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ABSTRACT: Anisotropic plasmonic nanorods o!er a wide range
of applications in photovoltaics, energy conversion, sensing, and
surface-enhanced Raman spectroscopies. However, achieving
control over the size and shape of the surface overcoating on
these nanorods remains a challenge due to the complexity arising
from the multistep wet chemical processes involved in their
experimental synthesis. Here, we show that by employing data
imputation and data augmentation methods, we can minimize the
limitations of a small experimental data set and successfully train
supervised machine learning models that can optimize the
experimental synthesis. Using a small data set collected from 30
multistep syntheses of silica-overcoated gold nanorods (GNRs)
characterized by optical extinction spectroscopy and transmission electron microscopy, we trained complementary supervised
models to predict the overcoating shape of the nanorods using optical spectral features. The e!ects of experimental parameters and
measurements made during di!erent stages of the synthesis were analyzed. Our approach enabled us to design an experimental
synthesis recipe to yield a target SiO2 overcoating shape on GNRs employing inverse design optimization. The developed workflow
can be extended to other plasmonic nanoparticles and multistage synthesis experiments, where a limited data set is available to
understand the e!ects of synthesis parameters and to establish correlations between measurements and synthetic yields.

■ INTRODUCTION
Gold nanorods (GNRs) are anisotropic nanomaterials that
exhibit unique plasmonic properties under the influence of
incident light.1,2 Due to electromagnetic excitation, the quasi-
free electrons located on the metallic surface collectively
oscillate and induce a local electric field around the particles.3
The surface plasmon resonances for GNRs generally lay
between the visible (vis) and near-infrared (NIR) ranges.
Enhancement of the electric field produces large scattering
cross-section GNRs. An enhanced electric field is crucial for
numerous applications of GNRs in Raman scattering sensors,
plasmonic sensors, and photocatalysis.4,5 Two resonance
modes are generally observed in the vis−NIR spectroscopic
measurements of GNRs, namely, the longitudinal surface
plasmon resonance (LSPR) along the length and the transverse
surface plasmon resonance (TSPR) along the width of the
nanorods.6 The intensity and width of the LSPR band are
greater and more sensitive to the size, shape, and surfactants of
GNRs than those of the TSPR band because of the
concentrated electric field at the two ends of the nanorods
during longitudinal excitation. Hence, driving the absorption of
analytes to the sharp ends of GNRs, rather than the sides, is of
great interest to improve the detection capabilities of GNR-
based plasmonic sensors.7 Moreover, mesoporous silica (SiO2)
can be deposited on the surface of GNRs using chemical
reactions to drive absorption of molecules as well as to retain

colloidal stability, improve biocompatibility, and use the
nanorods as molecular cargo for in vivo applications by loading
the SiO2 pores with drug molecules.8−10 In addition, the
sensitivity of surface-enhanced Raman scattering using SiO2-
overcoated GNRs is improved by depositing thin layers of SiO2
on the ends of the GNRs, to which analytes can absorb.7
Despite its potential for applications, highly precise control

over the deposition of mesoporous SiO2 shells on GNRs
remains challenging. A commonly used method to deposit
silica on the GNRs using tetraethyl orthosilicate (TEOS) in an
aqueous environment can yield both fully coated GNRs with
uniform covering of the surface and lobe-shaped overcoating
that covers the ends of the GNRs (Figure 1).11 The complex
chemical synthesis procedure involves a series of steps and
depends on the careful selection and control of several reaction
variables including pH; concentration and amount of TEOS;
concentration of alcohol; temperature, time, and intensity of
centrifugation; quality of the initial uncoated GNRs; and native
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stabilizing surfactants on the GNRs such as cetyltrimethylam-
monium bromide (CTAB). At the end of the synthesis
procedure, expensive and time-consuming transmission elec-
tron microscopy (TEM) is needed to determine the shape of
the product, which is a bottleneck for further functionalization
or applications. As a result, consistently producing uniform or
lobe-shaped silica overcoating on GNRs su!ers from numerous
issues including poor reproducibility, aggregation between
particles, nonuniform overcoatings, and production of a
heterogeneous mixture of nanorods with di!erent types of
overcoatings. Adelt et al. recently reported a high yield of lobe-
shaped SiO2-GNRs by carefully controlling the aspect ratio, the
concentration of CTAB, and the reaction temperature.12
Meyer and Murphy reported that the position of the LSPR
band exhibits a redshift for both fully coated and lobe-shaped
SiO2-GNRs when exposed to dye molecules.7 However, the
relationship between the anisotropic deposition of silica and
the observed properties of the resonance bands is not fully
understood.
Machine learning (ML) techniques o!er the ability to

forecast the outcome of a complex process involving a large
number of variables, provide insights about the relationships
between the variables, and facilitate an automated decision-
making process during synthesis.13−15 ML algorithms trained
on experimental and simulated extinction spectra were used to
predict the geometry of nanostructures.16 Random forest
models trained on 186 spectra of gold nanospheres have been
successful in predicting the outcome of synthesis and
explaining the e!ects of chemical parameters through SHAP
(Shapley Additive exPlanations) analysis, such as concen-
tration of ascorbic acid and the ratio of gold precursor in seed
solution.17 Leveraging Latin hypercube sampling techniques to
systematically vary synthesis parameters, dimensionality
reduction techniques, and decision trees trained on extinction
spectra of 30 syntheses could predict the time of formation and

