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Abstract. This paper proposes and analyzes a novel fully discrete finite element scheme
with an interpolation operator for stochastic Cahn-Hilliard equations with functional-
type noise. The nonlinear term satisfies a one-sided Lipschitz condition and the diffu-
sion term is globally Lipschitz continuous. The novelties of this paper are threefold.
Firstly, the L*-stability (L* in time) and H2-stability (L in time) are proved for the
proposed scheme. The idea is to utilize the special structure of the matrix assem-
bled by the nonlinear term. None of these stability results has been proved for the
fully implicit scheme in existing literature due to the difficulty arising from the in-
teraction of the nonlinearity and the multiplicative noise. Secondly, higher moment
stability in L2-norm of the discrete solution is established based on the previous stabil-
ity results. Thirdly, the Holder continuity in time for the strong solution is established
under the minimum assumption of the strong solution. Based on these findings, the
strong convergence in H~!-norm of the discrete solution is discussed. Several numeri-
cal experiments including stability and convergence are also presented to validate our
theoretical results.

AMS subject classifications: 60H35, 656N12, 656N15, 65N30

Key words: Stochastic Cahn-Hilliard equations; multiplicative noise; higher moment stability;
strong convergence.

1 Introduction
Consider the following stochastic Cahn-Hilliard (SCH) problem:
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du:[—A(eAu—%f(u))}dt+5g(u)dwt in Dr:=Dx (0,T], (1.1)
gZ:Ei(eAu—if(u)):O in 9Dr:=aD x (0,T], (1.2)
u=uy inDx{0}, (1.3)

where D C R4 (d=2,3) is a bounded domain, 7 is the unit outward normal, § >0 is a pos-
itive constant, and W; is a standard real-valued Wiener process on a filtered probability
space (Q,F,{F;:t>0},P). The analysis in this paper can be generalized to [L?(D)]%-
valued Q-Wiener process. The function f is the derivative of a smooth double equal well
potential function F given by
Lo 1y

F(u) :i(u —1)- (1.4)
The diffusion term g is assumed to have zero mean, is globally Lipschitz continuous (1.5),
and satisfies the growth condition (1.6), i.e.,

|g(a)—g(b)| <Cla—b], (1.5)
g(a)]? <C(1+a?).

The SCH problem (1.1)-(1.3) can be rewritten in the following mixed formulation by sub-

stituting in the so-called chemical potential w:=—eAu+1f(u):
du=Awdt+6¢(u)dW; in Dr, (1.7)
w:—eAu—i—%f(u) in Dr, (1.8)
Ju Jdw
9 0 onodDry, (1.9)
u=uy onDx{0}. (1.10)

The mixed formulation will be used to develop the fully discrete finite element scheme
in this paper.

The deterministic Cahn-Hilliard equation was originally introduced in [12] to de-
scribe phase separation and coarsening processes in a melted alloy. It was proved in
[2,15,41, 44] that the chemical potential approaches the Hele-Shaw problem as the in-
teractive length e decreases to 0. Numerical justification for this approximation can be
found in [24,28,30,31,40,45]. We refer to some other references [17,25-27,33,43,46] about
numerical approximation for the Cahn-Hilliard equation and the references therein. For
stochastic cases, the Cahn-Hilliard-Cook equation with additive noise (with fixed €) was
studied in [14, 32,35-38, 42]. The well-posedness of the stochastic Cahn-Hilliard equa-
tion was discussed in [18, 21, 23] for additive noise and in [5, 13, 39] for multiplicative
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noise. The stability and error estimates in the discrete H~!-norm for the stochastic Cahn-
Hilliard equation with gradient-type noise were derived in [29]. The convergence of the
stochastic Cahn-Hilliard equation to the Hele-Shaw flow was considered in [3,4]. The
semigroup approach is used for the stochastic Cahn-Hilliard equation with additive noise
in [7,19,20,32], and the references therein.

The goal of the paper is to design a numerical scheme for stochastic Cahn-Hilliard
equations with functional-type noise, and consequently, to investigate various numerical
properties of the proposed scheme. Note that the nonlinear term is not globally Lipschitz
continuous and only satisfies a one-sided Lipschitz continuity, which interacts with the
diffusion term to add another layer of difficulty in designing numerical schemes. We
are aiming to prove the existence of discrete solutions, derive some stability results and
higher moment bounds, and finally establish convergence rates for the proposed numer-
ical scheme.

The rest of the paper is organized as follows. In Section 2, the weak solution is de-
fined and several Holder continuity results are obtained. In Section 3, the scheme is
designed, and several stability results and higher moment bounds are both derived for
the proposed scheme. In Section 4, the strong convergence with discrete H!-norm is
established for the scheme. In Section 5, numerical experiments are done to validate our
theoretical results based on different initial conditions and diffusion terms.

2 Preliminary

Throughout this paper, we use C to denote a generic constant and adopt the standard
Sobolev notations as described in [9]. Additionally, (-, -) will denote the standard inner
product of L2(D), and E[] denotes the expectation operator on the filtered probability
space (Q,F {Fi:t>0},P).

