve a wide variety of tasks.

For example, in the task of making a soil mixture with two
scoops of sand and one scoop of manure, if the participant
gave a demo of the complete task, the demo would get
1 point. However, if the participant broke the task into
creating abstractions of scooping one cup of sand and
another for scooping one cup of manure and used these
constraint-based sub-tasks to complete the overall task,
then the demo would receive one point for a scoop of sand
another for manure and one additional point to complete the
overall task. Abstractions earn more points as breaking up
the tasks into sub-tasks helps solve other tasks. The rubric
does not award points for just taking a low-level action
or teaching an unnecessary sub-task. To gain a point the
created abstraction needs to create a sub-task based on a
valid constraint.

• Binary Abstraction Score: We created a binary score
where a participant’s demo scored 1 if the demo had any
abstraction in the phase and 0 if the demo did not.

• Perfect Abstraction Score: Finally, we checked whether
the demonstrations given by the participants created
valid sub-tasks with valid constraints. The participant’s
demonstrations were scored 1 if sufficient abstraction was
provided in the phase, else 0. The participants were unaware
of this rubric and were told to complete the phases as
efficiently as possible.

Post Study Questions

• Workload: Participants filled the NASA-TLX question-
naire (Hart and Staveland 1988b) to assess perceived
workload for each condition.

• IQ Metric: We gave the participants in the first experiment
an approximate open-source Intelligence Quotient (IQ)
test (FSIQ 2019) to test whether IQ has any relation to
the ability to teach with abstractions. This test took each
participant approximately 30 minutes to perform. We note
that we do not employ an official IQ test in our work
and that the test we use is not a replacement for a real
IQ test. The IQ test we employ simply demonstrates the
types of questions and skills necessary to perform well
on an IQ test. We also note that this measure of IQ
is imperfect as it was performed with an open-source,
online test rather than a trained, in-person examiner. As
prior work has found that IQ was associated with better
problem-solving accuracy (Lee, Ng, Ng and Lim 2004)
and that IQ is a strong predictor of academic achievement
(Mayes, Calhoun, Bixler and Zimmerman 2009), in our
study, the IQ metric is used as a proxy for problem-solving
capabilities/academic achievement. We did not conduct the
IQ test for the participants in the second experiment because
the results from the first experiment answered the relevant
research question.

• Verbal Interviews: We used these interviews to understand
the participants’ training strategies and explain the purpose
of the experiment.

Validation of the Abstraction Metric
We first demonstrate that the abstraction score we created as
described in the previous section is valid. We then present our
investigations into the research questions posed in the Section
titled “Research Questions."

Planning with the learned Policies on the Robot We
justify the creation of the abstraction score by comparing
the task-solving potential of trajectories demonstrated by
our participants on the real robot. For this, we created
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Figure 4. Here we have plotted the abstraction score and the
corresponding number of tasks five users’ demonstrations were
able to solve on the robot. There are a total of ten tasks and
seven of these ten tasks are unseen to the robot previously. The
larger circles indicate two users’ demonstrations for the given
score and tasks solved. The colors indicate the type of
abstraction taught, green for no abstraction, blue for imperfect
abstractions, and red for sufficient TAMP abstractions. For a
demonstration to be good, it should be scored higher, as the
robot can solve all the tasks. As it can be seen from the plot
these good demonstrations also have a large abstraction score.
The dotted line is the linear regression of the scores vs the tasks
solved, and it demonstrates that the abstraction scores that we
created correlate well with the number of tasks that a given
demonstration can solve.

a set of 10 tasks to be solved by 5 demonstration sets
chosen to represent different ranges of the abstraction score.
This comparison shows that demonstrations that are given
without sub-task abstractions can solve fewer than half
the tasks. Specifically, tasks where the locations of the
objects are changed arbitrarily can only be solved by the
demonstrations in the highest quartile of the abstraction scores
as observed in the multi-task phase with clear instructions
in the first experiment. To measure this we create a set of
ten tasks, in which seven tasks are completely novel, i.e.,
users did not provide any demonstrations for these seven
tasks. Demonstration sets that do not use abstractions to train
the robot can solve only the exact task that was taught to
the agent, i.e., three out of ten tasks. With a slightly higher
quality abstraction, where the users break apart tasks into
picking and pouring individual scoops of sand, manure and
lime, the robot can plan arbitrary combinations of these sub-
goals, allowing the robot to solve seven out of ten tasks.
The demonstration sets were given keeping in mind that
the robot learns using goals and constraints for sub-tasks,
and separates the picking and pouring for scoops of objects
to solve all ten tasks even when object locations change.
This experiment primarily demonstrates that our abstraction
scoring system was practical, and higher abstraction scores for
demonstrations indicate the ability to solve a larger number of
possible tasks. Figure 4 shows that demonstrations that solve
more novel tasks on the robot, also have high abstraction
scores. Hence, our abstraction scores are a valid measure
of a demonstration’s quality in solving novel tasks using
the TAMP formalism. The complete experimental details

are provided in Appendix B with the whole set of tasks
and their outcomes in Table 1 of the appendix. An example
of the trajectory is shown in Figure 3 along with a video
supplement showing multiple trajectories§. These empirical
results validate that our abstractions score quantifies the
capability of a given demonstration to generalize to novel
tasks. Next, we will discuss our Research Questions and their
implications.

Results for AUT and PSA Experiments
We present our findings for the individual research questions
across the AUT and PSA experiments.

RQ1: Do people naturally provide sufficient abstractions
for learning and planning? Results from our AUT experiment
using the Binary Score indicate that only 35.71% of the
participants used any abstraction in the baseline phase,
implying that the majority of the participants do not provide
abstractions naturally.

Takeaway: We posit that the majority of subjects have
difficulty in knowing where to break a task in a continuous
robot domain, as there is no natural indication of what a
sub-task for a robot could be.

RQ 2: Can external factors or inducements elicit
abstraction-based teaching? In our AUT experiment, we
examine the effectiveness of using different priming methods
to help subjects use abstractions while providing robot
demonstrations. A Wilcoxon-signed rank test with abstraction
score as the dependent variable and study phase as the
independent variable shows that there exists no statistical
difference in abstraction scores between the LR phase and the
MT phase. Further, we conducted a Cox-Regression Hazard
analysis to verify if task order might be critical in determining
the number of abstractions a user provides, but did not find
any significance.

Takeaway: Our results imply that seeing a large number
of repetitions and a multi-task setup both encourage people to
use abstractions at similar rates.

RQ 3: Can participants be explicitly taught to provide
(more helpful) abstractions? In the robot study 24 out of the
28 (85.71%), participants learned to teach abstractions to the
agent after MT+W phase (measured with binary abstraction
score). The remaining four participants could not learn to
break tasks apart to teach the robot. The most common form
of abstraction chosen was to “pick and pour sand,” “pick
and pour manure,” and “pick and pour lime.” When tested
against the MT+W phase where explicit instructions were
given to break down tasks into repeatable sub-goal-based
abstractions, participants succeeded in providing abstractions
and performed significantly better. We ran multiple Wilcoxon-
signed rank tests with Bonferroni correction (α = 0.05/6)
to compute pairwise comparisons for abstraction scores
across the different study phases in the AUT experiment.
Results from the Wilcoxon-signed rank tests indicate that
abstraction scores from the MT+W were significantly
better than the baseline (Z = 165, p < 0.0001), LR (Z =
598, p < 0.001), and MT (Z = 560, p < 0.001) with

§https://sites.google.com/view/experience-impact-abstraction/home
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Figure 5. Box plot indicating the abstraction score distributions
for the phases of baseline, large number of repeats, multi-task,
multi-task with instructions, respectively for the AUT experiment.
As soon as participants are directly asked, using textual
instructions, to teach using sub-task-based abstractions, in the
multi-task with instruction phase, the majority of the participants
choose to do so, but they still fail to provide optimal
sub-task-based abstractions.

Figure 6. Box plot indicating the abstraction score distributions
for the phases of Baseline Multi-task, Debug Demo, Analogue
Video, and Expert training demonstration, respectively for the
PSA experiment. Note that the expert training demonstration
video that shows a partial solution performs much better than
other modalities to train subjects.

effect sizes 0.779, 0.740, 0.697; respectively. The box-plot
of all the abstraction scores are in Figures 5 and 6.
Although 24 participants were able to provide abstractions
in the MT+W phase, only 7 out of the 28 participants
provided demonstrations for sufficient sub-tasks according
to the perfect abstraction score, despite being given clear
instructions that the robot cannot touch two objects in the
same trajectory as these are different goal constraints.

