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Let .# denote the Q-vector space of logarithms of algebraic numbers. In this
expository work, we provide an introduction to the study of ranks of matrices with
entries in .. We begin by considering a slightly different question; namely, we
present a proof of a weak form of Baker’s theorem. This states that a collection
of elements of .Z that is linearly independent over Q is in fact linear independent
over @. Next we recall Schanuel’s conjecture and prove Ax’s analogue of it
over C((¢)).

We then consider arbitrary matrices with entries in . and state the structural
rank conjecture, concerning the rank of a general matrix with entries in .Z. We
prove the theorem of Waldschmidt and Masser, which provides a lower bound,
giving a partial result toward the structural rank conjecture. We conclude by
stating a new conjecture that we call the matrix coefficient conjecture, which
gives a necessary condition for a square matrix with entries in . to be singular.
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1. Introduction

At the 1900 International Congress of Mathematicians, David Hilbert presented
23 open problems that have continued to serve as an inspiration for generations of
mathematicians, including the following question:
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94 SAMIT DASGUPTA

Hilbert’s 7th problem. Let a, b € @, with a # 0, 1 and b ¢ Q. Is the value a”
necessarily transcendental?

A proof that Hilbert’s question has an affirmative answer was given independently
by Gelfond (1934) and Schneider (1935). The Gelfond—Schneider theorem can be
stated equivalently as follows. Let

L={xeC|e Q)
denote the Q-vector space of logarithms of algebraic numbers.

Theorem 1.1 (Gelfond—Schneider). If two elements of £ are linearly dependent
over Q, then they are linearly dependent over Q.

A fantastic breakthrough was achieved by Alan Baker [1966; 1967a; 1967b],
when he generalized from two to an arbitrary number of elements of .Z.

Theorem 1.2 (Baker). If n > 1 elements of £ are linearly dependent over Q, then
they are linearly dependent over Q.

In fact, Baker proved an effective refinement of this result giving a strong lower
bound on the magnitude of any algebraic linear combination of elements of .¥
that are linearly independent over Q0. Here we will present a proof of a version of
Baker’s theorem that is slightly weaker than Theorem 1.2.

We next shift our focus from a single linear form in logarithms to arbitrary
matrices with entries in .#. Such matrices appear very naturally in number theory.
For example, the regulator of a number field is the determinant of such a matrix,
and this expression appears in the class number formula for the zeta function of the
number field. Generalizations appear in Stark’s conjectures for the leading terms
of L-functions, and p-adic avatars appear in the study of p-adic L-functions. The
question of the ranks of such matrices is therefore an important question, with
Leopoldt’s conjecture and the Gross—Kuz’min conjecture being important special
cases in Iwasawa theory (these are discussed in Section 4B).

The primary conjecture about the ranks of matrices with entries in .Z is the
structural rank conjecture. In applications, it is often useful to consider the Q-
vector space spanned by . and @, which we denote by . + Q. Given an m X n
matrix M with entries in any field of characteristic 0, we define the structural rank
of M as follows. Choose a Q-basis {£1, ..., {,} for the entries of M, and write
M=Y""_, M, with M; € My »,(Q). Write M, = >_;_, x;M;, where the x; are
indeterminates. Then M, is an m x n matrix with entries in the field of rational
functions F = Q(xy, ..., x,). We define the structural rank of M to be the rank
of M, over F. One checks that this definition is independent of the basis {¢;} chosen.

Conjecture 1.3 (structural rank conjecture). The rank of any M € M, «, (£ + Q)
is equal to the structural rank of M.
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The “liber conjecture” in the transcendence theory of special values of logarithms
and exponentials of algebraic numbers is the following conjecture of Schanuel. We
write trdg for the transcendence degree over (.

Conjecture 1.4. Let yy, ..., y, € C be Q-linearly independent. Then
trdg Q(y1, ..., yn, €, ..., ") > n.
In particular, if y1, ..., y, € £ are Q-linearly independent, then
trdg Q(y1, ..., yu) =n. (1)

It is perhaps not surprising that the special case of Schanuel’s conjecture given
in (1) implies the structural rank conjecture; however, an elegant theorem of Roy
[1995] is that the converse is also true:

Theorem 1.5 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture given in (1).

Theorem 1.5 is proven in Section 4. For more on the structural rank conjecture
and Schanuel’s conjecture, see [Waldschmidt 2023]. The strongest unconditional
evidence toward the structural rank conjecture is the following theorem of Wald-
schmidt [1981] and Masser [1981]:

Theorem 1.6 (Waldschmidt and Masser). Let M € M,,x,(.£). Suppose that

mn
m4+n’

Then there exist P € GL,,(Q) and Q € GL,,(Q) such that

M O
ro=(4! ).

rank(M) <

where the 0 block has dimension m' x n’ withm' /m +n’/n > 1.

Intuitively, Theorem 1.6 states that, if the rank of M = (log(x;;)) is very small,
then the underlying algebraic numbers x;; satisfy a large number of multiplicative
relations. In certain situations we can show that such relations do not exist, and hence
we must have rank(M) > mn/(m +n). The six exponentials theorem (Theorem 4.2)
is an example of a special case of the Waldschmidt—Masser theorem.

Transcendence results have many important applications in algebraic number
theory. Especially in Iwasawa theory, it is the p-adic analogues of these statements
that are most relevant. For example, Leopoldt’s conjecture concerns the rank of the
matrix of p-adic logarithms of a basis of units in a number field F. The p-adic
analogue of the Waldschmidt-Masser theorem provides the strongest evidence for
this conjecture. For instance, for a totally real field F one deduces that the rank of
the Leopoldt matrix is at least half the expected one. We prove the p-adic version
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of the Waldschmidt—Masser theorem in Section 5, since the archimedean case is
studied more often in the literature, and discuss applications in Section 5A.

