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Abstract

Real-world quantitative reasoning problems are complex, often in-
cluding extra information irrelevant to the question (or “IR
noise” for short). State-of-the-art (SOTA) prompting methods have
increased the Large Language Model’s ability for quantitative rea-
soning on grade-school Math Word Problems (MWPs). To assess
how well these SOTA methods handle IR noise, we constructed
four new datasets with IR noise, each consisting of 300 problems
from each of the four public datasets: MAWPS, ASDiv, SVAMP,
and GSMS8K, with added IR noise. We called the collection of these
new datasets “MPN”—Math Word Problems with IR Noise. We eval-
uated SOTA prompting methods using MPN. We propose Noise
Reduction Prompting (NRP) and its variant (NRP*) to reduce the
impact of IR noise. Findings: Our IR noise significantly degrades
the performance of Chain-of-Thought (CoT) Prompting on three dif-
ferent backend models: ChatGPT (gpt-3.5-turbo-0613), PaLM2, and
Llama3-8B-instruct. Among them, ChatGPT offers the best accuracy
on MPN with and without IR noise. With IR noise, performances of
CoT, Least-To-Most Prompting, Progressive-Hint Prompting, and
Program-aided Language Models with ChatGPT were significantly
impacted, each with an average accuracy drop of above 12%. NRP
is least impacted by the noise, with a drop in average accuracy to
only around 1.9%. Our NRP* and NRP perform comparably in the
presence of IR noise.
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Quantitative reasoning is an essential and challenging task, re-
quiring numerical computation and reasoning skills [31]. Previous
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Table 1: Examples of our proposed noises for quantitative
reasoning. Subjects and entities are highlighted in blue and
pink, respectively. Noise is shown in yellow.

Original Math Word Problem in the SVAMP dataset:
Body: - makes a3 egg omelet every morning for breakfast.
Question: How many dozens of eggs will she eat in 4 weeks?

Noise disconnected from any sentence:

Body: Claire makes a 3 egg omelet every morning for breakfast.
There are 15 TVs.

Question: How many dozens of eggs will she eat in 4 weeks?
Noise connected to Body sentence:

Body: Claire makes a 3 egg omelet every morning for breakfast.

Scott makes a 23 egg omelet every morning for breakfast.
Question: How many dozens of eggs will she eat in 4 weeks?
Noise connected to Question sentence:

Body: Claire makes a 3 egg omelet every morning for breakfast.

Scott will eat 2 dozens of eggs in 4 weeks.

Question: How many dozens of eggs will she eat in 4 weeks?

works attempted to assess and improve the quantitative reasoning
ability of language models using Math Word Problems (MWPs)
[5, 17, 26, 28, 30]. Large Language Models (LLMs)’ numerical rea-
soning capability has improved significantly on MWPs [13]. Despite
different difficulty levels of MWPs from grade school to Calculus,
current LLMs (e.g., ChatGPT) still struggle with correctly solving
grade school-level MWPs consistently [22]. Prompting methods
[7, 25, 27, 32, 33] have been introduced to improve the quantitative
reasoning capability of LLMs.

MWP consists of the body sentence(s) and the question sentence
[18]. The body sentence provides numerical information to answer
the question in the question sentence. Each sentence has subjects
and entities. Quantities are always before entities in the body sen-
tences. Table 1 shows an example where the subject in the body
sentence is “Claire” The entity is “egg omelet” with a quantity of 3.

However, real-world data often contains excess information ir-
relevant to calculating the answer to a given question. We call such
excess information “IR noise” to distinguish it from other types of
noises, such as converting an integer to a real number. Examples
of IR noises in MWPs are entities in the body sentence that are
not required to compute the correct answer. Several MWP datasets
have low percentages of MWP problems with IR noise, e.g., MAWPS
[11] at 6.5%, Math23k [26] at 8.2%, and MathQA [1] at 20.7%. More
recent datasets, SVAMP [10] and GSM-IC [20] include more MWP
problems with unused entities at 44.5%, and 100%, respectively.
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Our contributions are as follows.

o A new dataset collection, Math Word Problems with Noise
(MPN). Three types of IR noise with different subjects and
entities were added to MWP problems selected from four
public MWP datasets. Two of the noise types are related to
the body or the question sentences in a given MWP prob-
lem. These noise types are unique, not in existing datasets,
SVAMP and GSM-IC.

e Extensive experiments on MPN and derived GSM-IC [20]
datasets to evaluate the impact of IR noise on Chain of
Thought (CoT) Prompting [27], Self-Consistency (SC) [25],
Least-to-Most Prompting (LTM) [33], Program-aided Lan-
guage models (PAL) [7], and Progressive-Hint Prompting
(PHP) [32]. We tested these methods using ChatGPT (gpt-3.5-
turbo-0613), PaLM-2-text-bison-001, and Llama3-8B-instruct
as the backend LLM. On MPN, CoT has an absolute aver-
age accuracy drop of around 14.4% with ChatGPT as the
backend and higher with PaLM2 as the backend. With Chat-
GPT, LTM, PHP, and PAL have an average accuracy drop of
12.2%, 7.2%, and 24.1%, respectively. Moreover, the noises in
our MPN dataset collection degrade these LLMs’ reasoning
ability more than those in the GSM-IC dataset.

