
4484 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

SOFI: Spoofing OS Fingerprints Against
Network Reconnaissance

Xu Han , Haocong Li, Wei Wang , Member, IEEE, Haining Wang , Fellow, IEEE,

Xiaobo Ma , Member, IEEE, Shouling Ji , Member, IEEE, and Qiang Li

Abstract—Fingerprinting is a network reconnaissance tech-
nique utilized for gathering information about online computing
systems, including operation systems and applications. Unfortu-
nately, attackers typically leverage fingerprinting techniques to
locate, enumerate, and subsequently target vulnerable systems,
which is the first primary stage of a cyber attack. In this
work, we explore the susceptibility of machine learning (ML)-
based classifiers to misclassification, where a slight perturbation
in the packet is included to spoof OS fingerprints. We pro-
pose SOFI (Spoof OS Fingerprints), an adversarial example
generation algorithm under TCP/IP specification constraints,
to create effective perturbations in a packet for deceiving an
OS fingerprint. Specifically, SOFI has three major technical
innovations: (1) it is the first to utilize adversarial examples
to automatically perturb fingerprinting techniques; (2) it com-
plies with constraints and integrity of network packets; (3) it
achieves a high success rate in spoofing OS fingerprints. We
validate the effectiveness of adversarial packets against active
and passive OS fingerprints, verifying the transferability and
robustness of SOFI. Comprehensive experimental results demon-
strate that SOFI automatically identifies applicable and available
OS fingerprint features, unlike existing tools relying on expert
knowledge.

Index Terms—Adversarial machine learning (ML), fingerprint-
ing, operating system (OS).

I. INTRODUCTION

NOWADAYS, cyberattacks have increasingly targeted

critical infrastructures as attackers attempt to circumvent

the deployed security measures and compromise computing

systems, resulting in serious consequences, such as safety

Received 31 July 2024; revised 3 February 2025 and 3 April 2025;
accepted 3 April 2025. Date of publication 18 April 2025; date of current
version 2 May 2025. This work was supported in part by Beijing Natural
Science Foundation under Grant L221014 and Grant M23019; in part by the
National Natural Science Foundation of China under Grant 62272029; in part
by the Systematic Major Project of China State Railway Group Company Ltd.,
under Grant P2023W002, Grant P2024S003, and Grant P2024W001-4; in part
by the Science and Technology Research and Development Plan of China
Railway Information Technology Group Company Ltd., under Grant WJZG-
CKY-2023014 (2023A08) and Grant WJZG-CKY-2024040 (2024P01); in part
by the Science and Technology Project of Haihe Laboratory of ITAI under
Grant XCHR-20230701; and in part by Hangzhou Qianjiang Distinguished
Experts Programme in 2024. The associate editor coordinating the review
of this article and approving it for publication was Prof. Yanjiao Chen.
(Corresponding author: Qiang Li.)

Xu Han, Haocong Li, and Qiang Li are with Beijing Key Laboratory of
Security and Privacy in Intelligent Transportation, Beijing Jiaotong University,
Beijing 100044, China (e-mail: liqiang@bjtu.edu.cn).

Wei Wang and Xiaobo Ma are with the Key Laboratory for Intelligent
Networks and Network Security, Ministry of Education, Xi’an Jiaotong
University, Xi’an 710049, China.

Haining Wang is with the Department of Electrical and Computer Engi-
neering, Virginia Tech, Arlington, VA 22203 USA.

Shouling Ji is with the College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China.

Digital Object Identifier 10.1109/TIFS.2025.3561673

failure and service disruption. Typically, a cyberattack follows

a distinct cycle with different phases characterized by network

reconnaissance, enumeration, exploitation, intrusive attempts,

and performing malicious tasks. As the initial stage of the

cyberattack cycle, network reconnaissance involves attackers

gathering relevant information about remote hosts, such as

their operating systems and applications. Given that there are

nearly 25 billion daily global intrusion attempts — a number

that continues to rise [1] — it is important to note that almost

50% of these cyber attacks involve network reconnaissance to

extract the operating system or port information from remote

systems [2].

As a vital component of network reconnaissance, fin-

gerprinting allows attackers to remotely locate, target, and

potentially exploit vulnerable systems by identifying a remote

host’s operating system (OS). Classic scanning tools like

Nmap [3] are often used by both attackers and network admin-

istrators to uncover underlying hosts and extract OS-related

information. Recent studies [4], [5], [6] have proposed using

machine learning algorithms to generate OS fingerprints and

infer classification models. Subsequently, these fingerprinting

techniques may enable attackers to locate vulnerabilities and

bypass deployed security measures, thereby increasing the risk

of successful intrusions.

Spoofing OS fingerprints stands as a vital and proactive

line of defense against underlying cyber attacks due to the

importance of OS fingerprints to attackers. In particular, OS

fingerprints help attackers obtain detailed OS information and

then successfully run an exploit against vulnerable computing

systems/devices. There are instances when patches are not

readily available or feasible to apply, leaving an OS version

unpatched. By pinpointing the specific OS of a host, attackers

can launch crafted attacks against target machines. Besides

nullifying the reconnaissance efforts of attackers, from a

privacy perspective, spoofing fingerprints can prevent the unso-

licited revelation of a user’s OS and application information,

enhancing user privacy.

In this paper, we propose a novel approach to spoof-

ing OS fingerprints through adversarial examples by subtly

altering packet data. Inspired by recent studies indicating

that the performance of learning-based detection techniques

can be degraded by carefully crafted variants in the image

[7] and the text [8] domains, we adapt this insight to the

defense against network reconnaissance. We devise evasion

techniques for rapid, preemptive endpoint defense. Our basic

idea is to alter the data point during inference, induce

misclassifications, and then disrupt the OS fingerprints’

abilities.

1556-6021 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4485

The crux of the challenge lies in the oversimplification of

existing adversarial techniques [9], [10], [11], [12], [13], which

merely transform one OS’s feature values into another OS’s,

compromising packet integrity. These techniques manipulate

(add, change, or remove) features within network pack-

ets, rendering them invalid. To create adversarial examples

satisfying these constraints, we propose SOFI (Spoof OS Fin-

gerprints), an adversarial example generation algorithm under

TCP/IP specification constraints. Specifically, SOFI divides

OS’ features into three categories: mutable features, immutable

features, and checked features. By constructing a substitution

space for mutable features, SOFI bolsters the feasibility of

adversarial examples. Moreover, for each adversarial example,

it adjusts checked features to guarantee the validity of the OS

fingerprints.

We implement a prototype of SOFI as a self-contained piece

of software based on open-source libraries. To validate its

efficacy, we systematically evaluate SOFI against a spectrum

of machine learning models. These models, trained on an

extensively used OS fingerprint dataset, include traditional

machine-learning algorithms and deep-learning algorithms.

Our evaluation results show SOFI achieves high success

rates in deceiving attackers with spoofed passive/active OS

fingerprints. In comparison to the baseline’s performance,

SOFI guarantees the integrity of TCP/IP specifications and

has a higher success rate. Additionally, we validate the

SOFI ’s transferability where we cannot possess internal

knowledge and understanding of the OS detectors. Finally,

we demonstrate SOFI ’s advantages from three perspectives:

the comparison with existing defense tools, the comparison of

manual versus automation, and the prototype deployment.

Our major contributions are summarized as follows:

• We are the first to propose that adversarial examples can

easily deceive both passive and active OS fingerprints.

• We introduce SOFI, a novel approach to generate adver-

sarial examples against OS fingerprinting techniques.

Unlike existing tools that depend on expert knowledge,

SOFI automatically identifies applicable and available

features for deceiving OS fingerprints.

• Our results demonstrate a higher success rate than base-

lines, revealing that enhancing OS fingerprint robustness

is a significant challenge.

Roadmap: The remainder of this paper is organized as

follows. Section II provides the background and related work

of OS fingerprinting techniques. Section III details the design

of SOFI against OS fingerprinting techniques. Section IV

describes its implementation details. Section V details exper-

imental evaluation and ML explainability for OS fingerprints.

Section VI further demonstrates the advantages of SOFI

from three aspects. Section VII presents the discussion and

limitations. Finally, Section VIII concludes.

II. BACKGROUND AND RELATED WORK

This section first describes the preliminary knowledge of OS

fingerprinting techniques. Then, we present defense strategies

against OS fingerprinting.

Fig. 1. Passive OS Fingerprints: (1) changing the TTL field, (2) causing a
different OS class from ‘Ubuntu’ to ‘Windows.’

