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Abstract—We study auxiliary signal-based fault detection
in static linear systems with quadratic constraints. Auxiliary
signals are perturbations that make faults easier to detect, at
the cost of some disruption to normal operation. In this paper,
we find minimally disruptive auxiliary signals that guarantee
detection under set-based uncertainty. Our motivation is dis-
tance protection in inverter-dominated power systems, wherein
small fault currents can go undetected by traditional schemes.
We focus on static systems because distance protection is based
on phasors.

We formulate a general auxiliary signal design problem
with constraints imposed by system operational requirements,
and additive and multiplicative noise. We use a relaxation
and duality to reformulate the problem as a semidefinite
bilinear program. In the special case of additive uncertainty
and no constraints, we obtain an analytical lower bound on
the magnitude an auxiliary signal must have to guarantee
detection. We solve the optimizations in an example based on
distance protection, in which the auxiliary signal is negative
sequence current.

Index Terms—Fault detection; auxiliary signal; distance
relay; negative sequence; inverter

I. Introduction

Faults can be difficult to detect in systems with high
levels of uncertainty, even in the linear static case.
Auxiliary signals are perturbations that make faults easier
to detect in exchange for occasional disruptions to normal
operation [1], [2]. In this paper, we optimize auxiliary
signals to be minimally disruptive while guaranteeing fault
detection.

We begin with a general static auxiliary signal design
problem, which includes additive and multiplicative uncer-
tainty and constraints. Constraints are beneficial in this
setting because they

o allow for greater realism, e.g., limits on certain
variables imposed by control or the physics of the
problem; and

o reduce the magnitude of the optimal auxiliary signal.
More precisely, the constraints make the detection
problem easier by shrinking the range of possible
observations, potentially mitigating the worst real-
izations.

The overall auxiliary signal design problem is a bilevel
optimization. We use a semidefinite relaxation to convexify
the inner minimization, which is bilinear when there is
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multiplicative uncertainty. As in our preliminary work [3],
we then use duality to eliminate the inner minimization,
which here results in a bilinear semidefinite program. The
two main advantages of this approach are that

o the constraints fit naturally in the calculation of the
dual program; and

o the resulting optimization, though not in a tractable
class, is typically small in scale, and so is amenable
to any nonlinear programming algorithm.

We also describe how the optimization can be equivalently
constructed using Farkas’ Lemma.

We now review the relevant literature. The textbook [1]
covers auxiliary signal design for both static and linear
time-invariant (LTI) systems. Our static system model
differs in that it has constraints and a constant offset,
without at least one of which the auxiliary signal can never
be zero. Another literature stream is [4]-[8], which uses
zonotopes to model additive uncertainty in LTI systems.
This makes the reachable sets easier to characterize and
leads to mixed-integer quadratic programs. Of particular
relevance is [9], which, to our knowledge, is the only
other formulation based on duality. Whereas we focus
on static systems, they use Hahn-Banach duality to find
hyperplanes that separate the limit sets of LTI systems.

Our main motivation is protection in power systems.
During faults, synchronous machines produce currents
with large magnitudes and predictable phase imbalances,
which inform traditional detection schemes. On the other
hand, fault currents from inverter-based resources (IBR)
can be within a few percent of normal and, e.g., have
no negative sequence content [10], [11]. As a result,
conventional fault detection schemes can fail in inverter-
dominated power systems, motivating the use of auxiliary
signals [12]. Examples include adding harmonics [13] and
negative sequence [11], [12] to the inverter’s current, the
latter of which is now stipulated by IEEE Standard
2800 [14]. Such schemes only lower power quality when a
fault is suspected, which might be a small fraction of the
time, and, because they require no additional hardware,
are compatible with some existing protection setups [11].
Later, in Section VI, we give an example in which we
optimize a negative sequence current injection to detect a
phase-to-phase fault. Aside from our preliminary paper [3]
and the first author’s recent work in [15], none of the
formalisms in the auxiliary signal literature have been
applied to fault detection in power systems.