e New prompting methods, Noise Reduction Prompting (NRP)
and NRP*, and extensive evaluation of these methods. Both
methods prompt the backend LLM to extract noise first. Then,
they prompt the LLM to solve MWPs by hinting about the
extracted noise. NRP™ differs from NRP in the noise extrac-
tion stage. On MPN with IR noise, NRP outperforms self-
consistency-based methods and limits the accuracy drop
to about 1.9%. However, without any IR noise, NRP per-
forms worse than the other studied state-of-the-art prompt-
ing methods showing a performance gap ranging from 3.0%
to 10.0% on GSM8K (one dataset of MPN). The noise extrac-
tion stage of NRP* aims to address the drawback of NRP
when IR noise is not present. Without IR noise, NRP* outper-
forms LTM, PAL, and NRP by 5.0%, 2.0%, and 7.0% in absolute
accuracy on GSM8K, respectively, and it underperforms CoT
and PHP by only 0.7% and 3.0%, respectively. Furthermore,
NRP™ performs slightly worse than NRP when there is noise
by around 0.6% on average. NRP* outperforms the rest of
the methods for the datasets with inherent noise, e.g., the
derived GSM-IC. We observed that LLM performance im-
proved when several prompts were used to solve a complex
task in multiple stages than when only one prompt combin-
ing multiple steps was used.

The dataset collection and code are available at https://github.
com/ssh1419/MPN.

1 Related work

1.1 Quantitative Reasoning Datasets and Solvers

MWPs have been used for benchmarking numerical reasoning of
language models. Diverse datasets, including SVAMP [18], MAWPS
[11], and GSMB8K [6] were released. Recently, many deep learning
methods were proposed: Seq2Seq [4, 14, 23], Seq2Tree [15, 19, 24],
and solvers based on LLMs (e.g., GPT [17], LLaMA [21], and PaLM
[5]). With LLM-based solvers, few-shot learning through prompting
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has been outstanding for solving simple question-answering tasks
[27]. However, few-shot learning has some limitations [2]. To over-
come these limitations, recent prompting methods were proposed,
namely Chain of Thought [27], Program of Thoughts Prompting [3],
Least-to-Most Prompting [33], Program-aided Language Models
[7], and Progressive-Hint Prompting [32].

1.2 MWP Perturbation

Jia and Liang [9] investigated perturbation methods by adding
a new sentence to the end of a given body paragraph without
changing the meaning of the question and the final answer. Kumar
et al. [12] reordered and paraphrased MWP sentences. Patel et al.
[18] and Xu et al. [29] suggested changing information, reordering
sentences, paraphrasing, and adding irrelevant information. Xu et al.
[29] focused on diagnosing numerical capability and the impact of
the number format change, however the dataset is not public. Shi
et al. [20] introduced the GSM-IC dataset by adding an irrelevant
sentence with in-topic and out-topic information using templates
on the GSM8K dataset [6]. They provided a prompting method to
handle the noise. The prompting method asks the backend LLM to
ignore the irrelevant information in the MWP and solve it in one
step [20]. Our proposed methods, NRP and NRP* consist of several
steps to enhance the ability to extract noises.

2 Proposed Collection of Math Word Problems
with IR Noises (MPN)

The goal of the papers is to investigate the impact of different IR
noise on prompting methods on LLM-based solvers to solve MWPs.
Subjects and entities are important components of MWPs, but are
a small part of MWP perturbations in existing works [18, 29]. Most
perturbations were on numerical data. In this paper, we investigate
three types of IR noise around subjects and entities. Two of the
noise types have not been studied to our knowledge.

2.1 Three Types of IR Noise

Table 1 shows an MWP example and the three types of IR noise we
investigated. Recall that MWP consists of the body sentence(s) and
the question sentence [18]. In all MWPS, the question sentence is
located at the end of the problem after all body sentence(s). Let B
and Q be sets of body and question sentences, respectively. The body
sentence provides numerical information to answer the question
in the question sentence. Each sentence contains subjects (S) and
entities (E). Quantities always appear before entities in the body
sentences.

B can contain multiple S and E whereas Q contains only the
target S and E. T represents the answer according to Q and it needs
the target S and E from B for the answer. Table 1 shows an example
of an MWP problem. The solution for the problem can be regarded
as the output of the function f as defined in Equation 1.

f:(BQ—>T (1)

Table 2 shows the process to generate the proposed noise. The
noise sentence does not affect the final answer to the math word
problem. Let Si and Ej. be sets of subjects and entities of sentence
k, respectively.
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Table 2: Type of proposed noise examples; noise is highlighted in yellow.

Disconnected from Any Sentence (DS)

Connected to Body Sentence (CB)

Connected to Question Sentence (CQ)

(Add a noise sentence where
its subject and entity are not in any of
the sentences of the original
MWP problem.) The noise should
not follow any sentence structures.

Claire makes a 3 egg
omelet every morning for breakfast.
1
(Change the subject and/or the entity
of the sentence.)
1
Scott makes 3 cookies every morning
for breakfast.
1
(Change the number in the sentence.)
1
Scott makes 23 cookies every morning
for breakfast.

How many dozens of eggs will
she eat in 4 weeks?
{

(Change the question sentence to
a declarative sentence with either
the subject or entity different
from the question sentence.)

l

(Change the number in the sentence.)

{

Scott will eat 24 eggs in 4 weeks.

Body: Claire makes a 3 egg omelet
every morning for breakfast.
There are 15 TVs.
Question: How many dozens of eggs
will she eat in 4 weeks?

Body: Claire makes a 3 egg omelet
every morning for breakfast.

Scott makes a 23 cookies every morning
for breakfast.

Question: How many dozens of eggs
will she eat in 4 weeks?

Body: Claire makes a 3 egg omelet
every morning for breakfast.
Scott will eat 24 eggs in 4 weeks

Question: How many dozens of eggs
will she eat in 4 weeks?