A. Os Fingerprinting

In network reconnaissance, fingerprinting has been widely

used for more than three decades. OS fingerprinting is to deter-

mine the operating system of a remote host on a network. The

core idea is that different OS have various implementations of

IETF RFCs or TCP/IP protocols, leading to different network

behaviors of TCP/IP packets [14]. This technique enables

attackers to enumerate and assess potential targets for cyber

attacks both locally and across the Internet. Typically, there

are two categories of OS fingerprinting: passive and active.

Passive OS fingerprinting is to eavesdrop or sniff network

packets traveling between hosts. There are several popular and

available passive OS fingerprinting tools, including SinFP3

[15], [16] and p0f [17]. In those tools, the matching rules

of OS fingerprints are stored in the database to identify the

OS. For passive OS fingerprinting, research works [5], [18],

[19], [20], [21] use the input x to infer one of the k OS

classes. Zander et al. [22] proposed the differences in time

synchronization in the TCP packet header to fingerprint OS

information. Shen et al. [23] extracted the spectrogram of the

LoRa signal and leveraged a CNN model to generate a hybrid

classifier as device fingerprints. The TCP timestamp option [5]

might reveal hardware properties, and [19] utilized a sequence

of inter-arrival times between network packets for detecting

the OS of remote hosts. Ma et al. [24] designed a context-

aware system that can fingerprint access to websites using a

two-stage spatial-temporal flow correlation approach. Figure 1

depicts two OS classes in the TCP/IP packet header, where the

TTL field is 64 for Ubuntu and 128 for Windows.

Active OS fingerprinting is to carefully craft packets with

different settings or flags and send them to a remote host to

obtain its responses. There are several popular and available

active OS fingerprinting tools, including Nmap [3], SinFP3

[15], [16], and Nessus [25]. Nmap [3] is a classic tool to

detect OS versions based on the differences between TCP/IP

implementations (e.g., TCP window size, max segment size,

and options). Those tools use a database to store crafted

packets and matching rules for identifying OS. Similarly, prior

research works [4], [26] usually leverage machine learning or

deep learning algorithms to infer OS classes. Caballero et a.

[4] leveraged the SVM algorithm to learn features of packet

headers for generating OS fingerprints. Anderson et al. [26]

extracted features from TCP/IP for OS fingerprinting in the

potential presence strategies. Given a set of k OS classes, the

input x represents received responses from a remote host, and

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4486 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Fig. 2. Active OS Fingerprints: (1) changing the window size and TTL field,
(2) causing a different OS class from ‘Window XP’ to ‘Linux 2.6.X.’

Fig. 3. The defense strategies against OS fingerprinting techniques.

the output y indicates one of the OS classes or an unknown

class. Active OS fingerprinting is to learn a mapping function

between the input x and the output y, denoted as y = f (x). Note

that active OS fingerprinting needs to send additional packets

to the remote hosts (e.g., 16 probing packets by Nmap).

Figure 2 illustrates two OS classes (‘Window XP’ and

‘Linux 2.6.X’) for their active fingerprints, where each line is

a test response for a particular probing packet, % is a separator

between fields, W is the TCP window, S is the sequence

number, and T is TTL. For example, T1 reflects the results

from the first TCP probe, and IE is a test related to the two

ICMP echo probes.

B. Defense Against Os Fingerprinting

The defense model thwarts OS fingerprinting to prevent

attackers’ OS profile collection. To achieve this objective,

the defenses can be deployed on computers to deceive the

attacker’s OS fingerprinting tools or techniques, as shown in

Figure 3. Specifically, we divide the OS fingerprinting defense

models into two categories: existing tools and research works.

The basic idea of a fingerprinting defense is to change

the TCP/IP packet header, e.g., modifying the total length

field of the IP header [27]. In other words, we can forge or

confuse the fingerprint information of remote hosts to defend

against potential cyberattacks. OSfuscate [28] is to change the

registry in Windows XP/Vista to deceive the Nmap and p0f. IP

Personality [29] and OSfooler [30] leverage IPTables/NetFilter

to modify the fixed packet headers for deceiving OS finger-

printing. IP Personality [29] is a Linux kernel patch that can

simulate other OS fingerprinting information at the TCP/IP

layer, thereby deceiving the fingerprinting tools, e.g., Nmap.

OSfooler [30] is an open-source tool for Unix-like operating

systems, and it performs fingerprint spoofing by sending

specific TCP/IP packets. However, deceiving the fingerprints

uses fixed position modification, which is manual and time-

consuming. Finding a qualified feature in the TCP/IP packet

header is arduous and incomplete, and it is challenging to keep

up-to-date with the numerous new implementations and new

version updates.

Other OS fingerprinting defense strategies include deploying

network honeypots [31], [32] and moving target defense

(MTD) [33]. HoneyNet is to mimic OS, where various types

of software or hardware-based honeypots are integrated into

the network. MTD dynamically changes the attack surface

of a computer, disrupting the network reconnaissance and

increasing the attack complexity. The disadvantage is that

their deployment has a heavy-weight cost and is not well

suited for placing obfuscation of OS fingerprinting. Several

prior works [34], [35], [36], [37], [38] focused on web

fingerprinting obfuscation. In contrast, our work specifically

addresses OS fingerprinting, targeting the unique network-

level characteristics derived from TCP/IP headers to identify

operating systems.

Kampanakis et al. [39] proposed increasing the difficulty

of OS fingerprinting by introducing time delays during the

TCP handshake. Albanese et al. [40] modified four aspects of

TCP/IP packets to spoof OS fingerprints: the total length field

in the IP header, the sequence number in the TCP header, the

packet size, and the packet fragmentation field. Rahman et al.

[41] applied game theory to alter TCP/IP packet fingerprints

to confuse attackers’ identification efforts. In contrast, website

fingerprinting involves a passive local eavesdropper deducing

information from users’ browser activities. Ling et al. [38]

proposed a genetic-based variant to evade/obfuscate website

fingerprints, where they injected dummy packets into the raw

traffic as the defense strategy. Mathews et al. [42] explored

today’s popular website fingerprinting defenses, where hand-

crafted features may still leak information.

In addition, prior works on OS fingerprinting obfuscation

require either system configuration (e.g., kernel patch [29])

or manual efforts. By contrast, we propose to automatically

generate adversarial examples of OS fingerprints as the defense

mechanism, which is a feasible and promising pro-active

defense mechanism.

III. SPOOFING OS FINGERPRINTS

SOFI’s Goal As we mentioned before, the OS fingerprinting

can be summarized as the mapping relation y = f (x), where

the input x represents the TCP/IP packet, and the output y

is one of the OS classes. Similarly to most evasion attack

settings, our goal is to misclassify the input as a class other

than the original class. During the OS detection, we craft an

adversarial example x′ from a legitimate sample x to spoof the

mapping function f (·), as the following problem:

x′ = x + η, f (x′) , f (x);

sim(x, x′) ≤ ε (1)

where η is a slight perturbation in the input’s packet, and

sim(x, x′) is the perceptual similarity between adversarial

examples and the original ones. Here, f (·) belongs to a multi-

class setting, and we have a set of k classes. Our SOFI focuses

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4487

Fig. 4. The SOFI’s overview. (1) In the Training Phase: we use classic ML and DL to train an OS model, utilizing the constraints of the packet header to
find a suitable perturbation substitution set. (2) In the Application Phase: we use SOFI to generate adversarial examples to deceive OS fingerprinting.

on non-targeted attacks, aiming to misclassify a legitimate

OS fingerprint to another class, merely inducing an incorrect

prediction.

There are three design requirements for generating adver-

sarial packets, as follows.

• No Prior knowledge. Unlike other obfuscating tools,

there is no need for prior knowledge to find available

and modifiable content for SOFI. The adversarial packet

is automatically generated and suitable for updating with

the numerous new OS fingerprints.

• Constraints. Our SOFI adds a slight perturbation in a

TCP/IP packet of a remote host, which will not affect the

normal usage of remote hosts. The adversarial packet can

still be routable and thus transferred by the communica-

tion network rather than being dropped or blocked by the

firewall or the router. For instance, an adversarial example

would be dropped from the network if it has incorrect IP

addresses or checksums.

• Effectiveness. SOFI effectively spoofs the OS recognition

model, leading to incorrect prediction results. This ham-

pers an attacker’s ability to gather general OS information

and achieve accurate reconnaissance results from remote

hosts. A lower accuracy rate of OS fingerprints indicates

superior evasion effectiveness.