shape of gold nanoparticles with an accuracy of approximately
80%.18
Due to the inherent complexity and time-consuming nature

of a typical experimental synthesis procedure, high-throughput
characterization of GNRs can be quite costly. To overcome the
problem of data scarcity, recent studies have employed
synthetic data generated from numerical simulation methods
for GNRs.19 The size and aspect ratio of GNRs could be
predicted with 90% accuracy using decision tree models
trained on 450 scattering spectra obtained from experiments
and finite-di!erence time-domain simulations.20 However,
unlike the uncoated GNRs, there is currently no analytical
model that can correctly correlate the anisotropy of silica
overcoating to the optical properties of the GNRs, such as the
energy or the width of the LSPR and TSPR bands in the
extinction spectra. This absence of an analytical model leads to
the lack of a numerical simulation method, preventing one
from obtaining synthetic data to supplement the ML data set.
Thus, the analysis and predictions of SiO2-coated GNR recipes
must depend on smaller data sets collected from experiments.
It is well known that ML models trained on a small data set

generally lead to overfitting and fail to accurately predict
conditions not encountered during training.21−23 Although
techniques like transfer learning and generative modeling can
mitigate these challenges by pretraining on larger related data
sets,14,24−26 this is seldom feasible for chemical reactions and
syntheses where input features or descriptors can drastically
di!er across various domains. For simpler material processes
where there are direct relationships between a few of the input
features and outcomes, sparse modeling can be used to reduce
the complexity of the model by carefully eliminating the
noninfluential features and thereby improving the predictive
capability of models trained on small data.27,28 Dimensionality
reduction techniques, such as principal component analysis,
can improve the model accuracy, albeit often at the expense of
interpretability.23 For more complex processes, where the

Figure 1. (A) Schematic representation of three stages of lobe-shaped SiO2-GNR synthesis. (B) Representative optical absorption spectra were
measured after each stage. (C,D,E) Representative TEM images of the obtained SiO2-GNRs labeled as “full”, “lobe”, and “other”, respectively. All
scale bars are 200 nm. (F) Distribution of di!erent morphologies of SiO2 overcoating obtained in 30 syntheses.
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important features are not known a priori or cannot be easily
distinguished, ensemble modeling techniques can significantly
improve the performance of the ML models trained on small
data sets.29
Data augmentation through oversampling a small data set

can improve the accuracy of ML models, which has been
demonstrated by numerous studies in imaging and computer
vision-related problems.24,30−32 This technique also addresses
the issue of class imbalance in classification problems, thereby
boosting predictive accuracy when the data set has an unequal
number of samples for each class. Therefore, data augmenta-
tion could facilitate the e!ective use of small data by reducing
overfitting and eliminating class imbalance. Moreover, given
the complex nature of chemical synthesis and the challenges in
characterization, experimental data sets often contain missing
values for multiple key features that might be important for
correct prediction.33 Multiple imputations, a well-established
statistical method, can be used to estimate these missing values
of the data set while minimizing statistical biases and thereby
e#ciently using the available features.34,35 Although data
augmentation and multiple imputation techniques hold
promise for improving the predictive capabilities of ML
models trained on small data sets, their e!ectiveness remains
relatively unexplored in the field of materials informatics.
In this work, using a data set containing vis−NIR spectra

collected at di!erent stages of syntheses of SiO2-coated GNRs,
along with corresponding TEM micrographs of the GNRs, we
trained decision tree-based classifier models to predict optimal
spectral features to yield either fully coated or lobe-shaped
GNRs. The initial data set contained characterization data
from 30 independent experiments. To expand this data set, we
applied multiple imputation using chained equations (MICE)
algorithm to estimate the missing values36 and utilize various
popular data augmentation algorithms. Additionally, we
introduced a quality factor-based data augmentation algorithm
to prioritize syntheses yielding higher-quality SiO2 overcoating
on GNRs. We assessed the model’s classification accuracy on a
held-out test data set, assessed the impact of multiple
imputation and augmentation methods on model performance,
and identified the relative importance of spectral parameters to
better understand the structure−property relationships of
SiO2-overcoated GNRs. Ultimately, we present a workflow
that leverages optimal vis−NIR spectral features to guide the
synthesis of lobe-shaped SiO2-GNRs.