Disconnected from any sentence (DS) is a randomly gener-
ated sentence where neither the subject nor entity is related to any
words in any of the body or question sentences. Furthermore, the
generated sentence’s structure is unrelated to the body or question
sentences. See the noise example in the first column in Table 2.

Let B contain S and Ej, and Q contain Sy and Eg. We make the
noise sentence A contain Sq and Eq where S; # Sq and Sg # Sp;
Eq # Eq and E, # Ep. We provide six different sentence templates,
and the noise sentence follows the randomly selected sentence
template R. The generated noises can be regarded as the output of
the function g4, as defined in Equation 2.

9ds * (Sa;Ea,R) — A (2)

Connected to Body Sentence (CB) is a generated sentence
with its meaning related to the body sentence. The noise-sentence
structure follows the body-sentence structure. The generated sub-
ject or entity does not change the final answer.

Let B contain S and Ep, and Q contain Sy and E;. We make the
noise A contain S, and E,, where S, # S, or E; # Ep,. If Sq and E,
change the final answer, we manually modify S, or E, to keep the
original answer. For instance, when the question sentence is “How
many apples does he have?”, the noise’s subject should not be a
male’s name or the entity should not be apples. If S, or E; need
to be modified, we manually switch them to a female’s name or
another object (e.g., “Jennifer” or “peaches”). Let R be a sentence
structure of B, and the function g, only switches the subjects and
entities of R to S; and E, and returns the generated noise as defined
in Equation 3.

geb : (Sa,Eq,R) = A 3)

Connected to Question Sentence (CQ) is a generated sentence
that follows the template of a declarative version of the question

sentence. The goal is for the noise sentence to be semantically close
to the question sentence.

Let B contain Sp, and Ej, and Q contain Sg and Eg. We make the
noise A contain S, and Eg, where S; # Sq or Eq # Eq. If S5 and
E, change the final answer, we manually modify S, or E, as done
for CB. The function gcq1 returns a template R of a declarative
version of Q as defined in Equation 4, and the generated noise
can be regarded as the output of the function gcq2 as defined in
Equation 5.

geq1 : (Q) = R 4)
Jeq2 * (Sa)Ea’R) — A (5)

To the best of our knowledge, the CB and CQ noise types have
not been studied in the literature. We hypothesize that they are
more complicated for LLMs to solve than the DS noise types. Ex-
perimental results in Section 5 confirm our hypothesis.

2.2 Creation of MPN

We generated a new dataset collection, MPN, to study the impact
of IR noise. We chose MWP problems from four public datasets
ranging from lower-grade elementary school coursework to higher-
grade elementary school mathematics: MAWPS [11], ASDiv [16],
SVAMP [18], and GSMSK [6], respectively.

For each of these datasets except for GSM8K, we selected 300
MWP questions divided equally into five types of operators (ad-
dition, subtraction, multiplication, division, and multi-operators).
Since GSM8K only contains multi-operators, we randomly selected
300 MWP questions from the dataset. Out of the 300 questions, we
generated DS noise for 100 questions, CB noise for 100 different
questions, and CQ noise for the remaining 100 questions. We kept
the proportion of the types of operators the same for different types
of noise. Therefore, there are 20 questions with each type of operator
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Stage 1: Noise extraction

Prompt: What is the sentence with the irrelevant information relating to
Question from Body.

Body: Adi bought a pencil for 35 cents. He paid with a one-dollar bill. Taryn

bought a pencil for 5 cents.
Question: How much change will he get?

Stage 2: Solving with the hint

Prompt: First remove Noise from Question and solve it step by step
Question: Adi bought a pencil for 35 cents. He paid with a one-dollar bill.
Taryn bought a pencil for 5 cents. How much change will he get?

Noise: Taryn bought a pencil for 5 cents.

Seok Hwan Song and Wallapak Tavanapong

Output:
Taryn bought a pencil for 5 cents.

_Session 1

Output: Step 1: Identify the relevant
information ... Step 2: Solve the problem
step by step:... Step 3: Calculate the total ...
Answer: He will get 65 cents.

Session 2

Figure 1: Proposed NRP on an MWP (ASDiv) with a noise: (1) Extract the noise; (2) Solve the problem by giving useful hints.

for each type of noise. The body and question sentences, equations,
and answers are from the original datasets. Pre-processing, such
as converting an integer into a real number, was applied to have a
consistent sentence format. Different methods were used to gen-
erate the noise according to the types of noise. For DS noise, we
made six different structure templates of sentences with 12 subjects
and 13 entities using a quantity between 1 and 50. For CB and CQ
noise, we wrote a Python script with APIs to ChatGPT (gpt-3.5-
turbo-0613) to generate the noise. ChatGPT was used to convert
interrogative sentences (the question sentences) to corresponding
declarative sentences or switch subjects or entities as described in
the previous section. The question sentence is placed at the end of
the problem following all body sentence(s). Note that our generated
noise sentence is added at the end of the body sentences and before
the question sentence. We do not place the noise sentence in other
locations since they can change the answer to the original MWP
question. In our final check, we manually inspected and corrected
the generated noise to ensure that the noise did not change the
answer to each question.

3 Investigated Prompting Methods

We propose two variants of Noise Reduction Prompting. Both vari-
ants prompt a backend LLM to find noise in the first stage. Recall
that noise contains irrelevant subjects and/or entities to individ-
ual questions. In the second stage, the extracted noise is used in
a prompt to the backend LLM as a hint to solve the original rea-
soning problem. Recent LLMs such as ChatGPT and PaLM2 can
solve a problem step by step. Each MWP’s body sentences and
question sentences are identified prior to the proposed methods
being applied.