Takeaway: From the first experiment, we note that a
majority (24/28) of the participants were able to provide
task abstractions after being primed with the MT+W phase.
However, only a small fraction (7/24) of the participants were
able to provide sufficient abstractions. These results show that
teaching long horizon and multi-task problems to robots is
not trivial, and correspondence problems between the robot
and its teacher can be an issue in robot teaching.

RQ 4: What demographic subjective or objective factors
and covariates influence how well people use abstractions
for teaching? To analyze which subjective and objective
factors play a significant role in influencing a user’s ability
to provide abstractions, we created a linear mixed effects
model with abstraction score as the dependent variable, and
the independent variables being study phases, conditions,
with covariates of age, IQ, and personality score. We pick

Condition 1 Condition 2 p value Effect of size
EV VA < 0.005 0.863
EV NT < 0.005 0.829
VA NT < 0.01 0.757
DD NT < 0.005 0.829

Table 1. p-values for pairwise comparison of teaching modes on
abstraction scores of subjects, after the Bonferroni correction.

the model with the lowest Akaike information criterion
(AIC) by pruning variables, and covariates from the largest
possible model. All of the models were tested for normality
and homoscedasticity for which the details are in the
supplementary Appendix A.1. For the first experiment, we
found the abstraction score was significantly dependent on
the phase of the study (F (3, 112) = 25.05, p < 0.001) and
the IQ of the participants with (F (1, 112) = 6.81, p = 0.01).

Takeaway: Our analyses indicate that the user’s ability to
provide task abstractions is significantly dependent on the
study phase and IQ.

RQ 5: What explicit teaching strategies, if any, might help
the subjects learn to provide sufficient abstractions? Is this
teaching generalizeable to novel scenarios? We computed
six Wilcoxon-signed rank with Bonferrroni Correction (α =
0.05/6) tests for pairwise comparisons of perfect abstraction
scores across all combinations of the teaching modes used
in the second experiment. The significant results from our
pairwise comparisons are listed in Table 1.

We also compare the ability of participants to provide
the right sub-task decomposition (or abstractions) after the
final phases of the first experiment (MT+W) and the second
experiment EV, with a Wilcoxon-signed rank test and find that
the abstraction scores of participants in the EV condition are
significantly better (Z = 568, p < 0.001, effect size=0.616).

Takeaway: Our results indicate that EV is the most
effective technique in eliciting sufficient abstractions from
non-experts for teaching a robot in a multi-task, long-horizon
setting. However, this approach does not scale well to novel
tasks that an end-user might want to teach a robot. These
results imply that showing the participants a video of the
expert demonstrating the training to teach the same task
that the participant is teaching is better than other teaching
modalities to help the robot learn to solve novel tasks.
However, providing such videos for a household-hold robot
would not be possible in all cases.

Note on Perceived Workload and Abstractions: To
analyze how providing abstractions can affect the perceived
workload of a user, we employ a linear mixed effects model
(LMER) with workload as the dependent variable. Our results
show that workload was significantly dependent on the
interaction effect between abstraction scores (F (3, 112) =
11.48, p < 0.001), and the phase of the study, with a linear
effect from the IQ of the participant (F (1, 112) = 5.29, p =
0.02) for the first experiment. However, the perceived
workload was not dependent on any of the independent
variables with significance in the second experiment. We
hypothesize that this is because all the phases had multi-
task scenarios, reducing the significance of variables such
as the study phase or ordering, to predict workloads. Finally,
we believe there are important mediating effects between
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measured IQ, workload, and score, which are difficult to
isolate due to assumptions of available statistical procedures
for mediation analysis for the AUT experiment.

Confound of Domain Experience
In the previous section, we described our results on whether
users teach robots with abstractions and whether any priming
strategies help users in teaching a single task to the robots.
However, we identify a confound over experience teaching
the robot: as the users get familiar with teaching robots, they
get better at specifying the right abstraction. In the next
section, we describe our results where we test this confound
of participants experiencing multiple domains and describe
a human-subjects experiment where we observe the learning
effect between tasks and domains for users teaching robots.

Investigating the Impact of Experience on a
User’s Ability to Perform Hierarchical
Abstraction
In this section, we discuss the third human-subjects
experiment, where we investigate the learning effect between
tasks and domains for users teaching robots. Furthermore,
we develop and validate a robot-teaching experience-based
approach to enable end-users to teach robots generalizable
abstractions for novel long-horizon tasks. While the previous
two studies (AUT and PSA) were conducted only on one
(Soil-Mixture) domain this experiment is conducted across
multiple domains to ensure teaching compatibility across
different types of robot tasks.

EPA Experiment: Investigating the role of
Experience in providing abstractions
We conducted a 1 × 4 within-subjects experiment with twenty-
eight participants, seven per ordering condition (see Appendix
for the domain ordering of each condition). Participants
experience five domains in this study, a practice domain that
all participants experience first, and the four ordered domains.
We control for the ordering of the remaining four domains
using a Latin square, ensuring that the participant count per
condition is balanced. The independent variable in this study
is the number of domains encountered thus far.

The robot employed in this study is the JACO arm
(Gen2, three fingers for a total of seven degrees of freedom)
(Campeau-Lecours, Maheu, Lepage, Lamontagne, Latour,
Paquet and Hardie 2016) attached to a hand-crafted base
located next to the experiment’s table, as seen in Figure 7.
We additionally designed a user interface that allows users
to record and save sub-tasks they demonstrate to the robot;
interface design decisions can be found in the Appendix.
Participants can then use the interface to combine different
sub-tasks to accomplish a task. We name the group of sub-
tasks assigned to a particular task a recipe. We require the
participant to record three demonstrations for each sub-task in
order to capture variability in the way the participant moves
the robot for robustness to noise.

Research Questions
• RQ 6: What is the impact of domain experience on

the quality of demonstrations? We investigate whether

participants can perform zero-shot transfer to novel
domains of any acquired knowledge as measured by sub-
task abstraction score, teaching efficiency, and sub-task
redundancy.

• RQ 7: What is the effect of demonstration abstraction on
participants’ perceived workload? We hypothesize that
higher abstraction scores will reduce the repetitiveness
of participant demonstrations, thereby reducing perceived
workload.

• RQ 8: Do participant demographics impact the quality
of demonstrations? We investigate whether participant
demographics, such as prior robotics experience and
prior teaching experience, impact the quality of their
demonstrations. We posit that participants with robotics or
teaching experience will teach the robot, via demonstration,
more effectively and efficiently.

• RQ 9: Does domain type impact the quality of
demonstrations? We hypothesize that the domain type will
impact the sub-task count and redundancy, abstraction score,
and teaching duration.

Metrics
We collected the following metrics as part of this user study:

• Abstraction Scores: We used the abstraction scores as
justified in the previous section.

• Redundancy Score: We count the number of redundant
sub-tasks taught, i.e., sub-tasks whose function can be
fulfilled by another existing sub-task or a combination
of existing sub-tasks. This metric allows us to evaluate
the necessity, independently from the sufficiency, of
demonstration sub-tasks.

• Sub-task Count: We count the total number of sub-tasks
taught to the robot in each domain, that are employed to
accomplish a task.

• Teaching Duration: We measure the total time the
participant taught the robot similar to the previous studies.

The subjective metrics in our user study are as follows.
The details of hand-crafted surveys, Cronbach’s alpha, and
qualitative results and quotes from interview questions are in
the Appendix.

Pre-study Questionnaire

• Demographic Information: We collect participants’ age,
gender, education, and race/ethnicity.

• Personality Prior work has found a statistically significant
relationship between teachers’ personality type and the
degree to which they are effective teachers (Fatemi, Ganjali
and Kafi 2016), and that extroversion is correlated with
overall teaching efficacy (Roberts, Harlin and Briers 2007).
As such, we included the Big 5 Personality Score as a
covariate as we hypothesized that if a participant is an
extrovert, they may be an effective robot teacher. The
Big Five Personality survey (Goldberg 1992) consists of
fifty questions rated on a seven-point scale (Very Strongly
Disagree=1 to Very Strongly Agree=7).
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Figure 7. Via the interface and kinesthetic teaching, participants record three demonstrations to save a sub-task. Saved sub-tasks
are then available in the interface library. To execute a task, participants assemble a recipe from the set of recorded sub-tasks.

Figure 8. The five domains that the participants trained the robot in the third human-subjects experiment.

• Prior Robotics Experience We obtain participants’ prior
robotics experience through a hand-crafted single-item
question rated on a scale from 0 to 10+ years.

• Prior Teaching Experience We obtain participants’ prior
teaching experience through a hand-crafted, 5-question
survey rated on a five-point scale (Strongly Disagree=1
to Strongly Agree=5).