■ MATERIALS AND METHODS
ML. The vis−NIR spectral features were utilized as inputs for

various regression and classification algorithms to predict the
likelihood or class of silica shape overcoating, as determined from
the TEM images. The training data set comprised the peak position,
the bandwidth of TSPR and LSPR peaks, the volume of TEOS used,
and the concentration of TEOS employed during synthesis.
Depending on the type of algorithm used, regression, or classification,
the models’ output was the probability or class of “full”, “lobe”, or
“other” shapes. The raw data set underwent cleaning, standardization,
and multiple imputation to predict missing values. The resulting data
set was small and thus augmented to mitigate overfitting due to the
limited data set size. To assess the impacts of imputation and data
augmentation, we selected a variety of algorithms, specifically kernel-
based Gaussian process regression, decision tree-based XGBoost
algorithm, nearest neighbors-based KNN, and support vector-based
SVM algorithm. Prior research on GNRs has demonstrated the
enhanced predictive capacity of decision tree-based algorithms in
predicting the shape and aspect ratio of GNRs. Our study
concentrated on a broad spectrum of algorithms to elucidate the

influence of imputation and data augmentation. The evaluation of the
classification models was conducted using precision and recall metrics,
which were derived from a comparison of predicted and actual
overcoating shapes present in the test set. The true shapes of the
overcoat were ascertained from TEM images. Precision was computed
by determining the ratio of true positives (cases where both the
predicted and actual shapes were positive) to the aggregate of true
positives and false positives (instances where the predicted shape was
positive but the actual shape was negative). Conversely, recall was
calculated by determining the ratio of true positives to the sum of true
positives and false negatives (situations where the predicted shape was
negative but the actual shape was positive). The F1-score, a metric
that combines precision and recall, was subsequently computed as the
harmonic mean of the two metrics.

Feature Extraction, Preprocessing, and Model Training. For
each sample of the GNR, three optical absorption spectra were
measured throughout the process: after the synthesis and purification
of CTAB-coated GNRs, after the overcoating reaction using TEOS,
and after purification with methanol. Longitudinal and transverse peak
positions and full-width half-max values for each peak were extracted
from each spectrum using the SciPy package (v1.7.3).45 Despite the
presence of artifacts in a few of the experimental spectra (Table S2),
these did not interfere with the extraction of distinct TSPR and LSPR
peak values used to train the ML models.

Though a relatively small number of values (4%) are missing in our
data set, training most ML models requires complete matrices. While
the most straightforward solution to missing data is to repeat the
experiments, the synthesis procedure of SiO2-GNRs is complex and
expensive to perform multiple times. An alternative and simpler
approach is to drop the rows containing one or more missing columns
during ML model training; however, it would significantly reduce the
size of the already small data set (e.g., 22 rows are completely
observed out of 30 rows). Missing values can be replaced by zeros,
mean, or an average of similar values via data imputation, but such an
approach can statistically bias the data set as the correlation between
the features and their distribution are ignored in the process. This
problem has been studied in statistics, and multiple imputation
algorithms have been developed to overcome the potential biases,
where the missing values are estimated multiple (usually five) times
using ML algorithms. In this work, the MICE algorithm implemented
in the mice package (v3.14) of R (v4.1.2)46 was used for multiple
imputations using the default hyperparameter values. All of the
features were used as the predictor features of MICE.

Similar to multiple imputations, the data augmentation algorithm
assumes that the actual relationship and correlation of the features are
su#ciently captured by the distribution of the available data, and thus,
additional values can be sampled from the distribution to minimize
overfitting. For data augmentation, the imbalance-learn (v0.10.1)
Python package was used with the default hyperparameters for each
algorithm. For a small data set, it could be beneficial for an ML model
to prioritize the data that correspond to the products with high quality
to reduce the uncertainty of model prediction while still accounting
for the data of low-quality products to improve accuracy. The quality
factor was only used to oversample the data via bootstrapping to
prioritize the data with higher quality and was not used as a feature for
ML models. Quality-based augmentation method was implemented
using Python (v3.9.16) and numpy (v1.21.5), with the frequency
hyperparameter F = 2 and the scaling parameter s = 0.3. The
algorithm of the method is provided in the Supporting Information.

The XGBoost package (v1.6.1)47 was used for the eXtreme
Gradient Boosting (XGB) algorithm, and the scikit-learn package
(v1.2.1)48 was used for the other ML models. After data
augmentation, standard scaling was performed on all features by
removing the mean of the data set and scaling by the variance. Three
types of feature selection were performed: (1) selection of all features,
(2) selection of only the noncollinear features, and (3) selection of
features by first training a decision tree classifier on all available
features and then using the recursive feature elimination technique
implemented by scikit-learn. For hyperparameter tuning, Grid-
SearchCV was used for KNN and SVM classifiers and Random-
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izedSearchCV was used for the XGB classifier; both methods were
implemented in scikit-learn. A combination of a radial basis kernel
and a white noise kernel was used for the GP classifier, and no
additional hyperparameter search was performed for GP since scikit-
learn automatically optimizes the kernel parameters during the fitting
procedure.
Synthesis and Characterization of Silica-Coated GNRs.