3.1 Compared Methods

We selected these methods due to their potential to handle IR noises.
Chain of Thought (CoT) prompts LLMs to solve MWPs step by
step, not just the final answer providing exemplars of solutions
[27]. CoT significantly improves the reasoning ability of LLMs and
is widely used as a baseline prompting method.

Least-To-Most (LTM) prompting solves MWPs in two stages
[33]. During the first stage, the backend LLM decomposes MWP
into simpler sub-problems, and in the second stage, the LLM solves
the generated sub-problems. Shi et al. [20] demonstrated that LTM

outperformed other compared prompting methods on their dataset
with irrelevant information.

Self Consistency (SC) selects the majority vote of the answers
leading to increased accuracy, since LLMs return different answers
for the same task at different times [25].

Program-aided Language Models (PAL) generates natural
language and programming language together to solve MWPs [7].

Progressive-Hint Prompting (PHP) asks the backend LLM to
solve the same MWP question several times. Each time, the backend
LLM solves the problem that includes the previously generated
answers as a hint for double-checking purposes [32]. PHP achieves
significant performance improvement on MWPs [32].

3.2 Proposed Methods

3.2.1 Noise Reduction Prompting (NRP). Figure 1 shows how NRP
solves MWP.

(1) Noise extraction. Issue a prompt to extract sentences that
contain irrelevant information to the question sentence from
the body sentence(s). Body sentences and question sentences
are provided separately.

(2) Solving with the hint. Issue another prompt with two
forms of information: (1) the original problem and (2) the
hint that marks the extracted irrelevant sentences as “Noise”
and an instruction to remove the noise and solve the problem
step by step.

3.22 Noise Reduction Prompting Plus (NRP*). Asking the backend
LLM to extract the noise sentence in one step may not be ideal.
We investigate a multi-step method for noise extraction. NRP*
uses prompts and a simple program to extract noise by excluding
subjects or entities that are found in the question sentence. Figure 2
shows the prompts and corresponding LLM’s output of NRP* that
differs from that of the NRP. The first stage of NRP* contains three
steps, each executed independently in its own session.

e Step 1: Extract subjects and entities in a compressed
format
The first step submits two prompts to the LLM, one for ex-
tracting a subject and the other for extracting an entity. The
prompt contains a predefined instruction and the MWP. The
question sentence is placed at the end of the problem. Two
different instructions are used for extracting the subject and
the entity. See Figure 2. The LLM outputs two tables, one for
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Stage 1: Noise extraction
Step 1: Subjects and entities extraction Unit
Prompt

Sentence | Subject

Extract the subjects of each sentence A 1 Adi ... Adi
and tag previous subjects if they are ’ 2 He He
related to them.
Ses 1
Question: <MWP> 3 Taryn ... Taryn
A
MWP 4 How ... he
Adi bought a pencil for 35 cents. He
paid with a one-dollar bill. Taryn
bought a pencil for 5 cents. How much
change will he get? Unit | Sentence | Entity
1 Adi ... pencil
Prompt ' ~
Extract the entities of each sentence 2 He ... bill
and tag previous entities if they are . 3 Tarvn encil
related to them. e P
Session 2
Question: <MWP> 4 How ... change
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Step 2: Select related Tags to question sentence  Step 3: Derive

the unrelated Tags /

1 i 1
Tog 1 Unit'] Teg | Select the common
Adi 1 1 Adi | sentence as the noise
o e )
Tayn | 1| 3 | Tam 2
Adi : 4 Adi e :
| | Prompt v |
| Return Units which are related to any word ' | 3T bough
of the last Unit's Tag -1 3 I Ui ..
1 il
| Table: ... 0
i :
Tag Ul unit | g | |
S I v I
pencil | 1 pencil |
bill > 2 bill M 2,4 L3
I Session I
pencil I 3 pencil |
change | 4 change |
' '

Figure 2: Stage 1 of the proposed NRP* on an MWP (ASDiv) with an IR noise. The dotted arrows represent adding contents to
prompts (e.g., questions for Step 1 and tables for Step 2). The dashed arrow indicates the input given to the LLM. The solid
arrows show the outputs from the LLMs or the simple program. Every LLM session is conducted independently. The yellow
color highlights the information related to the question sentence.

each prompt. Each tabular output has four columns: Unit,
Sentence, Subject/Entity, depending on the prompt, and Tag.
The unit column indicates the order of the sentence in the
MWP. The tag column contains the subject or entity of the
sentence. The LLM identifies the subject in the previous sen-
tence as a tag if they are related. For example, for the first
table in Figure 2, when the second sentence’s subject is ‘He,
the tag for ‘He’ is ‘Adi, which is from the tag of the first
sentence.

o Step 2: Select related tags to the question sentence’s tag
The LLM is prompted to individually select the unit that
contains the related tag to the question sentence’s tag for
the subject and entity. The prompt includes a predefined
instruction and the table from the first step. Only Unit and
Tag columns are filtered to discard other information from
actual sentences. The LLM returns the units of which tags
are related to the tag of the question sentence.

e Step 3: Derive the unrelated tags and select the common
sentences as the noise
The last step uses a simple program that takes selected tags
from the previous step of the subject and entity extraction
tasks to find unrelated tags to the question sentence’s tag.
Next, the program finds the unit(s) representing the com-
monly selected sentences from the subject and entity extrac-
tion tasks. If one of the tasks returns nothing and the other
returns only one unit, the unit is selected as the commonly
selected sentence. The sentence will be used as a noise in
a hint for the second stage as done for NRP. LLMs perform
poorly in interpreting contexts that contain negation [8]. We
split the process of identifying unrelated tags into two steps:
identifying related tags and deriving the unrelated tags.