In this section, based on references [5,13,39], we first define the following weak for-
mulation for problem (1.1)-(1.3): seeking an F;-adapted and H!(D) x H!(D)-valued pro-
cess (u(-,t),w(-,t)) such that there hold IP-almost surely

(1)) = (o) — [ (Veo(s), V) ds @
—|—(5/0t(g(u)dws,cp), Vpe H\(D), Vte(0,T],

(w(t), @) =e(Vu(t), Vo) +é(f(u(t)),<0)r VoeH' (D), Vte(0,T]. 22)

Next, we derive several Holder continuity results in time for u with respect to the spatial

L?-norm and for w with respect to the spatial H!-seminorm. These results are crucial for
the error analysis due to the low regularity of the time derivative of u.
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Lemma 2.1. Let u be the strong solution to problem (1.7)-(1.10). Then for any s,t € [0,T| with
t<s, we have

E [Ju(s) () 3] +<E | [ 1A(E) ~u() | <Cr(s-1),
where

C1=C sup E[[|Au(Z)|17] +C sup E[[[u(Z)l|3]-

1<E<s 1<E<s

Proof. Consider the functional ¢ defined as:

p(u(s))=lu(s)—u(t) |

The first two Gateaux derivatives are:

Dyp(u(s)) (vi) =2(u(s) —u(t) vi(s)),
Dip(u(s))(v1,v2) =2(vi(s),va(s))-
Applying Itd’s formula to ¢(u(s)) yields

u(t) B2 =2 [ (1) —u(t), ~Aedu(@)~ - F(u(3)) e
3 | S(g(u(é)),g(u(é)))dé‘

w2 [ (e (u(8)))dW.
Now after using integration by parts twice on the first integral, we have
— (O} =2 [ ((u(E) (1), —eAu(@)~ u(t))de

+2/t (u(&)—u(t)),—eAu(t))de
= (A(u@)—u(t»%f(u(@))da
L5 /t (g(u(©)),g(u(©)))dE

42 /t ((w(@)—u(t)),63(u(E))) AW,

For the nonlinear term, by using the embedding theorem, we have

E| [ 17 0@)Iae]
:IE[/t /Du (@) —2u4(§)+u2(§)dxd§]

<Csup E[[[u(@)]fn] (s—1).

t<E<s
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Then upon taking the expectation on both sides as well as applying the Cauchy-Schwarz
inequality, the Young’s inequality, and the Gronwall’s inequality, we have

E (l(s) - (O] 2| [ 1A((E) —ue)) e
<C sup B [[|8u(@)[2] (5—1)+C sup B [[u(€) 4] (s~1).

t<E<s <E<s
The conclusion is proved. O

Lemma 2.2. Forany s,t € [0,T] with t <s, the chemical potential w satisfies

E [[|Vaw(s) = Vaw(t) 7] <Ca(s 1),
where

Cy=C sup E[[|u(2)]|6:]

t<g<s
Proof. First define g(u(s))=g1(u(s))+g2(u(s)) where
g1(u(s)) =leVAu(s)—eVau(t)||z.,
2
)= eV tu(s) - LV f(ue)

2

The first two Gateaux derivatives of g; are:

Dg1(u(s))(v1) =22 /D (VAu(s)— VAu(t))-Van(s)dx,

Dgi(u(s))(vi,12) = 262/@ VAv;-VAvdx.

The first two Gateaux derivatives of g, are:

Dgz(”(s))(l/lﬂ’z)zezz/DB”z (5)Vu(s) = Vu(s) =V f(u(t))]
[61’2( Jv1(s)Vu(s) +6u(s)vi(s) Via(s) +6u(s)va(s) Vi (s)] dx
+= /6u Yr(5) Ve (s) +3u3(s) Vi (s) — Vin (5)]
[3u2 (s)Vva(s)+6u(s)va(s)Vu(s) —Vn(s)|dx.
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Then applying the Ito’s formula to g(w(s)) = || Vw(s) — Vw(t)|?, yields
| Vao(s) — Vao(t) |2
=26 [ (VAu(E)—u(t)), VA (¢))de
+e [ (VAGH (), VAGH @) +26* [ (VAm(E)—u(1)), VAG(E)) W
5[ / 312(8) V(&) - Vu(§) ~ T F(u(t))]
61(8)G1(&) Vu(8) +312(8) VG1(E) — VGi (£) dxdC
+5 / 342(&) Vu(2) - V(&) - V£ (u(1))]
[6u(£)Ga (&) Vu(g >+3u<>vc2<c) VGa(8)) dxdW
5 [ [ 3@ vu) - vu@) - v (o)
[6G3(&) V(&) +61(8) Ga(&) V Gal£) +61(&) Ga(£) VGa (&) dxde

5 [ [ 160)Ga(0) V(@) 4330V Gal) - VGa(2)]
3% (§) VG2 () +61(2) G2 (§) Vir(§) — Vo (&) ] dxdg,

where

G1(8)= 5 (eau(@) - L(u(2))),
Gal£) =G5 (u(E)).