The paper is organized as follows. In Section 2, we prove Baker’s theorem on
the linear independence of logarithms of algebraic numbers. In Section 3, we prove
Ax’s theorem on the function field analogue of Schanuel’s conjecture. In Section 4,
we discuss the structural rank conjecture, explaining its connection to important
conjectures in Iwasawa theory and proving Roy’s Theorem 1.5. In Section 5, we
prove the Waldschmidt—Masser theorem and give applications. In the concluding
Section 6, we state a new conjecture, called the matrix coefficient conjecture, which
attempts to answer the question: what can be said about a square matrix M with
entries in .£ when it does not have full rank? Our conjecture is not as strong as
the structural rank conjecture (and hence is perhaps more tractable), but still has
important arithmetic implications.

2. Baker’s theorem

Before giving an outline of the proof of Baker’s theorem, let us discuss how one
could hope to deduce the conclusion of the theorem. We are given algebraic numbers

A, ..., o, €QF, complex numbers x; such that e¥ = «;, and a linear dependence
ﬂ1x1+"'+13nxn:0 (2)
with B; € Q. We will show that this implies the existence of integers Ai, ..., An,

not all zero, such that

A A Ay
o'y’ apt =1 3)

This implies that the x;, together with the complex number 2ri, are linearly depen-
dent over Q. Therefore, the mildly weaker version of Baker’s theorem that we will
prove is the following:

Theorem 2.1. If xi,...,x,,27i € £ are linearly independent over Q, then
X1, ..., X, are linearly independent over Q.

It does not take much work beyond the methods that we will present to remove
2mi and prove the version of Baker’s theorem stated in Theorem 1.2 above (see
[Baker 1967a]). However, to simplify the exposition and highlight the main points,
we have included 2777 in our proof of Theorem 2.1.

Now, how does one deduce the existence of the A; from the existence of the 8;?
It may be enticing to try to prove that the A; can be taken equal to the g;, i.e., that
the B; are rational (or, more generally, that the A; can somehow be extracted from
the B; in a direct way). However, in practice a more indirect approach is effective.

Theorem 2.2. Let oy, ..., a, € C*. Suppose there exists a nonzero polynomial

f,....t,) €Clty, ..., t,;]
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of degree < L in each variable t; such that

flof,...,a;)=0

forz=1,2,...,(L+1)". Then there exist integers A1, ..., Ay, not all zero, such
that
atlaf? ok =1.

Proof. Consider the square matrix M whose rows are indexed by the integers
z=1,...,(L+1)"

and whose columns are indexed by the tuples A = (A, ..., A,) of integers with
0 < A; < L, with corresponding matrix entry

AZ . Az A
o=yt 4)

The existence of the polynomial f is equivalent to the existence of a column vector v
such that Mv = 0. Indeed, the components of v are precisely the coefficients of f.

The existence of a nonzero f therefore implies that det(M) = 0. But M is the
Vandermonde matrix associated to the elements o* = af‘ --a)" as the tuple A
ranges over all (L + 1)" possibilities. The vanishing of the determinant therefore
implies the existence of two distinct tuples A and A’ such that o* = o' . We therefore

’ .
have o*~* = 1, as desired. |

Baker’s theorem therefore amounts to using (2) to construct an auxiliary polyno-
mial f that satisfies the conditions of Theorem 2.2. We first summarize Baker’s
ingenious method to do this:

(1) The Dirichlet box principle is a method of using the pigeonhole principle to
construct a polynomial f with certain prescribed zeroes. One can apply this
to the elements o® appearing in the statement of Theorem 2.2. Of course, the
result will not produce a polynomial with enough zeroes (i.e., we may find
zeroes forz=1, ..., A for some A, but A will be less than (L +1)"). Baker’s
clever insight is that the condition (2) allows us to ensure that a certain number
of derivatives of f also have zeroes corresponding to these values of z.

(2) Baker then proves a complex analytic lemma, which is a quantitative strength-
ening of the classical Schwarz’s lemma that shows that the vanishing of f and
many of its derivatives implies a strong upper bound on the size of f and half
as many of its derivatives, but for B times as many integers z (for some B > 1
depending on parameters we will make precise later).

(3) Using the fact that the «; and §; are algebraic, Baker deduces that these bounded
values (i.e., the values of f and many of its derivatives forz =1,..., AB)
must actually be 0. The basic concept is that an integer of absolute value less
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than 1 must vanish; a generalization of this elementary statement to algebraic
numbers of bounded degree and height is applied.

(4) Armed with more vanishing, one may now go back to step (2) and once again
show that half as many derivatives are small for another factor of B times as
many values of z. Baker iterates this procedure N times until ABY > (L +1)",
thereby showing that the auxiliary polynomial f has enough zeroes to apply
Theorem 2.2.

In the rest of this section we will describe these steps in detail.

2A. Construction of auxiliary polynomial. For each «;, let ¢; denote the leading
coefficient of the integral minimal polynomial of «;, and let d denote the maximum
degree of any «;.