We propose prompts to extract noises, whereas Shi et al. [20]
proposed a prompt to ignore the noise without explicitly extracting
the noise.

4 Experimental Setup and Results

We describe the experiment setup, including datasets, backend
LLMs, and performance comparison of CoT, NRP, NRP*, and four
other prompting methods.

4.1 Experiment Setup

Constructed datasets: (1) MPN is a collection of MWPs selected
from four public datasets: SVAMP [18], GSMS8K [6], MAWPS [11],
and ASDiv [16] with one IR noise added to each MWP as described
in Section 2.2. By default, we generated one noise sentence per
MWP problem. (2) We derived the GSM-IC-797 dataset from a
random sampling of 797 samples from the GSM-IC dataset [20].
The GSM-IC dataset contains 100 base problems from the GSM8K
dataset, and each base problem is associated with multiple templates
of noise sentences. Each template was used to generate multiple
noises with diverse subjects and numbers. GSM-IC-797 covers all
100 base problems and all templates of noise sentences for each
base problem.

Backend language models and hyperparameters. Limited
resources prevented us from testing many LLMs. We chose ChatGPT
(gpt-3.5-turbo-0613) and PaLM2 (text-bison-001) as representatives
of large closed-source LLMs. We selected Llama3 8B (llama-8B-
instruct) to represent a small open-source LLM for the repeatability
of experiments. Hereafter, ChatGPT, PaLM2, and Llama3 8B denote
the above versions of ChatGPT, PaLM2, and Llama3 8B, respectively.
The default configurations used greedy decoding (i.e., temperature
= 0). For self-consistency experiments, the temperature of 0.7 was
used per the reference [25]. We conducted additional experiments
using ChatGPT with a temperature of 1 to evaluate the impact of
hyperparameter choices.

Programming tools and prompting methods. Python 3.10.12
and LLM APIs from Openai and google.generativeai were used. For
all compared methods, CoT, LTM, PAL, PHP, NRP, and NRP™*, we
provided a set of few-shot examples. We used manually designed
prompt templates for CoT, LTM, NRP, and NRP*. We used the
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Table 3: Accuracy on 300 questions (300 Q) with IR noise (indicated by ) added to the original MWP problems and without
ones. The column headers DS, CB, and CQ indicate the noise types when the noise was added. AV. indicates average accuracy
across the row within each dataset. Underlined accuracy is the highest in each column on MWPs without IR noise. Accuracy in

bold is the highest in each column on MWPs with IR noise.

MPN dataset collection constructed from four different datasets

Model  Method Noise MAWPS (300 Q)

ASDiv (300 Q)

SVAMP (300 Q) GSMSK (300 Q)

DS CB CQ AV.

DS CB CQ AV.

DS CB CQ AV.| DS CB CQ AV.

ChatGPT  CoT

88.0 90.0 92.0 90.0 | 92.0 92.0
v 185.0 70.0 70.0 75.0 |84.0 82.0

94.0 92.7 191.0 79.0 88.0 86.0|79.0 79.0 76.0 78.0
69.0 78.3|84.0 67.0 63.0 71.3|70.0 63.0 61.0 64.6

PaLM2 CoT

85.0 86.0 88.0 86.3 |84.0 84.0
v 77.0 63.0 45.0 61.7|79.0 57.0

86.0 84.7 | 72.0 62.0 67.0 67.0 | 67.0 69.0 58.0 64.7
59.0 65.0 | 64.0 46.0 33.0 47.7|55.0 57.0 36.0 493

Llama3 8B CoT

73.0 70.0 83.0 753 |79.0 85.0
v | 68.0 63.0 57.0 62.7|71.0 68.0

80.0 81.3|89.0 74.0 82.0 81.7|63.0 69.0 61.0 64.3
69.0 69.3|83.0 63.0 57.0 67.7|57.0 55.0 38.0 50.0

prompts and code provided by the original authors of PAL and
PHP for their methods. For SC experiments, we sampled 10 re-
sponses. CoT was used as the baseline prompting method since it
was commonly used as the baseline in several studies [7, 20, 25].

Performance metrics. Accuracy is a commonly used perfor-
mance metric. It is defined as the percentage of the number of
correctly answered questions to the total number of questions. For
each question, we ran the program (MWP solver) once and com-
pared the final numeric answer from the backend LLM’s output
with the ground truth. We report the accuracy for each dataset
using all the questions in the dataset. Performance comparisons
among compared methods and settings are discussed in terms of
absolute differences in accuracy.

4.2 Main Results on MPN

Table 3 shows that ChatGPT is best at solving the original MWPs,
offering average accuracy ranging from 78.0% to 92.7%. PaLM2
performs better than Llama3-8B on MAWPS, ASDiv, and GSM8K,
while Llama3-8B outperforms PaLM2 on SVAMP.

4.2.1  Which LLM is better at solving MWPs with the IR noise? Table
3 presents the answers. All three LLMs are severely impacted by
the noise. ChatGPT’s absolute average accuracy drops range from
13.4% to 15.0% across the datasets. Llama3-8B’s accuracy drops vary
from 12.0% to 14.3%. PaLM2 suffers the highest accuracy drops,
ranging from 15.4% to 24.6%. Nevertheless, ChatGPT still offers the
best average accuracy, followed by Llama3-8B. Hence, we chose
ChatGPT as the baseline LLM for the rest of the studies.

4.2.2  Impact of IR noise on ChatGPT with CoT. We demonstrate
the various impacts of IR noise on the chosen LLM, ChatGPT.

