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Abstract—Fingerprinting is a network reconnaissance tech-
nique utilized for gathering information about online computing
systems, including operation systems and applications. Unfortu-
nately, attackers typically leverage fingerprinting techniques to
locate, enumerate, and subsequently target vulnerable systems,
which is the first primary stage of a cyber attack. In this
work, we explore the susceptibility of machine learning (ML)-
based classifiers to misclassification, where a slight perturbation
in the packet is included to spoof OS fingerprints. We pro-
pose SOFI (Spoof OS Fingerprints), an adversarial example
generation algorithm under TCP/IP specification constraints,
to create effective perturbations in a packet for deceiving an
OS fingerprint. Specifically, SOF1 has three major technical
innovations: (1) it is the first to utilize adversarial examples
to automatically perturb fingerprinting techniques; (2) it com-
plies with constraints and integrity of network packets; (3) it
achieves a high success rate in spoofing OS fingerprints. We
validate the effectiveness of adversarial packets against active
and passive OS fingerprints, verifying the transferability and
robustness of SOF1. Comprehensive experimental results demon-
strate that SOFI automatically identifies applicable and available
OS fingerprint features, unlike existing tools relying on expert
knowledge.

Index Terms—Adversarial machine learning (ML), fingerprint-
ing, operating system (OS).

I. INTRODUCTION

OWADAYS, cyberattacks have increasingly targeted
critical infrastructures as attackers attempt to circumvent
the deployed security measures and compromise computing
systems, resulting in serious consequences, such as safety
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failure and service disruption. Typically, a cyberattack follows
a distinct cycle with different phases characterized by network
reconnaissance, enumeration, exploitation, intrusive attempts,
and performing malicious tasks. As the initial stage of the
cyberattack cycle, network reconnaissance involves attackers
gathering relevant information about remote hosts, such as
their operating systems and applications. Given that there are
nearly 25 billion daily global intrusion attempts — a number
that continues to rise [1] — it is important to note that almost
50% of these cyber attacks involve network reconnaissance to
extract the operating system or port information from remote
systems [2].

As a vital component of network reconnaissance, fin-
gerprinting allows attackers to remotely locate, target, and
potentially exploit vulnerable systems by identifying a remote
host’s operating system (OS). Classic scanning tools like
Nmap [3] are often used by both attackers and network admin-
istrators to uncover underlying hosts and extract OS-related
information. Recent studies [4], [S5], [6] have proposed using
machine learning algorithms to generate OS fingerprints and
infer classification models. Subsequently, these fingerprinting
techniques may enable attackers to locate vulnerabilities and
bypass deployed security measures, thereby increasing the risk
of successful intrusions.

Spoofing OS fingerprints stands as a vital and proactive
line of defense against underlying cyber attacks due to the
importance of OS fingerprints to attackers. In particular, OS
fingerprints help attackers obtain detailed OS information and
then successfully run an exploit against vulnerable computing
systems/devices. There are instances when patches are not
readily available or feasible to apply, leaving an OS version
unpatched. By pinpointing the specific OS of a host, attackers
can launch crafted attacks against target machines. Besides
nullifying the reconnaissance efforts of attackers, from a
privacy perspective, spoofing fingerprints can prevent the unso-
licited revelation of a user’s OS and application information,
enhancing user privacy.

In this paper, we propose a novel approach to spoof-
ing OS fingerprints through adversarial examples by subtly
altering packet data. Inspired by recent studies indicating
that the performance of learning-based detection techniques
can be degraded by carefully crafted variants in the image
[7] and the text [8] domains, we adapt this insight to the
defense against network reconnaissance. We devise evasion
techniques for rapid, preemptive endpoint defense. Our basic
idea is to alter the data point during inference, induce
misclassifications, and then disrupt the OS fingerprints’
abilities.
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The crux of the challenge lies in the oversimplification of
existing adversarial techniques [9], [10], [11], [12], [13], which
merely transform one OS’s feature values into another OS’s,
compromising packet integrity. These techniques manipulate
(add, change, or remove) features within network pack-
ets, rendering them invalid. To create adversarial examples
satisfying these constraints, we propose SOFT (Spoof OS Fin-
gerprints), an adversarial example generation algorithm under
TCP/IP specification constraints. Specifically, SOFI divides
OS’ features into three categories: mutable features, immutable
features, and checked features. By constructing a substitution
space for mutable features, SOFI bolsters the feasibility of
adversarial examples. Moreover, for each adversarial example,
it adjusts checked features to guarantee the validity of the OS
fingerprints.

We implement a prototype of SOFT as a self-contained piece
of software based on open-source libraries. To validate its
efficacy, we systematically evaluate SOFT against a spectrum
of machine learning models. These models, trained on an
extensively used OS fingerprint dataset, include traditional
machine-learning algorithms and deep-learning algorithms.
Our evaluation results show SOFT achieves high success
rates in deceiving attackers with spoofed passive/active OS
fingerprints. In comparison to the baseline’s performance,
SOFI1 guarantees the integrity of TCP/IP specifications and
has a higher success rate. Additionally, we validate the
SOF1 ’s transferability where we cannot possess internal
knowledge and understanding of the OS detectors. Finally,
we demonstrate SOFT ’s advantages from three perspectives:
the comparison with existing defense tools, the comparison of
manual versus automation, and the prototype deployment.

Our major contributions are summarized as follows:

e We are the first to propose that adversarial examples can
easily deceive both passive and active OS fingerprints.

e We introduce SOFI, a novel approach to generate adver-
sarial examples against OS fingerprinting techniques.
Unlike existing tools that depend on expert knowledge,
SOFI automatically identifies applicable and available
features for deceiving OS fingerprints.

e Our results demonstrate a higher success rate than base-
lines, revealing that enhancing OS fingerprint robustness
is a significant challenge.

Roadmap: The remainder of this paper is organized as
follows. Section II provides the background and related work
of OS fingerprinting techniques. Section III details the design
of SOFI1 against OS fingerprinting techniques. Section IV
describes its implementation details. Section V details exper-
imental evaluation and ML explainability for OS fingerprints.
Section VI further demonstrates the advantages of SOFI
from three aspects. Section VII presents the discussion and
limitations. Finally, Section VIII concludes.

II. BACKGROUND AND RELATED WORK

This section first describes the preliminary knowledge of OS
fingerprinting techniques. Then, we present defense strategies
against OS fingerprinting.
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Fig. 1. Passive OS Fingerprints: (1) changing the TTL field, (2) causing a
different OS class from ‘Ubuntu’ to “Windows.’

A. Os Fingerprinting

In network reconnaissance, fingerprinting has been widely
used for more than three decades. OS fingerprinting is to deter-
mine the operating system of a remote host on a network. The
core idea is that different OS have various implementations of
IETF RFCs or TCP/IP protocols, leading to different network
behaviors of TCP/IP packets [14]. This technique enables
attackers to enumerate and assess potential targets for cyber
attacks both locally and across the Internet. Typically, there
are two categories of OS fingerprinting: passive and active.

Passive OS fingerprinting is to eavesdrop or sniff network
packets traveling between hosts. There are several popular and
available passive OS fingerprinting tools, including SinFP3
[15], [16] and pOf [17]. In those tools, the matching rules
of OS fingerprints are stored in the database to identify the
OS. For passive OS fingerprinting, research works [5], [18],
[19], [20], [21] use the input x to infer one of the k OS
classes. Zander et al. [22] proposed the differences in time
synchronization in the TCP packet header to fingerprint OS
information. Shen et al. [23] extracted the spectrogram of the
LoRa signal and leveraged a CNN model to generate a hybrid
classifier as device fingerprints. The TCP timestamp option [5]
might reveal hardware properties, and [19] utilized a sequence
of inter-arrival times between network packets for detecting
the OS of remote hosts. Ma et al. [24] designed a context-
aware system that can fingerprint access to websites using a
two-stage spatial-temporal flow correlation approach. Figure 1
depicts two OS classes in the TCP/IP packet header, where the
TTL field is 64 for Ubuntu and 128 for Windows.

Active OS fingerprinting is to carefully craft packets with
different settings or flags and send them to a remote host to
obtain its responses. There are several popular and available
active OS fingerprinting tools, including Nmap [3], SinFP3
[15], [16], and Nessus [25]. Nmap [3] is a classic tool to
detect OS versions based on the differences between TCP/IP
implementations (e.g., TCP window size, max segment size,
and options). Those tools use a database to store crafted
packets and matching rules for identifying OS. Similarly, prior
research works [4], [26] usually leverage machine learning or
deep learning algorithms to infer OS classes. Caballero et a.
[4] leveraged the SVM algorithm to learn features of packet
headers for generating OS fingerprints. Anderson et al. [26]
extracted features from TCP/IP for OS fingerprinting in the
potential presence strategies. Given a set of k OS classes, the
input x represents received responses from a remote host, and
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Fig. 2. Active OS Fingerprints: (1) changing the window size and TTL field,
(2) causing a different OS class from ‘Window XP’ to ‘Linux 2.6.X.’
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Fig. 3. The defense strategies against OS fingerprinting techniques.

the output y indicates one of the OS classes or an unknown
class. Active OS fingerprinting is to learn a mapping function
between the input x and the output y, denoted as y = f(x). Note
that active OS fingerprinting needs to send additional packets
to the remote hosts (e.g., 16 probing packets by Nmap).