Lemma 2.3. There exist integers a; j s such that, for each integer j > 0, we have
d—1
(ciay)! = Z ai j s .
s=0

Proof. For notational simplicity, we remove the index i. So we consider o € @ with
degree at most d, and let ¢ denote the leading coefficient of the integral minimal
polynomial of «. Then there exist integers by, . .., by—; such that

COldIbd_1Old_1+"'+b1Ol+b0. (5)

We prove the result by induction on j. The base cases 0 < j < d are clear. For
J = d we assume by induction that there are integers a;_ ¢ such that

d—1
(ca)) ™= "a; e,
‘:O

Multiplying by ca, we obtain
d-2
(ca)! = (Zc‘ajl,sa‘*‘“) +aj_1q-1(ca?). (6)
s=0

Plugging in (5) for ca“ on the right of (6), we obtain the desired expression

d—1
(ca)! = Z ajsa’,
s=0

where
aj_l’d_lbo if s 20,
ajs = .
aj1qg-1bs+c-aj_15-1 ifl1<s<d-1. O
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Let

fo= Y Zml

be a polynomial of degree < L in each variable #;. Let the ¢; and g; ; ; be as in
Lemma 2.3. Writing ¢ = (cy, . .., ¢,) and recalling the notation (4), we calculate

(Cl L Cn)LZf(OfZ) — (Cl A Cn)LZ Z pkakz
A

— Z p}\CLZ*)»Z (Ca))»z
A

n d—1
Li—A
= E pict Zl_[ E (@i)’ainz,s
i=1 s=0
L—1
= E E prc 1_[611 Xiz,s*

$1,82,4...,8,=0

We can therefore force f(a?) = 0 by imposing integer linear conditions on the
coefficients p,, namely that, for each z, we have

n
> pct [T ainzs =0. (7
A i=1

This observation allows for the initial construction of an auxiliary polynomial f
using the following lemma of Siegel [1929], often known as “Dirichlet’s box
principle”:

Lemma 2.4 (Siegel). Let N > 2M > 0 be integers, and let A = (a; ;) be an
M x N matrix of integers such that |a; j| < H for alli and j. There is a nonzero

vector b € 7V such that Ab = 0 and each coordinate of b has absolute value less
than 2N H.

Proof. Consider all vectors b € ZV with coordinates of absolute value < N H.
There are 2N H + 1)V > (2N H)" such vectors. For each such b, each coordinate
of Ab has size at most (N H)?. The total number of possible vectors Ab is less than
Q(NH)»)M . Since N > 2M, the pigeonhole principle implies that two distinct b
must give the same value of Ab. Their difference gives the desired vector. ([

Applying Siegel’s lemma to the system of linear equations in (7) will not produce
enough zeroes for Theorem 2.2. Indeed, we have not yet used the assumption (2)!
A key trick noticed by Baker is that it will suffice to have f and sufficiently many
of its derivatives vanish. The precise statement is given below:
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Theorem 2.5. The following holds for every sufficiently large parameter h. Let

There exists a polynomial

fO =Y pitteZln, ... 1]
A

of degree < L in each variable t; such that |p;| < e’ for each ) and such that the
complex analytic function of one variable 7 € C defined by

$(z) = Z p}\ez(klx1+.‘.+)\m) (8)
A

satisfies
"™ (z)=0 form=0,...,h* =1 and z=1,...,h.

Proof. Note that ¢ (z) has been defined so that ¢ (z) = f(a°) = f(af, ..., af) for
integers z. After dividing the linear dependence (2) by — g, (reordering if necessary
to ensure this is nonzero) and renaming the coefficients, we can write

Xp=P1x1+ -+ Buo1xn-1
with 8; € Q. We then have

b(z) = Z pkez[(11+k»1ﬂ1)X1+---+()»n—1+)»n,3n—1)Xn—l]' 9)
A

Note that ¢ (z) is the same sum as for ¢ (z), but with the term indexed by A
multiplied by
(A +2AB)x1 4+ (At +)\-n,3n71)xn71)m-

Expanding this out, it suffices to show that

S 20t A A BO™ -+ Gt + M) ™ =0 (10)
A

for all tuples of nonnegative integers satisfying
mp+---+my_1 =m.

Let d be the degree of the number field generated by all the «; and 8;. Let
¢; denote the leading coefficient in the integral minimal polynomial of «;. By
Lemma 2.3, for every nonnegative integer j, there exist integers a; j ¢ such that

d—1
(cioar) =Y ai 0
s=0

Let d; and b; ; ; play the same role for the ;.
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The expression (10) will vanish if

m mpy_ L n
Lz—;
OB SD SIVAQ | Gy
ILIZO Mn—l:())\l ----- An=0 i=1
n—1 m
J =g M
) (1_[ ( >(dj)‘f')m’ M’kn]bj,uj”f)
L\
]_
vanishes for all tuples (s, ...,s,) and (¢;,...,t,—1) with0 <s;, #; <d.

How many linear equations is this in the coefficients p, we are searching for?
We want vanishing for 0 <m < h% and 1 < z < h. Hence, the number of such
equations is at most

M = (hZ)n—lhdZn—l — h2n—ld2n—l.

Note that d and n are fixed but we are free to make /4 as large as we want.

The number of variables p, is (L + 1)", so, to ensure this is bigger than 2M
when £ is large, we let L = [h2~V (4”)1, as in the statement of the theorem. Finally,
we bound the size of the coefficients. An easy induction shows that there is a
constant C, depending only on the «; and §;, such that

lai js| <C’, |bjj:|<C’.

Therefore, for some constant K depending only on the ¢;, 8; and n, we have

n
Lz—Xiz Lz Lh
l_[ |C,' ' ai,)\iz,si| <K<K
i=l1
and, similarly,

n—1

[

j=l1

m; . ; 2
( ]) (dj)‘-])mf Hj )\.ZLJ bj,;Lj,tj < Kh lOg(h).
J

By Siegel’s lemma, there is a nontrivial solution in integers p; such that
|pal < 2KHHIED (g 1)t O

2B. Baker’s lemma. In this section we present a complex analytic lemma of Baker,
strengthening the classical Schwarz’ lemma. This will allow us to bound the sizes
of f and many of its derivatives for a multiple B of the A values of z at which we
ensured vanishing of our auxiliary polynomial f.