Which noise type does ChatGPT find most difficult to han-
dle? Table 3 shows that CQ noise is the most challenging, causing
ChatGPT with CoT to drop between 15.0% and 25.0% in accuracy
with an average drop of 22.0%. The CB noises lead to a 14.5% ac-
curacy drop on average. The DS noise is the least effective. MWPs
selected from MAWPS were the least sensitive, with around a 3.0%
accuracy drop, while the accuracy drop in the other datasets is
around 8.0%.

Categories of ChatGPT’s incorrect answers. Figure 3(top)
shows categories of ChatGPT’s incorrect answers on the MPN col-
lection of datasets. Two of the categories ChatGPT claimed due to

Category Description
Partially correct | Correct results in some intermediate steps
Wrong Completely wrong answer

Unable to solve the MWP

Wrong answer with noise used in interme-
diate steps

Unable to solve the MWP due to the noise

No solution
Wrong answers
with noise

No solution with
noise

(a) MPN without IR noise (b) MPN with IR noise

Partially correct

No solution
10.0% 8.1% Wrong ®
No solution with noise S
Wrong answers with noise
38.9%
5%
81.9% 3.9%%

1.2%

Figure 3: Percent of ChatGPT’s incorrect answers on MPN (a)
without IR noise and (b) with IR noise.

the noise in MWPs. The category Wrong answer with noise includes
cases ChatGPT returns an incorrect answer due to the noise. The
category No solution with noise includes cases ChatGPT says it can-
not solve the problem because of the noise. Figure 3(a) shows that,
without the IR noise, 81.9% of all incorrect answers are partially
correct. With IR noise, the noise causes 56.0% of the incorrect an-
swers, of which 4.5% ChatGPT cannot give solutions, and 51.5%
ChatGPT gives incorrect solutions.

Impact of IR noises by operator types on CoT with Chat-
GPT. GSM8K was excluded from this study since each of its math
word problems has more than one operator type. Figure 4 indicates
several notable trends in the datasets. The biggest difference in
MAWPS is 21.7%, related to the multi-operators problems with the
IR noise, whereas the smallest drop is about 10.0% on the addition
problems. ASDiv has a significant accuracy reduction of 25.0% on
the addition problems with the IR noise, with the smallest gap be-
ing about 6.7% on the division problems. The IR noise on SVAMP
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Figure 4: Accuracy of CoT with ChatGPT by operator types
in the MPN collection excluding GSM8K.

causes the largest accuracy drop of 31.7% on the multiplication prob-
lems and the smallest gap of 1.6% on the subtraction problems. The
accuracy gaps are very diverse depending on the operator types.
Impact of multiple IR noise sentences on CoT with Chat-
GPT. We tested up to three IR noise sentences per MWP problem.
The noise sentences may be exactly the same or have different
elements (subjects, entities, and numbers) in the same sentence
structure. Figure 5 demonstrates that multiple different noises are
more effective at reducing accuracy than multiple identical noises.
For SVAMP and GSMSK, two different noise sentences are the most
effective, causing accuracy drops by 16.7% and 14.3%, respectively.
The highest accuracy drops for ASDiv are due to three different
noise sentences. For MAWPS, one and two different noise sentences
caused the largest accuracy reduction. Except SVAMP, multiple
identical noises are less effective than a single noise sentence.

4.3 Effectiveness of Prompting Methods with
ChatGPT

Table 4 shows the effectiveness of four state-of-the-art prompting
methods and the proposed NRP and NRP™. Self-consistency (SC)
was used with CoT and LTM only. We have discussed the impact of
our IR noise on CoT with ChatGPT previously. Next, we discussed
the rest of the prompting methods. Figure 6 shows the accuracy
difference by a prompting method on MWPs without IR noise and
the same MWPs but with added IR noise.

e Least-To-Most (LTM) is impacted by the IR noise, with the
absolute average accuracy drop ranging from 7.3% to 16.7%
across the datasets. The CQ noise type is the most effective,
causing between 11.0% and 26.0% drops. The DS noise is
the least effective. Among the datasets, as Figure 6 shows,
SVAMP is the most sensitive with around 16.7% accuracy
drop, while GSM8K is the least sensitive with around 7.3%
accuracy drop.
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Figure 5: Average accuracy of CoT with ChatGPT on MPN
when using the same noise sentences and different noise
sentences per MWP is shown in blue and pink, respectively.

e Self Consistency (SC) helps both CoT and LTM be better
at handling the IR noise than CoT and LTM without SC.
CoT+SC offers higher accuracy than CoT in the range of
1% to 10.4% across the four datasets, with 4.3% increases
on average. LTM+SC offers more accuracy improvement
over LTM, ranging from 2.7% to 12.1% with 7.6% increases
on average. Therefore, SC improves the performance with
noise, and SC helps LTM more than CoT.

e Program-aided Language Models (PAL) suffers a signifi-
cant drop in accuracy under IR noise by ranging from 19.6%
to 27.3%. The IR noise on SVAMP causes the largest drop and
CQ is the most effective type among other types.

e Progressive-Hint Prompting (PHP) performs great with-
out IR noise, ranging from 80.3% to 93.7%. However, the
accuracy drops significantly, ranging from 13.0% to 22.0%.
The IR noise on SVAMP causes the largest drop, and CQ is
the most effective noise type among other types.

e The proposed NRP handles the noise quite well, as evi-
denced by smaller accuracy drops compared to when there
Wwas no noise, i.e., 2.4% (MAWPS), 1.0% (ASDiv), 5.4% (SVAMP).
Under noise, NRP offers increased accuracy over CoT from
7.0% to 14.3%. However, NRP performs worse than CoT on
ASDiv and GSM8K without noise. Because the first step of
NRP often returns some sentences in the absence of noise.
There are no significant differences between the effects of
the types of noise. NRP offers the worst improvement over
CoT on GSMB8K, but the improvement of 7.0% increase in
accuracy is still significant. On the rest of the datasets, NRP
offers more than a 10.0% absolute increase in accuracy over
CoT. The differences in accuracy between the types of noise
are not huge. CQ noise shows the biggest influence.