Overview. Figure 4 depicts the overview of SOFI. In the

offline stage, we employ both classic machine learning and

deep learning algorithms to construct a multi-classifier, as OS

fingerprints fθ. These models are treated as complete black

boxes; we do not access the model’s architecture, parameters θ,

or loss function J(fθ(x), y). Furthermore, we cannot query the

model for confidence scores of the inputs. During the evasion

stage, we use one classifier as the surrogate model while others

serve as targets. SOFI has access to the surrogate’s architecture

for manipulation. It modifies TCP/IP packet headers to trig-

ger misclassification in OS detection, segmenting the header

fields into mutable, immutable, and checked categories. SOFI

employs the weighted fast gradient sign method (W-FGSM)

for gradient loss calculation, determining the influence of each

field on model sensitivity. For mutable fields, SOFI generates

a substitution space within TCP/IP protocol limits. Using the

W-FGSM and this substitution space, we propose a heuristic

algorithm for adding perturbations to the packet header. Upon

generating the adversarial example, we update checked fields

TABLE I

FIELD PARTITION IN THE TCP/IP PACKET HEADER

WITH CORRESPONDING WEIGHTS

to ensure the integrity and validity of the packet. The following

provides a detailed breakdown of these modules, including

field partition, constrained space generation, and the heuristic

algorithm.

A. Field Partition

The TCP/IP packet header comprises a variety of fields, with

each subject to specific protocol requirements. Consequently,

we categorize these fields into three regions: immutable,

mutable, and checked. To spoof the fingerprinting technique,

we would add a slight perturbation η into those fields under

the region constraints. Table I lists these three categories

pertaining to the TCP/IP packet header fields.

Immutable Region has inherent TCP/IP packet header

fields that cannot be altered without compromising packet

validity and integrity, e.g., ‘tcp.seq’ and ‘tcp.ack’ fields. Alter-

ations to such fields, like ‘ip.src’ and ‘ip.dst’ that represent

host network addresses, would directly impair the packet’s

transmission function.

Mutable Region contains changeable fields (e.g., the time

to live, flag, or window size) in the TCP/IP packet header,

allowing for legal perturbations through operations such as

addition, deletion, and replacement. Legally changing these

fields may deceive OS fingerprinting without interference with

the regular usage of remote hosts. For example, the ‘ip.ttl’ field

defaults to 128 in the Windows system.

In the mutable region, some fields are independent, and

some fields are dependent on others. Randomly changing those

fields also breaks the availability and integrity of the TCP/IP

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4488 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

packets. Hence, we would construct a constrained substitution

space of each dependent field to represent their dependent

constraints in the mutable region.

Checked Region has the fields that are determined by

multiple fields or all fields in the TCP/IP packet header. For

example, the length of an IP packet is calculated from the sum

of the length of the header of the IP packet and the length of

the TCP packet. Those checked fields are used to ensure the

validity and integrity of TCP/IP packets. Typically, checked

fields cannot be perturbed by any slight change for deceiving

OS fingerprinting. A slight perturbation in the TCP/IP packet

header would affect those checked fields. Therefore, we must

modify the corresponding checked fields after generating a

qualified adversarial example.

W-FGSM. We propose the weighted fast gradient sign

method (W-FGSM) to identify perturbations for approxima-

tively minimizing the OS fingerprints’ loss functions. The

FGSM proposed by Goodfellow et al. [9] can linearize the

learning-based model’s cost function around the input to be

perturbed and select a perturbation by differentiating this cost

function with respect to the input itself. The distinction in W-

FGSM is that we combine the loss gradient method with the

weight to calculate a change propensity score for each field in

the TCP/IP packet header. The W-FGSM equation is defined

as follows,

T (fi, y) = wi ∗ |∂ fi J(x, F, y)|2, (2)

where x is a TCP/IP packet, y is the class label of OS, J is the

loss function of the model F. Each field fi is assigned a weight

wi corresponding to its region, with wi being part of the set w0,

w1, w2. The respective values of w0, w1, and w2 are outlined in

Table I. Our approach, SOFI, computes the L2 norm of the loss

gradient as a representation of the gradient method’s value.

With w0 equal to 0, adversarial examples cannot alter the field.

Conversely, w1 and w2, set to 1 and 2, respectively, denote

fields where perturbations for adversarial example generation

are permissible. If a field is independent, we assign it with

the weight w2; otherwise, with the weight w1. Overall, SOFI

first changes independent fields and then changes dependent

fields. The reason is that independent fields are not affected by

other fields, and dependent fields have multiple relationships

in places, leading to larger perceptual differences.

SOFI calculates each field’s loss gradient to determine its

impact on the model’s output. A larger loss gradient, obtained

through backpropagation, signifies a field that significantly

influences the input’s classification. To enhance the efficiency

of adversarial example generation, SOFI prioritizes fields with

a high score in generating OS fingerprint adversarial examples.

Notably, our W-FGSM can be applied in black-box attacks by

using a substitute model approximating the targeted model,

where crafted adversarial examples can also misclassify the

original model.

B. Constrained Space Generation

The mutable region allows valid perturbations that comply

with TCP/IP protocol constraints. Typically, there are three

requirements for the perturbation for each field: data type,

data scope, and dependent constraints. For the data type and

Fig. 5. The constraint relationship generation: X is the dataset, D f is the
feature set, S FR is the constrained value set, S GV is the equal feasible value
set, and FTS is the constaint set for the feature.

scope, we utilize the TCP/IP specifications to obtain the format

and semantics of each field. Note that this manual effort

is necessary to generate legal adversarial examples of OS

fingerprints. For dependent constraints, SOFI automatically

constructs a constrained space of each field.

Constraint Representation: As previously noted, some

mutable fields are independent, while others are dependent,

being constrained by or impacting other fields due to their

conditional relationships. For instance, the ‘tcp.flags.push’

field must be set to 1 when ‘tcp.len’ (the length of the TCP

packet payload) exceeds 0. Changing dependent fields should

comply with their data scope and constraints from other fields;

otherwise, it would violate the integrity of TCP/IP packets.

For constrained relations, we use the symbol Re to represent

the conditional relationships among those fields, indicating that

the value of one field is constrained by the values of other

fields. We use the equation to represent Re as follows,

Re(fi)← {(f 1
i) ∧ . . . ∧ (f k

i)},

where f 1
i , . . . f k

i are fields that have the conditional relationship

with the field fi. It presents the field’s value as legal when its

conditional fields are under those constraints. For instance,

the equation Re(syn = 1) ← (f in = 0) ∧ (reset = 0)

exemplifies that when ‘tcp.flags.syn’ is 1 (indicating a request

or confirmation to establish a connection), the values of

‘tcp.flags.fin’ and ‘tcp.flags.reset’ must be 0. Any deviation

from this pattern may result in it being blocked or dropped by

the router.

Constraint Generation: For each field, SOFI automatically

generates its constraints (Re(fi)) by mining the OS fingerprint

dataset. A field refers to raw data elements, while a feature is

a derived attribute used for fingerprinting. Figure 5 depicts

the constraint relationship generation process: (1) we first

generate a constrained value set S FR from the dataset; (2)

we divide S FR into equivalence classes S GV whenever two

feature values perform a similar role within the OS class; (3)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4489

we construct the constraint set FTS for the feature, utilizing

both the equivalence class S GV and the constrained value set

S FR.

Given a dataset X = {x1, x2, . . . , xN}, D f = { f1, f2, . . . , fn}

denotes the feature set, where each feature f has a feasible

value set V f = {v1, v2, . . . , vm}. The feature constraint (Re(fi))

can be represented as a set of tuples, where each tuple contains

the constrained feature f ′ and its dependent fields, denoted as

S FR

S FR[f][v] = {(f ′,V f ′ | f=v) | f ′ ∈ D f \ { f }} (3)

where V f ′ is the value set for a feature f ′, and V f ′ | f=v denotes

the subset of feasible values for f ′ when the feature f has a

value v.

Given a S FR, we further segment the value set of each

feature into equivalence classes according to the constraint

relations. Two values are considered equivalent if they exhibit

identical constraint patterns, i.e., S FR[f][vi] = S FR[f][v j]. We

denote an equivalence class of a feature using S GV [f] as

follows:

S GV [f]

=
[

Veq⊆V f

8

ˆ

<

ˆ

:

8

ˆ

<

ˆ

:

l|lVeq

8

ˆ

<

ˆ

:

l
S

v∈Veq
Veq ≡ V f ,

∧
�

∀v′, v∗ ∈ Veq, S FR[f] [v′] = S FR[f] [v∗]
�

∧
�

∀Veq1,Veq2 ∈ S GV [f],Veq1 ∩ Veq2 = ∅
�

(4)

In this formulation, each Veq in S GV [f] represents an equiva-

lence class derived from S FR. Furthermore, all Veq are disjoint

subsets, collectively covering all feasible subsets.