Lemma 2.6. Let f : C — C be an entire function, let € > 0, and let A, B, C, T
and U be large positive integers such that

| 2T +UAB N U B A€
€l > .
2 A(log A)1/2 " log A

(11)
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Suppose that:
e |f(2) <eTtVEl forz e C.
e fO@)=0fort=0,...,C—landz=1,2,..., A.
Then
|f ()] < e~ THVDMe A o 1 AB.

Proof. The function
f(@)

h(Z):(z—l)C---(z—A)C

is entire by the second assumption. By the maximum modulus principle on the
circle of radius A!*€ B around the origin, we have, for |z] < AB,
lh(z)| =  max [h(w)l;
|w|=Al+EB
hence,
z=D(z=2)---z-4A)
(w—DHw-=2)---(w—A4)

If@l= max |f(w)]-

lw|=Al+<B lw|=Al+<B

Now
z—=D(E—=2)---(z—A) - (AB)4 _ o (e/DAlogA
(w—1D(w—=2)(w—A)| ~ (Al+e/2B)A — '

where the inequality holds since

AH‘EB—i -
foralli =1, ..., A. Meanwhile,

|f (w)| < e HVATE,
Our goal is to show that | f(z)| < e~ THUAB g A2 g4 it suffices to show that
—1€AClog A+ (T +UA"B) < —(T + UAB)(log A)'/%.

It is easy to see that this is implied by the assumption of the lemma,

| 2T +UAB  UBA®
7€C > 77+ . U
A(log A)Y/ log A

Let us now apply Baker’s lemma to our auxiliary polynomial and its derivatives.
With ¢ (z) as in (8) and (9), we have

¢W@=ZQ1 )Hﬂwlmx> .....

P 1, y Mp—1
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where

fm1 ..... Mnfl(z) = Z p)»a)tz()hl +)\n,31)ml R +)\n,3nfl)mn_] . (12)
A

It is clear from this last expression that

| fontsemny @] < KL (13)

for a suitable constant K depending only on n, the «; and the §;. Indeed, the p, are
bounded by ", The m; and A; are bounded by h>. We choose the constant K so
that the inequality (13) holds with the «; or 8; replaced by any of their conjugates
as well.

We would like to apply Baker’s lemma on each of the functions f,, .. m, (2)
with

T=hlogk, U=Llogk, C=3%h* A=h, B=h"® €= %

We suppose that the constants K and # have been chosen so that the values 7', U,
A, B and C are integers. The first condition on f, .. m, ,(z) necessary to apply
Baker’s lemma is precisely the inequality (13). For the second condition, we note
that the ¢-th derivative of f, . m, ,(z) formi+---+m,_1 < th*and t < $h*—1
the desired vanishing for z =1, ..., h by the construction of the polynomial f in
Theorem 2.5.

Furthermore, with our selection of parameters, the required inequality (11) reads

2 2(log K)h3+(log K)R>~V/Gm . p.p/Bn  (Jog K)p>=1/Gm . p1/@m) 1/
320 h(log h)1/2 + log h ’

which is easily seen to hold for / large. We may therefore apply Baker’s lemma to
fy.omy_, (2). This yields

ooy, (2)] < K@ L G0z (14)
formy+---+my_y <th*>andz=1,... A+V/ED,

2C. Discreteness of algebraic integers. We apply the following elementary basic
principle:

Lemma 2.7. Suppose that a € Q such that da is an algebraic integer for some
positive integer d. Suppose that |a| < € for some positive real number € and that
every conjugate o (a) satisfies |0 (a)| < M for some positive real number M. Finally,
suppose that [Q(«) : Q] < n and that eM"~'d" < 1. Then a = 0.
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Proof. We bound the norm of the algebraic integer da:
Nowsada)= [] lo@a)<d"al [[lo@|<d"em™ "' <1.
0:Q(a)—C o#l
An integer of absolute value less than 1 must be 0. Hence, Ng(q),0(da) =0, so
a=0. ([

We apply Lemma 2.7 to each of the algebraic numbers f,, .. m, ,(z) defined

in (12) for

.....

Myt tmay < 5hY 2 =01, BTV,
In (14) we showed that
|fm1 . 71(Z)| <€:= K—(h3+Lz)(logh)l/2. (15)

We also saw in (13) that

3
10 fontyeamar @) < M= K7 (16)
for each . It is easy to see from its definition that the denominator of fy,, ., ,(2)
can be cleared by an integer of size at most
d:= K"+, (17)

after making K larger if necessary depending only on the «; and ;.
The inequality e M"~'d" < 1 is then easily seen to hold for / large because of

the extra factor (log i)'/ in the exponent of (15), so we conclude that
Jmyomy 1 (2) =0
formy+---+mu_1 < %hz and z=0,1,..., hlt1/Gn

2D. Bootstrapping. We repeat the process described above, in the k-th iteration
using Baker’s lemma on the functions fy,,.. ., (z) Withm+- - -+m,_y <h?/2k+1
with the parameters

2

h
T =h’logK, U=LlogKk, C=omr

A= plHk/Gn g 1/ c— L
b b 8”
We assume that K and % had been chosen initially so that the quantities above are
integers. In the k-th iteration we obtain that

|fm1 m 1(Z)| < K*(h3+LZ)(IOg(h+k/(8n)))l/2
for
h2

my+---+my_1 = prasg z=0,1,... ol TEED/ED
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The quantities in (16) and (17) do not change, so again Lemma 2.7 implies that the
values fi,....m,_, (z) vanish. We may therefore move on to the next k.