The original contributions of this papers are as follows.
C1l. We use a relaxation and duality to reformulate fault

detection in static systems as a bilinear semidefinite
program. This allows for multiplicative uncertainty,



constant offsets, inequality constraints in the system
model, and solution via generic nonlinear program-
ming algorithms.

C2. In the special case of only additive noise and no
constraints, we obtain a necessary condition: a lower
bound on the magnitude of the auxiliary signal, below
which correct fault detection is not guaranteed.

C3. We apply the procedure to distance protection.
Specifically, we optimize negative sequence current
injection to assist detection of a phase-to-phase fault.

The remainder of the paper is organized as follows. In

Section II, we cast the auxiliary signal design problem for

static systems as a bilevel optimization. In Section III,

we convexify the inner minimization via semidefinite

relaxation, and in Section IV, use duality to reformulate
the overall problem as a bilinear semidefinite program.

In Section V, we look at the special case of additive

uncertainty and no constraints. In Section VI, we apply

the procedure to distance protection. We describe our

intended future work in Section VII.

II. Problem statement

A linear static system has multiple potential mod-
els, which are indexed with the elements in the set
M = {0,1,2,...,M}. We typically associate one of
the models with normal system behavior, and the other
M with behavior under different types of faults. Let 6
and z denote real vectors associated with the auxiliary
signal and known quantities (e.g., input and measured
output signals), respectively. Let Ay and &, k € M,
denote vectors representing additive and multiplicative
uncertainty, respectively. Let ||| denote the Euclidean
norm for vectors and the Frobenius norm for matrices.

Model k € M is written

([Ok, X&) + Gr(&k)) Lﬂ = hy, + Hp Mg (1a)
aT Qe + A w + b, <0, (1b)

where the matrices O, Xi, Gr(&), Hg, and vector hy
specify how the auxiliary, known, and noise signals enter
model k € M. The noise terms must satisfy

[Aell <1, [lg] <1, (1c)

for k € M. Each multiplicative noise matrix has the form

1= 17 ey Ny

g
Grlen) = > € UL Vi,
i=1
where 5}; is the i*® element of &,. The matrices U,ﬁ and
Vi¥ respectively multiply 6 and z in (la). The symmetric
matrix Q%, vector A%, and scalar b} parameterize the
inequality (1b), which specifies system limits, e.g., an
inverter’s maximum current magnitude. We only constrain
x to streamline exposition and because the auxiliary signal
should be small anyway, but could generalize (1b) to
include 6.
We assume that one of the models is correct. Once x
is known, i.e., measurements are taken, we want to know

which one it is. Given x and #, we check if each model
k € M could be correct by solving

T : min w s.t.
W AE,Ek
(1a), (1b)
Al < w (2a)
I€e]I* < w. (2b)

Problem 7Ty is a convex quadratically constrained program,
and so fairly easy to solve. Let 7 (6, ) denote the optimal
objective of T. If T}, is infeasible because x does not satisfy
(1b), we follow the convention that 7 (6, z) = oco.

Ti simplifies in the following two cases.

o If there is only additive uncertainty and Hj has full
column rank, then we may solve (1la) directly for Ag,
2
and 71(0,2) = || \g|”-
o If there is only multiplicative uncertainty and the
matrix

(UL + Via, ... U0 + Vika]

has full column rank, then we may solve (1a) directly
for i, and 3(0, ) = || Gi||*.

We will see in Section V that when there is only additive
uncertainty, 7 simplifies to evaluating (1a).

Definition 1: x is consistent with model k if 7, (0, z) < 1.
If z is consistent with model &, then it is a feasible solution
of (1) for k, which is to say that model k could be correct.