GNRs were prepared according to a previously reported method,
yielding 190 mg of CTAB-coated GNRs with an LSPR of
approximately 800−820 nm in 1 L of water.6 Several batches of
GNRs were prepared with a higher aspect ratio and a more redshifted
initial LSPR of approximately 840 nm. SiO2 was deposited onto the
CTAB-GNRs according to Rowe et al. with minor modifications.11
The aqueous CTAB-coated GNRs were gently heated at 30 °C for 1 h
to dissolve excess CTAB, and then isolated by centrifugation (10,000

rpm for 20 min) of two 50 mL aliquots. Approximately 48 mL of
supernatant was discarded, and then the volume was brought back up
to 50 mL using deionized water. After a second round of
centrifugation and supernatant removal using the same conditions,
the volume was brought back up to 50 mL using 0.9 mM CTAB
water. A final round of centrifugation was performed, 48 mL of
supernatant was removed, and the total volume was brought to 10 mL
using 0.9 mM CTAB water. The pH was adjusted to 10.0−10.4 using
0.1 M NaOH, and the mixture was heated at 29 °C with gentle
stirring. A 20 vol % solution of TEOS:MeOH was then injected into
the mixture over 5 min. For 10 out of 30 syntheses, 125 μL of this
TEOS solution was used, while the volume for the other syntheses
was varied from 50 μL up to 500 μL to control the thickness of the
SiO2 shell, with larger volumes causing deposition of more SiO2. The
mixture was stirred for an additional 30 min and then allowed to age

Figure 2. (A) Representation of the features extracted from the absorption spectra measured after three stages of SiO2-GNRs synthesis. (B)
Pearson’s correlation matrix of peak and width changes for the LSPR and TSPR plasmon bands. The relative fractions of overcoating shapes (full,
lobe, and other) were determined from TEM images. The numbers in the cells denote absolute values, while blue and red colors, respectively,
represent negative and positive correlations between the features.
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undisturbed at 29 °C for 20 h before undergoing purification via
centrifugation. 10 mL of unpurified solution was evenly divided
among four centrifuge tubes, and the volume of each tube was
brought to 40 mL by adding MeOH. The mixture was centrifuged at
8500 rpm for 10 min, and as much supernatant was removed as
possible before adding MeOH to bring the volume back to 40 mL.
Three additional rounds of purification by redispersion in MeOH and
centrifugation were completed. After the final round the volume of
each tube was brought to 2.5 mL by adding MeOH, and the contents
of the tubes were combined, giving a total sample volume of 10 mL.

■ RESULTS AND DISCUSSION
Our experimental procedure of synthesizing silica-coated
GNRs (SiO2-GNRs) closely follows the method reported by
Rowe et al.11 and involves three stages shown in Figure 1A.
First, GNRs coated in a CTAB bilayer are synthesized in water.
The CTAB-GNRs are approximately 80 nm in length and 20
nm in width. Figure 1B shows vis-NIR absorption spectra
measured at di!erent stages of the SiO2 shell deposition. The
peaks of the LSPR and TSPR bands for GNRs are located near
800 and 510 nm, respectively, which are typical for CTAB-
GNRs with similar sizes and aspect ratios.6,37 The LSPR is
more sensitive to chemical and environmental changes
compared to the TSPR due to the enhancement of the
induced local electric field along the length of the GNRs. The
SiO2 overcoating is incorporated onto the GNR surface
through hydrolysis of TEOS dispersed in MeOH, and the
thickness of the SiO2 shell is controlled by the amount of
TEOS added. Similar to previous reports, a redshift of the
LSPR band is observed due to an increase in the refractive
index of the medium as SiO2 deposits on the GNR surface.9,38
In the third and final stage of the procedure, the SiO2-
deposited CTAB-GNRs are purified four or more times by
washing with methanol. The relatively smaller methanol
molecules can traverse through the pores of the SiO2 shell
and dissolve the CTAB ligands from the surface of the
nanorods to produce pure SiO2-GNRs. A blueshift is observed
in the LSPR peak after purification, moving the peak back to
near its initial wavelength observed for CTAB-GNRs dispersed
in water. Following this procedure, 30 independent SiO2-
GNRs synthesis experiments were performed and the optical
extinction spectra after each stage, namely, (1) after synthesiz-
ing CTAB-GNRs and before performing the TEOS over-
coating reaction, (2) after the TEOS overcoating reaction, and
(3) after purification with methanol, were acquired, yielding a
total of 90 individual spectra. Data for seven syntheses were
collected from Rowe et al., and 23 syntheses were performed in
this work. Details of the experimental procedure are provided
in the Materials and Methods section.
It is well known that morphological control of SiO2 shells on

GNRs can be challenging to control.7,11,12 Di!erent forms of
SiO2 overcoating were obtained in di!erent experimental
batches. To quantify the extent of each overcoating type, we
manually identified the SiO2 overcoating shape of each GNR
and counted their relative fractions in the representative TEM
images for each batch (Figure 1F). By analyzing multiple TEM
images, we determined the total number of GNRs with each
shape and manually counted the full-, lobe-, and other-shaped
silica coatings from the TEM images to calculate each
overcoating shape’s fraction. During the process, we strictly
labeled the SiO2-GNRs as full or lobe that have SiO2
overcoating without any visible artifacts (e.g., Figure 1D is
labeled as lobe vs the lower-right panel of Figure 1E is labeled
as other) while GNRs showing lobes on both nanorod sides