Each iteration multiplies the number of zeroes by B = h!'/®"  After 16n?
iterations we will obtain more than 72" zeroes. Since L = h*>~'/@" and h is large,
we have

W2 > (L+ 1",

so the polynomial f = foy ... o satisfies the conditions of Theorem 2.2. Therefore,
there exist integers Ap, ..., A,, not all zero, such that

Al An
) oo =1

This completes the proof of Baker’s theorem.

3. Ax’s theorem

Moving on from linear forms in elements of .# to arbitrary polynomials, we remind
the reader of Schanuel’s conjecture, which was stated in the introduction:

Schanuel’s conjecture. Let yy, ..., y, € C be Q-linearly independent. Then
trdg Q(y1, ..., yu, €7, ..., ") > n.

While little is known about this conjecture, we have the following function field
analogue, proved by James Ax [1971]:

Theorem 3.1 (Ax). Let yi, ..., y, € tC[[t] be Q-linearly independent. Then
trdey CE)(y1, ..., yn, €', ..., e") > n.

In this section we prove Ax’s theorem. The section is self-contained and may be
skipped by readers not interested in the function field setting. Before proceeding, we
note simply the tool that is available in the function field setting that is not available
in the classical setting: there is a derivative operator on C((¢)), and elements of the
form e” satisfy (e”) = y’e”.

3A. Derivations.

Definition 3.2. Let A be a commutative ring and B a commutative A-algebra. An
A-derivation of B into a B-module M is an A-linear map

D:B—>M

such that
D(ab) =aD®)+ D(a)b, a,be B, (18)

where we view M as both a left and right B-module since B is commutative.
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There is a pair (d = dp/a, 2p/4) of a B-module 25,4 and an A-derivation
d:B— QB/A

that is universal in the sense that any A-derivation D : B — M can be obtained
by composing dp,4 with a B-module homomorphism €25,4 — M. The module of
Kdihler differentials Qp 4 is defined as the quotient of the free B-module generated
by formal generators db for each b € B by the relations da =0fora € A, d(b+b') =
db+db', and d(bb') =b-db’+ b’ - db. The universal derivation dg/4 : B — Qp/a
is defined by dp,4(b) = db.

Lemma 3.3. Let F/K be field extension and x € F separable algebraic over K.
Thendx =0in Qp /.

Proof. Let f(t) € K[t] be the minimal polynomial of x. Then

0=d(f(x)) = f'(x)dx.
Since x is separable, f'(x) # 0, so dx = 0. U

Meanwhile, if F(¢) denotes the function field in one variable over the field F,
we have that Qr (), is the 1-dimensional F (¢)-vector space generated by dz, with

d(f(@)) = f'(t)dt.
Lemma 3.4. Let K C F C L be fields of characteristic 0. Let D : F — F be a
K -derivation. Then D can be extended to a K -derivation L — L.

Proof. For f € F[t], let £ denote the polynomial where D has been applied to the
coefficients of f. We show how to extend the derivation d. Let z € L with z ¢ F.
If z is algebraic over F, let p(x) be its minimal polynomial. Define

PP (@)

u=—-"—"= D(3(x)) =g" @) +& @u. (19)
P'(2)
If z is transcendental over F, we define
D(g(2) = &P+ & @u (20)

for any u € L. We leave it to the reader to check that setting [~)| r = D and using
(19) or (20) to extend to F(z) yields a derivation D. Now one uses Zorn’s lemma
on pairs (D', F'), where F’ is a field such that K C F' C L and D’ is a derivation
extending D, to extend D all the way to L. ([

Corollary 3.5. Let K C L be fields of characteristic 0. Then
dim; Q7 x =trdg L.
More generally, if K C F C L, then
dimy (L -dp g (F)) =trdg F.
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Proof. Let {f1, ..., fu} be a transcendence basis for F'/K. Suppose that

n
ZaidL/Kfi =0
i=1

with a; € L. By the universal property of d; /g, we have
n
Y aiD(f) =0
i=1

for any K-derivation D; : L — L. Therefore, if we show that for each i there exists
a K-derivation D; : L — L such that D;(f;) = §;;, then we obtain a; = 0 for all i.
This yields the linear independence of the dy,/k f; over L.

The existence of the D; follows from the proof of Lemma 3.4. We can first
extend the O derivation on K to K (f;) by setting z = f; and u = 1 — f; in (20), and
then inductively extend to K(f1, ..., f,) by setting z = f; and u = — f; for j #1i.
Finally, we extend D; to L using Lemma 3.4 once more. ([

3B. Derivation on Kdhler differentials. Let A be a commutative ring and B an
A-algebra. Let D : B — B be a derivation such that D(A) C A. There exists an
A-linear map

D1 . QB/A — QB/A
satisfying
D'(fdg) = (Df)dg+ fd(Dg). (1)

We leave the verification of this to the reader, but we note that a more general fact
is true. If we consider the graded algebra of differentials

o
}}/A = @ N Qp/a,
n=0

then the differential D : B — B extends to a graded derivation
D*: Q’g/A — QE/A

satisfying (18), where the Oth graded piece is D and the 1st graded piece is D'. In
our proof of Ax’s theorem, we will only need the map D!, but let us note that the
rule (21) generalizes: for any f € B and w € Q25p/4, we have

D'(fw)=(Df)w+ fD"(w). (22)