Due to the uncertainty, = could be consistent with
multiple models. The role of the auxiliary signal, €, is to
ensure that x is only consistent with the correct model.
To do so, we constrain 6 so that no realization of x is
consistent with more than one model. Let S C M be a
pair of models. Consider the optimization

Pe mi;\l5 w st.forkeS
(1a), (1b)
IAel® < w (3a)
I€6ll” < w. (3b)

For concision, we omit subscripts from variables under the
min to indicate the full vectors for both k € S. Let o5(0)
denote the optimal objective of Pg.

Definition 2: 6 separates S if o5(0) > 1.

Observe that unlike T, = is an optimization variable in
PZ. This means that if @ separates S, then there is no =
that is consistent with both models. If one of the models
is correct, then any realization of z must be consistent
with it.

Note that if the offsets, hy and by, are not present (as
in [1]) and 6 = 0, then o5(f) = 0. This implies that some
auxiliary signal is always needed to achieve separation,
which is not realistic. The offsets reflect the fact that most
systems do not operate at zero, and allow for systems in
which auxiliary signals might not be necessary for fault
detection.



Let C be a positive semidefinite matrix. We aim to solve
Pl mgin 07ChH s.t.
1<os(f) for all S C M, |S| = 2. (4)

The objective is a proxy for the disruption caused by the
auxiliary signal. The constraint ensures that the auxiliary
signal separates all pairs of models § C M, of which
there are (M;‘). This implies that x will only be consistent
with the correct model. We identify the correct model by
evaluating 7 (6, z) for all k € M.

As the two models in a pair, S, approach equivalence,
the objectives of P2 and P! approach zero and infinity,
and a larger and larger auxiliary signal is needed for
separation. Problem P! is infeasible if no auxiliary signal
can separate the models, i.e., because two of the models are
identical. Observe that the constraints in (1b) restrict the
values x can take on in P2, increasing its objective. The
presence of such constraints can therefore only increase
os(0), shrinking the size of auxiliary signal needed to
attain separation.

Problem P! is difficult to solve due to nonconvexity and
the minimum embedded in (4). Over the next few sections,
we develop a general computational strategy and analyze
special cases.

III. Semidefinite relaxation
Problem Pg is nonconvex due to the bilinearities &z,
i=1,..,lk, k €S. We convexify them using a standard
semidefinite relaxation (see, e.g., [16]). We first introduce
the matrices.
1 & a2t
& = B
xz F 12 w
which we substitute, element-wise, for the outer products
177177
| |k

T T
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The product of a real vector with its transpose is positive
semidefinite and has rank one. We obtain the following
relaxation, P2, by only enforcing positive semidefiniteness
on the new matrices:

PY min w st forkeS
z,w,\,E, 2, FW
0 | &
010 || + - 6i0 + Vi -
=1

hy + Hip\g (5&)
tr (QEW) + AT x +b,, <0, i=1,..,n; (5b)
Ak < w (5¢)
e
Z'Z’Z@ <w (5d)
i=1

1 f,i xz’

& 2 FiTl =0, i=1,..,1. (5e)

Note that if (1b) has no quadratic part, then we can add
the valid inequalities!

bibl + (b;;Ai + biAg) v+ ATWAL >0, 05 =1,...m.

However, if (1b) is not present at all, then the eigenvalues
of W are unbounded, and the relaxation may be loose.
Let 65(0) denote the optimal objective of 752 Because
it is a relaxation, 65(0) < og(0). Therefore, 65(6) > 1
implies that 6 separates S. Then, instead of P!, we solve

Pl mgn 0T Co  s.t.
1<65(0) for all SC M, |S] =2. (6)

Because (6) is a sufficient condition for (4), it is a tighter
constraint. Therefore, the optimal objective of P! will be
greater than that of P!, and any 6 that is feasible for Pl
will be feasible for P!.

IV. Duality

The constraint (6) is awkward because evaluating 6s(0)
means solving 75g7 a minimization. We can eliminate the
minimization by replacing 75g with its dual, a maximiza-
tion; this is a standard technique in robust optimiza-
tion [17]. In doing so, we convert a bilevel optimization
to one with a single-level, which is amenable to a broader
range of analytical and algorithmic tools.