e The proposed NRP* handles the noise as well as NRP as
evidenced by very small accuracy drops compared to NRP,
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Table 4: Accuracy of different prompting methods with ChatGPT on 300 questions (300 Q) with IR noise (indicated by ') added
to the original MWPs and without ones. The column headers DS, CB, and CQ indicate DS, CB, and CQ noise, respectively when
noise was added. AV. indicates average accuracy across the row within each dataset. Underlined accuracy is the highest in each
column on MWPs without IR noise. Accuracy in bold is the highest in each column on MWPs with IR noise.

MPN dataset collection constructed from four different datasets

Method Noise  MAWPS (300 Q) ASDiv (300 Q) SVAMP (300 Q) GSMBK (300 Q)
DS CB CQ AV.|DS CB CQ AV.|DS CB CQ AV.|DS CB CQ AV
CoT 88.0 90.0 920 90.0 920 920 940 92.7|91.0 79.0 88.0 86.0|79.0 79.0 76.0 78.0
v 850 700 700 750|840 820 69.0 783|840 67.0 63.0 713|700 63.0 61.0 64.6
CoT+SC | « | 860 740 730 77.7|880 81.0 69.0 793|900 69.0 60.0 73.0 810 78.0 66.0 75.0
LM 91.0 91.0 920 91.3|90.0 89.0 880 89.0|87.0 79.0 88.0 847|760 730 71.0 733
v |87.0 710 740 773|870 750 73.0 783|820 60.0 620 680|720 660 60.0 66.0
LTM+SC| / |89.0 750 760 80.0 |92.0 840 750 83.7 |95.0 745 725 80.1|79.0 750 75.0 76.3
PAL 87.0 86.0 92.0 883 |87.0 940 91.0 90.7 | 89.0 740 850 827 |67.0 820 77.0 753
v/ 1800 580 450 61.0|81.0 72.0 46.0 663|740 550 43.0 57.3|57.0 55.0 55.0 55.7
PHP 87.0 940 93.0 913 |93.0 960 920 93.7|83.0 81.0 820 820|790 820 80.0 80.3
v 1790 770 660 740|850 780 69.0 77.3|68.0 61.0 51.0 60.0|76.0 69.0 57.0 67.3
NRP 91.0 89.0 92.0 90.7 | 86.0 92.0 90.0 89.3|92.0 840 87.0 877|700 73.0 68.0 703
v/ 880 89.0 88.0 88.3|91.0 90.0 84.0 88.3(95.0 760 76.0 823|760 70.0 69.0 71.6
NRP* 940 960 93.0 943|900 93.0 90.0 91.0|91.0 820 83.0 853 |79.0 77.0 760 77.3
v 192.0 850 87.0 88.091.0 89.0 81.0 87.0[92.0 80.0 750 82.3|78.0 70.0 65.0 71.0

ie., 0.3% (MAWPS), 1.3% (ASDiv), and 0.6% (GSM8K). NRP*
performs better on some types of noise than NRP, such as
DS and CB. NRP* performs better than NRP on MAWPS,
ASDiv, and GSM8K without noise. Moreover, on MAWPS,
NRP* outperforms CoT by 4.3%, and there were very small
accuracy drops compared to the CoT on ASDiv, SVAMP, and
GSMBK, i.e., 1.7% (ASDiv), 0.7% (SVAMP), and 0.7% (GSM8K)
without noise, respectively. Therefore, NRP* performs great
on both MWPs with and without IR noise.

LTM performs slightly better than CoT on MAWPS, ASDiv, and
GSMB8K with noise. The CQ noise type causes the most drop in
accuracy for all the methods. GSM8K contains the most difficult
MWPs, resulting in the lowest accuracy. Table 4 also reveals that
the variability in the performance of these methods is higher with
noises.
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Figure 6: The negative number differences (by LTM+SC and
NRP) indicate the cases when the prompting methods on
MWPs with IR noise perform better than without IR noise.

Figure 6 shows that with IR noise, NRP performs the best on
MAWPS and ASDiv, NRP* and NRP perform the best on SVAMP,
LTM+SC performs the best on GSM8K. NRP and NRP* successfully
handle the noise, experiencing drops of no more than 5.4% and 6.3%,
respectively. While PAL and PHP suffer a significant drop in accu-
racy under noise by ranging from 19.6% to 27.3% and ranging from
13.0% to 22.0%, respectively. Especially, PHP performs great without
noise, but it performs even worse than CoT with noise. SVAMP is
the most sensitive dataset across most prompting methods (LTM,
PAL, PHP, and NRP), showing the largest accuracy drop.

Some datasets of MPN originally have body sentences contain-
ing irrelevant information. Specifically, MAWPS, ASDiv, SVAMP,
and GSMS8K of MPN have 44.7%, 2.7%, 50.0%, and 0.3% of their
MWPs with the original irrelevant information. Therefore, Table
4 shows that NRP and NRP™ even perform better on MAWPS and
SVAMP without IR noise than other prompting methods, while PHP
performs the best on ASDiv and GSM8K.