Figure 2 illustrates two OS classes (‘Window XP’ and
‘Linux 2.6.X’) for their active fingerprints, where each line is
a test response for a particular probing packet, % is a separator
between fields, W is the TCP window, S is the sequence
number, and T is TTL. For example, T1 reflects the results
from the first TCP probe, and IE is a test related to the two
ICMP echo probes.

B. Defense Against Os Fingerprinting

The defense model thwarts OS fingerprinting to prevent
attackers” OS profile collection. To achieve this objective,
the defenses can be deployed on computers to deceive the
attacker’s OS fingerprinting tools or techniques, as shown in
Figure 3. Specifically, we divide the OS fingerprinting defense
models into two categories: existing tools and research works.

The basic idea of a fingerprinting defense is to change
the TCP/IP packet header, e.g., modifying the total length
field of the IP header [27]. In other words, we can forge or
confuse the fingerprint information of remote hosts to defend
against potential cyberattacks. OSfuscate [28] is to change the
registry in Windows XP/Vista to deceive the Nmap and pOf. IP
Personality [29] and OSfooler [30] leverage IPTables/NetFilter
to modify the fixed packet headers for deceiving OS finger-
printing. IP Personality [29] is a Linux kernel patch that can
simulate other OS fingerprinting information at the TCP/IP
layer, thereby deceiving the fingerprinting tools, e.g., Nmap.
OSfooler [30] is an open-source tool for Unix-like operating
systems, and it performs fingerprint spoofing by sending
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specific TCP/IP packets. However, deceiving the fingerprints
uses fixed position modification, which is manual and time-
consuming. Finding a qualified feature in the TCP/IP packet
header is arduous and incomplete, and it is challenging to keep
up-to-date with the numerous new implementations and new
version updates.

Other OS fingerprinting defense strategies include deploying
network honeypots [31], [32] and moving target defense
(MTD) [33]. HoneyNet is to mimic OS, where various types
of software or hardware-based honeypots are integrated into
the network. MTD dynamically changes the attack surface
of a computer, disrupting the network reconnaissance and
increasing the attack complexity. The disadvantage is that
their deployment has a heavy-weight cost and is not well
suited for placing obfuscation of OS fingerprinting. Several
prior works [34], [35], [36], [37], [38] focused on web
fingerprinting obfuscation. In contrast, our work specifically
addresses OS fingerprinting, targeting the unique network-
level characteristics derived from TCP/IP headers to identify
operating systems.

Kampanakis et al. [39] proposed increasing the difficulty
of OS fingerprinting by introducing time delays during the
TCP handshake. Albanese et al. [40] modified four aspects of
TCP/IP packets to spoof OS fingerprints: the total length field
in the IP header, the sequence number in the TCP header, the
packet size, and the packet fragmentation field. Rahman et al.
[41] applied game theory to alter TCP/IP packet fingerprints
to confuse attackers’ identification efforts. In contrast, website
fingerprinting involves a passive local eavesdropper deducing
information from users’ browser activities. Ling et al. [38]
proposed a genetic-based variant to evade/obfuscate website
fingerprints, where they injected dummy packets into the raw
traffic as the defense strategy. Mathews et al. [42] explored
today’s popular website fingerprinting defenses, where hand-
crafted features may still leak information.

In addition, prior works on OS fingerprinting obfuscation
require either system configuration (e.g., kernel patch [29])
or manual efforts. By contrast, we propose to automatically
generate adversarial examples of OS fingerprints as the defense
mechanism, which is a feasible and promising pro-active
defense mechanism.

III. SPOOFING OS FINGERPRINTS

SOFT1’s Goal As we mentioned before, the OS fingerprinting
can be summarized as the mapping relation y = f(x), where
the input x represents the TCP/IP packet, and the output y
is one of the OS classes. Similarly to most evasion attack
settings, our goal is to misclassify the input as a class other
than the original class. During the OS detection, we craft an
adversarial example x’ from a legitimate sample x to spoof the
mapping function f(-), as the following problem:

JG&D # f(x);

sim(x,x') < € (D

X =x+n,

where n is a slight perturbation in the input’s packet, and
sim(x,x’) is the perceptual similarity between adversarial
examples and the original ones. Here, f(-) belongs to a multi-
class setting, and we have a set of k classes. Our SOFT focuses
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Fig. 4. The SOFI’s overview. (1) In the Training Phase: we use classic ML and DL to train an OS model, utilizing the constraints of the packet header to
find a suitable perturbation substitution set. (2) In the Application Phase: we use SOFTI to generate adversarial examples to deceive OS fingerprinting.

on non-targeted attacks, aiming to misclassify a legitimate
OS fingerprint to another class, merely inducing an incorrect
prediction.

There are three design requirements for generating adver-
sarial packets, as follows.

e No Prior knowledge. Unlike other obfuscating tools,
there is no need for prior knowledge to find available
and modifiable content for SOFI. The adversarial packet
is automatically generated and suitable for updating with
the numerous new OS fingerprints.

e Constraints. Our SOFI adds a slight perturbation in a
TCP/IP packet of a remote host, which will not affect the
normal usage of remote hosts. The adversarial packet can
still be routable and thus transferred by the communica-
tion network rather than being dropped or blocked by the
firewall or the router. For instance, an adversarial example
would be dropped from the network if it has incorrect IP
addresses or checksums.

o Effectiveness. SOFI effectively spoofs the OS recognition
model, leading to incorrect prediction results. This ham-
pers an attacker’s ability to gather general OS information
and achieve accurate reconnaissance results from remote
hosts. A lower accuracy rate of OS fingerprints indicates
superior evasion effectiveness.

Overview. Figure 4 depicts the overview of SOFI. In the
offline stage, we employ both classic machine learning and
deep learning algorithms to construct a multi-classifier, as OS
fingerprints fy. These models are treated as complete black
boxes; we do not access the model’s architecture, parameters 6,
or loss function J(fy(x),y). Furthermore, we cannot query the
model for confidence scores of the inputs. During the evasion
stage, we use one classifier as the surrogate model while others
serve as targets. SOFT has access to the surrogate’s architecture
for manipulation. It modifies TCP/IP packet headers to trig-
ger misclassification in OS detection, segmenting the header
fields into mutable, immutable, and checked categories. SOFT
employs the weighted fast gradient sign method (W-FGSM)
for gradient loss calculation, determining the influence of each
field on model sensitivity. For mutable fields, SOFI generates
a substitution space within TCP/IP protocol limits. Using the
W-FGSM and this substitution space, we propose a heuristic
algorithm for adding perturbations to the packet header. Upon
generating the adversarial example, we update checked fields

TABLE I

FIELD PARTITION IN THE TCP/IP PACKET HEADER
WITH CORRESPONDING WEIGHTS

Category Field Weight
ip.version, ip.id, ip.flags.rb, ip.flags.mf,
Immutable  ip.frag_offset, ip.proto, ip.src, ip.dst, )
Region ip.dsfield, tcp.sreport, tep.dstport, wo
tep.seq, tep.ack, tep.len
ip.flags.df, tcp.flags.ack,
Mutable tep.window_size tep.flags.fin, ip.ttl,
Region tep.flags.reset, tep.flags.push, wa/wy
tep.flags.urg, tep.flags.syn,
Checked ip.checksum, ip.len, tcp.checksum,
Region ip.hdr_len, tcp.hdr_len wo

to ensure the integrity and validity of the packet. The following
provides a detailed breakdown of these modules, including
field partition, constrained space generation, and the heuristic
algorithm.

A. Field Partition

The TCP/IP packet header comprises a variety of fields, with
each subject to specific protocol requirements. Consequently,
we categorize these fields into three regions: immutable,
mutable, and checked. To spoof the fingerprinting technique,
we would add a slight perturbation 7 into those fields under
the region constraints. Table I lists these three categories
pertaining to the TCP/IP packet header fields.

Immutable Region has inherent TCP/IP packet header
fields that cannot be altered without compromising packet
validity and integrity, e.g., ‘tcp.seq’ and ‘tcp.ack’ fields. Alter-
ations to such fields, like ‘ip.src’ and ‘ip.dst’ that represent
host network addresses, would directly impair the packet’s
transmission function.

Mutable Region contains changeable fields (e.g., the time
to live, flag, or window size) in the TCP/IP packet header,
allowing for legal perturbations through operations such as
addition, deletion, and replacement. Legally changing these
fields may deceive OS fingerprinting without interference with
the regular usage of remote hosts. For example, the ‘ip.ttl” field
defaults to 128 in the Windows system.

In the mutable region, some fields are independent, and
some fields are dependent on others. Randomly changing those
fields also breaks the availability and integrity of the TCP/IP
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packets. Hence, we would construct a constrained substitution
space of each dependent field to represent their dependent
constraints in the mutable region.