Because 75g is convex, strong duality ensures that it has
the same objective as its dual (assuming some constraint
qualification holds). Let s(f) denote the constraints
in the dual of 752, with the additional constraint that
the objective be no less than one; this is shown in the
Appendix. The additional constraint ensures that the
maximum objective is greater than one, as in (6). This
yields the following optimization:

P2 mein 07ChH s.t.
Qs(0) is feasible for all S C M, |S| = 2.

Note that the dual of a quadratic program like P2 is
equivalent to the dual of its semidefinite relaxation [16].
Therefore, were we to dualize ’Pg in P!, we would also
obtain P2.

Lemma 1: If strong duality holds for 752 for all pairs
S C M, then Pl s equivalent to P2.

Solving P? produces an auxiliary signal, §, which is
feasible if potentially suboptimal for P'. Suboptimality re-
sults if 752- has a lower objective than P2, i.e., because the
semidefinite relaxation is not tight. In this case, feasibility
still ensures separation of all models, and thus correct
detection, albeit with a larger than necessary auxiliary
signal. A smaller auxiliary signal could be obtained by
solving P! directly, e.g., using grid search or techniques
from global optimization [18].

1We form valid inequalities by taking the product of (1b) with
itself for each ¢ and j, (A};Tx—}— b}c) <$TA‘]7€ + bfﬂ) > 0, and then
substituting the matrix W for the outer product zz'. These valid
inequalities tighten the relaxation by further constraining the lifted
variable W, thus making Pg a better approximation of 772..



A. Farkas’ Lemma

We could alternatively construct P? using Farkas’
Lemma [19].> We now informally describe how to do so.
Consider the system 65(f) < 1. Because it is based on a
relaxation, it is feasible for values of # that both do and
do not separate S.> To remove the minimum embedded
in 65(0) < 1, we define the system IIs(f) as below.

Variables: x,w, A\x, &k, 2k, Fie, W,k € S
Constraints: w < 1, (5).

II5(0) is feasible for the same values of 6 as 65(0) < 1.

Farkas’ Lemma states that IIs(f) has a dual system,
the feasibility of which implies the infeasibility of I1s(6).
The dual system is also parameterized by 6, and is only
feasible for values of 6 that separate S. This is because
if the dual system is feasible for 6, then IIs(f) must be
infeasible; enforcing the dual system and (5) then implies
that w > 1, i.e., separation of S. The dual system of II5(6)
is in fact Qs(0) in the Appendix. Optimizing the auxiliary
signal, 6, over the dual system, Qs(6), leads us precisely
to P2.

B. Numerical solution

We now discuss how to solve P2. The main difficulties
are the bilinear inequality (15a) and the bilinear matrix
inequality (15f). While these put P? outside of tractable
optimization classes, auxiliary signal design problems are
not typically large in scale. If the auxiliary signal is under
three or so dimensions, it is viable to grid the space and
evaluate Qgs(0) for all values of 0, similar to Procedure 1
in [9].

If # is not low-dimensional, it is more practical to
treat P2 as a nonlinear program. For example, in our
preliminary work on static systems with only additive
noise [3], we used the convex-concave procedure [22], [23].
Other options include global optimization [18] and generic
nonlinear solvers.

V. Purely additive uncertainty

Several aspects of the problem simplify when there is no
multiplicative uncertainty, i.e., G (&) = 0 for all k € M.
Below are two straightforward simplifications.

o As mentioned in Section II, if Hy also has full column
rank, solving 7y (to check the correctness of model
k), reduces to evaluating (1a).

o The constraint (la) is linear, not bilinear. If also
Qi = 0 for all i = 1,....ng, k € M, then (1b) is
a convex quadratic constraint. In this case Pg is a
convex quadratic program. There is no need for the
semidefinite relaxation of Section I11, as P2 has strong
duality.

2Farkas’ Lemma technically does not apply here due to the
nonlinear constraints in (5). There are, however, extensions to convex
and semidefinite systems [20], [21], which allow us to proceed in the
same fashion.