were classified as lobe. In contrast, we classified any
asymmetric shapes, aggregation, or one-sided overcoating as
the other shape. Additional representative TEM images are
provided in the Supporting Information.
In principle, one can employ classification and regression

algorithms to analyze optical spectroscopy data to predict the
three SiO2 shapes and their relative fractions. For the training
of the classification model, we labeled the outcome for each
independent experiment as full, lobe, or other SiO2
morphology based on the maximum fraction of the observed
shapes. Out of the 30 independent experiments, 19 yielded
SiO2-GNRs with a majority of full overcoating (Figure 1C), 6
syntheses yielded lobes (Figure 1D), and 5 syntheses yielded a
heterogeneous mixtures including aggregates of GNRs, SiO2
coating on one side, lobe at one end, and chain-like structures
(Figure 1E), which we labeled as the other type of SiO2-GNRs
and included in the training data set. The inclusion of negative
data is expected to improve the accuracy of the ML models.

Properties of the Optical Extinction Data. To system-
atically analyze the collected optical extinction spectra data and
for ML model training, we identified various spectroscopic
features from the extinction spectra and determined the peak
positions, widths, and relative distances of the LSPR and TSPR
bands as well as the peak shifts in the last two stages of
synthesis. We extracted 12 original features corresponding to
peak position and bandwidth (measured as the full width at
half of the maximum) from the TSPR and LSPR bands that
constituted the raw data set. Additionally, 20 derivative
features were computed based on the di!erences between
these original features (Figure 2A and Table 1). Peak height,
measured in terms of extinction or intensity, was excluded
from the analysis due to its arbitrary unit.
Exploratory data analysis reveals a general trend of a redshift

in LSPR after overcoating reaction and a blueshift after
purification. The distributions of the relevant features after the
overcoating reaction and purification grouped by the SiO2

Table 1. Selected Spectral Features Used for Data Analysis
and ML (shown in Figure 2A)a

feature description type
tsfwi TSPR bandwidth (full-width half-max) absolute

tspki TSPR peak position absolute

lsfwi LSPR bandwidth (full-width half-max) absolute

lspki LSPR peak position absolute

dpii relative distance between TSPR and LSPR peaks absolute

dwii relative size of TSPR and LSPR bandwidths absolute
lpji LSPR peak shift change

tpji TSPR peak shift change

lwji LSPR bandwidth change change

tpji TSPR bandwidth change change

dpji change of relative peak distance change

dwji change of relative size of bandwidths change

aThe indices i and j correspond to the measurements at di!erent
stages of the synthesis of SiO2-GNRs (i = 1 for uncoated GNRs, i = 2
for SiO2-GNRs after the overcoating reaction, and i = 3 for SiO2-
GNRs after purification). Similarly, ii corresponds to di!erences in
feature values at the same stage and ji corresponds to changes
between two stages, for example, before and after overcoating
reaction.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.3c03204
Chem. Mater. 2024, 36, 9330−9340

9334

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c03204/suppl_file/cm3c03204_si_001.pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c03204?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


overcoating shapes are shown in Figures S1 and S2. The TSPR
bandwidth increases after the overcoating reaction, and the
LSPR bandwidth increases after purification for all three SiO2
shapes. However, for fully overcoated SiO2-GNRs, one or two
syntheses show the opposite trends. Since all SiO2 overcoating
shapes exhibit similar trends in peak shifts and peak
broadening, it was not possible to distinguish their morphology
based on any of these features. This is further confirmed by the
Pearson correlation matrix of the features and fractions of SiO2
overcoating shapes, shown in Figure 2B. While many features
of the absorption spectra are highly correlated with each other,
as expected, they do not show a strong correlation with the
SiO2 overcoating shapes. All overcoating shapes (i.e., the
fractions of full, lobe, and other GNRs) exhibit a low to
moderate correlation with the features corresponding to
changes in LSPR and TSPR peaks with a maximum correlation
of 0.6. The low correlations between the shapes and spectral
features suggest that complex, nonlinear relationships likely
exist between them. This validates the use of ML algorithms to
capture intricate relationships. Further analyses involving peak
positions, widths, and TEOS volume also show similar low to
moderate correlations (see Figure S3).
Multiple Imputation and Data Augmentation. Before

training the supervised ML algorithms, we performed extensive
preprocessing of the collected optical extinction spectra data
set to minimize the e!ects of its small size. In the multistage
synthesis procedures of nanoparticles, agglomeration of the
nanoparticles at later stages of the synthesis or during
purification can impede e!ective characterization. In our
experiments, due to di#culties in experimental characterization
and particle agglomeration in later stages of several syntheses,
4% of the values in the collected data were missing (Figure
S4A) such as values after the SiO2 overcoating reaction and
purification and the volume of TEOS used during the reaction.
This phenomenon, although commonly encountered in
experimental synthesis, is seldom reported in the scientific
literature. The existence of these missing values within the
spectral descriptors necessitated the application of imputation
methods in our study. We performed data imputation using the
MICE algorithm to more accurately estimate the missing
values in the data set (see Materials and Methods). The
imputation method generated five complete data sets by
estimating the missing features. The Kolmogorov−Smirnov
(KS) test was used on the imputed data to quantify the
uncertainty of the estimated values. The imputation method
estimated six of the nine features related to the peak positions
of LSPR and TSPR within a 5% confidence interval, and three
features had slightly higher uncertainties (see Figure S4B).
In addition to missing values, the collected data set is