Proofs of these facts may be found in the references given in [Ax 1971, page 255].
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Lemma 3.6. Let y € tC[[t]], z =¢”, and let D : C((t)) — C((t)) be a C-derivation
of the form D(f(t)) = f'(¢) - g(¢t) for some fixed g(t) € C((t)). Then

D! (dy — 2 'dz)=0
in Q2c(@y/c-
Proof. A direct computation with the definition (21) shows that, in general, we have
Dl(dy — z_ldz) =d(Dy — z_lDz).
Yet, when z = ¢”, the term Dy — z~! Dz vanishes for the derivation D( f@) =
f'(@)-g@. 0

Lemma 3.7. Let K C L be fields and D : L — L a derivation such that ker D = K.
Then the map

L®KkerD1—>QL/K, fQuwr fw,
is injective.
Proof. Suppose there exist

fi,.... fa€L*, wi,..., o, €kerD!
such that

n n
Y fi®wir0, ie. Y fiw;=0. (23)
i=1 i=1
Scale so that f; = 1. If all the f; lie in K, then
n n
Y f®wi=1®) fio;=180=0,
i=1 i=1

so we are done. Suppose this is not the case and take the minimal such vanish-
ing linear combination. By minimality, we can assume that the w; are linearly
independent over L. Apply D' to the expression (23). Using (22), we find

0=> ((Df)wi + fiD' (@) =Y (Df)ei,

i=1 i=1

where the second equality holds since ; € ker D'. By the linear independence of
the w; over L, we see that Df; = 0 for all i and hence, by assumption, f; € K for
all i. O

The following is a technical algebraic lemma that will allow us to reduce to the
setting of function fields of curves:
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Lemma 3.8. Let K C L be an extension of fields with K relatively algebraically
closedin L (i.e., if o € L and « is algebraic over K, then a € K). Let

W={F:KCFCL,tudrL =1, F relatively algebraically closed in L}.

Then

() F=k.
Few
Proof. Let t € L with t ¢ K. We need to show there exists F € W such that ¢ ¢ F.
Since K is relatively algebraically closed in L, the element ¢ is transcendental
over K.
Choose a transcendence basis for L/K consisting of ¢ and a set B of elements
not in K (¢). Let F be the relative algebraic closure of K(B) in L, i.e.,

F ={x € L | x algebraic over K (B)}.

Then F € W, since L is algebraic over F(¢). Since ¢t ¢ F, this completes the
proof. (]

In some sense, the following lemma is the main engine of Ax’s proof:

Lemma 3.9. Let L/K be fields of characteristic 0. Denote by dL the K -subspace
of Qr/k spanned by df for f € L. Denote by dL/L the Z-submodule of Q21 /k
spanned by f~'df for f € L*. Then the canonical map of K -vector spaces

K ®7dL/L — Qux/dL, koL Lap, (24)

o r
is injective, where Q1 k /dL denotes the quotient of Q2 x by the K-subspace
spanned by df for f € L.

Proof. Choose an element
n
Y ki® f'df: (25)
i=1

in the kernel of the map (24), with n» minimal. By minimality, the k; are linearly
independent over Q. We will show that each f; lies in K, the relative algebraic
closure of K in L. By Lemma 3.3, this will imply df; = 0, giving the desired
injectivity.

If L = K, there is nothing to prove. Otherwise, let F € W, with W as in
Lemma 3.8. So K C FC L,trdp L =1, and F; = F. Since the element (25) lies
in the kernel of (24), we have

> kifTldfi =) kidf] (26)
i=1 i=1
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for some f/ € L* and k] € K. Now, we would like to use properties of function
fields of curves, but, unfortunately, we do not know that L is finitely generated
over F. To this end, we consider a field L’ generated over F by the f;, the fl.’ , and
by any elements used in any relations in €7k used to obtain (26). The field L’
then still has transcendence degree 1 over F, and is finitely generated over F'. We
may therefore identify L’ with the function field of a smooth projective algebraic
curve over F. Furthermore, equation (26) still holds in ©;//x by construction, and
so it holds also in ;//F.
Points P on this curve correspond to valuations

ordp : (L')* = Z.
Associated to P we also have a residue map
resp: Qg — F.

The residue and valuation maps satisfy the following well-known properties. For
all g € (L))*, we have

resp(g~'dg) = ordp(g), resp(dg) =0.

Applying resp to (26), we get
n
> kiordp(f;) =0.
i=1

By Q-linear independence of the k;, we obtain ordp(f;) =0 for all P and i. Buta
function on a smooth projective curve with no zeroes or poles must be constant,
and hence f; € F for all i. Since this holds for all F, we have by Lemma 3.8 that
fieK;. O

We can now complete the proof of Ax’s theorem.
Proof of Theorem 3.1. Let yy, ..., y, € tC[[¢]] and write z; = e’ € C[[¢]]. Let
L=C(y1,...sYn:s21s+-+»2n)-

It suffices to show that, if trdc L < n, then yy, ..., y, are Q-linearly dependent.
Suppose trde L < n. Then, by Corollary 3.5, the differentials

w; =dy; —z; 'dz; € Qrc
fori =1, ..., n together with dy; must be linearly dependent over L, so

> fiwi+gdy; =0 27)

i=1
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with f;, g € L not all zero. Note that, if y{(t) = 0, then y; is a constant, and since
y1 € tC[[#]] we would get y; = 0. Then the y; are trivially linearly dependent; so
we may assume hereafter that y/ (z) # 0. Define a C-derivation

(@)

D:L—L, D = .
- (f@®) o)

By Lemma 3.6, we have D!(w;) = 0. Furthermore, a direct computation shows
D'(dy1) =d(Dyp) =d(1) =0.
Therefore, we have that
Z fi®w;+g®dy; € ker((L ®c kerDl) — Qr/0).