Checked Region has the fields that are determined by
multiple fields or all fields in the TCP/IP packet header. For
example, the length of an IP packet is calculated from the sum
of the length of the header of the IP packet and the length of
the TCP packet. Those checked fields are used to ensure the
validity and integrity of TCP/IP packets. Typically, checked
fields cannot be perturbed by any slight change for deceiving
OS fingerprinting. A slight perturbation in the TCP/IP packet
header would affect those checked fields. Therefore, we must
modify the corresponding checked fields after generating a
qualified adversarial example.

W-FGSM. We propose the weighted fast gradient sign
method (W-FGSM) to identify perturbations for approxima-
tively minimizing the OS fingerprints’ loss functions. The
FGSM proposed by Goodfellow et al. [9] can linearize the
learning-based model’s cost function around the input to be
perturbed and select a perturbation by differentiating this cost
function with respect to the input itself. The distinction in W-
FGSM is that we combine the loss gradient method with the
weight to calculate a change propensity score for each field in
the TCP/IP packet header. The W-FGSM equation is defined
as follows,

T(fi,y) = wi %105 (x, F, y)la, 2

where x is a TCP/IP packet, y is the class label of OS, J is the
loss function of the model F. Each field f; is assigned a weight
w; corresponding to its region, with w; being part of the set wy,
wi, wy. The respective values of wy, wi, and w, are outlined in
Table I. Our approach, SOFI, computes the L, norm of the loss
gradient as a representation of the gradient method’s value.
With wy equal to 0, adversarial examples cannot alter the field.
Conversely, w; and w,, set to 1 and 2, respectively, denote
fields where perturbations for adversarial example generation
are permissible. If a field is independent, we assign it with
the weight w,; otherwise, with the weight wy. Overall, SOFI1
first changes independent fields and then changes dependent
fields. The reason is that independent fields are not affected by
other fields, and dependent fields have multiple relationships
in places, leading to larger perceptual differences.

SOFT calculates each field’s loss gradient to determine its
impact on the model’s output. A larger loss gradient, obtained
through backpropagation, signifies a field that significantly
influences the input’s classification. To enhance the efficiency
of adversarial example generation, SOFI prioritizes fields with
a high score in generating OS fingerprint adversarial examples.
Notably, our W-FGSM can be applied in black-box attacks by
using a substitute model approximating the targeted model,
where crafted adversarial examples can also misclassify the
original model.

B. Constrained Space Generation

The mutable region allows valid perturbations that comply
with TCP/IP protocol constraints. Typically, there are three
requirements for the perturbation for each field: data type,
data scope, and dependent constraints. For the data type and

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

Di= fi, faf3:fa e i Fn-3s Fa-2s fa-1, fa
x1 U1
£ V2
T3 U3
x= _|Vi=
TN Rk
f2 Vialf=u f Vizlg=v, f Vialf=u
fs Visls=u I3 Vislg=vs I3 Visls=u
Spr[fl]=
a1 Vin1jp=y o] Vinojp—u, fr1] Viaij=y
fn Vil f=v, fn Vinlf=vs |- fn Vinlf—v
Srrlfi][vi] Srrlfi][v2] Srrlfillvi]
L ]
Equivalent values l
fi | Veg=v1,0% w2 v Vg
3 v v
S % . Vg |Vegs (f3 : Visjeon Fn1 : Vi -jcon)
ovlf1] = (Al = : where con: fl=veV,
fa u | w

Fig. 5. The constraint relationship generation: X is the dataset, Dy is the
feature set, S pr is the constrained value set, Sy is the equal feasible value
set, and FTS is the constaint set for the feature.

scope, we utilize the TCP/IP specifications to obtain the format
and semantics of each field. Note that this manual effort
is necessary to generate legal adversarial examples of OS
fingerprints. For dependent constraints, SOFT automatically
constructs a constrained space of each field.

Constraint Representation: As previously noted, some
mutable fields are independent, while others are dependent,
being constrained by or impacting other fields due to their
conditional relationships. For instance, the ‘tcp.flags.push’
field must be set to 1 when ‘tcp.len’ (the length of the TCP
packet payload) exceeds 0. Changing dependent fields should
comply with their data scope and constraints from other fields;
otherwise, it would violate the integrity of TCP/IP packets.

For constrained relations, we use the symbol Re to represent
the conditional relationships among those fields, indicating that
the value of one field is constrained by the values of other
fields. We use the equation to represent Re as follows,

Re(f) — {(fHA ... A (O

where fil, o fik are fields that have the conditional relationship
with the field f;. It presents the field’s value as legal when its
conditional fields are under those constraints. For instance,
the equation Re(syn = 1) « (fin = 0) A (reset = 0)
exemplifies that when ‘tcp.flags.syn’ is 1 (indicating a request
or confirmation to establish a connection), the values of
‘tcp.flags.fin’ and ‘tcp.flags.reset’” must be 0. Any deviation
from this pattern may result in it being blocked or dropped by
the router.

Constraint Generation: For each field, SOFIT automatically
generates its constraints (Re(f;)) by mining the OS fingerprint
dataset. A field refers to raw data elements, while a feature is
a derived attribute used for fingerprinting. Figure 5 depicts
the constraint relationship generation process: (1) we first
generate a constrained value set Spr from the dataset; (2)
we divide Spg into equivalence classes Sgy whenever two
feature values perform a similar role within the OS class; (3)
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we construct the constraint set F7S for the feature, utilizing
both the equivalence class Sy and the constrained value set
S Fr-

Given a dataset X = {x,x2,...,xn}, Dy = {f1, fo,.- ., fu)
denotes the feature set, where each feature f has a feasible
value set V¢ = {v{,v2,...,Vy}. The feature constraint (Re(f;))
can be represented as a set of tuples, where each tuple contains
the constrained feature f’ and its dependent fields, denoted as

SFr

SerlAAV] =A(f" V=) | f € De \ Y 3)

where V; is the value set for a feature f”, and Vpp-, denotes
the subset of feasible values for f’ when the feature f has a
value v.

Given a Spp, we further segment the value set of each
feature into equivalence classes according to the constraint
relations. Two values are considered equivalent if they exhibit
identical constraint patterns, i.e., S pr[f1[vi] = S rr[f1[v;]. We
denote an equivalence class of a feature using Sgy[f] as
follows:

Scvlf]
IWUev,, Vea =V,
= U {1 MVeq ] A (W0 € Veq, Srrlf11V] = Sl f11v°])
VeaSVy A (vveqls veq2 € SGV[f], Veql N Veq2 = 0)

“4)

In this formulation, each V4 in Sgy[f] represents an equiva-
lence class derived from § . Furthermore, all V4 are disjoint
subsets, collectively covering all feasible subsets.

After that, we generate a feature transition set (FTS),
including an independent transition set (IVT) and a dependent
transition set (DVT). FTS is the candidate set to represent
the transition pathway for any feature value (independent or
dependent). Specifically, we use the equation 4 to generate
IVT as follows.

Veg \ v} ifveV,,

0 otherwise.

[Veql > 1

IVT[fllv] = &)

IVT[f] refers to the set of feature values under f that can
independently change without impacting other features; DVT
represents the transition relationships between v and other
subsets, denoted as:

DVT[f]v]
{(vis [/ = V=) if v eV,

= AlVe‘Il = ]’Vi ¢ Veq (6)
@ otherwise.

Here, DVT[f][v] represents the dependent transition set for a
value v, mapping the feature f” and its potential values Vs,
given the constraints of v. The notation DVT[f] refers to
feature value f with constraits of other feature values. The
process to generate a FTS for all features, including both
independent and dependent transitions, is described in this
section using Equations 5 and 6.
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Algorithm 1 SOFI: Generating Adversarial Examples for OS
Fingerprints

Input : Model F, original example x, set of
independent fields S;r, set of dependent
fields Spy, set of field definitions Sp,r, set of
constraints FTS

1 x' < x;

2 while (S]f ;é @ or SDf ;é @) do

3 if S;¢ # 0 then

4 f < Sort(S;y) by Equ. 2 > Pick top 1
5 x'[f] < random(Sper[f]1);

6 Syr.delete( f);

7 else

8 if Spr # (0 then

9 f < Sort(Spy) by Equ. 2 > Pick top 1
10 (v, Scons) = FT S[ f].get_substitution();

11 x'[f] < v; Spy.delete(f);

12 for f' € Scons do

13 ‘ x/[f/] < Scons[f/]; SDf-delete(f/);

14 if F(x) # F(x’) then

15 Xadv < UpdateCheck(x, x');

16 break;

17 return Xx,q,

C. Heuristic Algorithm

As aforementioned, existing adversarial example generation
approaches [9], [10], [11], [12], [13] are not designed for
crafting perturbations towards OS fingerprints. If we directly
apply those approaches to generate adversarial examples, the
integrity and validity of TCP/IP packets would be broken.
Hence, we combine the W-FGSM and the field’s substitu-
tion space to propose a heuristic algorithm for adding legal
perturbations into the fields of packet headers. We use the
independent set I, to store all independent variable fields that
are not affected by other fields, e.g., the ‘ip.ttl’ field. We use
the dependent set D for all dependent fields, where FTS stores
all legal values and conditional fields. Note that F7S is labeled
as NULL when a field belongs to independent fields.