After that, we generate a feature transition set (FTS),

including an independent transition set (IVT) and a dependent

transition set (DVT). FTS is the candidate set to represent

the transition pathway for any feature value (independent or

dependent). Specifically, we use the equation 4 to generate

IVT as follows.

IVT [f][v] =

(

Veq \ {v} if v ∈ Veq, |Veq| > 1

∅ otherwise.
(5)

IVT [f] refers to the set of feature values under f that can

independently change without impacting other features; DVT

represents the transition relationships between v and other

subsets, denoted as:

DVT [f][v]

=

8

ˆ

<

ˆ

:

{(vi, f ′ → V f ′ | f=v)} if v ∈ Veq,

∧|Veq| = 1, vi < Veq

∅ otherwise.

(6)

Here, DVT [f][v] represents the dependent transition set for a

value v, mapping the feature f ′ and its potential values V f ′ | f=v,

given the constraints of v. The notation DVT [f] refers to

feature value f with constraits of other feature values. The

process to generate a FTS for all features, including both

independent and dependent transitions, is described in this

section using Equations 5 and 6.

Algorithm 1 SOFI: Generating Adversarial Examples for OS

Fingerprints

C. Heuristic Algorithm

As aforementioned, existing adversarial example generation

approaches [9], [10], [11], [12], [13] are not designed for

crafting perturbations towards OS fingerprints. If we directly

apply those approaches to generate adversarial examples, the

integrity and validity of TCP/IP packets would be broken.

Hence, we combine the W-FGSM and the field’s substitu-

tion space to propose a heuristic algorithm for adding legal

perturbations into the fields of packet headers. We use the

independent set I f to store all independent variable fields that

are not affected by other fields, e.g., the ‘ip.ttl’ field. We use

the dependent set D f for all dependent fields, where FTS stores

all legal values and conditional fields. Note that FTS is labeled

as NULL when a field belongs to independent fields.

Algorithm 1 depicts how to generate adversarial examples

of OS fingerprints under TCP/IP constraints. The algorithm’s

input is the target model F, original packet x, independent

field set I f , dependent set D f , and constraint set FTS. Given a

packet x, we first ensures that at least one of the sets I f or D f

contains elements before proceeding with modifications. We

perturb I f by selecting the field with the highest impact accord-

ing to W-FGSM (Equation 2), and then randomly choose a

valid replacement from S De f , the set of legal substitutions for

specific fields for this top-ranked independent field (lines 1-6).

Subsequent to updating I f , we utilize W-FGSM to determine

the most impactful field in D f (line 9). Once identified, we

employ FTS to find and apply the minimal necessary modifi-

cation to this field (lines 10-13). Upon creating an adversarial

example, we utilize the target model to determine whether the

manipulated example successfully misleads the classification

model. The overall goal is to induce misclassification by subtly

altering the packet at inference time.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4490 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Updating Checked Fields: Perturbations in TCP/IP packets

should guarantee the integrity and availability of checked

fields. Even with a very minor modification, the checked fields

would differ from their original values. For every adversarial

example, SOFI would update its checked fields in order to

ensure the legitimacy of OS fingerprints. Specifically, we first

update the header lengths of TCP/IP packets and the total

length of a packet. Then, we update the values of the TCP

checksum field and the IP checksum field. The checksum

updating is as follows: (1) we assign 0 to the TCP checksum;

(2) we divide the string (the header and data parts of the TCP

segment) into groups of 16 bits (2 bytes); (3) we calculate the

sum of every group as a 16-bit result; (4) we calculate the

sum of complement code on each group; and (5) the result is

a new checksum.

IV. IMPLEMENTATION

In this section, we have implemented ML-based and DL-

based OS classifiers to represent OS fingerprinting techniques.

We have implemented SOFI to generate adversarial TCP/IP

packets for deceiving the OS fingerprinting.

OS Fingerprinting Based on Classic Machine Learning:

There are many fields in the TCP/IP packet header, where

some fields are distinguishable, and others are irrelevant for

OS fingerprints. TCP/IP packets have limited representational

capacity, so classic machine learning cannot learn complex

dependencies between features of the input data. To build

a multi-classifier, we have conducted feature engineering to

pick meaningful information about the input representation.

We use the Chi2 Test [43] approach to select features for OS

fingerprints, where all features are ranked in descending order.

The value ranges of fields in the TCP/IP packet header vary

greatly, affecting the stability of the OS fingerprint. We employ

data standardization to bring these values to a consistent scale.

This standardization involves transforming the original data

through the following formula:

z = (x − µ)/σ

where z is the standardized data, x represents the original

data, µ is the mean of the original data, and σ represents

the standard deviation of the original data. Different variables’

value ranges and distributions are converted to the same scale.

Specifically, we write a Python script to extract field values

of the packet header and take the Chi2 test as the statistical

metric to select fields for classic ML-based OS fingerprinting.

We use the open-source scikit-learn [44] to implement four

classic OS classifiers, including KNN (K-Nearest Neighbors),

SVM (Support Vector Machine), RF (Random Forest), and

DT (Decision Tree). During the training, the KNN algorithm

uses 5 as the number of samples. Our SVM algorithm utilizes

a radial basis function (RBF) as its kernel, with a penalty

coefficient set to 1.0. We use 10 as the number of decision trees

and the entropy as the quality function for the RF algorithm.

The DT algorithm uses 2 as the number of samples, 1 as the

minimum number of leaf nodes, and an unlimited maximum

tree depth.

OS Fingerprinting Based on Deep Learning: Unlike classic

OS fingerprinting, there is no need to conduct feature engi-

neering to extract the underlying statistical patterns between

the input data and the output. Deep Learning algorithms

use multiple layers of neural networks to extract feature

representations of the input data. In each layer, the neuron unit

performs a nonlinear transformation on the input and output to

other neuron units in the next layer after calculation through

a series of mathematical operations and activation functions.

Every layer can be represented as follows,

hl = fl(Wlh(l−1) + bl),

where hl represents the output of neurons in layer L, fl is the

activation function, Wl and bl are the weights and biases of

this layer. Thus, we do not use feature engineering or data

standardization techniques for deep learning algorithms.

We use the PyTorch [45] library to implement three neural

network structures for OS fingerprints, including Deep Neu-

ral Network (DNN), Recurrent Neural Network (RNN), and

Convolutional Neural Network (CNN). The CNN consists of

three layers: convolutional layers, pooling layers, and fully

connected layers. The DNN contains three fully connected lay-

ers. The RNN uses two Long Short-Term Memory Networks

(LSTM) and a fully connected layer. During the training, the

loss function of the DL-based OS classifier is Cross Entropy

Loss, and the optimizer uses the Adam optimization algorithm.

SOFI Implementation: We implement a prototype of SOFI

as a self-contained piece of software based on open-source

libraries. The W-FGSM and heuristic algorithm in SOFI are

pipelined via custom Python scripts. We deploy the SOFI

prototype system on a Ubuntu 20.04.3 LTS server powered

by four Intel Xeon Gold 6230 CPUs, 125GB RAM, and four

24GB NVIDIA GPUs.

V. EVALUATION

In this section, we first present the experimental settings

of SOFI. Then, we evaluate the performance of SOFI and

compare it with the baseline approaches. We use a surrogate

OS classifier to demonstrate the SOFI’s transferability. We

compare SOFI with a variety of existing OS fingerprinting

defense tools. Further, we shed light on the explainability of

OS fingerprints.

A. Experimental Settings

Dataset: We use two datasets to validate SOFI’s perfor-

mance, including one passive OS fingerprinting dataset and

one active OS fingerprinting dataset. The passive dataset is

from the CIC-IDS (Canadian Institute for Cybersecurity Intru-

sion Detection System) [46], which contains 48,962 packets

and covers eight OS fingerprints with corresponding versions.

Each sample in the passive dataset is a TCP/IP packet. The

active dataset is from the open-source repository [47], which

contains 264,852 packets and covers seven OS fingerprints.

Each sample in the active dataset has several packets used to

calculate the feature of active OS fingerprints, the same as the

NMAP [3] OS dataset.

Table II lists the distribution of each OS and the number

of packets per category. The passive dataset is imbalanced,

where Ubuntu server 12 is the class with a small proportion of

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4491

TABLE II

TWO DATASETS: ONE PASSIVE AND ONE ACTIVE OS FINGERPRINTS

packets, and Win 10 is the class with a half dataset. The active

dataset is also imbalanced, where Android has the lowest

number of packets. We use the ratio (8:2) to divide the training

and test sets for evaluating OS classifiers.