By Lemma 3.7, we may assume f;, g € C.
Rewrite the equation Y  fiw; + gdy; = 0 in the form

Y fi (=g ldz)y = =) fidyi — gdy.

i=1 i=1

Lemma 3.9 implies that either all f; =0, or the z;- ldz; are Q-linearly dependent.
In the first case, from (27) and the fact that the f; and g are not all zero, we would
get dy; = 0. Hence, y; is a constant, and, as noted earlier, this implies that y; = 0.
Therefore, we suppose we are in the second case, say

Z m;(dz;) —0

<i

with m; € Z not all zero. This implies

()

so [z = eX™iYi is a constant. By considering constant terms, this constant must

be 1. Therefore,
Z m;y; =0,

giving the desired linear dependence of the y; over Q. U

4. The structural rank conjecture

We now return to the classical setting over C, rather than the function field setting,
and move on to consider matrices of elements of .Z. The simplest case of 2 x 2
matrices leads to the following four exponentials conjecture:
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Conjecture 4.1. Let M € M»»(£). Then det(M) = 0 only if the rows or columns
of M are linearly dependent over Q.

This conjecture was first stated in print by Schneider [1957], though versions
had been considered over the previous two decades by Selberg, Siegel, Alaoglu and
Erd6s [1944], and others (precise statements by Selberg and Siegel do not appear in
the literature, but see [Waldschmidt 2023] for a discussion of their consideration of
this problem). The four exponentials conjecture remains wide open. As an example,
Waldschmidt [2023] points out the following elementarily stated open question,
a positive answer for which would follow from the four exponentials conjecture:
let ¢ be a real number such that 2' and 3’ are integers; does it follow that 7 is a
nonnegative integer?

The strongest theoretical evidence for the conjecture is the following six expo-
nentials theorem:

Theorem 4.2. Let M € M»,3(.%). Then rank(M) < 2 only if the rows or columns
of M are linearly dependent over Q.

The six exponentials theorem was proven independently by Lang [1966] and
Ramachandra [1968a; 1968b]. See Waldschmidt’s delightful personal account
[2023] for details and references on the history of the four exponentials conjecture
and the six exponentials theorem.

The six exponentials theorem follows as a special case of the theorem of
Waldschmidt and Masser that we will discuss later (see Section 5A). A naive
generalization of the four exponentials conjecture to matrices of arbitrary dimension
does not hold — in general, matrices may have lower than maximal rank even if the
rows and columns are linearly independent over Q. As an example, note that

xz O
det{] 0 y —x | =0.
y 0 z

Therefore, if we substitute for x, y and z any elements of . that are linearly
independent, then we obtain a matrix of rank < 3 whose rows and columns are
linearly independent over Q. Examples such as these motivate the structural rank
conjecture, which was stated precisely in the introduction. The matrix above has
structural rank equal to 2.

4A. The p-adic setting. Most statements in transcendence theory have analogues
in the p-adic setting. As we will describe below, these analogues are particularly
important in Iwasawa theory. Let p be a prime number, and let C, = Q p denote
the completion of the algebraic closure of Q. The statements below work equally
well over Q,, but working with C, provides extra generality. We normalize the
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p-adic absolute value on C, in the usual way: |p| = p~!. There exists a p-adic
logarithm and a p-adic exponential function

log,: {xeCp:lx—1|<1}>Cp, exp,:{xeC,:|x| <p M=y C, (28)

defined by the usual power series

[o.¢] [e.8]
logp(l—x)=—z %, expp(x)=z%.
n=1 n=1

The functions log, and exp,, are injective group homomorphisms on the domains
given in (28). The p-adic logarithm extends uniquely to a continuous homomor-
phism

log,: {xeC,:x|=1}>C,

since every x € C, with |x| = 1 satisfies |x" — 1| < 1 for an appropriate positive
integer n, and we may define logp x)=(~1/n) logp(x”). Next we extend logp toa
continuous homomorphism

log,:C, - C,

by fixing Iwasawa’s (noncanonical) choice log »( p) = 0. The kernel of log p on C;
then consists of elements of the form p“ - u, where a € Q and u is a root of unity.
We define the (-vector space of p-adic logarithms of algebraic numbers,

%, ={log,(x) | x €Q*} C C,.

The p-adic version of Baker’s theorem was proved by Brumer [1967] following
Baker’s method.

Theorem 4.3 (Baker and Brumer). Let yi, ..., y, € £, be linearly independent
over Q. Then yy, ..., y, are linearly independent over Q.

Similarly, there are natural analogues of Schanuel’s conjecture and the structural
rank conjecture in the p-adic setting. To be precise we state the latter of these:

Conjecture 4.4 (p-adic structural rank conjecture). Let
M e men(gp + @) - men(q;p)-
The rank of M is equal to the structural rank of M.

4B. Applications in number theory. Statements in transcendence theory have
important applications in algebraic number theory. In this section, we describe
two important conjectures in Iwasawa theory that are special cases of the p-adic
structural rank conjecture. These conjectures are our personal motivation for this
study.
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4B1. Leopoldt’s conjecture. Fix a prime p and an embedding @ < C -

Conjecture 4.5 (Leopoldt’s conjecture). Let F be a number field of degree n over Q)
and let 01, ..., o, denote the embeddings F — Q. Let {uy, ..., u,} be a Z-basis
for 0% /u(F). Let

M = (108, 0} ;) € Myxn (L))
Then rankc , (M) =r.