Algorithm 1 depicts how to generate adversarial examples
of OS fingerprints under TCP/IP constraints. The algorithm’s
input is the target model F, original packet x, independent
field set /7, dependent set Dy, and constraint set F7S. Given a
packet x, we first ensures that at least one of the sets Iy or Dy
contains elements before proceeding with modifications. We
perturb I, by selecting the field with the highest impact accord-
ing to W-FGSM (Equation 2), and then randomly choose a
valid replacement from S p,, the set of legal substitutions for
specific fields for this top-ranked independent field (lines 1-6).
Subsequent to updating Iy, we utilize W-FGSM to determine
the most impactful field in D (line 9). Once identified, we
employ FTS to find and apply the minimal necessary modifi-
cation to this field (lines 10-13). Upon creating an adversarial
example, we utilize the target model to determine whether the
manipulated example successfully misleads the classification
model. The overall goal is to induce misclassification by subtly
altering the packet at inference time.
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Updating Checked Fields: Perturbations in TCP/IP packets
should guarantee the integrity and availability of checked
fields. Even with a very minor modification, the checked fields
would differ from their original values. For every adversarial
example, SOF1 would update its checked fields in order to
ensure the legitimacy of OS fingerprints. Specifically, we first
update the header lengths of TCP/IP packets and the total
length of a packet. Then, we update the values of the TCP
checksum field and the IP checksum field. The checksum
updating is as follows: (1) we assign 0 to the TCP checksum;
(2) we divide the string (the header and data parts of the TCP
segment) into groups of 16 bits (2 bytes); (3) we calculate the
sum of every group as a 16-bit result; (4) we calculate the
sum of complement code on each group; and (5) the result is
a new checksum.

IV. IMPLEMENTATION

In this section, we have implemented ML-based and DL-
based OS classifiers to represent OS fingerprinting techniques.
We have implemented SOFT to generate adversarial TCP/IP
packets for deceiving the OS fingerprinting.

OS Fingerprinting Based on Classic Machine Learning:
There are many fields in the TCP/IP packet header, where
some fields are distinguishable, and others are irrelevant for
OS fingerprints. TCP/IP packets have limited representational
capacity, so classic machine learning cannot learn complex
dependencies between features of the input data. To build
a multi-classifier, we have conducted feature engineering to
pick meaningful information about the input representation.
We use the Chi® Test [43] approach to select features for OS
fingerprints, where all features are ranked in descending order.
The value ranges of fields in the TCP/IP packet header vary
greatly, affecting the stability of the OS fingerprint. We employ
data standardization to bring these values to a consistent scale.
This standardization involves transforming the original data
through the following formula:

z=(x-w/o

where z is the standardized data, x represents the original
data, p is the mean of the original data, and o represents
the standard deviation of the original data. Different variables’
value ranges and distributions are converted to the same scale.
Specifically, we write a Python script to extract field values
of the packet header and take the Chi’ test as the statistical
metric to select fields for classic ML-based OS fingerprinting.

We use the open-source scikit-learn [44] to implement four
classic OS classifiers, including KNN (K-Nearest Neighbors),
SVM (Support Vector Machine), RF (Random Forest), and
DT (Decision Tree). During the training, the KNN algorithm
uses 5 as the number of samples. Our SVM algorithm utilizes
a radial basis function (RBF) as its kernel, with a penalty
coeflicient set to 1.0. We use 10 as the number of decision trees
and the entropy as the quality function for the RF algorithm.
The DT algorithm uses 2 as the number of samples, 1 as the
minimum number of leaf nodes, and an unlimited maximum
tree depth.

OS Fingerprinting Based on Deep Learning: Unlike classic
OS fingerprinting, there is no need to conduct feature engi-
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neering to extract the underlying statistical patterns between
the input data and the output. Deep Learning algorithms
use multiple layers of neural networks to extract feature
representations of the input data. In each layer, the neuron unit
performs a nonlinear transformation on the input and output to
other neuron units in the next layer after calculation through
a series of mathematical operations and activation functions.
Every layer can be represented as follows,

h = filWihg_yy + by),

where h; represents the output of neurons in layer L, f; is the
activation function, W; and b; are the weights and biases of
this layer. Thus, we do not use feature engineering or data
standardization techniques for deep learning algorithms.

We use the PyTorch [45] library to implement three neural
network structures for OS fingerprints, including Deep Neu-
ral Network (DNN), Recurrent Neural Network (RNN), and
Convolutional Neural Network (CNN). The CNN consists of
three layers: convolutional layers, pooling layers, and fully
connected layers. The DNN contains three fully connected lay-
ers. The RNN uses two Long Short-Term Memory Networks
(LSTM) and a fully connected layer. During the training, the
loss function of the DL-based OS classifier is Cross Entropy
Loss, and the optimizer uses the Adam optimization algorithm.

SOFT Implementation: We implement a prototype of SOFI
as a self-contained piece of software based on open-source
libraries. The W-FGSM and heuristic algorithm in SOFI are
pipelined via custom Python scripts. We deploy the SOFI1
prototype system on a Ubuntu 20.04.3 LTS server powered
by four Intel Xeon Gold 6230 CPUs, 125GB RAM, and four
24GB NVIDIA GPUs.

V. EVALUATION

In this section, we first present the experimental settings
of SOFI. Then, we evaluate the performance of SOFI and
compare it with the baseline approaches. We use a surrogate
OS classifier to demonstrate the SOFI’s transferability. We
compare SOFI with a variety of existing OS fingerprinting
defense tools. Further, we shed light on the explainability of
OS fingerprints.

A. Experimental Settings

Dataset: We use two datasets to validate SOFI’s perfor-
mance, including one passive OS fingerprinting dataset and
one active OS fingerprinting dataset. The passive dataset is
from the CIC-IDS (Canadian Institute for Cybersecurity Intru-
sion Detection System) [46], which contains 48,962 packets
and covers eight OS fingerprints with corresponding versions.
Each sample in the passive dataset is a TCP/IP packet. The
active dataset is from the open-source repository [47], which
contains 264,852 packets and covers seven OS fingerprints.
Each sample in the active dataset has several packets used to
calculate the feature of active OS fingerprints, the same as the
NMAP [3] OS dataset.

Table II lists the distribution of each OS and the number
of packets per category. The passive dataset is imbalanced,
where Ubuntu server 12 is the class with a small proportion of
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TABLE I
Two DATASETS: ONE PASSIVE AND ONE ACTIVE OS FINGERPRINTS

Passive OS No. of Packets. | Active OS  No. of Packets
Ubuntu 14.4 6,558 Linux 142,548
Ubuntu 16.4 410 Windows 67,128
Ubuntu server 12 63 i0S 17,232
Win 10 23,059 macOS 16,160
Win 7 6,636 BSD 14,278
Win 8.1 9,323 Solaris 4,926
Win Vista 1,493 Android 2,580
macOS 1,420

packets, and Win 10 is the class with a half dataset. The active
dataset is also imbalanced, where Android has the lowest
number of packets. We use the ratio (8:2) to divide the training
and test sets for evaluating OS classifiers.

Metric: To evaluate the performance of adversarial example
generation, we use three metrics to measure the effectiveness
and performance of SOFTI. (1) Precision/Recall/F] are statistics
indicators to measure the performance of OS fingerprinting. (2)
Success Rate (SR) is to measure the degree of deceiving OS
fingerprinting. SR is equal to the proportion of samples that
make the OS fingerprints misclassified to other classes. The
higher the SR, the more effective the generated adversarial
examples. (3) Constraint Requirement (CR) indicates whether
an adversarial example satisfies TCP/IP specifications.

B. SoFi ’s Performance

Performance of OS Fingerprinting: We measure the pre-
cision and recall of passive OS fingerprinting determined by
KNN, SVM, RF, DT, CNN, DNN, and RNN. The performance
of active OS fingerprints is also evaluated, demonstrating
promising results for recognizing OS information. We observe
that both ML and DL-based OS classifiers demonstrate compa-
rable performance with precision and recall soaring to around
97%-99%. The performance of ML-based OS classifiers might
be attributed to the feature engineering that provides the CHi-
Squared test and data standardization to pick up features.
The experimental results show that active fingerprints achieve
promising performance for recognizing OS information, e.g.,
close to 96% F1-score. One interesting finding is that despite
the dataset’s imbalance, for instance, Ubuntu server 12 having
only 63 packets, the performance of OS classifiers does not
degrade. This might be due to the efficient handling of imbal-
anced data or the robustness of the algorithms in handling such
variations.