• Negative Attitude towards Robotics We employ the
Negative Attitudes Towards Robotics (NARS) Scale
(Syrdal, Dautenhahn, Koay and Walters 2009), composed
of 14-questions rated on a seven-point scale (Strongly
Disagree=1 to Strongly Agree=7). We report results on
the three sub-scales: negative situations, negative social
influence, and negative emotions.

Post-domain Questionnaire

• Teaching Strategy After completing each domain, we ask
participants to “please explain your strategy and thought
process when teaching the robot in this domain.”

Post-study Questionnaire

• Workload We use the NASA Task Load Index (NASA
TLX) (Hart and Staveland 1988a) to obtain perceived
workload.

• Impression of Agent We use the Perceived Intelligence
and Likeability sub-scales of the Godspeed Questionnaire
Series, rated on a 5-point scale (Bartneck, Kulić, Croft and
Zoghbi 2009).

• Post-Interview We ask participants five post-interview
questions. The question list and qualitative results can be
found in the Appendix.
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Domains
We employ five domains in this study, each comprised of
three tasks that the participant must teach the robot, as seen
in Figure 8. The set of tasks in each domain was designed to
be repetitive and time-consuming to encourage participants to
use sub-task abstractions in order to avoid recording repetitive
sub-tasks. Additionally, we chose these domains because they
are representative of common household chores that humans
could reasonably be asked to teach a robot: setting the table,
packing lunch, gardening, and dispensing medication. Each
task has a distinct objective with differing numbers of objects
and goals but requires similar types of abstractions from the
participant.

Furthermore, when teaching a robot a task in a residential
or “unsanitized” setting, there will likely be objects in the
environment that are unrelated to the task being taught. We
thus employ distractor items in this study, which are present
but not relevant to the list of tasks the participant must teach
the robot in the domain, to realistically represent such settings.

Participants were given unlimited time to record sub-task
demonstrations and build recipes using these recorded sub-
tasks in the interface. The optimal sub-task list for each task in
each domain can be found in the Appendix. We now describe
the domains in this study (Fig. 8).

Block Touching: A blue, green, and red block are placed in
front of the robot. Participants are asked to teach the robot to
touch the blocks in a particular order using the robot gripper.

Box Packing: Two plastic bananas, two Jell-O boxes, and
two Spam cans, along with a cardboard box are laid out in
front of the robot. Participants are asked to teach the robot to
pack (pick up and place) a combination of these food items
into the cardboard box.

Table Setting: Two forks, two knives, and two plates are
placed in front of the robot. Participants are asked to teach the
robot to set the table by picking up the utensils and placing
them in designated locations around the two plate settings.

Soil Mixing: A bucket of manure, a bucket of sand, and a
bucket of lime are placed in front of the robot, along with a
mixing bowl into which scoops of each of these materials are
to be poured. Participants are asked to teach the robot to create
different soil mixtures for different plants. In this domain, the
scoop is placed in the robot’s gripper by the experimenter.

Medicine Dispensing: Four kinds of medicine (red pill cup,
green pill cup, yellow pill cup, and TUMS pill cup) along
with three trays labeled persons 1, 2, and 3 are placed in front
of the robot. Participants are asked to dispense the proper
medication to each person by picking and placing medicine
cups into the appropriate person’s tray.

Study Procedure
This study was approved by our university’s IRB,
protocol #H22450. We recruited all participants through
advertisements on campus. The study took three hours, and
participants were compensated with a $50 Amazon gift card,
given the long duration of the study. Participants were not
explicitly given breaks during the study. However, the consent
form told participants they can take breaks (for instance, to
go to the bathroom). The procedure of the study is as follows.

Participants first take the pre-study questionnaire,
comprised of surveys to collect demographic information,

personality measures, prior robotics experience, prior teaching
experience, and negative attitude towards robots. After the
pre-study questionnaire, participants start the training portion
of the study. To begin, they observe the introduction video.
The introduction video¶ introduces the study, the robot, and
the interface used to teach the robot sub-tasks. The video then
consists of a conceptual description of how to optimally teach
the robot to make an omelet. The optimal sub-tasks described
for this example included (1) going to the egg carton, (2)
picking up an egg, (3) going to the pan, and (4) breaking an
egg into the pan. This portion of the video motivates breaking
up the task into sub-tasks that can be called many times,
to generalize to an omelet of any quantity of eggs. It also
suggests recording the “go to the egg container” sub-task
separately from the “pick up the egg” sub-task, allowing the
robot to generalize going to an egg carton whose location
has been moved. Finally, this video communicates that the
sub-tasks can be called from generalized starting positions
so multiple sub-tasks can be chained together without going
back to a home position first. We note that this initial omelet
domain is experienced entirely virtually, and we do not show
the participant how it would be taught on the physical robot.

Next, participants teach the robot to complete the three
block touching tasks in the demo (i.e., practice) domain. After
this demo domain, the participant explains their teaching
strategy, recorded via a voice recording. We note that after
this demo domain, we do not show the participant a video of
the optimal way to teach the robot. The demo domain and
task are not the same as the ones participants encounter later
in the study. Additionally, since a video of the optimal way to
teach is not shown for the demon domain, the demo domain is
absent of a learning signal for the participant, contrary to the
following domains. As such,this domain does not contribute
to the teaching experience of the participant. This block-
touching domain serves to familiarize the participant with
moving the robot and using the interface.

Then, for the testing portion of the study, participants
teach the robot how to accomplish tasks in four different
domains: box packing, table setting, soil mixing, and
medicine dispensing. Each participant experiences one
ordering condition, which defines the order in which the
domains are encountered. All participants experience each of
these domains (within subjects). The four domain ordering
conditions are listed in the Appendix. For each of these
four domains, participants are introduced to the domain
verbally, then asked to teach the robot how to do three
tasks in that domain using the interface, as seen in Figure
7. To teach the sub-tasks, participants provide kinesthetic
demonstrations in which participants physically manipulate
the robot. After teaching the robot, the participants answer
the post-domain interview question and then observe a video
showing the optimal way of teaching the robot in that domain
(communicating the proper sub-task breakdown) prior to
experiencing the next novel domain. The optimal teaching
strategy video for each domain was designed to communicate
how to optimally teach the robot, listing the optimal sub-tasks
for the domain, along with how to teach and record those

¶The videos employed in this study can be found at https://sites.
google.com/view/experience-impact-abstraction/
home.
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(a) Abstraction score does not significantly
differ across domains.

(b) Teaching duration differs across the
different domains.

(c) Redundancy score differs across the
different domains.

(d) Abstraction score increases with more
domain experience.

(e) Teaching duration decreases with more
domain experience.

(f) Redundancy score decreases overall
with more domain experience.

Figure 9. We depict results with respect to domain type (top row) and domain experience (bottom row). We find that abstraction
score increases with domain experience and teaching duration decreases with domain experience, and that teaching duration and
redundancy score differ across the different domains.

sub-tasks on the robot using the interface. Next, the videos
show how to use the sub-tasks to build the recipe for one task
in the domain.

Between each domain, the experimenter reset the
environment, placing the proper domain’s items on the table.
After experiencing all four domains, participants take the
post-survey questionnaire, comprised of surveys to collect
perceived workload and impressions of the robotic agent.
Finally, participants answered the post-interview questions.

For each demonstration saved via the interface, we record
the robot trajectories along with a third-person perspective
video of the participant moving the robot, collected using
a Kinect camera. While participants record their sub-tasks,
the experimenter takes detailed notes on participant behavior,
recording which sub-tasks they record. These notes, along
with the interface’s saved recipes (i.e., an ordered list of sub-
tasks applied to each task in each domain), were used to obtain
the abstraction score and redundancy score for each domain.
Three coders scored participant abstraction and redundancy
scores, resulting in an intra-class correlation coefficient of
0.998 for abstraction scores and 0.755 for redundancy scores.

EPA Experiment Results
We conducted our third user study with 28 participants
(39.26% female, mean age = 22.89, standard deviation =
1.63). Before running statistical tests, we first checked that
our data met parametric assumptions via Shapiro-Wilk’s
test and Levene’s test. Due to our statistical models not
passing tests for normality, we employ non-parametric tests
throughout our analysis. We employ Bonferroni correction
when applying multiple tests for the same hypothesis to reduce
the risk of Type I errors (Schrum, Ghuy, Hedlund-Botti,

Natarajan, Johnson and Gombolay 2022). To test RQ1 and
RQ4 we employ the Friedman rank sum test, where we report
χ2(degree of freedom) and p-value. For follow-up pairwise
comparisons, we employ the Nemenyi Wilcoxon-Wilcox all-
pairs test, for which we report the p-value. To test RQ2 and
RQ3 we employ Spearman’s rank correlation test, where we
report ρ and p-value.