Taking the expectation on both sides of the above equation, and using the Young's in-
equality and the embedding theorem, we get

IV0(s) - Tt <€ sup B [0l (-0, 23)
1<l<s
where the term H® norm is from the term 5 [;° [,9u*(§)Vu(&)V G1(§)dxdg. O

3 Stability and convergence

Lett,=nt (n=0,1,---,N) be a uniform partition of [0,T]| and 7}, be a quasi-uniform trian-
gulation of D. Define V}, to be the finite element space given by

Vi:={vy € H'(D): v, [ke P1(K), VKE T, }, (3.1)
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where P (K) denotes the space of linear polynomials on the element K. Define V;, be the
subspace of Vj, with zero mean, i.e.,

{Uh eV, ?Jh, 0} (32)

The fully discrete mixed finite element methods for (1.7)-(1.10) is to seek F;,-adapted and
Vi, X Vj-valued process {(u},w})} (n=1,---,N) such that IP-almost surely

(ujp—uy ™) +T(Vaopy, Vi) = 8(g (up 1) ) AW, Vi €V, (3.3)
1
e(Vuﬂ,Vvh)+g(Ihf”,vh) =(wy,vp), Yo €V, (34)

where AW" := W" —W"~1 satisfies the normal distribution N'(0,1), f":= (u})>—ul!, and
I,:C(D) — Vj, is the standard nodal value interpolation operator defined by

N, h

Lv:=) v(a;);
=1

Here N, denotes the number of vertices of 7, and ¢; denotes the nodal basis for Vj, corre-
sponding to the vertex a;. The initial conditions are chosen to be ug =Pyup and wg = Pywy,
where P, :L2(D) — Vj, is the L2-projection operator defined by

(Pyo,op) = (v,0), Yo, €V
The following properties of the L?-projection can be found in [9, 16]:
lo =Pyl 2 +1|[V (0= Pyo) || 2 < CH™ > o] e, (3.5)
o= Pyl < CH o]z, (36)

for all v € H*(D) such that s > % Furthermore, the inverse discrete Laplace operator
A, 1.V, =V, is defined by

(V(=8,'Ch), Vo) = (Cnon), VYor €V (3.7)
Then for ¢}, ®;, € Vj, the discrete H™! inner product is defined as
(@) —1p = (V (=0 00), V(=87 ®h)) = (G =05 @n) = (=8, 00 Ph).  (3.8)
It is easy to show that the discrete H!-norm satisfies the following two properties

(G @) <Nkl 10| Prl e, YT, Py €V, (3.9)
12ull -0 <ClIChll2,  YThE Vi (3.10)

Lastly, define the discrete Laplace operator Ay, : V;, =V}, by
(AnCnon) =—=(Vn, Voy), Vop €V (3.11)

In the following we prove the solvability of the fully discrete scheme.
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Theorem 3.1. There exists a solution to the scheme (3.3)-(3.4).

Proof. For all v, €V}, set i, = —A;lvh in (3.3), we have

T T
(uy,, o)1 +1€(Vuy, Vo) + - (Ih(uﬂ)3,vh) s (up,op)

—6(g(up ), =B, o) AW" — (ujy ™ oy) 1, =0. (3.12)

Consider the following iterative scheme for k>1

T _ T _
(MZ’k,Uh)fl,h +T€(VMZ’k,wh) + s (In (“Z’k )3,0n) - c (”Z’k Y on)
- 5((‘)’(”271 )I_A}jlvh)AWn - (u;lzillvh>—1,h =0, (313)
where uZ’O = u;’}’l. The scheme (3.13) is uniquely solvable due to the explicitly treatment

of the nonlinear term. By choosing v), = uZ’k in (3.13), we can prove by an induction
argument that

[ | <C(T,h), Vk>1. (3.14)

Therefore, the solution sequence {u/"*}%° | is bounded in V},C H!(D). Applying the weak
compact theorem and the Rellich-Kondrachov Theorem [1, 34], we can extract a subse-

quence {uZ’ki}fil such that uZ’k" converges to u} weakly in H!(D) and uZ’k" converges to
uj strongly in L%(D) as i— oo. Letting k=k; and i — oo in (3.13), we thus obtain
* * T *\3 T,
(uh,on) 1,0+ 7€(Viy, Vo) ‘i‘g(lh(“h) o) — E(”h/vh)

—8(g(uy ), =, o) AW" — (™ o) 1, =0. (3.15)

Note that the following inequality is the key to establish Eq. (3.15):

AT SR AT
<G = @) iz onlloe
<Cllu ™t = Lo (™ 7o+ 4 170 on 2 (3.16)
The right-hand side of (3.16) approaches 0 as i — co. Eq. (3.15) establishes the existence

of the solution to (3.12). The solution u; together with w) determined by (3.4) provides a
solution (u};,wj}!) to the scheme (3.3)-(3.4). O

Theorem 3.2. Let ujl (n=1,2,---N) be the solution of (3.3) and (3.4), then there exists a positive
constant C independent of h and T that

N N
max E[[lu}[%.]+ L E [l —uf ] + 7 D E[Iawf 3] <€ 347)

l=n<N n=1 n=1
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Proof. Testing (3.3) and (3.4) by 7, =u}} and vj, = —Ajuj;, respectively, we get
(=1~ )+ TV, V) = 6 (g =), AW,
1
e(VuZ,—VAth)+E(Ihf”,—Ath) = (wj, —Apuy).