Performance of Adversarial Fingerprints: SOF1 generates
adversarial examples at inference time in order to induce a
misclassification for OS fingerprinting. We employ three Deep
Learning (DL) OS models as the target models, which SOFI
attempts to deceive through adversarial examples generated
from original packets. We use four metrics to measure the
performance degradation of OS models, including F1-score,
accuracy, V, and SR. Note that Vv represents the difference
in the model’s accuracy between inputs of original packets
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TABLE III

THE SOFI ’S PERFORMANCE ON PASSIVE OS FINGERPRINTS: THE F1
SCORE, ACCURACY, V, AND SR

Target Model F1 Accuracy \v4 SR
DNN 0.2820 0.1608 0.8092  83.92%
RNN 0.1231 0.0623 0.9077  93.77%
CNN 0.1501 0.0812 0.8888  91.880%

TABLE IV

THE SOFI ’S PERFORMANCE ON ACTIVE OS FINGERPRINTS: THE F1
SCORE, ACCURACY, V, AND SR

Target Model F1 Accuracy \V4 SR
DNN 0.0000 0.0000 1.0000  96.19%
RNN 0.0000 0.0000 1.0000  96.30%
CNN 0.0000 0.0000 1.0000  96.23%

and those of adversarial examples. The higher the Vv, the
larger the performance degradation of the model. (1) Passive
OS fingerprints. Table III lists the SOFI’s performance over
passive OS fingerprints: DNN, CNN, and RNN. We observe
that the generated adversarial examples can greatly reduce
the classification performance of the model. On average, the
accuracy of the model can be reduced to about 10%, and the
V value achieves nearly 90%. In addition, their F1 scores also
decrease below 0.2. We can see that the accuracy rate of the
RNN model has the largest descent, from 97% to 6.23%,
followed by the DNN model and CNN model. (2) Active
OS fingerprints. Table IV lists the SOFT’s performance over
active OS fingerprints: DNN, CNN, and RNN. Specifically,
the model’s F1-score decreases from 96% to 0.0%, and the
accuracy decreases from 95.8% to 0.0%. Their v values are
equal to 1.00. Overall, adversarial examples of active OS
fingerprints achieve 96.2% SR. We verify that those generated
adversarial examples comply with the TCP/IP specifications.
All adversarial examples are legal, including their checked
fields and constrained fields.

Comparison: Specifically, we implement five baseline meth-
ods on the passive dataset:

1) FGSM [9] linearizes the model’s cost function around
the input to select perturbations by differentiating the
cost function with respect to the input itself, setting the
perturbation amplitude at 0.1.

2) BIM [13] generates adversarial examples by iteratively
adding small perturbations to the input data, with 100
iterations and a perturbation amplitude of 0.1.

3) C&W [11] minimizes the cost function through an
optimization algorithm, with a learning rate of 0.01 and
L., as the distance metric.

4) DeepFool [10] employs an iterative optimization algo-
rithm with a linear approach, using 100 iterations and a
numerical stability parameter of 1075,

5) JSMA [12] uses a Jacobian matrix to evaluate the
model’s output sensitivity to each input, acting as a
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TABLE V

PASSIVE OS FINGERPRINTS: THE COMPARISION PERFORMANCE
BETWEEN SOFI AND 5 BASELINES

Violation Violation

SR CR Scope Constraint
FGSM [9] 52.61% No 100% 100%
BIM [13] 57.09% No 100% 100%
DeepFool [10] 94.79% No 100% 100%
C&W(Loso) [11] 82.52% No 100% 100%
JSMA [12] 48.91% No 100% 100%
SoF1 91.71% Yes 0.00% 0.00%

TABLE VI

PASSIVE OS FINGERPRINTS: THE COMPARISION PERFORMANCE
BETWEEN SOFI AND 5 BASELINES

R
FGSM [9] 14.32% No 100% 100%
BIM [13] 1.47% No 100% 100%
DeepFool [10] 87.80% No 100% 100%
C&W(L2) [11] 93.27% No 100% 100%
SoF1 96.19% Yes 0.00% 0.00%

saliency map, with a maximum perturbation rate of 0.1
per iteration.

Adversarial examples are crafted to exploit the features most
sensitive to classification outcomes. The active OS fingerprint
contains a large feature dimension (233), and the passive
OS fingerprint contains a small dimension (32). We set the
maximum perturbation rate at 0.2. During implementation, the
batch size is set to 128, and all fields can be perturbed by all
baselines.

Table V lists the comparison results between SOFI and
five baseline approaches for passive OS fingerprints. We find
that SOFI and DeepFool both achieve a higher SR than
the other four baseline methods: DeepFool has 94.79%, and
our generated adversarial examples have a 91.71% success
rate for spoofing OS fingerprinting. The SR of the C&W
method is 82.52%, which is lower than that of SOFI. The strict
conditions of the L., norm result in fewer fields perturbed by
the C&W method. The SR of FGSM and BIM are relatively
low, 52.61% and 57.09%, respectively. JSMA has the lowest
SR value nearly 48.91%, because the features in the Jacobian
matrix are constrained by other features. These results show
that the OS fingerprinting model is vulnerable to adversarial
examples.

Table VI lists the comparison results between SOFI and five
baseline approaches for active OS fingerprints. SOFT achieves
a higher SR than the other five baseline methods, with a
success rate of 96.19%. C&W(L,) has the second highest SR,
with a success rate of 93.27%, and DeepFool has 87.8% SR.
The other 3 baselines show a lower SR.

All five baselines violate the requirements of the TCP/IP
protocol, producing invalid or illicit adversarial examples. We
conduct an in-depth analysis of the violations present in adver-
sarial examples, distinguishing between data scope violations,
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TABLE VII

SOFI ’S TRANSFERABILITY OVER DIFFERENT TARGET MODELS: THE
SUBSTITUTION MODEL IS RNN

F1 Accuracy \val F1 Accuracy \V4
DNN 0.18 0.10 0.88 | SVM  0.00 0.00 0.96
CNN  0.20 0.11 0.87 RF 0.00 0.00 0.99
KNN  0.00 0.00 0.97 DT 0.06 0.03 0.96
TABLE VIII
SOF1 ’S TRANSFERABILITY ON OS FINGERPRINTS: THE TRAINING

DATASET IS UNKNOWN WITH RNN

Acc., Pre. SR Change Rate

Data Augmentation  0.97, 0.98
SOFI 0.00, 0.01  97.5% 0.04
RNN Transfer 0.06, 0.12  91.9% 0.04

where the perturbation falls outside the field’s value range,
and constraint violations, where the perturbation conflicts with
the values of other fields. Ensuring TCP/IP compliance is a
fundamental requirement for adversarial example generation
methods in the network domain, as non-compliance results
in invalid packets that are dropped by network devices. SOFI1
distinguishes itself by achieving compliance while maintaining
a high obfuscation success rate, addressing the limitations of
prior methods that produce invalid packets due to domain-
specific constraints.

C. SoFi ’s Transferability

To further assess SOFI’s efficacy, we validate its trans-
ferability under the black-box setting with various ML
algorithms. In the black-box setting, the target model (e.g.,
the architecture, the loss function, or parameters) is unknown
to SOFI, which presents a realistic situation where an OS
fingerprinting method is often inaccessible. The goal is to
generate adversarial examples via the surrogate model that lead
to misclassifications in the original target models.

We leverage an RNN model as a surrogate to approximate
the other 6 target models. We use the same training dataset
to learn the RNN model. Table VII lists the performance
degradation of OS fingerprinting by the other 6 models. We
observe that adversarial examples from the RNN model can
still deceive the OS fingerprints learned by other models.
Fl-score and accuracy of those models are greatly reduced,
where the average V is closely 0.94. For classic ML-based
OS fingerprinting, the F1-score and accuracy of KNN, SVM,
and RF drop into zero by our adversarial examples. DT-based
OS fingerprinting has a certain resistance towards adversarial
examples: the pruning operation in DT might eliminate noises
or adversarial examples. We find that DL-based fingerprints are
slightly less affected than ML-based fingerprinting. The reason
is that extracting high-level features from the data might make
the model more robust to small perturbations in the input.

Further, we evaluate the SOFT’s transferability on the active
and passive OS fingerprints with a different dataset from the
training data. Specifically, we leverage the data augmentation
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TABLE IX

SOF1’S ROBUSTNESS: THE ADVERSARIAL TRAINING OF OS
FINGERPRINTS WITH DNN MODEL

Acc. Pre. SR Change Rate
Original training 0.96 0.967
SoFI 0.00 0.00 96.2% 0.18
Adversarial training 0.96 0.97
SoFI 0.00 0.00 96.4% 0.64

to generate new data from the training data. Given the original
264,852 packets in seven OS fingerprints, there are 26,494
new samples as the training data. The surrogate model has
also adopted an RNN algorithm, and the target model is DNN.
Table VIII lists the SOFT’s performance. SOFT achieves a high
SR of 97.5% for the active dataset, and the change rate is
0.04. When we use RNN as the target model of DNN, the
performance is 91.9% SR for adversarial fingerprints. Overall,
SOFTI can still generate adversarial examples to obfuscate OS
fingerprints when we have little knowledge of the training
dataset. These results indicate that SOFI has transferability
across models and datasets.