Metric: To evaluate the performance of adversarial example

generation, we use three metrics to measure the effectiveness

and performance of SOFI. (1) Precision/Recall/F1 are statistics

indicators to measure the performance of OS fingerprinting. (2)

Success Rate (SR) is to measure the degree of deceiving OS

fingerprinting. SR is equal to the proportion of samples that

make the OS fingerprints misclassified to other classes. The

higher the SR, the more effective the generated adversarial

examples. (3) Constraint Requirement (CR) indicates whether

an adversarial example satisfies TCP/IP specifications.

B. SoFi ’s Performance

Performance of OS Fingerprinting: We measure the pre-

cision and recall of passive OS fingerprinting determined by

KNN, SVM, RF, DT, CNN, DNN, and RNN. The performance

of active OS fingerprints is also evaluated, demonstrating

promising results for recognizing OS information. We observe

that both ML and DL-based OS classifiers demonstrate compa-

rable performance with precision and recall soaring to around

97%-99%. The performance of ML-based OS classifiers might

be attributed to the feature engineering that provides the CHi-

Squared test and data standardization to pick up features.

The experimental results show that active fingerprints achieve

promising performance for recognizing OS information, e.g.,

close to 96% F1-score. One interesting finding is that despite

the dataset’s imbalance, for instance, Ubuntu server 12 having

only 63 packets, the performance of OS classifiers does not

degrade. This might be due to the efficient handling of imbal-

anced data or the robustness of the algorithms in handling such

variations.

Performance of Adversarial Fingerprints: SOFI generates

adversarial examples at inference time in order to induce a

misclassification for OS fingerprinting. We employ three Deep

Learning (DL) OS models as the target models, which SOFI

attempts to deceive through adversarial examples generated

from original packets. We use four metrics to measure the

performance degradation of OS models, including F1-score,

accuracy, 5, and SR. Note that 5 represents the difference

in the model’s accuracy between inputs of original packets

TABLE III

THE SOFI ’S PERFORMANCE ON PASSIVE OS FINGERPRINTS: THE F1

SCORE, ACCURACY, 5, AND SR

TABLE IV

THE SOFI ’S PERFORMANCE ON ACTIVE OS FINGERPRINTS: THE F1

SCORE, ACCURACY, 5, AND SR

and those of adversarial examples. The higher the 5, the

larger the performance degradation of the model. (1) Passive

OS fingerprints. Table III lists the SOFI’s performance over

passive OS fingerprints: DNN, CNN, and RNN. We observe

that the generated adversarial examples can greatly reduce

the classification performance of the model. On average, the

accuracy of the model can be reduced to about 10%, and the

5 value achieves nearly 90%. In addition, their F1 scores also

decrease below 0.2. We can see that the accuracy rate of the

RNN model has the largest descent, from 97% to 6.23%,

followed by the DNN model and CNN model. (2) Active

OS fingerprints. Table IV lists the SOFI’s performance over

active OS fingerprints: DNN, CNN, and RNN. Specifically,

the model’s F1-score decreases from 96% to 0.0%, and the

accuracy decreases from 95.8% to 0.0%. Their 5 values are

equal to 1.00. Overall, adversarial examples of active OS

fingerprints achieve 96.2% SR. We verify that those generated

adversarial examples comply with the TCP/IP specifications.

All adversarial examples are legal, including their checked

fields and constrained fields.

Comparison: Specifically, we implement five baseline meth-

ods on the passive dataset:

1) FGSM [9] linearizes the model’s cost function around

the input to select perturbations by differentiating the

cost function with respect to the input itself, setting the

perturbation amplitude at 0.1.

2) BIM [13] generates adversarial examples by iteratively

adding small perturbations to the input data, with 100

iterations and a perturbation amplitude of 0.1.

3) C&W [11] minimizes the cost function through an

optimization algorithm, with a learning rate of 0.01 and

L∞ as the distance metric.

4) DeepFool [10] employs an iterative optimization algo-

rithm with a linear approach, using 100 iterations and a

numerical stability parameter of 10−6.

5) JSMA [12] uses a Jacobian matrix to evaluate the

model’s output sensitivity to each input, acting as a

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4492 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

TABLE V

PASSIVE OS FINGERPRINTS: THE COMPARISION PERFORMANCE

BETWEEN SOFI AND 5 BASELINES

TABLE VI

PASSIVE OS FINGERPRINTS: THE COMPARISION PERFORMANCE

BETWEEN SOFI AND 5 BASELINES

saliency map, with a maximum perturbation rate of 0.1

per iteration.

Adversarial examples are crafted to exploit the features most

sensitive to classification outcomes. The active OS fingerprint

contains a large feature dimension (233), and the passive

OS fingerprint contains a small dimension (32). We set the

maximum perturbation rate at 0.2. During implementation, the

batch size is set to 128, and all fields can be perturbed by all

baselines.

Table V lists the comparison results between SOFI and

five baseline approaches for passive OS fingerprints. We find

that SOFI and DeepFool both achieve a higher SR than

the other four baseline methods: DeepFool has 94.79%, and

our generated adversarial examples have a 91.71% success

rate for spoofing OS fingerprinting. The SR of the C&W

method is 82.52%, which is lower than that of SOFI. The strict

conditions of the L∞ norm result in fewer fields perturbed by

the C&W method. The SR of FGSM and BIM are relatively

low, 52.61% and 57.09%, respectively. JSMA has the lowest

SR value nearly 48.91%, because the features in the Jacobian

matrix are constrained by other features. These results show

that the OS fingerprinting model is vulnerable to adversarial

examples.

Table VI lists the comparison results between SOFI and five

baseline approaches for active OS fingerprints. SOFI achieves

a higher SR than the other five baseline methods, with a

success rate of 96.19%. C&W(L2) has the second highest SR,

with a success rate of 93.27%, and DeepFool has 87.8% SR.

The other 3 baselines show a lower SR.

All five baselines violate the requirements of the TCP/IP

protocol, producing invalid or illicit adversarial examples. We

conduct an in-depth analysis of the violations present in adver-

sarial examples, distinguishing between data scope violations,

TABLE VII

SOFI ’S TRANSFERABILITY OVER DIFFERENT TARGET MODELS: THE

SUBSTITUTION MODEL IS RNN

TABLE VIII

SOFI ’S TRANSFERABILITY ON OS FINGERPRINTS: THE TRAINING

DATASET IS UNKNOWN WITH RNN

where the perturbation falls outside the field’s value range,

and constraint violations, where the perturbation conflicts with

the values of other fields. Ensuring TCP/IP compliance is a

fundamental requirement for adversarial example generation

methods in the network domain, as non-compliance results

in invalid packets that are dropped by network devices. SOFI

distinguishes itself by achieving compliance while maintaining

a high obfuscation success rate, addressing the limitations of

prior methods that produce invalid packets due to domain-

specific constraints.

C. SoFi ’s Transferability

To further assess SOFI’s efficacy, we validate its trans-

ferability under the black-box setting with various ML

algorithms. In the black-box setting, the target model (e.g.,

the architecture, the loss function, or parameters) is unknown

to SOFI, which presents a realistic situation where an OS

fingerprinting method is often inaccessible. The goal is to

generate adversarial examples via the surrogate model that lead

to misclassifications in the original target models.

We leverage an RNN model as a surrogate to approximate

the other 6 target models. We use the same training dataset

to learn the RNN model. Table VII lists the performance

degradation of OS fingerprinting by the other 6 models. We

observe that adversarial examples from the RNN model can

still deceive the OS fingerprints learned by other models.

F1-score and accuracy of those models are greatly reduced,

where the average 5 is closely 0.94. For classic ML-based

OS fingerprinting, the F1-score and accuracy of KNN, SVM,

and RF drop into zero by our adversarial examples. DT-based

OS fingerprinting has a certain resistance towards adversarial

examples: the pruning operation in DT might eliminate noises

or adversarial examples. We find that DL-based fingerprints are

slightly less affected than ML-based fingerprinting. The reason

is that extracting high-level features from the data might make

the model more robust to small perturbations in the input.

Further, we evaluate the SOFI’s transferability on the active

and passive OS fingerprints with a different dataset from the

training data. Specifically, we leverage the data augmentation

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4493

TABLE IX

SOFI ’S ROBUSTNESS: THE ADVERSARIAL TRAINING OF OS

FINGERPRINTS WITH DNN MODEL

to generate new data from the training data. Given the original

264,852 packets in seven OS fingerprints, there are 26,494

new samples as the training data. The surrogate model has

also adopted an RNN algorithm, and the target model is DNN.