imbalanced with a predominance of fully overcoated SiO2 shell
(Figure 1F). This imbalance could potentially bias an ML
model to favor the more frequently occurring classes during
prediction.39 To address this, we performed data augmentation
to account for the class imbalance along with a regularization
technique to prevent overfitting. Numerous data augmentation
algorithms have been established within ML research. For
example, the random oversampling introduces new data points
for the less frequent classes by randomly sampling existing data
via a bootstrapping technique to add slight variations to the
sample distribution.40 The Synthetic Minority Oversampling
Technique (SMOTE)39 and the Adaptive Synthetic (ADA-
SYN)41 methods generate new samples via interpolation of the
existing data points, using the K-nearest neighbors (KNN)

classifier. The ADASYN method oversamples the data, where
KNN struggles to classify the response accurately; however,
SMOTE does not di!erentiate between the correct and
incorrect predictions when generating synthetic samples. The
BorderlineSMOTE method, a variant of SMOTE, attempts to
generate samples near the decision boundary of the classifier.42
All these algorithms aim to balance the data set by
oversampling under-represented classes until each class has
an approximately equal representation. This balanced,
augmented data set helps to mitigate any algorithmic biases
introduced in ML models that could arise due to over-
representation of certain classes. The representative distribu-
tions of the oversamples generated by the algorithms are
shown in Figure S5.
It is important to note that the abovementioned data

augmentation algorithms assume that all available data are of
equal importance or quality. However, this assumption may
not hold true in many chemical experiments, where the quality
of the product can vary within batches. For example, an expert
might consider the batches of SiO2-GNRs shown in Figure
1C,D to be of higher quality than those where a mixture of
di!erent SiO2 shapes occurs. Therefore, when data augmenta-
tion techniques are applied in such contexts, it may be
beneficial to introduce a quality factor to prioritize high-quality
data points. We defined a “quality” column in the data set,
where each batch of synthesized nanorods was manually rated
by a domain expert on a scale of 1 to 10 to distinguish the
higher-quality nanorods using the TEM images and extinction
spectra. We implemented a quality-based data augmentation
algorithm that replicates the available data based on this
“quality” factor following the bootstrapping technique similar
to the random oversampling algorithm. Additional details of
multiple imputation, data augmentation, distribution of the
generated samples, and e!ects of hyperparameters are provided
in Figures S6 and S7.

Training of Supervised Models. To assess the impact of
data imputation and augmentation on the performance of ML
models, we selected and trained classification models from
di!erent families of ML algorithms. We chose relatively
simpler algorithms, such as Gaussian process (GP), KNN, and
support vector machine (SVM), to minimize model complex-
ity. A slightly more sophisticated XGB classifier was chosen
because depending on hyperparameters, it can approximate the
random forest and decision tree classifiers, with and without
boosting; has potential for lower model bias than bagging
algorithms such as ExtraTrees; and has suitability for low-noise
and complex data structures.43 We stratified the data into test
and training sets before performing imputation and data
augmentation and randomly selected six data points for the test
set with a condition to choose at least one data point from
each of the overcoating shapes to reliably calculate the
accuracy of the predictions. The held-out test data set was kept
fixed to compare the performance across the algorithms.
Contrary to the test data set, the size of the training data set
varied from 185 to 805 for the imputed data and from 28 to
135 for the completely observed data depending on the
imputation and data augmentation algorithms. The fluctuation
in the size of the training data set is due to data augmentation
and imputation methods. Initially, there were 30 experiments,
with 22 being fully observed and 8 having missing values.
Without multiple imputations, the ML algorithms are able to
use the 22 complete data points. However, with the application
of multiple imputation, the data from all 30 experiments
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became usable for training the ML models, because the missing
values were filled. Similarly, data augmentation algorithms
were employed to oversample the 30 data points, thereby
generating more training data. This led to a varying quantity of
training data sizes, as each of the 30 data points could be
oversampled several times, depending on the algorithm used.
Di!erent combinations of imputation and augmentation

methods as well as standard scaling, feature selection, and
hyperparameter tuning were performed on 1440 individual
pipelines prior to fitting di!erent ML models (Figure 3). We
employed all features extracted from extinction spectra from
the three synthesis stages as inputs for the ML models to
predict the class of the silica overcoating shape on GNRs. The
TEM images were independently acquired after synthesis and
purification. We found that model performance, quantified
using the weighted F1-score calculated from the harmonic
mean of precision and recall, was significantly a!ected by a
combination of data imputation and augmentation methods,
scaling, choice of features, and hyperparameters. The
distribution of the obtained F1-scores of predictions on the
test set is shown in Figure 3.
The boxplot outliers in the F1-score distributions represent