D. SoFi ’s Robustness

We use the adversarial training to validate the SOFI’s
robustness. Adversarial training is a general method that uses
adversarial examples as the supplement of the training data
[9]. Specifically, generated adversarial examples are added to
the original training dataset. We only keep successful samples
and remove failed samples. The training data set is divided
into the same ratio of 8:2 for learning OS classifiers.

Table IX lists the SOFT’s performance with/without the
adversarial training data. We observe that the performance
of the OS classifier does not obtain any improvement with
adversarial training, where its accuracy remains at a similar
level as the original OS classifier. The plausible reason is that
adversarial examples do not bring more context and semantic
information than the original training data. We observe that
SOFT can still generate adversarial examples with a high SR
towards both classifiers with/without adversarial training. The
improvement lies in the change rate between original and
adversarial examples, which increases from 0.18 to 0.64. A
high change rate indicates a large cost of SOFI. Note that
adversarial training is expensive due to the iterative generation
of adversarial examples during the training. In short, adver-
sarial training with adversarial examples cannot improve OS
fingerprint performance but increase fingerprints’ robustness.

VI. AUTOMATION AND DEPLOYMENT

In this section, we demonstrate SOFI’s benefits from two
aspects: the comparison with existing defense tools, and the
comparison of manual versus automation.

A. Comparison With Defense Tools

We compare SOFT with the existing defense tools, including
a random approach and OSfooler [28]. The manual approach

4493

TABLE X
THE COMPARISON PERFORMANCE BETWEEN SOFI AND 2 BASELINES

Avg. Perb.  Violation
SR CR (%) (%)
Manual 44.91% No 4.99 22.59%
OSfooler [11]  92.13% No 1.00 86.62%
SoF1 91.71% Yes 1.00 0.00%
TABLE XI

COMPARISON BETWEEN SOFI AND EXSINT TOOLS AND WORKS

Properties

Defense

MT oC DE FS
Ipersonality [29] O O O @)
Honeyd [48] ) [ ] o O
OSfuscate[28] O O @) O
OSfooler [30] @) O O O
MTD [33] () O D @)
TMorph [49] O @) D O
SoF1 ° O [ [ ]

Maintenance(MT) - @ Actively @ Occasionally O No Recent
OS Compatibility(OC) - @ OS-Independent O OS-Dependent
Deployment Effort(DE) - @ Easy ® Moderate O Challenging
Feature Selection(FS) - @ Automatic O Manual

is to select a TCP/IP header field and change its value
based on expert experience. OSfooler [28] leverages the OS
fingerprints in the Nmap database to change the response
packets. It picks up a different OS fingerprint in the Nmap
database and modifies the packet based on the selected OS
fingerprint. Those approaches rely on expert knowledge and
manual efforts. Table X lists the overall performance com-
parison between SOFI and other approaches. SOFI has a
91.71% SR in deceiving OS fingerprinting, while Manual has
only 44.91% SR and OSfooler has 92.13% SR. Generated
adversarial packets have zero violation constraint, compared
with 86.62% violation constraint in Manual and 22.59%
violation constraint in OSfooler. One advantage is that SOFI
can automatically generate adversarial packets without any
manual efforts and professional knowledge. We observe that
SOFT archives a promising performance for misleading today’s
OS fingerprinting.

Then, we compare SOFI with existing tools and research
works. Table XI lists a qualitative comparison between SOFI
and other approaches. Note that there is a compatibility issue
between SOFI and those works, e.g., OSfuscate works in
Windows XP/Vista. Thus, we only use four metrics to rep-
resent their advantages and disadvantages, including MT, OC,
DE, and FS. Overall, SOFI can automatically find modifiable
features for adversarial packets, adapting to the new and
emerging OS fingerprinting techniques.

B. Manual Vs. Automation

SOFT automatically finds applicable and available features
to deceive OS fingerprints. By contrast, the manual approach
leverages expert knowledge to identify which feature impacts
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Fig. 6. The distribution of features’ SHAP values contribution to the OS
fingerprints.

OS fingerprints. We use SHAP [50] to represent a manual
approach for obfuscating OS fingerprints, which manually
seeks important features. SHAP leverages the cooperative
game theory concept to interpret the model predictions. SHAP
provides insight into the importance of features in classifier
decisions and the direction of that influence. Specifically,
SHAP explains the final value of a prediction by attributing
a value to each feature based on its contribution to OS
fingerprints, as follows:

M
g =6+ 0 f
j=1
where x is the packet, f; is the jth field, and 6; is the
contribution of feature f; to the OS fingerprint.

Figure 6 depicts the distribution of features” SHAP values
based on the contribution to the OS fingerprints. We only pick
the top 10 features’ SHAP values for OS fingerprints. Note that
the sum of SHAP values across all features of a given sample
equals the model’s logit output, convertible to a probability via
logistic transformation. Our analysis reveals that the TTL field,
source port, and window size are the top 3 influential features
in the OS fingerprinting model. We observe that a TCP/IP
packet feature plays varying roles in affecting the model’s
classification decision. For instance, the TTL field significantly
impacts Ubuntu 14.4, Win 8.1, Win 10, and macOS predictions
but is less influential for other OS classes. We explain that each
feature’s SHAP value approximates the confidence of the deci-
sion boundary. From a defensive perspective, the SHAP value
of a feature offers a model-agnostic insight for researchers.
Meanwhile, from an attacker’s viewpoint, the SHAP value
of a feature can guide the creation of perturbations, thereby
affecting the generalizability of adversarial examples. Our
approach automatically identifies features like window size,
which is consistent with the SHAP analysis results.

We provide the feature analysis of various fields from the
TCP/IP packet header. Our analysis reveals distinct feature
distributions among different OS versions. Figure 7 illustrates
a relatively flat and stable ‘tcp.seq’ distribution across OS
fingerprints, with Windows 10 and 8 displaying the most
significant fluctuation. By contrast, other OS fingerprints can-
not be distinguished based on the ‘tcp.seq’ feature. Figure 8
shows similar window size distributions between Windows
7 and 8, with Ubuntu and MacOS maintaining narrow and
fixed ranges, respectively. It is evident that the window size
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TABLE XII
PACKET HEADER FIELDS BEFORE AND AFTER MODIFICATION

Field Original Adversarial
Ubuntu 23.04  Windows

Immutable Region

Mutable Region

ip.flags.df 1 0

tep.flags.ack 1 1

tcp.window_size 65160 (65535/8192/4128)

tep.flags.fin 0 0

ip.ttl 64 (128 7 255)

tep.flags.reset 0 0

tep.flags.push 0 1

tep.flags.urg 0 0

tep.flags.syn 1 1

Checked Region

achieves better distinguishability among OS fingerprints than
the ‘tcp.seq’. Note that the feature analysis also provides
insights for spoofing OS fingerprints. SOFI can automatically
find those features for generating adversarial packets, which
is more efficient than manual efforts.

C. Real-World Deployment

We deploy adversarial OS fingerprints to validate SOFI
effectiveness. Our original OSes are Ubuntu 20.04 and Ubuntu
23.04, and the target OSes are Windows Vista and Windows. In
the passive dataset, we have 1,581 pairs of original and adver-
sarial OS fingerprints, abbreviated as (Ubuntu, Win Vista); in
the active dataset, we have 8,133 pairs (Ubuntu, Win). We
obtain packet header differences for those pairs, detailed in
Table XII.

Figure 9 depicts the implementation of adversarial OS
fingerprints in a real-world scenario. Leveraging existing tools
or libraries to change TCP/IP packet headers, we strategically
modify packet header fields such as IP TTL, TCP window
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Fig. 9. The deployment for adversarial OS fingerprints.

size, and TCP flags. Specifically, the iptable tool configures the
kernel’s firewall to divert TCP SYN packets into a designated
queue,' and the NetfilterQueue tool accesses the packet queue,
where we can manipulate packets in user-space.’> After that,
we leverage the Scapy tool to modify packet header fields,
including TTL, window size, and sequence numbers. We use
the Tshark tool to capture the packet flows and identify
whether adversarial packets can spoof OS fingerprints. Our
deployment for adversarial OS fingerprint only uses Python
scripts to change the packet headers, which is efficient and
effective.

VII. DISCUSSION AND LIMITATION

Compatibility Limitation: One concern is that SOFT has a
compatibility issue with existing fingerprinting defense tools
[28], [29], [30]. Changing the TCP/IP packet header must
involve OS kernel operations, leading to the comparability
limitation. In fact, those fingerprinting defense tools [28], [29],
[30] are also not compatible with each other; for instance,
OSfuscate works in Windows XP/Vista, and OSfooler works
in Ubuntu. We have deployed adversarial OS fingerprints in
the Ubuntu system with several open-source libraries or tools
for validating SOFT’s effectiveness.