Thus,

1 1 . 1 _
SNupllze =5 = e+ 5 g — = T (Vg Vu) = 6(g (uy ™), up ) AW™,
2 2 2

1 n n n n
eHAh“ZH%2+E(VIhf NVuy) = (Vwy, Vuy).

(3.18)
(3.19)

(3.20)

(3.21)

Multiplying the second equation by T and substituting into the first equation, and then

rearranging, we get

1 _ 1 _
EH“ZH%Z—EH“Z 1”%2+EH“Z—“Z Y22 +etl|Apug|72

= 0(g () U ) AW = (VI f", V).

(3.22)

One key role of the interpolation operator is to bound the nonlinear term. Denote u; =

uj; (a;), and then

Ny,

—L(TIf", V) =2 [ Vu . e(vzu 2V Y_u9))
=1 =]

T
:EHVMZH%Z Z bz] V(PUV(P])
1] 1

where b;; = u?uj. Note when i #j, we have
3 4 1
b1]_4ul +4u]

The stiffness matrix is diagonally dominant, and then

T3 by (V9. )
1] 1
1 N
<_Zbkk[ Vor, Vo) —fZI Vi, Vi) !—*ZI (Vor V) |
1#k ;#lc
Ny
<—Zbkk[ Vi, Vi) E| (Vei, V)|

z#k
<0.

(3.23)

(3.24)
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Based on this inequality, we have
—*(Vlhfn Viuy) < *HV”hHLZ/
C
< lu hHLz+ = Ay (3.25)

For the diffusion term, apply the growth property of g(-) and the martingale property to
obtain

(
—E [(g(ugfl) i) Awn}
< E [l 3] +02eE [lg ey 2.
i [I!uZ—uZ‘l IIiz] 1 Co* T+ CO*TE [HuZ‘l H;} . (3.26)

Taking the expectation and taking the summation over n from 1 to £ in (3.22), we have
L] 1y iz ], €T v 2
E| gllual:) +5 LB [lui—7 1| +5 LB L8]
n= n=1

Ct & ¢ _ 1
<— Z:llE [||uZH%2] +C52+C(52121E [||uZ 1”%2] +E [2||u2||%2] . (3.27)
n=

n=1

By the discrete Gronwall inequality, we obtain

L2 : et ¢ |2
|3l |+ L E[lo— ]+ 5 LRl <c 629

where C depends on ¢ and €. Finally, the estimate (3.17) follows from (3.28). O

By Eq. (3.11), the Cauchy-Schwartz inequality, and Theorem 3.2, we could directly
obtain the following Corollary.

Corollary 3.1. Let uj} (n=1,2,---N) be the solution of (3.3) and (3.4), then there holds

N
Y E[||Vuj|?.] <C. (3.29)
n=1

Theorem 3.3. Suppose the mesh constraint T < Ce® holds, and let uj (n=1,2,---N) be the
solution of (3.3) and (3.4), then there exists a positive constant independent of h and T such that
there holds for any p > 2 that

sup E[[uy]|[,] <C. (3.30)

0<n<N
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Proof. The proof is divided into three steps. In Step 1, we prove the bound for E ||u Hiz.
In Step 2, we establish the bound for E ||u]] HLZ' where p=2" and r is an arbitrary positive

integer. In Step 3, using Step 1 and Step 2, we could obtain the bound for E ||u}! HLZ' where
p is an arbitrary real number and p > 2.

Step 1. Based on (3.22)-(3.25), we have

1 1, 1 _
S i1 = S N M2+ 5 ey =~ el Anas 12

HV up| T2 +6(g (uy 1), up ) AW, (3.31)

Multiplying the quantity

_ 1 _
(Hg 2l ) 4+ 5l 22 = D122 )

|
W

1 _
B+ 5 32 =

on both sides of (3.31) gives us

3 _ 1 _
e e i P R (] A [ 9
1 _ 1, .-
+ (5 = et aparg |2 ) (g 122+ 5 122
T |
<Vl (Hp a5 o~ 12 )

- 1,
+o(g (™)) AW a2+ S i~ 1) (3:32)

The first term on the right-hand side of (3.32) can be estimated as

1w (a5 122

< el 22 (e 5 22
ST (2 — S 2 )

< Sellwag B (g2 + 5 122

C Ct
3|| hlliz+ (22— [l 12)*. (3.33)

The second term can be estimated by the Cauchy-Schwarz inequality and the growth
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property of ¢(-) as