3Whereas 05(0) < 1, which we do not work with due to noncon-
vexity, is feasible only for values of 6 that separate S.

With a few more assumptions, we can derive a lower
bound on ||0] that depends analytically on the parame-
ters. The bound serves as a necessary condition—if the
magnitude of the auxiliary signal is any lower, the models
will not be separated.

For convenience, let & = {0,1} for the rest of this
section. Suppose there are no inequality constraints and
that Hy and H; have full column rank, so that they can
be incorporated into the other system matrices via the

pseudoinverse. Assume also that ?0 has full column
1
rank. Then, P2 then takes the form
min w st.forkeS
w,w,)\o,/\l
0
[@k,Xk] . =hr + M\ (7&)
Ak < w. (7h)
Denote by (z*,w*, A§, A\}) the optimal solution (7). Let
wh = ||/\§||2 and wi = ||/\’{||2, so that w* = max {w{, w7}
Consider the below related problem.
. 1
z,wo,rf}f,rio,xl 3 (wo+wy) st forkeS
0
[@k,Xk] |:1‘:| = hp + A\ (Sa)
Akl < wp. (8h)

In (7), we minimize the maximum uncertainty, and in (8),
we minimize the mean uncertainty. Both have the same
set of feasible x, Ao, and Ap.

Problem (8) may be written as an equality constrained
quadratic program. Its analytical solution is

z=A" (X ho + X{ h1 — Agb),
where
Ay = X4 Xo+ X X3
Ay = X4 o + X[ O.

The matrix A, is invertible because [?O} has full column
1

rank. The optimal objective is
1
W= 5 ((‘:JO + @1) )
where

b0 = [|(©0 — XoA;'Ag) 64
(XoA; "Xy —T) ho + XoA; X7 ha ||

x

@1 = ||(01 — X1A; ' Ag) 0+
XA XS ho + (XA X — 1) ||

xr xT
Lemma 2: & < w* < max{dg,d1}.
Proof: We show the left side by noting that

w=g3 (@o + 1)
1
< 3 (wjy +wy) by the optimality of (8)

< max {wg,w]}

*

=w .



We show the right side using a similar argument:

w* = max {w§,w] }
< max{wp,w;} by the optimality of (7).
|
Corollary 1: If @y = @, then w* = @.
Recall that w* > 1 means that 6 separates S.
By Lemma 2, @ > 1 is a sufficient condition, and
max {Wg, w1 } > 1 is a necessary condition for separation of

S. We now use Lemma 2 to obtain an analytical necessary
condition. Let

X = max{“@o — XoA, XlA_lAgH}
¢ =max {|| (XA, ' Xy — )h0+X0A X\ hil|,
|(X1AZP X, = T) by + X1 AL X hol|}

Note that we can evaluate x and ( directly from the system
parameters.
Theorem 1: If ||6]|
separate S.
Proof: First, observe that max{dg,&1} > 1 if and
only if max{/@o,v/&1} > 1. Working with the latter
allows us to use the triangle inequality. We have that

s { V5, /31 )

(1 — ¢)/x, then 6 does not

<maX{H(®O—X0 1A9)9H+
| (XoA; ' Xy —I) ko + XoA, ' X hal|,
H(@l—Xl » o) O] +
XA X ho + (XuAS X — 1) B[}

(by the triangle inequality)

< max {|| (80 — XoA; "Ag) || l10] +
| (XoA 1X0 —I) ho + XoA; ' X, |,
(01 — X1 A Ag) || 6] +
ke 5T+ (s ] - D))

(by the Cauchy—Schwarz inequality)
< max {|[ (€0 — XoA; ") ||, [|(61 - ’IAH)H} 161
+ max {||(XoA; ' Xg —T) ho + XOA X\ hy
[ X1A; X0 ho + (X1A;' X — 1) hal|}

(by the properties of the maximum)