Usage: SOFI acts as the guideline to help fingerprinting
defense tools find available modification places in the TCP/IP
packets. Prior works [27], [40], [51] used expert knowledge
to defeat OS fingerprinting. A straightforward method is to
revise the TTL field in the IP header, which depends on the
specific OS implementation. Note that this manual process
is arduous and incomplete, as it relies on only one tool to
guess the modification operation. When attackers deploy new
tools or techniques, the existing defense approaches may not
be effective against a wide range of new OS fingerprinting
methods. By contrast, SOFI only relies on a target model
for generating adversarial packets and provides the guideline
information to existing defense tools/approaches.

Targeted Obfuscation: We use a multi-classifier to represent
the OS fingerprinting and focus on non-targeted evasion. The
targeted evasion misclassifies the OS fingerprinting into a
specific class, and the non-targeted evasion merely induces an
incorrect prediction. For example, when the target machine
runs an Ubuntu 12.4, the targeted evasion would deceive
attackers into an Ubuntu 16.2 version. Targeted approaches can

liptables -A INPUT -p tcp —syn -j NFQUEUE —queue-num 1.
Znfqueue.bind(1, process _packet).
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mislead attackers and potentially force them to adopt ineffec-
tive strategies. Now, SOFT adopts an obfuscation approach,
aiming to make OS fingerprints unidentifiable rather than
mimicking a specific OS. In our future work, we will extend
SOFT into the targeted evasion.

Model Limitation: First, we are free to access the training
data of OS fingerprints due to its public availability. Second,
we explore SOFT’s effectiveness with limited access to the
target model, which is referred to as model transferability.
SOFI can access the architecture and loss function of the
surrogate model. SOFT with the surrogate model still achieves
a high success rate in deceiving the target model. Third, our
SOFT is evaluated for these adversarial examples against both
classic machine learning and deep learning algorithms. In our
future work, we will add existing fingerprinting tools as the
surrogate model for deceiving attackers.

Coverage: One concern is that our fingerprinting model
suffers a coverage issue because there are a variety of OS
fingerprinting tools and techniques (see Section II). It is
impossible to find a single model that satisfies all of them.
Another concern is that the experimental dataset only covers
a limited number of OS versions, not representing the diversity
of OS versions in practice. In future work, we will collect a
comprehensive dataset to generate adversarial OS fingerprints,
including OS variants and new versions.

Additional Features: SOFI currently does not support
some features used in advanced fingerprinting, such as TCP
flag combinations (e.g., FIN, XMAS), ICMP responses, and
fragmentation. These features are also utilized by OS finger-
printing tools like Nmap and pOf. Modifying these features
requires specialized knowledge and manual effort, as users
must know which features to adjust and what values to
change. Additionally, altering these features in practice can be
challenging—such as manipulating ACK or FIN numbers in
host communications. As a result, SOFI focuses on leveraging
available and modifiable features for OS fingerprinting.

IPv6 Extension: So far, SOF1 does not support the OS
fingerprints to IPv6. IPv6 offers a number of distinct and new
features for OS fingerprints. IPv6 packets have different fields
to IPv6, like the Hop-by-Hop Options or Routing Header. In
contrast, some features between IPv6 and IPv4 are similar,
such as certain TCP flags, time-to-live (TTL) values, or
window sizes. To extend SOFI to IPv6, several things need
to be done: (1) manually identifying features in IPv6 packets,
(2) collecting the IPv6 dataset, (3) dividing features into 3
categories (Table I), and (4) finding perturbations in the IPv6
packets for OS fingerprints.

Long-Term Viability: One concern is that SOFI may not
be viable in the long term due to the rapid evolution of
OS fingerprinting techniques and the increasing complexity
of network environments. Specifically, SOFI excels in static
network environments, it may face challenges when confronted
with dynamic network conditions or adaptive fingerprinting
systems. The modification is that we put the new dataset
into SOFT to generate adversarial OS fingerprints. In our
future work, we will extend SOFT for advanced algorithms to
incorporate tool-specific adaptations or optimize obfuscation
strategies for specific reconnaissance scenarios.
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VIII. CONCLUSION

As fingerprinting techniques play an important role in
network reconnaissance, we propose a novel approach called
SOFT to spoof OS fingerprints as a proactive defense mea-
sure. The core of SOFI is an adversarial example generation
algorithm. Uniquely designed, SOFI works within TCP/IP
specification constraints and introduces effective perturbations
in packet data to deceive OS fingerprints classifiers. Our
research underscores these classifiers’ vulnerability to eva-
sion and reveals how subtle perturbations can successfully
spoof OS fingerprints. Our results demonstrate the effec-
tiveness of adversarial examples and assess the impact of
model transferability on attackers. Additionally, we employ
ML explainability to pinpoint potent features, enhancing the
robustness of OS fingerprints.

(1]

(2]

(3]
(4]

(51

(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]
[14]
[15]

[16]

(17]
(18]

(19]

[20]

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey
of intrusion detection systems: Techniques, datasets and challenges,”
Cybersecurity, vol. 2, no. 1, pp. 1-22, Dec. 2019.

F. Cremer et al., “Cyber risk and cybersecurity: A systematic review
of data,” Geneva Papers Risk Insurance-Issues Pract., vol. 47, no. 3,
pp. 698-736, 2022.

Nmap.(1997). Network Security Scanner Tool. [Online]. Available:
http://nmap.org/projects/iptables/index.html

J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song,
and A. Blum, “FiG: Automatic fingerprint generation,” in Proc. Netw.
Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Jan. 2007.
Z. Shamsi, D. B. H. Cline, and D. Loguinov, “Faulds: A non-parametric
iterative classifier for internet-wide OS fingerprinting,” IEEE/ACM
Trans. Netw., vol. 29, no. 5, pp. 2339-2352, Oct. 2021.

J. Varmarken, J. Al Aaraj, R. Trimananda, and A. Markopoulou,
“FingerprinTV: Fingerprinting smart TV apps,” Proc. Privacy Enhanc-
ing Technol., vol. 2022, no. 3, pp. 606-629, Jul. 2022.

C. Szegedy et al., “Intriguing properties of neural networks,” Presented
at the 2nd Int. Conf. Learn. Represent. (ICLR), Banff, Canada, Banff,
AB, Canada, Apr. 2014.

N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adver-
sarial input sequences for recurrent neural networks,” in Proc. MILCOM
IEEE Mil. Commun. Conf., Nov. 2016, pp. 49-54.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple
and accurate method to fool deep neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574-2582.

N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39-57.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy, Mar. 2016, pp. 372-387.

J. Wang, “Adversarial examples in physical world,” in Proc. IJCAI,
2021, pp. 4925-4926.

D. E. Comer and J. C. Lin, “Probing TCP implementations,” in Proc.
Usenix Summer, Jun. 1994, p. 17.

P. Auffret, “SinFP, unification of active and passive operating system
fingerprinting,” J. Comput. Virol., vol. 6, no. 3, pp. 197-205, Aug. 2010.
B. Proxy. (2013). SINFP3: A Passive and Active Os Fingerprinting
Tool. [Online]. Available: https://metacpan.org/dist/Net-SinFP3/view/
bin/sinfp3.pl

M. Zalewski. (2013). POF: A Passive TCP/IP Stack Fingerprinting Tool.
[Online]. Available: http://lcamtuf.coredump.cx/p0f3/

C. Sarraute and J. Burroni, “Using neural networks to improve classical
operating system fingerprinting techniques,” 2010, arXiv:1006.1918.
Z. Shamsi, A. Nandwani, D. Leonard, and D. Loguinov, ‘“Hershel:
Single-packet OS fingerprinting,” IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2196-2209, Aug. 2016.

M. Lastovicka, M. Husdk, P. Velan, T. Jirsik, and P. Celeda,
“Passive operating system fingerprinting revisited: Evaluation and cur-
rent challenges,” Comput. Netw., vol. 229, Jun. 2023, Art. no. 109782.

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

D. H. Hagos, A. Yazidi, @. Kure, and P. E. Engelstad, “A machine-
learning-based tool for passive OS fingerprinting with TCP variant as a
novel feature,” IEEE Internet Things J., vol. 8, no. 5, pp. 3534-3553,
Mar. 2021.

S. Zander and S. J. Murdoch, “An improved clock-skew measurement
technique for revealing hidden services,” in Proc. 17th Conf. Secur.
Symp., Berkeley, CA, USA, Jul. 2008, pp. 211-225. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496711.1496726

G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, “Radio frequency
fingerprint identification for LoRa using spectrogram and CNN,” in
Proc. [EEE INFOCOM, May 2021, pp. 1-10.

X. Ma et al.,, “Context-aware website fingerprinting over encrypted
proxies,” in Proc. IEEE INFOCOM Conf. Comput. Commun., May 2021,
pp. 1-10.

Tenable.(2017). Nessus Vulnerability Scanner. [Online]. Available:
https://www.tenable.com/products/nessus

B. Anderson and D. McGrew, “OS fingerprinting: New techniques and
a study of information gain and obfuscation,” in Proc. IEEE Conf.
Commun. Netw. Secur. (CNS), Oct. 2017, pp. 1-9.