_ 1. .-
8(g ™)) AW (I 12245 1)
_ _ _ 1, .
=0(g (), uy = =) AW ([l 5l 1)
1 _ _ |
< (gl = B+ CO (14 1uiz><Aw">2) (22 S N~ 1)

_ _ 1, .-
+o(g ™)) AW (g |12+ 5 a1 )

(3.34)
By the Cauchy-Schwarz inequality, we have
2 n—1/2 n\2 n2 1 n—1)2
CO? (1 [l 2 ) (AW")? ([l 5 N~ 22
— o2 (1 [ ) (AW (2 g+ 1
h L2 hilL2 h L2 2 h L2
2
_ — 4
<0 (Il 12—l 71122 ) +C8* (1+ 1l 1132 ) (AW")
+CO || ul A, (AW +C2||ul |12 (AW™)?, (3.35)
where 01 >0 will be specified later. Furthermore, we have
N T,
(g~ (Bt 31
N B CI
=gy AW (= et - )
2
_ — 2
<0 (Il 12—l 71122 ) +Co (1+ g1 ) (AW
3 I
+50(g ™)y [y AW, (3.36)
where 7, 01, and 6, are chosen to be small enough such that
Ct 1
— <—. .
o3 +01+6,< 16 (3.37)

Then by the martingale property and properties of the Wiener process, after taking the
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summation from n =1 to n=/¢ and the expectation on both sides of (3.32), we get

3 Ct 1 ¢ ) 12 \2
(55 R i)+ 5 L | (la— 12
_ € 1.,
+ 3B (Gl Sl ) (1 e+ 1)
T 3 /-1
s€3zonz[uuzuiz}+8E[Hu2Hiz}+c<52+54>r220uz[uuzu%z}
n= n=
(-1
+C( 40T B (|1 ] +C(8+5*). (3.38)
n=0
Under the mesh constraint T < Ce?, we have
1 l14 1 : 2 —1712 2
£ (It + 7 T | (1 )
! Tow w12 L € n2 n—1y2
VB (gl R Sldg ) (2t o 2
n=1

1 = 3
<C <€3+52+54> Y E| g 1]+ SE [ lhlf: | +-C(62+6%). (3.39)
n=0

By the Gronwall’s inequality, we have

1 1 ¢ 2
E (1] g5 T (1 = 1:)’]

+ E F u - € 1 B
[( H B 1||%2+21|’Ah”m|%2> <||um|%2_|_||uz 1H%2>]
<C. (3.40)
Step 2. From (3.31)-(3.36), we have 4

1 _ 1 _ 2
(gl = ) o (U 2
1 € 1, ,_
() Bt St ) (1o g1
T _
<O uf s +CoM+ g 4) (AW
FCE2(14|[ulY142) (AW,) > +Co|jul Y| L AW™, (3.41)

Similar to Step 1, by multiplying (3.41) by ||u}![|},+3 Hlup—1y4 12, we could get the 8-th mo-
ment of the L?-stability of the numerical solution. Then repeat this process, we could
obtain the 2'-th moment of the L?-stability of the numerical solution.



14 Y. Li, C. Prachniak and Y. Zhang / Commun. Comput. Phys., xx (202x), pp. 1-26

Step 3. Suppose 2"~ <p <27, and then by Young’s inequality, we have

Elluf17.] < [Jluf]%] +C <oo,

(3.42)

where the second inequality follows from the results in Step 2. The proof is complete. [

4 Error estimates

Define a sequence of subsets as below

~ ‘ -
Qm—{wGQ. fg%’;H”;lHngK}f

where x will be specified later. Clearly, it holds that (N)K,o D) (N)K,l DD ﬁ,{/g.
Next, for each n=0,1,---,N, define

E":=u(ty)—uf, G :=w(ty) —wj,
O™ i=u(ty) = Pyu(ts), A":i=w(ty)—Pyw(ts),
Q" :=Pyu(ty) —uy,  ¥Y":=Pw(ty) —wy.

Theorem 4.1. The following error estimate holds for any £=1,2,---,N:
¢
E[1g IE 20|+ E[1a,, IVE" 2| < CT+CH24-CHE (1nh) T2,
' n=1 ’

where C depends on

sup E [Hu(t)H?{ﬁ] and sup E [Hw(t)”fqz]
te[0,T] te[0,T]

Proof. From the weak formulation (2.1)-(2.2), we get

() = utr) )= [ (Vals), Vs

n—1

tn
0 [ () m)dWs, ie Vi,
n—1

1
(w(ty),on)=€(Vu(ty),Vo,)+ E(f(u(tn)),vh), Yo, € V.
hold P-almost surely. Subtracting (3.3)-(3.4) from (4.3)-(4.4), we get

tn

(E") = (") = [ (Vao(s) = Vo, Vi )ds

]

tTl
5 [ (gu(s) —gluy ) dWs, W€V,
n—1

(G",v) :e(VE”,Vvh)+%(f(u(tn)) —I,f" o), Yo, eV

(4.1)