RQ 6: In the AUT experiment, we investigate the impact
of domain experience on the quality of demonstrations. This
hypothesis investigates whether participants can perform zero-
shot transfer of knowledge regarding sub-task abstraction,
teaching efficiency, and sub-task redundancy to novel
domains.

We note that the block touching domain was the demo
task, intended to familiarize the participant with the robot
and the interface, to isolate the effect of learning in the actual
test rounds. As the participants do not observe the optimal
demonstration after this demo task, we do not include the
block-touching domain in our domain experience.

Abstraction Score – Through a Friedman test, we find
a main effect of the participant’s domain experience on the
participant’s domain abstraction score (χ2(3) = 28.056, p <
.001). We conduct pairwise comparisons using a Nemenyi
Wilcoxon-Wilcox all-pairs test, visualized in Figure 9d, and
find significance between the first and second domain (p =
.006), the first and third domain (p = .001), and the first and
fourth domain experienced (p < .001).

We first observe in Figure 9d that abstraction scores
improve between the first and second domains. This finding
points to participants’ ability to transfer knowledge about
sub-task abstraction zero-shot to a novel domain. We further
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observe that abstraction scores improve between the first
domain and all subsequent domains. This finding supports our
hypothesis that participants improve the level of abstraction
of their demonstrations as they gain domain experience.

Our results show that abstraction scores, on average, are
monotonically increasing. While the statistically significant
improvement in abstraction score occurs after the first domain,
the results show a positive trend in subsequent rounds. The
diminishing but positive improvement is consistent with
prior work finding that human task performance improves
logarithmically with practice (Ritter and Schooler 2001).

Teaching Duration – We find significance with respect
to teaching duration and domain experience (χ2(3) =
41.796, p < .001). We find the significant pairs (Figure 9e) to
be between the first and second domain (p = .014), the first
and third domain (p < .001), and the first and fourth domain
(p < .001), as well as between the second and fourth domain
(p = .041). This finding indicates that participants provide
demonstrations more efficiently over time.

Sub-task Redundancy– We find a main effect with respect
to learning experience and sub-task redundancy (χ2(3) =
8.018, p = .046), but find no pairwise significance, (Figure
9f). This finding suggests that there may be a trend between
domain experience and sub-task redundancy, but more data
are needed.

RQ 7: We investigate the effect of demonstration sub-task
abstraction on participants’ perceived workload.

Sub-task Count – We perform a Spearman’s correlation
test and find significance between sub-task count and
perceived workload (ρ = −.519, p = .005). These findings
imply that sub-task count is negatively correlated with
perceived workload. High sub-task count means breaking
up the task into many smaller sub-tasks, each of which can
be reused to avoid redundant demonstrations. One possible
explanation of this finding is that fewer sub-tasks for a task
indicate more repetitive demonstrations.
RQ 8: We investigate whether participant demographics
impact the quality of demonstrations.

Teaching Experience – We find significance between prior
teaching experience and sub-task count (ρ = −.473, p =
.011). This finding is evidence that increased prior teaching
experience is negatively correlated with sub-task count.
This gained understanding of the impact of prior teaching
experience on sub-task count could be used to improve the
existing methods employed to teach demonstrators how to
provide sufficient demonstrations.

Likeability – We find significance between sub-task count
and robot likeability (ρ = −.501, p = .007). This finding
is evidence that increased robot likeability is negatively
correlated with sub-task count.

Agreeableness – Next, we find significance between
teaching duration and the agreeableness sub-scale of the Big
Five Personality survey (ρ = .503, p = .006). This finding
is evidence that participant agreeableness is negatively
correlated with the efficiency with which they provide
demonstrations, namely that more agreeable participants
utilize more time to provide demonstrations.

Negative Social Influence – Finally, we find significance
between teaching duration and the negative social influence

sub-scale of the Negative Attitude towards Robotics survey
(ρ = .577, p = .001). This finding is evidence that higher
teaching duration is correlated to perceptions of negative
robot social influence, i.e., participants who are warier of
robots take more time to provide demonstrations.
RQ 9: We now investigate whether domain type impacts the
quality of demonstrations.

Teaching Duration – Through a Friedman rank sum
test, we find significance in the teaching duration among
domains (χ2(3) = 8.656, p = .034). We find one significant
pair between table setting and box packing domains (p =
.036). We plot domain type against teaching time, as seen in
Figure 9b.

Sub-task Redundancy – Through a Friedman rank sum
test, we find significance in the redundancy score among
domains (χ2(3) = 33.836, p < .001). We find the significant
pairs to be between table setting and medicine dispensing
(p = .006), table setting and soil mixing (p < .001), and box
packing and soil mixing (p = .023) (Figure 9c).

Sub-task Count – Through a Friedman rank sum test,
we find significance in the unique sub-task count among
domains (χ(3)2 = 45.87, p < .001). A Nemenyi-Wilcoxon-
Wilcox all-pairs test yields significant pairs for table setting
and box packing (p < .001), table setting and medicine
dispensing (p = .006), and table setting and soil mixing
(p < .001).

Abstraction Score – Finally, we note that we find no
significance between the abstraction score and domain, as
seen in Figure 9a.

EPA Experiment Takeaways
Impact of domain experience on demonstration sufficiency,
necessity, and efficiency (RQ7). We find that participant
abstraction score is positively impacted by the number of
domains experienced (p < .001), meaning that over time
participants provide demonstrations that manifest higher
levels of abstraction. We further find that teaching duration is
negatively impacted by the number of domains experienced
(p < .001). This indicates that over time participants take less
time to provide demonstrations.

These findings suggest that participants can generalize
knowledge gained about providing demonstrations efficiently,
using more sub-task abstraction, from previously experienced
domains to a novel domain. These findings indicate that
demonstrators can be trained to efficiently provide
sufficient demonstrations to new domains, zero-shot.

Impact of prior teaching experience on sub-task count
(RQ9). We find that prior teaching experience is negatively
correlated with sub-task count (p = .011), indicating that
participants with more teaching experience record fewer sub-
tasks. We note that we don’t find significance between prior
teaching experience and abstraction score or redundancy
score. This finding indicates that increasing teaching
experience will increase sub-task efficiency, though not at
the expense of sub-task sufficiency or necessity.

Since general teaching experience does not appear to
translate to demonstration quality, our findings highlight
the need for a way to teach demonstrators how to provide
sufficient and necessary sub-tasks. Our results show that we
contribute a scalable and generalizable method for training
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LfD demonstrators, by exposing demonstrators to multiple
domains in which they practice and observe the optimal
teaching method.

Impact of sub-task count on perceived workload (RQ8). We
find that participant workload is negatively correlated with
their sub-task count (p = .005). This indicates that a lower
sub-task count correlated with a higher perceived workload.
We hypothesize that this is due to the lengthier process
of demonstrating and recording under-abstracted sub-tasks.
When a demonstrator provides demonstrations with more
sub-tasks, while there are more sub-tasks to teach, each is
less complex and shorter to demonstrate. On the other hand,
when a demonstrator provides demonstrations with fewer
sub-tasks, the demonstrations provided are more complex in
content and therefore take longer to demonstrate. In addition
to abstractions being useful for robust robot learning, this
finding suggests that participants find correct abstractions
less effort to teach, as observed via lower perceived
workload.

Impact of robot likeability, participant agreeableness, and
negative attitudes on demonstrations (RQ9). We find
that robot likeability is negatively correlated with sub-
task count (p = .007). This suggests that people rated
the robot as more likeable when the teaching was less
involved. We hypothesize that this is because when a
demonstrator provides demonstrations with more sub-
tasks, the processing and recording of this increased
number of demonstrations (i.e. which involves pausing
the robot, editing the UI takes, etc.) makes teaching more
sub-tasks a more involved process. When a demonstrator
provides demonstrations with fewer sub-tasks, fewer
demonstrations are needed and teaching involvement is
lower.

On the other hand, we find that participant agreeableness is
positively correlated with teaching duration (p = .006). This
finding suggests that demonstrators with higher agreeableness
take longer when providing demonstrations, though not at the
expense of sub-task count, abstraction score, or redundancy.
This finding indicates that more agreeable demonstrators
take their time when recording demonstrations. We posit
this is because these participants either wanted to please the
experimenter or because they wanted to be thorough in order
to be helpful.

Participants who perceived robots as more socially negative
additionally took longer to teach the robot (p = .001).
Participants that are warier of robots take more time to
provide demonstrations, therefore we posit that addressing
negative robot perceptions will reduce the time people take to
teach robots.