Table VIII lists the SOFI’s performance. SOFI achieves a high

SR of 97.5% for the active dataset, and the change rate is

0.04. When we use RNN as the target model of DNN, the

performance is 91.9% SR for adversarial fingerprints. Overall,

SOFI can still generate adversarial examples to obfuscate OS

fingerprints when we have little knowledge of the training

dataset. These results indicate that SOFI has transferability

across models and datasets.

D. SoFi ’s Robustness

We use the adversarial training to validate the SOFI’s

robustness. Adversarial training is a general method that uses

adversarial examples as the supplement of the training data

[9]. Specifically, generated adversarial examples are added to

the original training dataset. We only keep successful samples

and remove failed samples. The training data set is divided

into the same ratio of 8:2 for learning OS classifiers.

Table IX lists the SOFI’s performance with/without the

adversarial training data. We observe that the performance

of the OS classifier does not obtain any improvement with

adversarial training, where its accuracy remains at a similar

level as the original OS classifier. The plausible reason is that

adversarial examples do not bring more context and semantic

information than the original training data. We observe that

SOFI can still generate adversarial examples with a high SR

towards both classifiers with/without adversarial training. The

improvement lies in the change rate between original and

adversarial examples, which increases from 0.18 to 0.64. A

high change rate indicates a large cost of SOFI. Note that

adversarial training is expensive due to the iterative generation

of adversarial examples during the training. In short, adver-

sarial training with adversarial examples cannot improve OS

fingerprint performance but increase fingerprints’ robustness.

VI. AUTOMATION AND DEPLOYMENT

In this section, we demonstrate SOFI’s benefits from two

aspects: the comparison with existing defense tools, and the

comparison of manual versus automation.

A. Comparison With Defense Tools

We compare SOFI with the existing defense tools, including

a random approach and OSfooler [28]. The manual approach

TABLE X

THE COMPARISON PERFORMANCE BETWEEN SOFI AND 2 BASELINES

TABLE XI

COMPARISON BETWEEN SOFI AND EXSINT TOOLS AND WORKS

is to select a TCP/IP header field and change its value

based on expert experience. OSfooler [28] leverages the OS

fingerprints in the Nmap database to change the response

packets. It picks up a different OS fingerprint in the Nmap

database and modifies the packet based on the selected OS

fingerprint. Those approaches rely on expert knowledge and

manual efforts. Table X lists the overall performance com-

parison between SOFI and other approaches. SOFI has a

91.71% SR in deceiving OS fingerprinting, while Manual has

only 44.91% SR and OSfooler has 92.13% SR. Generated

adversarial packets have zero violation constraint, compared

with 86.62% violation constraint in Manual and 22.59%

violation constraint in OSfooler. One advantage is that SOFI

can automatically generate adversarial packets without any

manual efforts and professional knowledge. We observe that

SOFI archives a promising performance for misleading today’s

OS fingerprinting.

Then, we compare SOFI with existing tools and research

works. Table XI lists a qualitative comparison between SOFI

and other approaches. Note that there is a compatibility issue

between SOFI and those works, e.g., OSfuscate works in

Windows XP/Vista. Thus, we only use four metrics to rep-

resent their advantages and disadvantages, including MT, OC,

DE, and FS. Overall, SOFI can automatically find modifiable

features for adversarial packets, adapting to the new and

emerging OS fingerprinting techniques.

B. Manual Vs. Automation

SOFI automatically finds applicable and available features

to deceive OS fingerprints. By contrast, the manual approach

leverages expert knowledge to identify which feature impacts

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4494 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Fig. 6. The distribution of features’ SHAP values contribution to the OS
fingerprints.

OS fingerprints. We use SHAP [50] to represent a manual

approach for obfuscating OS fingerprints, which manually

seeks important features. SHAP leverages the cooperative

game theory concept to interpret the model predictions. SHAP

provides insight into the importance of features in classifier

decisions and the direction of that influence. Specifically,

SHAP explains the final value of a prediction by attributing

a value to each feature based on its contribution to OS

fingerprints, as follows:

g(x) = θ0 +

M
X

j=1

θ j · f j,

where x is the packet, f j is the jth field, and θ j is the

contribution of feature f j to the OS fingerprint.

Figure 6 depicts the distribution of features’ SHAP values

based on the contribution to the OS fingerprints. We only pick

the top 10 features’ SHAP values for OS fingerprints. Note that

the sum of SHAP values across all features of a given sample

equals the model’s logit output, convertible to a probability via

logistic transformation. Our analysis reveals that the TTL field,

source port, and window size are the top 3 influential features

in the OS fingerprinting model. We observe that a TCP/IP

packet feature plays varying roles in affecting the model’s

classification decision. For instance, the TTL field significantly

impacts Ubuntu 14.4, Win 8.1, Win 10, and macOS predictions

but is less influential for other OS classes. We explain that each

feature’s SHAP value approximates the confidence of the deci-

sion boundary. From a defensive perspective, the SHAP value

of a feature offers a model-agnostic insight for researchers.

Meanwhile, from an attacker’s viewpoint, the SHAP value

of a feature can guide the creation of perturbations, thereby

affecting the generalizability of adversarial examples. Our

approach automatically identifies features like window size,

which is consistent with the SHAP analysis results.

We provide the feature analysis of various fields from the

TCP/IP packet header. Our analysis reveals distinct feature

distributions among different OS versions. Figure 7 illustrates

a relatively flat and stable ‘tcp.seq’ distribution across OS

fingerprints, with Windows 10 and 8 displaying the most

significant fluctuation. By contrast, other OS fingerprints can-

not be distinguished based on the ‘tcp.seq’ feature. Figure 8

shows similar window size distributions between Windows

7 and 8, with Ubuntu and MacOS maintaining narrow and

fixed ranges, respectively. It is evident that the window size

Fig. 7. The distribution of TCP SEQ of different OS fingerprints.

Fig. 8. The window size of different OS fingerprints.

TABLE XII

PACKET HEADER FIELDS BEFORE AND AFTER MODIFICATION

achieves better distinguishability among OS fingerprints than

the ‘tcp.seq’. Note that the feature analysis also provides

insights for spoofing OS fingerprints. SOFI can automatically

find those features for generating adversarial packets, which

is more efficient than manual efforts.

C. Real-World Deployment

We deploy adversarial OS fingerprints to validate SOFI

effectiveness. Our original OSes are Ubuntu 20.04 and Ubuntu

23.04, and the target OSes are Windows Vista and Windows. In

the passive dataset, we have 1,581 pairs of original and adver-

sarial OS fingerprints, abbreviated as (Ubuntu, Win Vista); in

the active dataset, we have 8,133 pairs (Ubuntu, Win). We

obtain packet header differences for those pairs, detailed in

Table XII.

Figure 9 depicts the implementation of adversarial OS

fingerprints in a real-world scenario. Leveraging existing tools

or libraries to change TCP/IP packet headers, we strategically

modify packet header fields such as IP TTL, TCP window

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4495

Fig. 9. The deployment for adversarial OS fingerprints.

size, and TCP flags. Specifically, the iptable tool configures the

kernel’s firewall to divert TCP SYN packets into a designated

queue,1 and the NetfilterQueue tool accesses the packet queue,

where we can manipulate packets in user-space.2 After that,

we leverage the Scapy tool to modify packet header fields,

including TTL, window size, and sequence numbers. We use

the Tshark tool to capture the packet flows and identify

whether adversarial packets can spoof OS fingerprints. Our

deployment for adversarial OS fingerprint only uses Python

scripts to change the packet headers, which is efficient and

effective.

VII. DISCUSSION AND LIMITATION

Compatibility Limitation: One concern is that SOFI has a

compatibility issue with existing fingerprinting defense tools

[28], [29], [30]. Changing the TCP/IP packet header must

involve OS kernel operations, leading to the comparability

limitation. In fact, those fingerprinting defense tools [28], [29],

[30] are also not compatible with each other; for instance,

OSfuscate works in Windows XP/Vista, and OSfooler works

in Ubuntu. We have deployed adversarial OS fingerprints in

the Ubuntu system with several open-source libraries or tools

for validating SOFI’s effectiveness.