the maximum performance obtained for a combination of
model and imputation methods. All algorithms performed
similarly when trained on the completely observed data,
regardless of the method used to augment the data set. The GP
model attained the highest F1-score of 0.78 (obtained as the
outliers). The ADASYN algorithm failed to augment the small
training set with 16 rows due to an insu#cient number of
nearest neighbors and therefore could not be evaluated without
performing imputation. With multiple imputations, the
classification accuracy of the algorithm slightly improved.
The maximum score of 1.00 was obtained by the XGB classifier
for ADASYN augmentation, and a score of 0.85 was obtained
twice when trained on the quality-augmented data. The GP
and KNN classifiers performed similarly, with the maximum
F1-scores varying between 0.76 and 0.78. The SVM classifier
also obtained an accuracy of 0.78 when trained on the data
augmented by SMOTE. While XGB showed the best

performance in specific cases, it also demonstrated a wide
range of F1-scores due to overfitting with a nonoptimal
combination of hyperparameters. We were not able to
reproduce the 1.00 accuracy score in the subsequent runs of
the XGB classifier, which indicates that the randomness of the
oversampling method may have contributed to such perfect
accuracy. Overall, the plot showed the importance of a
hyperparameter when dealing with small data sets, as well as
the potential improvement that could be gained by multiple
imputations and data augmentation. The details of the model
training, feature selection method, and hyperparameters are
discussed in the Materials and Methods section.

Feature Importance. Di!erent sets of features were
chosen by the recursive feature elimination methods used in
each of the 1440 ML pipelines tested for model training. The
most frequently selected features across the pipelines are listed
in Figure 4A. Surprisingly, only the features with the absolute
values of the LSPR or TSPR bands were consistently chosen
regardless of the scaling, data imputation, or augmentation
methods applied. Among the top five most frequently selected
features, the volume and volume % of TEOS were chosen the
most, followed by optical properties. Such sensitivity of
overcoating shape to the volume and concentration of TEOS
and methanol have been previously reported.11 The plot also
shows that both TSPR and LSPR features, for example, the
TSPR bandwidth after the SiO2 overcoating reaction (tsfw2),
followed by the LSPR bandwidth after purification (lsfw3) were
important to distinguish between the SiO2 overcoating shapes.
Furthermore, the TSPR bandwidth of the initial CTAB-GNRs
(tsfw1) also played a role to discriminate between the SiO2
shapes.

Inverse Design via Multiobjective Optimization. To
understand the role of each of the most important features in
determining the SiO2 overcoating shapes and to guide future
experiments, we utilized the best-performing ML pipeline
(multiple imputations, quality-augmentation, and the XGB
algorithm) to maximize the probability of either lobe or full
shape and simultaneously minimize the probability of
obtaining the other shapes predicted by the ML model. The

Figure 3. Distribution of F1-scores grouped by imputation, data augmentation, and classification algorithms obtained by training the algorithms
with di!erent combinations of scaling, feature selection, and hyperparameters tuning via 1440 ML pipelines. The boxplots are colored by data
augmentation methods, and the green circles show the outliers. The outliers indicate superior performances of certain pipelines over the others.
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optimization process produced the optimum values for each of
the important features corresponding to a target shape (i.e., full
or lobe) while di!erent sets of optimum values were obtained
for the five imputed data sets. Only six features (namely, lsfw3,
dw33, tsfw1, tw21, lw32, and dw32) were found to be statistically
significant, as shown in Figure 4 to EB, which had large
di!erences in the distributions of optimum values depending
on the fully coated or lobe-shaped SiO2 overcoating on GNRs.
Among the obtained features, one feature related to the energy
of the band (the LSPR peak position after purification, lspk3)
was found to have a distinguishable e!ect on the SiO2
morphology. While the di!erence was not statistically
significant, the ML model suggested that the position of the
LSPR peak was expected to be higher for lobe-shaped SiO2-
GNRs than for fully coated rods.
All other optimal feature values that serve to di!erentiate

among various SiO2 morphologies are associated with the
widths of the plasmon bands. The width of the LSPR band
after purification (lsfw3) and the di!erence between the width
of the TSPR and LSPR bands (dw33) have highly significant (p
value = 0.01) shape-distinguishing e!ects. Furthermore, a

broader TSPR peak of CTAB-GNRs (tsfw1) and peak
shrinking by approximately 10 nm after the overcoating
reaction (tw21) are suggested by the model to obtain lobe-
shaped SiO2 overcoating. The bandwidth of the freshly
synthesized CTAB-GNRs generally indicates the polydispersity
of the GNRs. The reduction of the TSPR bandwidth after the
SiO2 overcoating reaction indicates a damping process of the
collective oscillation of the electrons due to changes in the
local dielectric environment along the width of the nanorods.44
Such a reduction in TSPR bandwidth in the lobe-shaped
nanorods (compared to the fully coated ones) is expected
because the lobe-shaped SiO2-GNRs are not coated along the
width of the nanorods. Overall, the approach identifies several
important correlations between optimal feature values and
SiO2 overcoating shapes, which are crucial for distinguishing
between various overcoating shapes based on optical spectral
measurements.
Based on the obtained distributions of optimum values, we