(4.2)
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Choosing

= —A;lCD” eV, and ov,=T1Pd" €V,

yields

(E”—E”1,—Ah1<I>”):—/tt:(V(w(s)—w’,j),V(—Ah1<I>”))ds
6 [ (gu(s) —glup), — Ay 10N,

tn—1

1
(Gn,Tq)”):G(VE",V(TCI)”))—|—E(f(u(tn))—Ihf",Tq)n).
Thus we have
(VAIZl(@n_q)nfl)IVA;l@n):(@)n_@nfl,A}:lq)n)
+T(VA", VA 1®")+T(VY", VA, 1o")
tn
+ / (Veo(s) — Vao(ty), VA, 1" )ds
fp—1
tn
0 [ (glu(s) ~glup), o, @AW, (47)
n—1

T(A"+9",@")=eT(VO", VIO")+e1(VI", VIO")
(f (u(tn)) = I f",@"). (4.8)

—

+

o

Taking expectation on both sides over the set Oy, and substituting the second equation
into the first yield

[]lfz,m (@" — "1, ") _Lh] g []lﬁk (VCD”,VCD”)]

M

L (@"—0" L A0 | —eTE 15 (VO", V")

M

=
loll

E [ﬂﬁm (f(u(tn)) —Ihf”,fb”)] +E [ﬂﬁm /tt1 (Va(s) —Vw(tn),VA,;lcb")ds]

+J0E []l()m/tn (g(u(s))—g(uZ),_Ah—qudWs)] +7E []lﬁK’n(VA",VAf@n)]

tn—1

::iTi. (4.9)
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The first term on the left-hand side of (4.9) can be bounded by
E [nﬁm (@"—@" 1, "), ]

(16, 1971210] — 3B [, 107412 ) 4 E 15, 07— 12, ]

-

=B [1g 19712 1,] 3B [1n, 19" IP 0] + 5B g, 07— R, ]
+3E[(tg,,~15,)10" ]

> E[15, H@”HZM}—;E[ o 920 B g, 0@ 2] @10

The first term T on the right-hand side of (4.9) is zero by the definition of the P, operator.

Using the Young’s inequality and properties of the projection, the second term T, can
be bounded by

€T
T<etE (15 VO + 5 E[15, | VO"|2]
€T
<CTHE [1g, [u(t) 3]+ E |14, [VO"|2]. @.11)
In order to estimate the third term T3, we write

(f (u(tn)) = Inf",®") = (f (u(tn) = f (Pyu(tn)),P")
+(f(Puultn)) = f7,0") + (f" = I f",@"). (4.12)

Using the properties of the projection and the embedding theorem, we have

TE[1, (f(u(tn))—f(Phu(tn>),<I>”)}

2
~~ I 10, (O (L uth) () 1))
<CTE |1 Hz )V (Pan(t) > =13 @72 | +7E 15, 119" 13

(SN

<cr(E[1g, (|rPhu<tn>H%m+||u<tn>u%m+m|3)})g (E[15,,10"1:])
+7E [, 0"

<Cth?+Cth*E []1@ u(tn) Hﬁiz} +7E [nﬁ Hcpnuiz} . (4.13)

The second term on the right-hand side of (4.12) can be bounded by

—E]E [nﬁm (F(Pyue(ts)) —f",cpn)] <'E [nﬁm y|<1>”y|-’i2} . (4.14)
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Using the inverse inequality and Eq. (4.1), we have

1=

5. max [uf||i~ <C(Inh)*14

n|2 ny2
K l<n<f o (fg,?%‘énuh 172 +112?;(€HV”}1 HL2>

< C(Inh)>?x. (4.15)

Then by the properties of the interpolation operator, the inverse inequality, and Eq. (4.15),
the third term on the right-hand side of (4.12) can be handled by

- gﬂa 1, (f" = Lf" ")

€
<CtE [1g "= Lf" ] +57E g, IV |12

+oTE 15, VO]

< Cth*E g, Yo |(up)? %{1(10
I K

<CTHE |1, Y[ ()2 Va2
K

+oTE 15, V"]

< i [ _ )2 n4_ € [ N n 2}
<CTiE |1, IVaf I max [t | +§7E 1, Ve

< Ch*(Inh)*«*7E {nﬁ ||wg||iz] —|—§TIE {11@ ||v<1>"||iz] . (4.16)

Combine (4.12)-(4.16) to obtain

T <CTE [l |92+ 7E 15, V0|2 +ChiT
+CH*TE [110 Hu(tn)ugz] +CHO (In(hF)) *t 41 [nﬁ ||wz|\i2]
<CTE[1g 190" 21| + 57E 15, V0" .| +CrPr

Ot st]]E [nﬁm u(t) ||g2} +Ch (Inh) K 2TE [nﬁm |\wgugz} . @)
tel0,T

Note that the last term can be bounded by Corollary 3.1 after taking the summation.
By Lemma 2.2, the fourth term T on the right-hand side of (4.9) can be bounded by

tn
1<k 1, [ 21Va(s) - Vol [+ Clo" s
n—1

<Cr? sup E [[u(t)[§e] +7E 15 0", (4.18)
tel0,T) ’
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By Lemma 2.1, the fifth term T5 on the right-hand side of (4.9) can be estimated as:
tn
o=k [t [ (stu(s)—gtu) -2, 070w,
n—1