Usage: SOFI acts as the guideline to help fingerprinting

defense tools find available modification places in the TCP/IP

packets. Prior works [27], [40], [51] used expert knowledge

to defeat OS fingerprinting. A straightforward method is to

revise the TTL field in the IP header, which depends on the

specific OS implementation. Note that this manual process

is arduous and incomplete, as it relies on only one tool to

guess the modification operation. When attackers deploy new

tools or techniques, the existing defense approaches may not

be effective against a wide range of new OS fingerprinting

methods. By contrast, SOFI only relies on a target model

for generating adversarial packets and provides the guideline

information to existing defense tools/approaches.

Targeted Obfuscation: We use a multi-classifier to represent

the OS fingerprinting and focus on non-targeted evasion. The

targeted evasion misclassifies the OS fingerprinting into a

specific class, and the non-targeted evasion merely induces an

incorrect prediction. For example, when the target machine

runs an Ubuntu 12.4, the targeted evasion would deceive

attackers into an Ubuntu 16.2 version. Targeted approaches can

1iptables -A INPUT -p tcp –syn -j NFQUEUE –queue-num 1.
2nfqueue.bind(1, process packet).

mislead attackers and potentially force them to adopt ineffec-

tive strategies. Now, SOFI adopts an obfuscation approach,

aiming to make OS fingerprints unidentifiable rather than

mimicking a specific OS. In our future work, we will extend

SOFI into the targeted evasion.

Model Limitation: First, we are free to access the training

data of OS fingerprints due to its public availability. Second,

we explore SOFI’s effectiveness with limited access to the

target model, which is referred to as model transferability.

SOFI can access the architecture and loss function of the

surrogate model. SOFI with the surrogate model still achieves

a high success rate in deceiving the target model. Third, our

SOFI is evaluated for these adversarial examples against both

classic machine learning and deep learning algorithms. In our

future work, we will add existing fingerprinting tools as the

surrogate model for deceiving attackers.

Coverage: One concern is that our fingerprinting model

suffers a coverage issue because there are a variety of OS

fingerprinting tools and techniques (see Section II). It is

impossible to find a single model that satisfies all of them.

Another concern is that the experimental dataset only covers

a limited number of OS versions, not representing the diversity

of OS versions in practice. In future work, we will collect a

comprehensive dataset to generate adversarial OS fingerprints,

including OS variants and new versions.

Additional Features: SOFI currently does not support

some features used in advanced fingerprinting, such as TCP

flag combinations (e.g., FIN, XMAS), ICMP responses, and

fragmentation. These features are also utilized by OS finger-

printing tools like Nmap and p0f. Modifying these features

requires specialized knowledge and manual effort, as users

must know which features to adjust and what values to

change. Additionally, altering these features in practice can be

challenging—such as manipulating ACK or FIN numbers in

host communications. As a result, SOFI focuses on leveraging

available and modifiable features for OS fingerprinting.

IPv6 Extension: So far, SOFI does not support the OS

fingerprints to IPv6. IPv6 offers a number of distinct and new

features for OS fingerprints. IPv6 packets have different fields

to IPv6, like the Hop-by-Hop Options or Routing Header. In

contrast, some features between IPv6 and IPv4 are similar,

such as certain TCP flags, time-to-live (TTL) values, or

window sizes. To extend SOFI to IPv6, several things need

to be done: (1) manually identifying features in IPv6 packets,

(2) collecting the IPv6 dataset, (3) dividing features into 3

categories (Table I), and (4) finding perturbations in the IPv6

packets for OS fingerprints.

Long-Term Viability: One concern is that SOFI may not

be viable in the long term due to the rapid evolution of

OS fingerprinting techniques and the increasing complexity

of network environments. Specifically, SOFI excels in static

network environments, it may face challenges when confronted

with dynamic network conditions or adaptive fingerprinting

systems. The modification is that we put the new dataset

into SOFI to generate adversarial OS fingerprints. In our

future work, we will extend SOFI for advanced algorithms to

incorporate tool-specific adaptations or optimize obfuscation

strategies for specific reconnaissance scenarios.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

4496 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

VIII. CONCLUSION

As fingerprinting techniques play an important role in

network reconnaissance, we propose a novel approach called

SOFI to spoof OS fingerprints as a proactive defense mea-

sure. The core of SOFI is an adversarial example generation

algorithm. Uniquely designed, SOFI works within TCP/IP

specification constraints and introduces effective perturbations

in packet data to deceive OS fingerprints classifiers. Our

research underscores these classifiers’ vulnerability to eva-

sion and reveals how subtle perturbations can successfully

spoof OS fingerprints. Our results demonstrate the effec-

tiveness of adversarial examples and assess the impact of

model transferability on attackers. Additionally, we employ

ML explainability to pinpoint potent features, enhancing the

robustness of OS fingerprints.

REFERENCES

[1] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: Techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1–22, Dec. 2019.

[2] F. Cremer et al., “Cyber risk and cybersecurity: A systematic review
of data,” Geneva Papers Risk Insurance-Issues Pract., vol. 47, no. 3,
pp. 698–736, 2022.

[3] Nmap.(1997). Network Security Scanner Tool. [Online]. Available:
http://nmap.org/projects/iptables/index.html

[4] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song,
and A. Blum, “FiG: Automatic fingerprint generation,” in Proc. Netw.

Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Jan. 2007.
[5] Z. Shamsi, D. B. H. Cline, and D. Loguinov, “Faulds: A non-parametric

iterative classifier for internet-wide OS fingerprinting,” IEEE/ACM

Trans. Netw., vol. 29, no. 5, pp. 2339–2352, Oct. 2021.
[6] J. Varmarken, J. Al Aaraj, R. Trimananda, and A. Markopoulou,

“FingerprinTV: Fingerprinting smart TV apps,” Proc. Privacy Enhanc-

ing Technol., vol. 2022, no. 3, pp. 606–629, Jul. 2022.
[7] C. Szegedy et al., “Intriguing properties of neural networks,” Presented

at the 2nd Int. Conf. Learn. Represent. (ICLR), Banff, Canada, Banff,
AB, Canada, Apr. 2014.

[8] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-
sarial input sequences for recurrent neural networks,” in Proc. MILCOM

IEEE Mil. Commun. Conf., Nov. 2016, pp. 49–54.
[9] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing

adversarial examples,” 2014, arXiv:1412.6572.
[10] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple

and accurate method to fool deep neural networks,” in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.
[11] N. Carlini and D. Wagner, “Towards evaluating the robustness of

neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39–57.

[12] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy, Mar. 2016, pp. 372–387.

[13] J. Wang, “Adversarial examples in physical world,” in Proc. IJCAI,
2021, pp. 4925–4926.

[14] D. E. Comer and J. C. Lin, “Probing TCP implementations,” in Proc.

Usenix Summer, Jun. 1994, p. 17.
[15] P. Auffret, “SinFP, unification of active and passive operating system

fingerprinting,” J. Comput. Virol., vol. 6, no. 3, pp. 197–205, Aug. 2010.
[16] B. Proxy. (2013). SINFP3: A Passive and Active Os Fingerprinting

Tool. [Online]. Available: https://metacpan.org/dist/Net-SinFP3/view/
bin/sinfp3.pl

[17] M. Zalewski. (2013). P0F: A Passive TCP/IP Stack Fingerprinting Tool.
[Online]. Available: http://lcamtuf.coredump.cx/p0f3/

[18] C. Sarraute and J. Burroni, “Using neural networks to improve classical
operating system fingerprinting techniques,” 2010, arXiv:1006.1918.

[19] Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, “Hershel:
Single-packet OS fingerprinting,” IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2196–2209, Aug. 2016.

[20] M. Laštovička, M. Husák, P. Velan, T. Jirsı́k, and P. Čeleda,
“Passive operating system fingerprinting revisited: Evaluation and cur-
rent challenges,” Comput. Netw., vol. 229, Jun. 2023, Art. no. 109782.

[21] D. H. Hagos, A. Yazidi, Ø. Kure, and P. E. Engelstad, “A machine-
learning-based tool for passive OS fingerprinting with TCP variant as a
novel feature,” IEEE Internet Things J., vol. 8, no. 5, pp. 3534–3553,
Mar. 2021.

[22] S. Zander and S. J. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services,” in Proc. 17th Conf. Secur.

Symp., Berkeley, CA, USA, Jul. 2008, pp. 211–225. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496711.1496726

[23] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using spectrogram and CNN,” in
Proc. IEEE INFOCOM, May 2021, pp. 1–10.

[24] X. Ma et al., “Context-aware website fingerprinting over encrypted
proxies,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2021,
pp. 1–10.

[25] Tenable.(2017). Nessus Vulnerability Scanner. [Online]. Available:
https://www.tenable.com/products/nessus

[26] B. Anderson and D. McGrew, “OS fingerprinting: New techniques and
a study of information gain and obfuscation,” in Proc. IEEE Conf.