formulated a synthesis recipe for producing lobe-shaped SiO2-
GNRs. To synthesize an NP with the target lobe overcoating,
optical extinction spectra should be measured after each stage
of the synthesis process and compared against the recom-
mended values from the ML model. Figure 5A summarizes the
developed ML workflow for predicting the set of optimum
values for the target SiO2 shapes. Initially, optical extinction
spectra were collected at di!erent stages of the experimental
process, used as training data, and then passed through the
multiple imputation models. Each batch of syntheses was
weighted in the data augmentation procedure using a quality
factor set by a domain expert. A supervised classification model
(or regression model, as applicable) was then trained using the
optical spectra as input features to predict the shape of SiO2-
GNRs (or fraction of each shape) obtained in the TEM images
of the synthesized SiO2-GNRs. Finally, using the best-
performing ML model, a genetic algorithm-based multi-
objective shape optimization algorithm was employed to
predict the set of optimum values for achieving the target
shapes.
The measurement of the extinction spectra provides a way

to guide the synthesis of a target overcoating shape. Figure 5B
shows the conditions set by the distributions of the optimum
values as depicted in Figure 4B−E. For example, to obtain
lobe-shaped SiO2-GNRs, the condition tsfw1> 50 nm indicates
that after the first stage of synthesis of CTAB-GNRs, the
measured spectra should exhibit a TSPR bandwidth greater
than 50 nm. Likewise, the condition tw21 < −10 nm indicates
that the bandwidth should decrease by at least 10 nm following
the SiO2 overcoating reaction in the second stage. For the third
and final stage of synthesis (i.e., purification), the model
proposes four conditions to increase the likelihood of yielding
lobe-shaped SiO2-GNRs: (1) the LSPR bandwidth should be
below 80 nm, (2) the di!erence between the bandwidths of
LSPR and TSPR should be less than 40 nm, (3) the LSPR
peak should decrease by 5 nm, and (4) the di!erence between
the LSPR and TSPR bandwidths should decrease after the
purification stage. While criteria 1 and 2 depend on the
underlying properties of the uncoated GNRs, the ML
predictions indicate that failure to meet these conditions
increases the probability of obtaining a fully overcoated SiO2-
GNR.
Because the developed ML pipeline attempts to predict the

optimum values of the optical properties for a target SiO2
shape based on the available data, the prediction accuracy of

Figure 4. (A) Frequency of each feature selected by recursive feature
elimination method in 1440 pipelines tested for ML model training.
Features from the same stage of synthesis are colored similarly. (B−E)
Distribution of the optimum values of the statistically relevant features
predicted by the XGB algorithm to obtain either full- or lobe-shaped
SiO2-GNRs. The model was individually trained on each of the five
multiply imputed complete data sets. The brackets and stars are
statistical annotations indicative of p values (*0.1, **0.05, ***0.01)
calculated using Welch’s t test. The circles represent outliers in the
predicted optimum values.
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the model could be iteratively improved by adding new
experimental data to the pipeline and by following an active
learning scheme to e#ciently determine the optimal synthesis
protocol to produce the target GNRs. Data imputation and
augmentation reduce the tendency of the ML model to overfit
the small available data. However, similar to any other
statistical sampling techniques, the imputation and augmenta-
tion methods would be limited if the available training data is
not representative of the true nature of the underlying physical
process. Additionally, the model’s predictive ability is highly
sensitive to the quality of the optical extinction and TEM data.
While ML tools could be applied to understanding the role of
di!erent SiO2 shell thicknesses, the focus here is on the shape
of the SiO2 shell. ML predictions for significantly di!erent shell
thicknesses may have large deviations from those of experi-
ments.

■ CONCLUSIONS
We investigated the relationship between the optical extinction
spectra and the morphology of SiO2 overcoating of plasmonic

GNRs using multiple imputation and data augmentation
algorithms on a small experimental data set consisting of 30
syntheses. Our ML model accelerated the characterization of
SiO2-overcoated GNRs by deducing whether the SiO2 shell
was lobed or uniform from extinction spectra instead of TEM.
To overcome the challenges like overfitting, data quality, and
class imbalance inherent to the small data set, we implemented
ML pipelines featuring multiple imputation and data
augmentation techniques. The top-performing ML model,
validated on a held-out test data set, identified several
statistically significant correlations between the plasmon
resonance bands and morphology of SiO2 overcoating on
GNRs. The model proposed specific conditions in the optical
extinction spectra that could guide the synthesis process to
yield either fully overcoated or lobe-shaped SiO2-GNRs.
Furthermore, we demonstrated that multiple imputations can
be used to deal with the missing values often encountered in
experimental data sets due to di#culties in multistep synthesis
and characterizations. Overall, our study identified optimal
feature values, such as the width of the LSPR band and the
di!erence between the widths of the TSPR and LSPR bands,
which were key in distinguishing between various SiO2
morphologies. These values revealed important correlations
between these features and the shape of the SiO2 overcoating,
providing a basis for distinguishing between lobed and uniform
shapes solely on the basis of optical extinction spectra.
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