SCT2< sup E[||Au(t)|?,] +C sup E [Hu(t)”%l])—kCﬂE [ﬂﬁ«/nH@”Hiz]
t€[0,T] te[0,T)

1
+CtE []lﬁm | " Hiz] + 1]E {]lﬁm HA;lcpn _A}Tlcpnﬂ H%z}

§CT2< sup E [||Au(t)H%2] +C sup E [Hu(t‘)”%l])+C’ch4 sup E [||u(t)H}2qz}
t€[0,T] te[0,T] t€[0,T]
€T n n 1 n n—
+E 15, VO [2] +CTE 15 [19712,,] + 4B 1, |0 =@ 12, ,]. 419)

K1 K1 K1

The sixth term T on the right-hand side of (4.9) can be bounded by

To <Ca? sup B/ u0) ]+ B (12717 (420)
tel0,T

By Theorem 3.2 and Corollary 3.1, we have
max E[|Vuj||3,] <Ct L (4.21)

1<n<N

Choosing x:=C|Ink|t~!, using Eq. (4.21), the Markov’s inequality, and the discrete Burkholder—
Davis—Gundy inequalities [8,10,11,22], we have

nl||2
ey )

Cllnk[t -1

>1

Combining (4.9)-(4.22) and using the discrete Gronwall inequality and Corollary (3.1), we
obtain the conclusion. O

Remark 4.1. 1. The sequence of subsets defined in (4.1) is used to handle the nonlinearity
in (4.16). This is caused by the low regularity of the numerical solution.

2. If the following stability result holds:

IE n 2 <
max, IVugllin] <C,

then the last term on the right-hand side of (4.2) will be Ch*(Inh) ¢ by choosing x:=C|Inh|.
Furthermore, if there exists any p >2 such that

AP
1I§1‘La§XNIE [Hvuh HHJ _C/
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we can remove the probability one set (), , in the error estimates, i.e.,

l
E|IE2,,] +7

n

E||VE"|: )| < CT+Ch2.

4
=1

This can be shown by using the analysis in (4.16) and Theorem 3.3.

5 Numerical experiments

This section presents the results from three numerical tests. In all tests, the domain chosen
is D=[—1,1] x[—1,1]. The purpose of Tests 1 and 2 is to check the stability and evolution
of the numerical approximations from (3.3) under two noise intensities, § = 0.1,1. Test
1 is based on the initial condition with a circular zero-level set. Test 2 is based on the
initial condition with an ellipse as its zero-level set. In Test 3, we compute the L®EL?
and EL2H! errors to check for the orders of convergence in h. In Test 4, we compute the
L*EL? and EL?>H" errors to check for the orders of convergence in 7.

Test 1: For this test, we use the initial condition ug = P,up where

x2+y2—o.62>
V2e

with €=0.1. The nonlinear term is f(u)=u’>—u and the diffusion term is g(u)=u. Figs. 1
and 2 show the EL? and [EH! stability results of the numerical solution in one sample and
the average of samples, respectively. Note that the stability curves are bounded under
both diffusion intensities. The shaded regions in Fig. 2 represent all possible trajectories
of the simulated solutions.

up(x,y) :tanh<

3

30 30
— EL? — EL?
— EH? — EH?
25 25+

20 4 20+

154 154

101 10

(a) 6=0.1 (b) 5=1

Figure 1: IEL? and IEH" stability curves (one sample): €=0.1, h~0.044, and T=0.001.
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30 30
— EL? — EL?
— EH? — EH!
254 25
20 20
154 15
104 10
N— —
5 54
0
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10
(a) 6=0.1 (b) 5=1

Figure 2: IEL? and IEH! stability curves (average): €=0.1, h~0.044, and T=0.001.

1.00 1.00
— t=0 — t=0
0.75 — t=0.1 0.75 — t=0.1
0.50 0.50
0.25 1 0.25
0.00 0.00
-0.251 —=0.254
—0.50 1 —0.50 1
-0.751 -=0.751
-1.00 T T T T T T T -1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
(a) 6=0.1 (b) 6=1

Figure 3: Zero-level sets (one sample): €=0.1, h~0.044, and 7=0.001.

Figs. 3 and 4 show the zero-level sets of one sample and the average of samples,
respectively. We can see that the evolution is of a shrinking circle that stabilizes at the
final time T =0.1.