Commun. Netw. Secur. (CNS), Oct. 2017, pp. 1–9.
[27] M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP stack

fingerprinting,” in Proc. 9th USENIX Secur. Symp. (USENIX Secur.),
2000.

[28] A. Crenshaw. (2008). Change Your Windows Os Tcp/ip

Fingerprint To Confuse P0f, Networkminer, Ettercap,

Nmap, and Other Os Detection Tools. [Online]. Available:
http://www.irongeek.com/i.php?page=security/osfuscate-change-your-
windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-ettercap-
nmap-and-other-os-detection-tools

[29] I. Personality. (2013). The Emulation of Other OSes at the Network

Level. [Online]. Available: https://sourceforge.net/projects/ippersonality/
[30] (2019). Preventing Remote Active/passive OS Fingerprinting By Tools.

[Online]. Available: https://github.com/segofensiva/OSfooler-ng
[31] N. Provos, “Honeyd-a virtual honeypot daemon,” in Proc. 10th DFN-

CERT Workshop, Hamburg, Germany, vol. 2, 2003, p. 4.
[32] Honeypot Website.(2015). The Honeynet Project. [Online]. Available:

https://www.honeynet.org/
[33] S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and

S. Kambhampati, “A survey of moving target defenses for network
security,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1909–1941,
3rd Quart., 2020.

[34] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-based
traffic analysis systems in real-time with blind adversarial perturbations,”
in Proc. 30th USENIX Secur. Symp., 2021, pp. 2705–2722.

[35] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Patch-based defenses
against web fingerprinting attacks,” in Proc. 14th ACM Workshop Artif.

Intell. Secur., Nov. 2021, pp. 97–109.
[36] L. Qiao, B. Wu, S. Yin, H. Li, W. Yuan, and X. Luo, “Resisting DNN-

based website fingerprinting attacks enhanced by adversarial training,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 5375–5386, 2023.

[37] B. Hayden, T. Walsh, and A. Barton, “Defending against deep learning-
based traffic fingerprinting attacks with adversarial examples,” ACM

Trans. Privacy Secur., vol. 28, no. 1, pp. 1–23, Feb. 2025.
[38] Z. Ling, G. Xiao, W. Wu, X. Gu, M. Yang, and X. Fu, “Towards an

efficient defense against deep learning based website fingerprinting,” in
Proc. IEEE Conf. Comput. Commun., May 2022, pp. 310–319.

[39] P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
moving target defense network protection,” in Proc. IEEE Int. Symp.

World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1–6.
[40] M. Albanese, E. Battista, and S. Jajodia, “A deception based approach

for defeating OS and service fingerprinting,” in Proc. IEEE Conf.

Commun. Netw. Secur. (CNS), Sep. 2015, pp. 317–325.
[41] M. A. Rahman, M. G. M. M. Hasan, M. H. Manshaei, and E. Al-Shaer,

“A game-theoretic analysis to defend against remote operating system
fingerprinting,” J. Inf. Secur. Appl., vol. 52, Jun. 2020, Art. no. 102456.

[42] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, “SoK: A critical evaluation of efficient website fingerprint-
ing defenses,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 969–986.

[43] C. M. Bishop, Pattern Recognition and Machine Learning (Information

Science and Statistics). Berlin, Heidelberg: Springer, 2006.
[44] Scikit-learn. (2007). A Free Software Machine Learning Library for

the Python Programming Language. [Online]. Available: http://scikit-
learn.org/stable/index.html

[45] Pytorch.(2018). An Open Source Machine Learning Framework that

Accelerates the Path From Research Prototyping To Production Deploy-

ment. [Online]. Available: https://pytorch.org/

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE 4497

[46] CIC-IDS. (2017). Canadian Institute for Cybersecurity Intrusion

Detection System. [Online]. Available: https://www.unb.ca/cic/datasets/
ids-2017.html

[47] R. P. Jove. (2015). Applying Artificial Intelligence To Os Fin-

gerprinting Nmap. [Online]. Available: https://github.com/rubenpjove/
osfingerprintingia

[48] C. Valli, “Honeyd-a OS fingerprinting artifice,” in Proc. 1st Austral.

Comput., Network Inf. Forensics Conf., Perth, WA, Australia, Nov. 2003.
[49] Z. Xu, H. Khan, and R. Muresan, “TMorph: A traffic morphing

framework to test network defenses against adversarial attacks,” in Proc.

Int. Conf. Inf. Netw. (ICOIN), Jan. 2022, pp. 18–23.
[50] S. Lundberg and S. Lee, “A unified approach to interpreting model

predictions,” in Proc. Adv. Neural Inf. Process. Syst., Jan. 2017.
[51] D. B. Berrueta, “A practical approach for defeating nmap OS-

fingerprinting,” Retrieved March, vol. 12, p. 2009, Jan. 2003.

Xu Han received the bachelor’s degree from Beijing
University of Chemical Technology in 2018 and
the Ph.D. degree from Beijing Jiaotong Univer-
sity, China, in 2024. Her research interests lie in
trustworthy and interpretable Al technologies for
cybersecurity applications.

Haocong Li received the master’s degree from
the School of Computer Science and Technology,
Beijing Jiaotong University, in 2024. She is currently
with China Everbright Bank. Her research interests
include the IoT security and software supply chain
security.

Wei Wang (Member, IEEE) received the Ph.D.
degree from Xi’an Jiaotong University in 2006. He
is currently a Full Professor with the School of
Computer Science and Technology, Beijing Jiao-
tong University, China. He was a Post-Doctoral
Researcher with the University of Trento, Italy, from
2005 to 2006. He was a Post-Doctoral Researcher
with TELECOM Bretagne and with INRIA, France,
from 2007 to 2008. He was also an European
ERCIM Fellow with Norwegian University of Sci-
ence and Technology (NTNU), Norway, and with the

Interdisciplinary Centre for Security, Reliability, and Trust (SnT), University
of Luxembourg, from 2009 to 2011. He has authored or co-authored over
100 peer-reviewed articles in various journals and international conferences,
including IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUT-

ING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACM CCS, AAAI,
Ubicomp, and IEEE INFOCOM. His recent research interests lie in data
security and privacy-preserving computation. He has received the ACM CCS
2023 Distinguished Paper Award. He is an Elsevier “Highly Cited Chinese
Researchers.” He is the Vice Chair of ACM SIGSAC China. He is an
Associate Editor of IEEE TRANSACTIONS ON DEPENDABLE AND SECURE

COMPUTING and an Editorial Board Member of Computers & Security and
of Frontiers of Computer Science.

Haining Wang (Fellow, IEEE) received the Ph.D.
degree in computer science and engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2003. Currently, he is a Professor with the
Department of Electrical and Computer Engineering,
Virginia Tech, USA. His current research interests
include security, networking systems, and cloud
computing.

Xiaobo Ma (Member, IEEE) received the Ph.D.
degree in control science and engineering from Xi’an
Jiaotong University, Xi’an, China, in 2014. He is
currently a Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University. He was a Post-Doctoral
Research Fellow with The Hong Kong Polytechnic
University in 2015. He is also a Tang Scholar. His
research interests include internet measurement and
cyber security.

Shouling Ji (Member, IEEE) received the B.S.
(Hons.) and M.S. degrees in computer science from
Heilongjiang University, the Ph.D. degree in electri-
cal and computer engineering from Georgia Institute
of Technology, and the Ph.D. degree in computer sci-
ence from Georgia State University. He is currently
a Qiushi Distinguished Professor with the College
of Computer Science and Technology, Zhejiang Uni-
versity, and an Adjunct Research Faculty Member of
the School of Electrical and Computer Engineering,
Georgia Institute of Technology. His current research

interests include data-driven security and privacy, AI security and software,
and system security. He is a member of ACM, a Senior Member of CCF, and
was the Membership Chair of the IEEE Student Branch with Georgia State
University (2012–2013). He was a Research Intern with the IBM T. J. Watson
Research Center. He was a recipient of the 2012 Chinese Government Award
for Outstanding Self-Financed Students Abroad and ten Best/Outstanding
Paper Awards, including ACM CCS 2021.

Qiang Li received the Ph.D. degree in computer
science from the University of Chinese Academy
of Sciences in 2015. Currently, he is an Associate
Professor with the School of Computer and Informa-
tion Technology, Beijing Jiaotong University, China.
His research interests revolve around the Internet of
Things, networking systems, network measurement,
machine learning for security, and mobile comput-
ing.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