5 Performance of NRP and NRP* with ChatGPT
on GSM-IC-797

How well do our NRP variants help ChatGPT handle MWPs with
other irrelevant information? We answer this question using GSM-
IC-797. This dataset has 797 problems with noise from GSIM-IC
proposed by Shi et al. [20], which were generated from 100 base
problems. The authors reported that LTM with their instructed
prompting for the backend LLM to ignore irrelevant information,
performs the best on GSM-IC. Table 5 shows the performance of our
NRP variants, CoT, and LTM without and with instructed prompting
[20]. CoT and LTM with instructed prompting give better accuracy
on average. Therefore, when describing the performance compari-
son with CoT and LTM, we refer to the versions with instructed
prompting [20] shown in parentheses in Table 5. On 100 base prob-
lems without noise, NRP* performs better than CoT and performs
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similarly to LTM. On GSM-IC-797, NRP outperforms CoT and LTM
by 1.4% and 3.5% on average, respectively. NRP* outperforms CoT
and LTM by 0.9% and 3.0% on average, respectively.

To examine whether our CQ noises are more challenging than
Shi et al’s irrelevant information [20], we created GSM-IC-CQ. A
CQ noise is added for each of the 100 base problems from GSM-
IC-797. On GSM-IC-CQ, the average accuracy drops of CoT and
LTM are 12.6% and 16.7%, respectively. NRP* greatly outperforms
the other methods by 6.5% to 9.4%. Our noise is more difficult than
those in the GSM-IC dataset since they cause more accuracy drops.
NRP and NRP* outperform LTM.

Table 5: Accuracy of different prompting methods on GSM-
IC-797 with ChatGPT. Numbers inside the parentheses are
accuracies from the new experiments with ChatGPT using
the instructed prompting [20]. Problems requiring 2 step
reasoning are denoted as “2 Steps” where “> 2 Steps” indicates
problems requiring more than 2 reasoning steps.

Dataset CoT | LTM | NRP | NRP*
91.6 | 90.8
w/o noise 25teps | (ee5)| (92.9)| 381 | 933
(GSM-IC-797 853 | 91.8
-base problems) >2 Steps (93.4)| (91.5) 86.5 | 90.0
(100Q) 885 | 913
AVG (91.0)| (92.2) 87.3 | 92.0
85.6 | 85.8
. 2 Steps 88.1)| (87.7) 90.6 | 90.2
w/ noise 821 | 831
(GSM-IC-797) | >2 Steps : | 87.8 | 87.2
(87.5)| (83.7)
(797Q) 83.9 | 84.5
AVG (87.8)| (85.7) 89.2 | 88.7
w/ noise 2 Steps | 81.7 | 76.7 | 80.0 | 88.3
(GSM-IC-CQ) | =2 Steps | 700 | 725 | 75.0 | 77.5
(100Q) AVG 759 | 746 | 77.5 | 84.0

6 Ablation Study and Sensitivity Analysis

We conducted two studies to investigate the impact of each stage of
NRP and NRP* and one study to evaluate the impact of temperature
hyperparameter values on prompting methods with ChatGPT.

The first study investigated the effectiveness of the noise extrac-
tion stage alone. We executed only the noise extraction stage and
compared the extracted sentence to the ground truth IR noise sen-
tence. Table 6 shows that ChatGPT achieves 92.3% average accuracy
with NRP and 77.2% with NRP*.

Table 6: Accuracy using only the noise extraction stage of
NRP and NRP* with ChatGPT on MPN with IR noises

MPN dataset collection
MAWPS ASDiv SVAMP GSMS8K AVG
NRP 91.3 91.7 93.0 93.0 92.3
NRP* 77.0 77.5 79.8 74.3 77.2
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Table 7: Accuracy of NRP without the noise extraction stage,
NRP, and NRP*

MPN dataset collection
MAWPS ASDiv SVAMP GSM8K AVG

NRP w/o
the result of 84.0 83.7 77.0 67.3 78.0
Noise Extraction
NRP 88.3 88.3 82.3 71.6  82.6
NRP* 88.0 87.0 82.3 71.0 82.1

In the second study, we executed only Stage 2 of NRP to solve
MWPs. Since Stage 1 was not run, there was no extracted noise.
Stage 2 prompt became a static prompt that reads, “First remove
Noise from Question and solve it step by step”, the question, and
“Noise:” NRP without the noise hint offers worse average accuracy
than NRP by 4.6%. This noise hint is indeed important.

The third study investigated the effect of hyperparameter values
of ChatGPT on the average accuracy of CoT and our NRP variants.

Table 8: Impact of temperature hyperparameter values on
prompting methods with ChatGPT

Temperature | Noise | Prompting Methods
Parameter (v') | CoT | NRP | NRP*
86.4 | 84.5 87.0
v 71.8 | 82.6 82.0
82.1 | 82.7 84.9
v 74.2 | 79.7 78.7

Temp =0

Temp =1

Table 8 shows interesting results. Without the IR noise, CoT with
a temperature of 0 gives better accuracy. On the contrary, with IR
noise, CoT with a temperature of 1 gives better accuracy. NRP and
NRP* with a temperature of 0 perform better with and without
noises than with a temperature of 1.

7 Conclusions and Future Work

We present an extensive evaluation of the effectiveness of prompt-
ing methods in assisting LLMs in solving quantitative reasoning
problems with irrelevant information. All investigated LLMs strug-
gle with irrelevant information, and the errors cannot be completely
handled with the latest prompting methods that perform well with-
out noise. The LLMs are most impacted by the irrelevant informa-
tion where the structure of the added noise sentence follows that
of the question sentence. Our new prompting methods, NRP vari-
ants, can reduce the negative impact of irrelevant information. The
noise extraction methods can be extended to filter out irrelevant
information for Retrieval-Augmented Generation (RAG) systems.
Possible future work includes solving more complex quantitative
reasoning problems with complex noises.
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