= x ol + ¢

Therefore, if x ||0]|+¢ < 1, then, by the above inequalities
and Lemma 2, w* < 1, and § is not separated. ]

We expect the bound to be tighter when the models are
more similar, in which case the third inequality is closer
to equality. A simple implication of Theorem 1 that if
(1 =¢)/x > 0, then an auxiliary signal is necessary to
separate S. We could straightforwardly obtain bounds on
the cost, 87 C6, by incorporating a factor of vC—! into
X-

Corollary 2: If the models are identical, then y = ¢ = 0.
In this case, we could use a limiting argument to say
that the lower bound is infinite. As expected, no auxiliary
signal of any magnitude can separate S.

Te= e—927/3%

Corollary 3: If models are very different, then ( > 1,
and the lower bound is nonpositive.

In this case, an auxiliary signal might not be needed, i.e.,
f# = 0 might separate S. Note that this could not occur
without the offsets, hy, in which case { = 0.

We have not obtained a corresponding lower bound on
I9]l, and we do not expect one to exist in the general
case. This is because such a bound would enable us to
guarantee separation knowing only the magnitude of the
auxiliary signal. This is not realistic because if 6 is not in
the right direction, then no magnitude will be sufficient.

VI. Application to distance protection

A distance relay detects faults on transmission lines by
measuring local currents, i, and voltages, e (from each
phase to ground or between phases). Let & and 4 denote
complex numbers, referred to as phasors, associated with e
and ¢, respectively. The relay computes several quantities
from € and i, including their positive and negative se-
quence components, and an apparent impedance, defined
as z = e/i. Faults affect the voltage and current, and
therefore the impedance computed by the relay. The relay
opens a circuit breaker if the impedance is in its zone of
operation, e.g., a circle or quadrilateral on the complex
plane. This zone is based on estimates of the impedance
the relay will see under normal conditions and during a
fault [24]. A distance relay can misdiagnose an IBR-fed
fault, in part because the current might differ little from
normal. We remark that this is a simplistic description of
distance relaying [25], and is meant to provide context
for our examples.

Bus 1 Fault

A
Relay ‘ +
IBR G ~» Load

Transm1ss10n line

Fig. 1. Single-IBR single-load system. A fault occurs somewhere
along the length of the transmission line.

A. Single-IBR single-load system

An IBR supplies power to a load, as shown in Figure 1.
A phase a-to-phase b fault occurs on the transmission
line. A distance relay on the line determines if a fault has
occurred from local voltage and current measurements. All
quantities are in per unit. Denote the positive and negative
sequence components of € and i by e, é_, i,, and i_,
respectively.* When there is no fault, the measurements

4Let ea(t), ep(t), and ec(t) denote three sinusoidal signals with
identical frequency, and let €., €, and e. denote the phasors
associated with said signals. Then, €,, €},, and e; can be decomposed
into the sum of their so-called sequence components as follows: €, =

€+,a+€7,a +EO,a, Eb = E-|»,b +E—7b +EQ,ba and ec = E«hc +Ef,c +EO,C7

where e}, = e I2T/38, 4, B = €2/, 4, e_p = eI2m/3E_ a,
—,a, and €0,a = €0,b = €0,c-



will satisfy

e~z i ~0, e~z ~l,
where Z; and Z_ are estimates of the apparent positive
and negative sequence impedances of the line and load.
Suppose now there is a fault between phases a and b. Let
Zr is an estimate of the impedance to the fault. Then the
measurements will satisfy
E_ —Zi_ Ny, €4 — Ziy ~U_,
where 4 is the positive and u_ the negative sequence
components of the voltage phasor at the fault point. @4
and 4_ are uncertain but satisfy a4 = u_ (see, e.g.,
Section 5.4.1 of [24]). We represent the uncertainty in
these relations explicitly below.