Test 2: For this test, we use the initial condition ug = P,uy where

V(x/0.7)2+(y/0.65)2—1
V2e

with €=0.1. The nonlinear term is f(#)=u’—u and the diffusion term is g(u) =u. Figs. 5
and 6 show the EL? and EH! stability results of the numerical solution in one sample

up(x,y) =tanh (

3
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1.00

0.751

0.50 1

0.25 1

0.00 1

—0.25 1

—0.50 1

-0.751

-1.00

— t=0
— t=0.1

30

-1.00 -0.75 -0.50

-0.25 0.00

0.25

@) 6=0.1

0.50 0.75 1.00

1.00

0.751

0.50 1

0.254

0.00

—0.251

—0.50 1

-0.754

— t=0
— t=0.1

-1.0

.00
=1

00 -0.75 =050 -0.25 0.00 0.25 0.50 0.75 1.00

(b) 6=1

Figure 4: Zero-level sets (average): €=0.1, h~0.044, and T=0.001.

254

204

15 4

101

~—

—_— L2

R

30

@) 6=0.1

0 T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

30

254

20

M~~~

0 T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

b) 6=1

Figure 5: IEL? and IEH" stability curves (one sample): €=0.1, h~0.044, and T=0.001.

254

204

15 4

101

M~

—_— L2

Y

@) 6=0.1

0 T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

30

254

20

—

0 T T T T T T T
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

) 6=1

Figure 6: IEL? and IEH! stability curves (average): €=0.1, h~20.044, and T=0.001.

21
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1.00 1.00
— t=0 — t=0
0.75 — t=o0l 0.75 — t=01
— t=0.2 — t=0.2
0.50 0.50
0.25 0.25
0.00 0.00 1
—0.251 -0.251
—0.501 —0.501
—0.751 -0.751
-1.00 T T T T T T T -1.00 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
(@) 6=0.1 (b) 5=1
Figure 7: Zero-level sets (one sample): €=0.1, h~0.044, and T=0.001.
1.00 1.00
— t=0 — t=0
0.75 — t=0.1 0.75 — t=0.1
— t=0.2 — t=0.2
0.50 0.50
0.25 0.25
0.00 0.00 1
—0.251 -0.251
—0.501 —0.501
—0.751 -0.751
—1.0f -1.0

0 T T T T T T T 0 T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

@) 6=0.1 b) 6=1

Figure 8: Zero-level sets (average): €=0.1, h~0.044, and T=0.001.

and the average of samples, respectively. Since the initial condition takes time to become
a circle, the curves in these figures require a larger final time than in the previous test to
stabilize. The shaded regions in Fig. 6 represent all possible trajectories of the simulated
solutions.

Figs. 7 and 8 show the zero-level sets of one sample and the average of samples,
respectively. The numerical solutions approach a stable circle, which occurs faster for
larger diffusion intensities.
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Test 3: For this test, we use the initial condition ug = P,up where

MO(X,y) —tanh ( (\/x2/07+y2/01—1)(\/x2/01+y2/07_1)>
V2e

with €=0.05. The nonlinear term is f(u)=u%—u and the diffusion term is g(u)=+v/u2+1.
We compute the spatial L*[EL? and EL?H" errors which denote

1/2
ny2
<02%XNIE{|E ||L2(D)]> and (IE

respectively. Table 1 below contains these errors. The final timeis T=1/ 104,

(5.1)

N 1/2
: znws"nizw)]) ,
n=1

Table 1: Strong spatial errors and error orders: €=0.05, =1, T=1/10°.

h L®EL? Order EL2H! Order
0.2v/2 0.89614673 13.81865669

0.1v2 0.23059268 | 1.95838825 | 7.212195952 | 0.93810688
0.05v2 | 0.06355413 | 1.85928886 | 3.674838827 | 0.97275762
0.025v/2 | 0.01715789 | 1.88911367 | 1.946229545 | 0.91699910

Test 4: For this test, we use the initial condition ug = P,uy where

uO(x/y) —tanh ( (\/X2/064+y2/016—1)(\/x2/016+y2/064_1)>

V2e

with € =0.1. The nonlinear term is f(u)=u%—u and the diffusion term is ¢(u) = vu2+1.
We compute the temporal L*EL?, and EL?H! errors. Table 2 below contains these errors.
The final time is T=0.1.

Table 2: Strong temporal errors and error orders: €=0.1, =1, h=22/32.
T L®EL? Order Order

EL2H!

0.1/8

0.01402384

0.03299978

0.1/16

0.00954442

0.55515189

0.02326743

0.50414445

0.1/32

0.00643871

0.56788606

0.01654998

0.49148196

0.1/64

0.00437326

0.55808025

0.01092142

0.59966935
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6 Conclusion

In this manuscript, we design a numerical scheme for the stochastic Cahn-Hilliard equa-
tion with multiplicative noise. The scheme utilizes the interpolation operator to handle
the interaction between the drift term and the diffusion term. The existence of the dis-
crete solutions is proven and the discrete solutions are proven to maintain some stability
results and higher moment results. Based on these stability results, we construct a prob-
ability one set such that the error estimates in the discrete H~!-norm hold on this set.

Future work will remove the probability one set, i.e., establishing the error estimates
in the entire probability space. A crucial step in this direction involves proving the higher
moment bounds for the H!-norm. This remains an open question for this class of stochas-
tic Cahn-Hilliard equations and some new techniques need to be brought in.
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