Comparing Impact of Prior Experience to
Explicit Teaching
In this section we perform post-analysis of the data collected
from our second and third user studies. After the PSA
experiment, we established that showing an expert video of a
task before they teach the robot is sufficient for participants
to teach the robot with perfect abstractions. We also noticed
that just showing the video of an Analog task, and not letting
users teach the Analog task itself, was insufficient in helping

users teach the robot perfectly. With the third user study, we
tested the confound of the learning effect to demonstrate that
participants can teach perfect abstractions to robots as they
gain experience in teaching multiple domains. It remains to
be established if showing expert videos is better than gaining
experience. Moreover, we also wanted to see if there is a trend
across studies for participants’ performance with respect to
the abstraction scores.

In this section we do not compare to the AUT experiment
as the Expert Video (EV) phase from the PSA experiment
performed significantly better than all phases of the AUT
experiment. Moreover, only the soil mixture domain is
consistent across the PSA and EPA experiments so we restrict
analysis to this domain. We also use normalized abstraction
scores to avoid any task based scaling issues. Hence, our
goal in this section is to determine if domain experience in
different, training domains can catch up to the golden standard
approach of showing the optimal teaching strategy in the same
test domain before a user trains the robot. To compare these
two strategies we perform two types of post-analysis –

Performance of Experience in Comparison to
Expert Video Tutorial
We aim to see if the performance of the participants across
phases in the EPA experiment is equivalent to that of the EV
phase of the PSA experiment. For determining equivalence
we use Two One-Sided Tests (TOST) between different
phases and the EV phase as discussed below. We used non-
parametric TOST tests as the scoring data is not normally
distributed. Additionally, determining equivalence requires
us to pick a boundary or threshold for equivalence of the
distribution to accept or reject the hypothesis that the observed
distribution has shifted by a value smaller than an allowed
boundary while maintaining equivalence. By noticing the
abstraction scores across different domains we determined
that the generalization ability of an abstraction will not
change drastically within a ±15% change of the abstraction
score. In other words, we stipulate that if two abstractions
have a score that is different by ±15% their generalization
ability is pretty much equivalent. Given this observation,
we picked the boundary to establish the equivalence of
distribution of abstraction scores across any two different
phases conservatively to be 10% of the abstraction scores.

In the following sub-sections, we compare each of the
phases (phase 1-3) of the EPA study with the EV phase
of the PSA study. We use a Wilcoxon rank sum test with
continuity correction, a null hypothesis significance test
(NHST), and an equivalence test via two one-sided tests
(TOST) with a significance level of α = 0.05. These tested the
null hypotheses that true location shift is equal to 0 (NHST),
and true location shift is more extreme than -0.1 and 0.1
(TOST). The results are also summarized in Figure 11.

Phase 1 EPA vs EV PSA – The equivalence test was not
significant (p = 1). The NHST was significant, as observed
via the Wilcox Mann Whitney test (W = 199, p < 0.001)
location shift = 0.786 90% C.I.[0.723, 0.83]; Rank-Biserial
Correlation = 0.843 90% C.I.[0.693, 0.923]). We cannot reject
the null hypothesis of TOST.

We further confirm this significant difference with a
Wilcoxon two-sided rank sum test (W = 199, p < 0.001).
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Figure 10. Depicted is a summary of the significant results of the EPA experiment. We find a main effect of the participant’s domain
experience on the participant’s domain abstraction score, redundancy score, and teaching duration. Regarding demographic factors,
we find a main effect of agreeableness on teaching duration, and of teaching experience on sub-task count. Finally, we find a main
effect of sub-task count on workload.

Figure 11. Box plot indicating the abstraction score distributions
across phases of the second and third experiments. We limit our
comparison to the gold-standard of our PSA experiment, which
was expert video based tutoring of participants to teach perfect
abstractions. We notice that in our third study, participants start
of performing significantly worse, but with experience catch up to
the performance of an expert video based tutoring. With “=***=”
we indicate statistically significant equivalence results with the
two one-sided test results between the PSA experiment’s EV
phase and Round 2 and Round 4 of the EPA experiment. With
“***” we indicate that the PSA experiment’s EV phase and Round
1 of the EPA experiment are statistically significantly different.
Which means that participants in the EPA study start with
teaching poor abstractions and get better over the study as they
teach the robot different domains. Our third experiment
demonstrates that with teaching experience across domains
participants can teach novel usable planning abstractions to
robots.

We find that if participants encounter the the soil mixture
domain as the first round of robot teaching task within the
EPA study, the performance of the participants in providing
demonstrations is not similar or equal to the performance
of users who have seen experts teach the robot in the same
domain.

Phase 2 EPA vs EV PSA – The equivalence test was
significant, as observed via the Wilcox Mann Whitney test
(W = 192, p < 0.001) with location shift = -7.87e-05 90%
C.I.[-0.0624, 0] and Rank-Biserial Correlation = -0.417 90%
C.I.[-0.684, -0.0499]). We reject the null hypothesis of TOST
with significance (p < 0.001) that the difference between the
means and the 95% confidence intervals of the distributions
are greater than 0.1 normalized abstraction scores; this result
supports the hypothesis that the difference is relatively small.

We find that if participants encounter the soil mixture
domain in the second round of teaching tasks to robots
within the EPA study the performance of the participants
in providing demonstrations is equivalent or statistically
indistinguishable from the EV domain within the PSA study.
This is a noteworthy observation as given the teaching
experience of a different task and its corresponding expert
solution presented after, the participants can learn to provide
demonstrations as well as if they had learned to provide
demonstrations within the same task from an expert.

Phase 3 EPA vs EV PSA – Both the equivalence test (p
= 0.064), and the NHST (p = 0.797) were not significant
(location shift = 9.18e-06 90% C.I.[-2.38e-05, 0.187]; Rank-
Biserial Correlation = 0.056 90% C.I.[-0.311, 0.407]). We
also checked with a regular Wilcoxon two-sided rank sum-test,
and found that no significant difference can be established
between the two distributions (W = 114, p > 0.05).
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The results are inconclusive: neither null hypothesis can be
rejected. We find that if participants encounter the soil mixture
domain in the third round of teaching tasks to robots within
the EPA study the performance of the participants in providing
demonstrations cannot with certainty be distinguished as
being equivalent or different from the EV domain within
the PSA study. The variance of the abstraction scores in third
round of the EPA study is quite high making the equivalence
hard to establish. The variance is not high enough to establish
non-equivalence either. We believe more samples in the EPA
study are required to solve this question one way or another.

Phase 4 EPA vs EV PSA – These tested the null hypotheses
that the true location shift is equal to 0 (NHST), and
true location shift is more extreme than -0.1 and 0.1
(TOST). The equivalence test was significant, as observed
via the Wilcox Mann Whitney test (W = 24, p = 0.001)
with location shift = -4.05e-06 90% C.I.[-0.0624, 5.76e-05];
Rank-Biserial Correlation = -0.214 90% C.I.[-0.56, 0.194]).
We reject the null hypothesis of TOST with significance
(p < 0.001) that the difference between the means and the
95% confidence intervals of the distributions are greater
than 0.1 normalized abstraction scores of each other, which
supports the hypothesis that these distributions are similar.

We find that if participants encounter the soil mixture
domain in the fourth round of teaching tasks to robots within
the EPA study the performance of the participants in providing
demonstrations is equivalent or statistically indistinguishable
from the EV domain within the PSA study. This is again an
important observation as given a few teaching experiences
of a different tasks and their corresponding expert solutions
presented after, the participants on their own can learn to
provide demonstrations as well as if they had learned to
provide demonstrations within the same task from an expert.

These results bolster our claim that non-expert end-
users can teach robots novel tasks using plannable TAMP
abstractions without an expert’s guidance in a novel
domain (i.e., zero shot) just as well as an end-users who
have access to a video demonstration of an expert teaching
in that novel domain. This result is a tremendous boon for
democratizing robot LfD as it shows that end-users can
accrue and transfer experience teaching to new domains
without the need for ad hoc tutoring from expert teachers.

Impact of Prior Experience and Explicit Teaching
on Abstraction Scores
Next, we compare the impact of domain experience on
abstraction score with the impact of explicit teaching on
abstraction scores in the Soil Mixture domain across the
two experiment of PSA and EPA. We ran a gamma-
distributed generalized linear mixed effects regression model
with an identity link function to model abstraction scores
given teaching round, and type of study as independent
variables with mixed effects while using subject ID as an
independent noise variable. We find that the performance of
the participants improves significantly as they experience
more rounds across studies as (F (1, 129) = 147.58, p <
0.001). We found that subject’s abstraction scores were
correlated with significance based the study (PSA vs EPA)
they were performing (F (1, 129) = 5.63, p < 0.05). The
implication here being subjects in general performed better in

the EPA study where they have been shown to score equivalent
to the highest scoring phase of the PSA study in multiple
rounds. Moreover, there is a mixed effect where the round of
the study and the study itself correlate with the performance
of the participants in providing good abstractions to robots
(F (1, 129) = 17.95, p < 0.001).