During faults, synchronous machines act like voltage
sources, injecting large currents with negative sequence
content. IBRs, on the other hand, behave more like current
sources, preventing large currents and keeping i_ ~ 0 even
during faults. This can lead the relay to malfunction due
to inaccurate estimation of fault impedances [12]. As in
IEEE Standard 2800 [14], we remedy this by having the
inverter inject negative sequence current. The auxiliary
signal, A, thus takes the place of the negative sequence
current phasor, i_.

We assume that during normal operation, after appro-
priately rotating all phasors, the positive sequence voltage
will be roughly one per unit. To approximate the voltage
drop typical of IBRs during faults [26], we set the positive
sequence voltage to e; ;. We make no such assumptions
about the negative sequence voltage because it depends
on 8, and so does not help separate models. In both cases,
the magnitude of the positive sequence current, i, stays
within 4p,x.

To solve P, numerically, we must specify the values of
Z_,zZ4, and zr. We set

z_ =0.140.9jy,
zy =0.147,
zr = 0.05 + jxy,

where x; is the reactance of the fault path. We vary
the parameters e; 1, tmax, and zy in the simulations
below. All optimizations were carried out in Python using
CVXPy [27] and the solver MOSEK [28].

B. Additive uncertainty and no constraints

We first assume there is only additive uncertainty and
neglect the current limit, so that we can compare the lower
bound of Theorem 1 with the magnitude of the auxiliary
signal. We use the convex-concave procedure [22], [23], as
described in [3], to solve for the optimal auxiliary signal.

When there is no fault, the system model is

e-=2_0+0.1x_ (9a)
é+ == Z+Z+ + 0.15\+)0 (gb)
er =1+ 0.].)\6_’0. (9(3)

This corresponds to (la) when k = 0. When there is a
fault, the system model is

e_=z0+0.7\_; (10a)
er =iy +0.7A; 1 (10b)
e =erq+ 0.7)\@71. (].OC)

This corresponds to (la) when k& = 1. The noises must
satisfy

A
o
)\e7k

<1, k=0,1. (11)

Writing (9)-(11) in the form of (1) entails splitting all
complex quantities into real and imaginary parts, and then
arranging the coefficients and variables into vectors and
matrices. We omit the details here because they does not
provide further insight and refer the reader to our earlier
work [3], wherein the exercise is carried out for a similar
example.

The coefficients in H; are larger than in Hy, which
represents the high level of uncertainty during faulty
operation, e.g., about the fault impedance and location.
We want to find an auxiliary signal, 6, that separates
S ={0,1}, i.e., so that either (9) or (10) is feasible, but
not both.

Figure 2 shows the magnitude of the optimal auxiliary
signal and the lower bound of Theorem 1 as e; ; and z¢
are varied; recall that if the magnitude of the auxiliary
signal is less than the lower bound, then the auxiliary
signal does not achieve separation. As expected, both the
auxiliary signal and lower bound are largest when the
models are similar. When e ; is very small or large, the
normal and faulty models differ enough that no auxiliary
signal is needed. The lower bound is useful in this case
because it is positive over a slightly smaller range than
the auxiliary signal magnitude, meaning that it accurately
indicates when an auxiliary signal is needed. In the bottom
plot, the lower bound estimates the magnitude of the
optimal auxiliary signal reasonably well for all values of
ZIf.

1) Multiplicative and additive uncertainty: We now use
both kinds of uncertainty, which enables us to treat the
impedances as uncertain. We also include the magnitude
constraint on i, . We search for auxiliary signals by testing
the feasibility of Qg (9_), which amounts to solving a
semidefinite program for each value of 6.