M. Smart, G. R. Malan, and F. Jahanian, “Defeating TCP/IP stack
fingerprinting,” in Proc. 9th USENIX Secur. Symp. (USENIX Secur.),
2000.

A. Crenshaw. (2008). Change Your Windows Os Tcpfip
Fingerprint To Confuse Pof, Networkminer, Ettercap,
Nmap, and Other Os Detection Tools. [Online]. Available:

http://www.irongeek.com/i.php?page=security/osfuscate-change-your-
windows-os-tcp-ip-fingerprint-to-confuse-pOf-networkminer-ettercap-
nmap-and-other-os-detection-tools

I. Personality. (2013). The Emulation of Other OSes at the Network
Level. [Online]. Available: https://sourceforge.net/projects/ippersonality/
(2019). Preventing Remote Active/passive OS Fingerprinting By Tools.
[Online]. Available: https://github.com/segofensiva/OSfooler-ng

N. Provos, “Honeyd-a virtual honeypot daemon,” in Proc. 10th DFN-
CERT Workshop, Hamburg, Germany, vol. 2, 2003, p. 4.

Honeypot Website.(2015). The Honeynet Project. [Online]. Available:
https://www.honeynet.org/

S. Sengupta, A. Chowdhary, A. Sabur, A. Alshamrani, D. Huang, and
S. Kambhampati, “A survey of moving target defenses for network
security,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1909-1941,
3rd Quart., 2020.

M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating DNN-based
traffic analysis systems in real-time with blind adversarial perturbations,”
in Proc. 30th USENIX Secur. Symp., 2021, pp. 2705-2722.

S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Patch-based defenses
against web fingerprinting attacks,” in Proc. 14th ACM Workshop Artif.
Intell. Secur., Nov. 2021, pp. 97-109.

L. Qiao, B. Wu, S. Yin, H. Li, W. Yuan, and X. Luo, “Resisting DNN-
based website fingerprinting attacks enhanced by adversarial training,”
IEEE Trans. Inf. Forensics Security, vol. 18, pp. 5375-5386, 2023.

B. Hayden, T. Walsh, and A. Barton, “Defending against deep learning-
based traffic fingerprinting attacks with adversarial examples,” ACM
Trans. Privacy Secur., vol. 28, no. 1, pp. 1-23, Feb. 2025.

Z. Ling, G. Xiao, W. Wu, X. Gu, M. Yang, and X. Fu, “Towards an
efficient defense against deep learning based website fingerprinting,” in
Proc. IEEE Conf. Comput. Commun., May 2022, pp. 310-319.

P. Kampanakis, H. Perros, and T. Beyene, “SDN-based solutions for
moving target defense network protection,” in Proc. IEEE Int. Symp.
World Wireless, Mobile Multimedia Netw., Jun. 2014, pp. 1-6.

M. Albanese, E. Battista, and S. Jajodia, “A deception based approach
for defeating OS and service fingerprinting,” in Proc. IEEE Conf.
Commun. Netw. Secur. (CNS), Sep. 2015, pp. 317-325.

M. A. Rahman, M. G. M. M. Hasan, M. H. Manshaei, and E. Al-Shaer,
“A game-theoretic analysis to defend against remote operating system
fingerprinting,” J. Inf. Secur. Appl., vol. 52, Jun. 2020, Art. no. 102456.
N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper, and
M. Wright, “SoK: A critical evaluation of efficient website fingerprint-
ing defenses,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2023,
pp. 969-986.

C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer, 2006.
Scikit-learn. (2007). A Free Software Machine Learning Library for
the Python Programming Language. [Online]. Available: http://scikit-
learn.org/stable/index.html

Pytorch.(2018). An Open Source Machine Learning Framework that
Accelerates the Path From Research Prototyping To Production Deploy-
ment. [Online]. Available: https://pytorch.org/



HAN et al.: SoFI: SPOOFING OS FINGERPRINTS AGAINST NETWORK RECONNAISSANCE

[46] CIC-IDS. (2017). Canadian Institute for Cybersecurity Intrusion
Detection System. [Online]. Available: https://www.unb.ca/cic/datasets/
ids-2017.html

[47] R. P. Jove. (2015). Applying Artificial Intelligence To Os Fin-
gerprinting Nmap. [Online]. Available: https://github.com/rubenpjove/
osfingerprintingia

[48] C. Valli, “Honeyd-a OS fingerprinting artifice,” in Proc. Ist Austral.

Comput., Network Inf. Forensics Conf., Perth, WA, Australia, Nov. 2003.
[49] Z. Xu, H. Khan, and R. Muresan, “TMorph: A traffic morphing
framework to test network defenses against adversarial attacks,” in Proc.
Int. Conf. Inf. Netw. (ICOIN), Jan. 2022, pp. 18-23.
S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Proc. Adv. Neural Inf. Process. Syst., Jan. 2017.
D. B. Berrueta, “A practical approach for defeating nmap OS-
fingerprinting,” Retrieved March, vol. 12, p. 2009, Jan. 2003.

[50]

[51]

Xu Han received the bachelor’s degree from Beijing
University of Chemical Technology in 2018 and
the Ph.D. degree from Beijing Jiaotong Univer-
sity, China, in 2024. Her research interests lie in
trustworthy and interpretable Al technologies for
cybersecurity applications.

Haocong Li received the master’s degree from
the School of Computer Science and Technology,
Beijing Jiaotong University, in 2024. She is currently
with China Everbright Bank. Her research interests
include the IoT security and software supply chain
security.

Wei Wang (Member, IEEE) received the Ph.D.
degree from Xi’an Jiaotong University in 2006. He
is currently a Full Professor with the School of
Computer Science and Technology, Beijing Jiao-
tong University, China. He was a Post-Doctoral
Researcher with the University of Trento, Italy, from
2005 to 2006. He was a Post-Doctoral Researcher
with TELECOM Bretagne and with INRIA, France,
from 2007 to 2008. He was also an European
ERCIM Fellow with Norwegian University of Sci-
ence and Technology (NTNU), Norway, and with the
Interdisciplinary Centre for Security, Reliability, and Trust (SnT), University
of Luxembourg, from 2009 to 2011. He has authored or co-authored over
100 peer-reviewed articles in various journals and international conferences,
including IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUT-
ING, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, ACM CCS, AAAI,
Ubicomp, and IEEE INFOCOM. His recent research interests lie in data
security and privacy-preserving computation. He has received the ACM CCS
2023 Distinguished Paper Award. He is an Elsevier “Highly Cited Chinese
Researchers.” He is the Vice Chair of ACM SIGSAC China. He is an
Associate Editor of IEEE TRANSACTIONS ON DEPENDABLE AND SECURE
COMPUTING and an Editorial Board Member of Computers & Security and
of Frontiers of Computer Science.

4497

Haining Wang (Fellow, IEEE) received the Ph.D.
degree in computer science and engineering from
the University of Michigan, Ann Arbor, MI, USA,
in 2003. Currently, he is a Professor with the
Department of Electrical and Computer Engineering,
Virginia Tech, USA. His current research interests
include security, networking systems, and cloud
computing.

Xiaobo Ma (Member, IEEE) received the Ph.D.
degree in control science and engineering from Xi’an
Jiaotong University, Xi’an, China, in 2014. He is
currently a Professor with the MOE Key Labora-
tory for Intelligent Networks and Network Security,
Faculty of Electronic and Information Engineering,
Xi’an Jiaotong University. He was a Post-Doctoral
Research Fellow with The Hong Kong Polytechnic
University in 2015. He is also a Tang Scholar. His
,  research interests include internet measurement and
cyber security.

Shouling Ji (Member, IEEE) received the B.S.

(Hons.) and M.S. degrees in computer science from

Heilongjiang University, the Ph.D. degree in electri-

cal and computer engineering from Georgia Institute

of Technology, and the Ph.D. degree in computer sci-

ence from Georgia State University. He is currently

- a Qiushi Distinguished Professor with the College

! of Computer Science and Technology, Zhejiang Uni-

versity, and an Adjunct Research Faculty Member of

' the School of Electrical and Computer Engineering,

Georgia Institute of Technology. His current research

interests include data-driven security and privacy, Al security and software,

and system security. He is a member of ACM, a Senior Member of CCF, and

was the Membership Chair of the IEEE Student Branch with Georgia State

University (2012-2013). He was a Research Intern with the IBM T. J. Watson

Research Center. He was a recipient of the 2012 Chinese Government Award

for Outstanding Self-Financed Students Abroad and ten Best/Outstanding
Paper Awards, including ACM CCS 2021.

Qiang Li received the Ph.D. degree in computer
science from the University of Chinese Academy
of Sciences in 2015. Currently, he is an Associate
Professor with the School of Computer and Informa-
tion Technology, Beijing Jiaotong University, China.
His research interests revolve around the Internet of
Things, networking systems, network measurement,
machine learning for security, and mobile comput-
ing.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 02,2025 at 03:54:26 UTC from IEEE Xplore. Restrictions apply.