The key takeaway here is that across two studies we
notice that experience in teaching the robot is a significant
predictor of improved performance in providing good
planning abstractions to the robot and thereby scoring
higher abstraction scores. Moreover, the EPA study which
presents multiple domains to users, without showing expert
training strategies at first, allows users to train the robot better
than the PSA domain in general. These results demonstrate
that we can teach novice users to train robots given training
videos for some tasks and allowing users to train these tasks
robots. The users will generalize to novel unseen tasks and
provide useful, generalizable and plannable demonstrations
to the robot. This provides novel opportunities in end-user
house-hold robotics where users might have to teach novel
tasks to the robot safely in real time.

Related Work
In this section we cover a broad literature review that covers
the ability of people to create and teach abstractions to other
people or robots.

Cognitive Studies About Abstractions Created by
Humans
Cognitive science has investigated the problem of abstraction
to understand how and when people create abstractions.
Pioneering work by Lashley (1951) argued with examples for
order and hierarchy in the performance of complex behaviors.
Lashley argued that humans are not performing complex
behaviors by moving from one skill to the next based on
the sensory inputs alone, but that they have a “primed” pre-
determined order or a plan in which they want to execute the
skills. Moreover, Lashley argued that such primed sequencing
of skills can also be altered if the environment requires it.
There has been follow-up work demonstrating such planning
and organization of skills with experiments in different
domains (Klapp 1977; Rosenbaum, Cohen, Jax, Weiss and
van der Wel 2007). Apart from sequencing of skills, Aarts
and Dijksterhuis (2000) demonstrated that just specifying a
goal condition to people activates skills related to that goal.
For example, thinking about bicycles, when the task of going
to university is specified, pointing again to organization of
skills given a goal condition. These skills can be activated
in novel contexts as well, such as the act of cleaning when
people smell cleaning products while doing unrelated and
novel chores (Holland, Hendriks and Aarts 2005).

There is also the related question of how these skills and
hierarchies are learned, which is a much harder question to
answer. Multiple physiological studies have demonstrated
changes in the brain’s structure and morphology during skill
learning (Lövdén, Garzón and Lindenberger 2020; Wenger,
Brozzoli, Lindenberger and Lövdén 2017; Kolasinski, Hinson,
Zand, Rizov, Emir and Stagg 2018). A clear predictive model
of these changes across different skills and periods of learning
still remains elusive (Wenger, Brozzoli, Lindenberger and
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Lövdén 2017). From a cognitive perspective, Solway, Diuk,
Córdova, Yee, Barto, Niv and Botvinick (2014) have shown
that people can learn an optimal behavior hierarchy given
a novel task based on observed data. The optimality here is
being defined with respect to the goals of a task which in the
case of Solway, Diuk, Córdova, Yee, Barto, Niv and Botvinick
is a routing task. Other studies have demonstrated that humans
have an innate ability to identify “breakpoints” (Newtson
and Engquist 1976), or “chunks” within videos or lexical
tasks (Orbán, Fiser, Aslin and Lengyel 2008; Brady, Konkle
and Alvarez 2009). Such chunking or breaking of events in
videos or demonstrations in the physical world can explain
how humans can create skill segments by observing others or
while performing the tasks themselves. These skills can then
allow humans or other animals to have a primed high-level
plan as pointed out by Lashley (1951). Our work is inspired
by cognitive studies testing for abstractions humans create
such as those in Solway, Diuk, Córdova, Yee, Barto, Niv and
Botvinick (2014); Newtson and Engquist (1976); however,
our goals are to see if users can be taught to create abstractions
that are useful for robots rather than themselves. The previous
studies do not demonstrate if humans can create abstractions
useful for robots in task solving. This is an important question
to consider as household robots might need to be taught novel
tasks as technology or a user’s requirements change. This
might have implications for the performance of teachers when
teaching agents using abstractions, as they might spend too
much time thinking about what type of abstractions to use.

Abstractions in Robotics and Reinforcement
Learning
Learning hierarchical abstraction is a large challenge in
both reinforcement learning and robot learning. Hierarchical
abstractions have multiple properties that make them ideal
for the robot learning problem. They can allow efficient
exploration by allowing the agent to quickly reach hard-to-
reach states using previously learned abstractions (Konidaris
2019). There are also computational savings to be considered
as the agent can reason over hierarchies rather than consider
every possible state-action pair in the environment (Gopalan,
desJardins, Littman, MacGlashan, Squire, Tellex, Winder and
Wong 2017; Jong, Hester and Stone 2008).

In reinforcement learning, multiple approaches have been
proposed to learn abstractions and to solve novel tasks
with learned abstractions. There are two major types of
abstractions that an agent can learn: State abstractions or
Action abstractions (Konidaris 2019). An agent abstracts over
states when it can combine multiple states into one large
abstract state and then reason over the set of abstract states.
State abstractions have been classically used in navigation
problems where an agent can abstract all locations within
a room, building, or city to belong to a single abstract
state (Abel, Arumugam, Lehnert and Littman 2018; Li, Walsh
and Littman 2006; Van Roy 2006). Action abstraction, on the
other hand, is over sequences of low-level actions (Lioutikov,
Neumann, Maeda and Peters 2015; Muelling, Kober and
Peters 2010; Konidaris and Barto 2009). Consider a sequence
of torques that move a robot’s arm so it can pick an object.
These sequences of torques are harder to reason over, and
can be abstracted into a single temporally extended action

to “pick can.” Some approaches combine both State and
Action abstractions to demonstrate sample efficiency of
computational savings in task solving (Dietterich 2000;
Gopalan, desJardins, Littman, MacGlashan, Squire, Tellex,
Winder and Wong 2017; Gopalan, Rosen, Konidaris and
Tellex 2020; Konidaris, Kaelbling and Lozano-Perez 2014).

A formalism that stands out in reinforcement learning
settings is the Options formalism (Sutton, Precup and Singh
1999). An Option is a triple: {I, T , π}. Where initiation
condition I : S → [0, 1] defines the set of states where the
skill can begin; termination condition T : S → [0, 1], defines
the set of states where the option terminates; and π : S −→
Pr(A) defines the actions an agent takes from each state. The
options formalism provides the ability to learn the state and/or
action abstraction. By learning the initiation of termination
sets the agent will learn a state abstraction, and by learning a
policy between them the agent will learn an action abstraction.
Robot skill learning problems have been previously posed
as options learning problems (Konidaris and Barto 2009;
Lioutikov, Neumann, Maeda and Peters 2015; Muelling,
Kober and Peters 2010). Such skills are especially useful
for dynamic tasks such as playing table tennis (Muelling,
Kober and Peters 2010).

The focus of this paper however is specifically on Task and
Motion Planning (TAMP) abstractions for robotics (Garrett,
Chitnis, Holladay, Kim, Silver, Kaelbling and Lozano-Pérez
2021). A TAMP problem is defined over both continuous and
discrete variables, which are common in the real world and
robotics domains. Here a robot might have to reason over
discrete objects and goal conditions, such as stacking plates.
However, the reasoning for these discrete goals needs to be
done over continuous variables of robot poses and continuous
collision constraints. Alami, Simeon and Laumond (1990)
and Siméon, Laumond, Cortés and Sahbani (2004) presented
some of the earliest works describing this interplay of discrete
and continuous reasoning a robot needs to perform. A large
challenge in TAMP settings is the computational efficiency
of optimal planning in domains with continuous and discrete
state variables (Alami, Simeon and Laumond 1990). TAMP
provides a robust framework to solve long-horizon tasks and
has been demonstrated as the framework of choice across
several mobile manipulation domains (Lozano-Perez and
Kaelbling 2014; Srivastava, Fang, Riano, Chitnis, Russell
and Abbeel 2014; Kaelbling and Lozano-Pérez 2010; Stilman
2007; Dantam, Kingston, Chaudhuri and Kavraki 2018). Its
robustness is one of the biggest reasons why we chose TAMP
as the formalism of choice to learn within this work.