When there is no fault, the system model is

e- =z (1+0.1&,)0 (12a)
er =24 (1401, 0)it (12b)
er=14+0.1X\p (12c)
lig] < 1.2 (12d)

This corresponds to (la) and (1b) when & = 0. When
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Fig. 2. Lower bound and ||0|| versus et 1 and z¢. In the top plot,
z¢ = 0.7, and in the bottom, ey ;1 =0.9.

there is a fault, the system model is

e =z(1+&1)0 (13a)
ey = Z(1 + &)y (13b)
€ =e4 1+ Aet (13c)
il < 1.2 (13)

This corresponds to (1a) and (1b) when k& = 1. We set
¢ = 0.7 and e ; = 0.9. The noises must satisfy

|£z,k| < ]-a ‘/\e,k| < 17 k= 071- (136)

As written, no auxiliary signal is needed, which can
be verified by solving P2. If we omit either the positive
sequence voltage constraints, (12c) and (13c), or the
current magnitude constraints, (12d) and (13d), then an
auxiliary signal is necessary and must satisfy

R [6]2 (7] #0.

which is to say is not on the real or imaginary axis of
the complex plane. This means the auxiliary signal can be
quite small so long as it is not below the relay’s sensitivity.

We can see why this is by examining the two models.
First, removing a constraint will always make the detection
problem harder because it expands the set of possible mea-
surements the relay must prepare for. In this problem, an

(14)

auxiliary signal becomes necessary only when constraints
are removed.

If, e.g., 0 = iy, then we’ll have é_ = &, if there is a
fault, and e_ # ey if not, regardless of the realization
of the uncertainty. A similar rule can be derived for any
auxiliary signal satisfying (14). By including constraints
on both the current and voltage, we shrink the sets of
possible relay measurements, so that the two models are
separated even without an auxiliary signal.

VII. Conclusion

We have formulated an auxiliary signal design problem
for static systems with constraints and both additive
and multiplicative uncertainty. We used a relaxation
and duality to reformulate the problem as a bilinear
semidefinite program. Two benefits of this approach are
modeling flexibility and amenability to generic nonlinear
programming algorithms. In the special case of additive
noise and no constraints, we obtained a lower bound,
which serves as a necessary condition on the magnitude
of the auxiliary signal.

Our motivation is protection in inverter-dominated
power systems, in which faults can be difficult to detect
because the resulting currents do not resemble those of
synchronous machines. A fairly recent remedy is to perturb
the inverter’s output so that faults are more apparent to
relays. We have posed the design of these perturbations as
an auxiliary signal problem. We believe this is a systematic
and general strategy for fault detection when the inverter’s
default behavior is not sufficiently informative.

Two immediate directions of future work are systems
with multiple detectors (relays) and auxiliary signal injec-
tion points (inverters), and application to the full set of
fault types encountered in unbalanced power systems.

Appendix

We here describe the system Qg(6), which contains the
constraints in P2. Qs(0) consists of the constraints in the
dual of P2, plus a constraint in which the objective is



greater than or equal to one. Qs(f) is written below.

Variables:

Ak, B, Ok ei (nonnegative)
Prs Vi O T, Wi
j:17"'7nk7 izlv--wlk, kES

Constraints:

In

Nk lk
1<) pp (O —hy) =0k + > by — > ¥ (15a)
: =1

keS i=1
Nk lk

ST X o+ Al -23 F =0 (15b)
keS i=1 =1
1= an+ Bk (15¢)

keS

ng ) ) lk o
DD E@Qi—> Wi=0 (15d)
keS i=1 =1
dady > |Hlpu|, kes (15¢)

2},
prULO
27

LU 2T
28, piVi| =0,i=1,.,l kES.
Vitor 2W}
(15f)

the dual of ﬁg, the variables are as in Qs(6), the

objective is the right side of (15a), and the constraints
are (15b)-(15f). For k € S, py is the dual multiplier of
(5a); €i of (5b), i = 1,...,nk; ay of (5c); By of (5d). &y is
a dummy variable that simplifies (15a). The rest of the
variables are multipliers of the entries of the matrix in
(5e).

In the special case of additive uncertainty and no
constraints, Qs(6) simplifies to the below.

(1]
2]
3]

(4]

Variables:
ag, O,
i,k €S.

Constraints:
1<) " pf Ok — hy) — 0

kes
Xgpo+X{p1=0
ag+a; =1

dardy > |H o], kes.

(nonnegative)
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