There have been algorithmic approaches to learning
tasks from user demonstrations without requiring the
demonstrations to specify task abstractions (Konidaris,
Kuindersma, Grupen and Barto 2012; Kim, Lee and Kim
2018; Cobo, Isbell and Thomaz 2012). However, these
methods usually extract tasks from low-dimensional torque
and environment data with sophisticated statistical techniques
that are computationally expensive and might not scale to
novel environments and tasks found in different households
and factory floors. Instead, we seek to empower end-users
to train these robots using sub-tasks. People can remove
this computational bottleneck and provide correct sub-tasks
as they have better generalization capabilities than modern
robotics techniques. Hence, we test whether the users are
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equipped to provide such demonstrations, and what type
of priming or tutoring would elicit demonstrations using
sub-tasks that help the robot to generalize to novel task
specifications while keeping in mind that the robot is going
to solve a TAMP (Garrett, Chitnis, Holladay, Kim, Silver,
Kaelbling and Lozano-Pérez 2021) problem, and that the
sub-tasks specified should be usable by a TAMP formalism.

Human-Interactive Robot Teaching Strategies
Learning from demonstration (LfD) is a ubiquitous approach
for enabling humans to program robots to perform new skills
via human task demonstrations (Ploeger, Lutter and Peters
2020; Chen, Paleja and Gombolay 2020; Ho and Ermon
2016; Argall, Chernova, Veloso and Browning 2009). Prior
work in LfD has learned impressive dynamic skills on the
robot (Ploeger, Lutter and Peters 2020; Chen, Paleja and
Gombolay 2020), and the ability to play high-dimensional
games (Samvelyan, Rashid, Witt, Farquhar, Nardelli, Rudner,
Hung, Torr, Foerster and Whiteson 2019). These approaches
generally attempt to either directly model the robot’s unknown
policy (Ho and Ermon 2016) or infer the robot’s latent reward
function (Abbeel and Ng 2004; Fu, Luo and Levine 2018;
Ziebart, Maas, Bagnell and Dey 2008). Some LfD approaches
attempt to acknowledge the way humans teach tasks by
modeling feedback more accurately (MacGlashan, Ho, Loftin,
Peng, Wang, Roberts, Taylor and Littman 2017; Knox and
Stone 2009). However, these works have not addressed the
question of whether people teach agents tasks using an
abstraction hierarchy.

In the human robot interaction (HRI) community,
significant research has shown that people can teach
abstractions, sub-tasks or otherwise, when tutored to teach
the exact same task (Cakmak and Takayama 2014a; Mohseni-
Kabir, Rich, Chernova, Sidner and Miller 2015). Cakmak
and Takayama (2014a) attempt to teach keyframe-based
abstractions when subjects are shown a video tutorial of a task.
Mohseni-Kabir, Rich, Chernova, Sidner and Miller (2015)
attempt to teach hierarchical task networks from human
feedback with a well-designed interface and training to use the
interface. Other works have attempted to teach task relevant
features to a robot with strategies such as active learning to
query demonstrators (Bajcsy, Losey, O’Malley and Dragan
2018; Bullard, Chernova and Thomaz 2018). Multiple works
have shown that novice users can learn to use their interface
and teaching paradigms effectively to train the agent with
novel algorithms (Paxton, Hundt, Jonathan, Guerin and Hager
2017; Orendt, Fichtner and Henrich 2016; Mollard, Munzer,
Baisero, Toussaint and Lopes 2015). In all of these works
establishing a human demonstrator’s ability to provide usable
demonstrations that contain abstractions, the participants are
shown precisely how to teach the robot. They are then asked
to reproduce the method of robot teaching that was prescribed.

Some work has attempted to understand strategies to
provide instructions to users so they can teach tasks to robots
or machine learning algorithms. Cakmak and Takayama
(2014b) compare written and video demonstrator instruction,
and find that trial and error plays a large role in the
learning process; we note that these demonstrators learn
and are evaluated on the same task such as classifying
animals into different categories. Teaching a robot using

abstractions without this guidance is not intuitive to non-
experts (Knaust and Koert 2021). In this work, we investigate
whether demonstrators’ ability to provide sufficient sub-task
abstractions improves over time, as they practice providing
demonstrations in multiple different domains.

Teaching tasks to robots is akin to programming a computer
that can manipulate the physical world. Humans have been
teaching each other to code and think computationally for a
while (Hsu, Chang and Hung 2018; Lu and Fletcher 2009).
Just as coding requires a programmer to think computationally,
and design the code using functions, robot programming
requires the user to think about the physical consequences of
the skills they teach robots. Moreover, similar to functional
reuse, a robot can have skills that it can repeatedly use to
solve multiple tasks. This similarity has been noticed by
works that refer to robot learning from demonstration as
Programming by Demonstration (PbD) (Billard, Calinon,
Dillmann and Schaal 2008; Calinon 2009; Alexandrova,
Cakmak, Hsiao and Takayama 2014; Fischer, Kirstein, Jensen,
Krüger, Kukliński, aus der Wieschen and Savarimuthu 2016).
While these approaches have attempted to program tasks on
robots, they have not tested the ability of users to create task
and motion planning abstractions for novel task-solving on
robots from scratch. Moreover, it is not clear what type of
interactions allow users to program robots efficiently.

Other techniques orthogonal to our approach are those
that use Large Language Models to specify task plans
for robots to solve TAMP problems (Huang, Xia, Xiao,
Chan, Liang, Florence, Zeng, Tompson, Mordatch, Chebotar,
Sermanet, Brown, Jackson, Luu, Levine, Hausman and
Ichter 2022; Ahn, Brohan, Brown, Chebotar, Cortes, David,
Finn, Gopalakrishnan, Hausman, Herzog, Ho, Hsu, Ibarz,
Ichter, Irpan, Jang, Ruano, Jeffrey, Jesmonth, Joshi, Julian,
Kalashnikov, Kuang, Lee, Levine, Lu, Luu, Parada, Pastor,
Quiambao, Rao, Rettinghouse, Reyes, Sermanet, Sievers,
Tan, Toshev, Vanhoucke, Xia, Xiao, Xu, Xu and Yan
2022; Shah, Equi, Osinski, Xia, Ichter and Levine 2023).
This area of research is novel and it aims to split large
problems into smaller skills that the robot can solve. Similar
methods have been extended to large vision and language
models (Brohan, Brown, Carbajal, Chebotar, Choromanski,
Ding, Driess, Finn, Florence, Fu, Arenas, Gopalakrishnan,
Han, Hausman, Herzog, Hsu, Ichter, Irpan, Joshi, Julian,
Kalashnikov, Kuang, Leal, Levine, Michalewski, Mordatch,
Pertsch, Rao, Reymann, Ryoo, Salazar, Sanketi, Sermanet,
Singh, Singh, Soricut, Tran, Vanhoucke, Vuong, Wahid,
Welker, Wohlhart, Xiao, Yu and Zitkovich 2023; Stone, Xiao,
Lu, Gopalakrishnan, Lee, Vuong, Wohlhart, Zitkovich, Xia,
Finn and Hausman 2023). These methods allow general
usability robots via language-based task specifications. The
large language models allow task splitting akin to action
abstraction and the visual models allow state abstractions
for robots. All of these methods depend on pre-trained skills
whereas in our work we want to see if novice users can specify
skills a robot can use to solve future tasks. Robot skill and task
learning is a challenging problem and we are attempting to
see if users can teach skills or sub-tasks from scratch to robots.
We believe our approach can enable interactive approaches
with pre-trained models where robots can learn novel tasks
from novice users using language.
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We note that our focus is not explicitly on user interface
design unlike previous works (Cakmak and Takayama 2014a;
Mohseni-Kabir, Rich, Chernova, Sidner and Miller 2015;
Orendt, Fichtner and Henrich 2016; Paxton, Hundt, Jonathan,
Guerin and Hager 2017). Rather, we are keen on investigating
priming mechanisms and teaching guides to help users teach
useful sub-task-based abstractions given a sufficient interface.

Limitations and Community Feedback

Ours is the first work that attempts to ground Task and Motion
Planning abstractions for robot planning from novice users.
We wanted to understand if this work reflects the quality
of abstractions specified by the Task and Motion Planning
Community. Moreover, we wanted to understand if the
studies themselves reflected accurate end-user expectations as
experienced by human-robot interaction researchers. We setup
multiple meetings with researchers in the robotics community
representing both of these fields (outside of our labs). We
interviewed them about the limitations of our work and about
the generalizability of our approach to enable novice users to
teach TAMP abstractions. Our line of questioning was to find
limitations of our work with respect to the type of abstractions
learned, the generalizability of the said abstractions, and the
assumptions made by our work when conducting the user
studies. We have compiled the feedback of the community on
the limitations of this work along with those we knew on our
own. There are two different types limitations to our approach:
the technical limitations and limitations in study design.

Technical Limitations Firstly, multiple expert roboticists
pointed out that the approach compels participants or end-
users to adopt a particular teaching philosophy. Specifically,
we expect users to provide mode transition-based sub-goals to
the robot to create TAMP abstractions. While this approach is
suitable for the robot, it might not be the best demonstration or
teaching approach for the users. We employed this technique
because it allows us to scale up the teaching without requiring
the users to provide a large number of demonstrations per
task. However, truly intelligent machines or robots should
(hypothetically) be capable of using any teaching approach
a human might use to extract TAMP or other abstractions
the robot needs with a few demonstrations. This is especially
true about our study demonstrating participants are unable
to provide any abstraction. We also note that expecting users
of a robot to program them with ideas such as functional
abstraction is challenging, as evidenced by our results. As
such, we argue that robots need better and more intuitive
methods of providing task-level demonstrations including
language, gestures, and imitation from observation.

Another major technical limitation pointed out to us is that
the robotic agent is only learning action abstractions or sub-
task level abstractions with teaching methods examined in
this work. These are not the same as state abstractions. We do
not have the ability to explain to the robot that “this room is a
kitchen” with our techniques. State and Action abstractions
are both important in task solving depending on the type of
problem that a robot needs to solve (Konidaris 2019). Without
state-level abstractions describing low-level constraints such
as collisions with the table that the robot is operating on is
challenging.

In this work the age distributions of our participants is
limited in scope, and is primarily composed of college
students. In future work, we propose to validate our results
with a larger more representative population pool. In future
work we also propose to examine approaches that allow users
to teach such low-level constraints and state abstractions
in the future. This would include improvements not just
in the learning methods but also over interfaces used to
teach tasks to robots. Moreover, it will be interesting
to see how we can combine human-taught abstractions
with those learned by neural networks from large scale
data (Brohan, Brown, Carbajal, Chebotar, Choromanski,
Ding, Driess, Finn, Florence, Fu, Arenas, Gopalakrishnan,
Han, Hausman, Herzog, Hsu, Ichter, Irpan, Joshi, Julian,
Kalashnikov, Kuang, Leal, Levine, Michalewski, Mordatch,
Pertsch, Rao, Reymann, Ryoo, Salazar, Sanketi, Sermanet,
Singh, Singh, Soricut, Tran, Vanhoucke, Vuong, Wahid,
Welker, Wohlhart, Xiao, Yu and Zitkovich 2023; Stone,
Xiao, Lu, Gopalakrishnan, Lee, Vuong, Wohlhart, Zitkovich,
Xia, Finn and Hausman 2023). Our representations are not
generalizable outside of the tasks taught, but their sample
complexity allows tasks being taught by humans within their
homes and offices. The existing experiments would change
drastically if we looked at the capability to teach and add
TAMP abstractions to a large scale pre-trained representation.

Study Design Limitations We further acknowledge the
limitations of our study design. A major challenge we faced
was that we did not have an unlimited amount of time for users
to interact with the robot to fully mitigate novelty effects. At
first, users are often apprehensive when learning to control
a robot. A longer duration of interaction with the robot and
LfD interface would have mitigated issues relating to novelty,
such as the time pressure to finish a study within a given
duration and the limited number of times a user’s various
teaching attempts can be trialed. Ultimately, giving users more
control over their acclimation experience would help users
explore their preferred methods of teaching robots robustly.
We partially explored these novelty issues by allowing users
to teach different tasks in our EPA study, but longer-duration
longitudinal user studies are required in robotics where users
are away from lab settings. We also note that our measure
of IQ is imperfect, as it was performed with an open-source,
online test rather than a trained, in-person examiner.

We created the teaching experience questionnaire as prior
work had yet to develop a questionnaire to measure teaching
experience, however, we agree that ideally the development
and validation of a scale should be published separately from
the use of the scale. While ad hoc scales are often used in
HRI (Sartori and Bocca 2023; Gottardi, Tortora, Tosello and
Menegatti 2022), we agree that results based upon ad hoc
scales should be taken with a grain of salt (Schrum, Johnson,
Ghuy and Gombolay 2020). We propose to validate this scale
in future work.

Finally, we note that we could have considered priming
strategies for the detailed written or visual guide that would
have clarified the goals of the demonstrations, in other
words instructions that would have optimized for high-quality
demonstrations specific to the domain or user’s teaching
style. In a significantly longer experiment, we could have
designed a variety of training videos of varying durations
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and pedagogical approaches – each of which could have
served as its experimental condition – to find a hierarchy
of training videos towards one that is most optimal. However,
this would be impractical. In our experiment, we do not
assume prior knowledge of robotics from our participants.
Designing a video to provide participants with expert-level
performance would have required more in-depth, long-form
explanations of all the information needed to be an optimal
demonstrator. Such a design was not feasible for our cross-
sectional experiment.

Open Problems
There are many open problems that our work points towards.
Firstly, we need to conduct long-horizon user studies where
participants teach tasks and function with a robot over
multiple interactions over extended periods of time. This is
challenging in a laboratory setting as it is challenging to
impose on participants to come back to robot labs over longer
horizons. An approach that robotics might have to follow
is sending robots home with people so they can work with
them in the comfort of their homes. What tasks to teach and
how to ensure that robots are functional when not in labs are
other challenges that such approaches might face, however,
true democratization of programmable robots in households
would require such tests to be conducted.

Secondly, more work needs to be done in the development
of user interfaces to control robots. We developed multiple
user interfaces with rapid prototyping in our work to allow
users to teach tasks to robots. However, these interfaces are
not general-purpose enough. Our community is lacking a
common interface to teach and interact with different types
of hardware platforms. This makes the adoption of robotics
challenging outside of laboratory settings.

Finally, we need to develop sample efficient learning from
demonstration approaches for learning robot skills. Current
approaches to learning pre-trained skill embeddings might
prove promising in this regard (Brohan, Brown, Carbajal,
Chebotar, Choromanski, Ding, Driess, Finn, Florence, Fu,
Arenas, Gopalakrishnan, Han, Hausman, Herzog, Hsu, Ichter,
Irpan, Joshi, Julian, Kalashnikov, Kuang, Leal, Levine,
Michalewski, Mordatch, Pertsch, Rao, Reymann, Ryoo,
Salazar, Sanketi, Sermanet, Singh, Singh, Soricut, Tran,
Vanhoucke, Vuong, Wahid, Welker, Wohlhart, Xiao, Yu and
Zitkovich 2023). However, the approaches need to be general
enough to work on different hardware platforms. TAMP
provides a bridge here where not everything needs to be
learned as the skills between sub-tasks can be planned with a
low-level motion planner. Nevertheless, dynamic skills such
as chopping vegetables, hitting a ball, etc., require a robot
to learn skills. Learning skills in a sample efficient manner
would allow users to teach robots personalized skills such
as cutting vegetables with a specific technique inside their
homes.

Conclusion
In this work, we investigate the performance of novice users
in teaching tasks level planning abstractions to robots. While
previous LfD work has attempted to teach robots novel
behavior using trajectories, we investigate the ability of

users to teach Task and Motion Planning (TAMP) based
abstractions to the robot for novel tasks. We use TAMP
abstractions here as they are the representation of choice
for robots to solve long-horizon, multi-task problems. We
conduct three novel human-subjects experiments to answer
(1) what are the necessary conditions to teach users through
hierarchy and task abstractions; (2) what instructional
information or feedback is necessary to support users to
learn to program robots effectively to solve novel tasks; (3)
how does experience teaching the robot help users teach
novel tasks with useful abstractions. Our first experiment
shows that fewer than half (35.71%) of our subjects provide
demonstrations with sub-task abstractions when not primed.
Our second experiment demonstrates that users fail to teach
the robot correctly when not shown a video demonstration
of an expert’s teaching strategy for the exact task that the
subject is training. Not even showing an expert training
video of an analog task was sufficient. As both of these
previous experiments failed to study the learning effect of
experience obtained through multiple domains, we created a
third experiment where we find that increasing participant
experience with providing demonstrations improves their
demonstration’s degree of sub-task abstraction (p < .001),
teaching efficiency (p < .001), and sub-task redundancy (p <
.05) in novel domains. We find that experience performs
as well as providing an expert video in enabling users to
provide demonstrations with useful plannable abstractions to
the robot, which is backed by our post-analysis across studies
(p < .001). These experiments together investigate if and
how users provide demonstrations with useful abstractions to
robots even in novel task settings. Our experiments reveal a
need for fundamentally different approaches in LfD that can
allow end-users to teach generalizable long-horizon tasks to
robots without the need to be coached by experts at every step.
We address this need with a series of training domains that
enable novice users to learn to provide demonstrations with
plannable abstractions in novel domains.
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