Proposition 4.6. The p-adic structural rank conjecture implies Leopoldt’s conjec-
ture.

Proof. The important point here is that the archimedean analogue of the statement
of Leopoldt’s conjecture is known to be true; this is the classical nonvanishing of
the regulator of a number field. More precisely, if we fix an embedding @ < C and
let N = (1og loj(u;) |), where the absolute value denotes the usual absolute value
on C, then we have

rankc(N) =r.

This is proved using the fact that log | - | takes values in the ordered field R (whereas
log, does not). For this reason, the p-adic statement lies far deeper than the
archimedean one.

The field Q(x1, ..., xg) appearing in the definition of the structural rank provides
a bridge between the p-adic and complex settings, with the p-adic structural rank
conjecture doing most of the heavy lifting.

Let {c1, ..., ck} C{oj(u;)} be such that {log,(c;)} is a Q-basis for the Q-vector
space spanned by the log , (o (u;)). Write

k

M = (log, 0 (u;)) = ZMi log,,(ci)
i=1

with M; € M, ,(Q). The p-adic structural rank conjecture implies that

k
rank@p M =rankqqy,,... x,) ( Z M,-x,-)

i=1

k

> rankcg(Z M; log |Ci|>

i=1
= rank@(log |aj(u,-)|) (29)
=r.

Hence, rankc, M > r, and so we must have equality. Note that in the equality (29),
we are implicitly using the fact that, if u; € Q* are p-adic units and m; € Z are
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integers, then
Zmi log,(u;)) =0 = Hu;"" is a root of unity = Zmi log |u;| =0. O
Let us describe two applications of Leopoldt’s conjecture.

Algebraic (Iwasawa theory). By class field theory, Leopoldt’s conjecture implies
that the maximal pro-p abelian extension of F' unramified outside p has Z,-rank
equal to rp 4+ 1, where 2r; is the number of embeddings F — C with image not
contained in R. See for example the exercises in [Neukirch 1999, page 394].

Analytic (p-adic L-functions). Let F be a totally real field, so
r=rank O =[F : Q] — 1.

There is a p-adic analogue of the classical Dedekind zeta function of F, denoted
by ¢F,,. A theorem of Colmez [1988] states that

}iil}(s —D&Fp(s) = ()R, (F), (30)
where
R, (F) = £ det(log, (0 (u))i,j=1....r) (3D

and (x) denotes a specific nonzero algebraic number, which we do not describe
precisely here. Note that, since there are r + 1 embeddings o, the last one has
been excluded in the definition of R, (F). Which embedding is excluded, as well
as the ordering of the remaining embeddings, only affects the determinant in (31)
up to sign; the unspecified & in (31) includes an orientation (a sign) that makes the
product independent of choices.

Colmez’s formula (30) is a p-adic “class number formula”. It implies that ¢r ,(s)
has a pole at s = 1 if and only if Leopoldt’s conjecture for (F, p) holds.

4B2. The Gross—Kuz min conjecture. There is an analogue of Leopoldt’s conjecture
due independently to Gross and Kuz’min concerning p-adic L-functions at. s =0
rather than s = 1. Unlike the case of classical L-functions, there is no functional
equation for p-adic L-functions relating the values at 0 and 1.

We refer the reader to [Gross 1981] for details about the Gross—Kuz’min conjec-
ture beyond what we write below. To state the conjecture, let H be a CM field and
H™ its maximal totally real subfield. Let

U, ={ueH":|uly=1foralwfp}.

Here w ranges over all places of H that do not divide p, including the archimedean
ones. Then rank(U 3 ) = r, where r is the number of primes of H™ above p that
split completely in H.
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Let X, denote the C,-vector space with basis indexed by the places of H above p.
Let ¢ denote the nontrivial element of Gal(H/H™), i.e., ¢ is complex conjugation.
Let X, denote the largest quotient of X, on which ¢ acts as —1. Then X, has
dimension . We define two maps

Lp,0p: Up_ — X;.

The coordinate of 0,(u) at the component corresponding to a place ‘B of H is
ordy (), and the coordinate of £, (u) is logp(NHm/@p (u)). We extend £, and o0, to
Cp-linear maps

U,®C,—X,.

It is not hard to show using Dirichlet’s unit theorem that o, is an isomorphism, and
we define

R, (H) =det(£, 00, ").
Conjecture 4.7 (Gross—Kuz’min). We have R;(H ) #O.

A proof similar to the proof of Proposition 4.6 shows that the p-adic structural
rank conjecture implies the Gross—Kuz’min conjecture (one uses ord, in place
of log|-|). Once again there are algebraic and analytic interpretations of this
conjecture.

Algebraic (Iwasawa theory). By class field theory, the Gross—Kuz’min conjecture
implies a bound on the growth of the p-parts of class groups of fields in the
cyclotomic Z ,-extension of H. See [Federer and Gross 1981, Proposition 3.9] for
details.

Analytic (p-adic L-functions). Let x denote the nontrivial character of Gal(H/H™).
Then one knows that

ords—og Lp(xw, s) >r.

This follows for odd p by work of Wiles [1990]; an alternative proof using the
Eisenstein cocycle that works for all p was given in [Charollois and Dasgupta 2014;
Spiess 2014] using an argument of Spiess. In joint work with Darmon and Pollack
then with Kakde and Ventullo [Dasgupta et al. 2011; 2018], we proved that

Ly (xw,0) = ()R, (H),

where (%) is a specific nonzero rational number. This is a p-adic class number
formula at s = 0. Therefore, L ,(xw, s) has a zero of order exactly r at s = 0 if
and only if the Gross—Kuz’min conjecture is true.

4B3. Representation-theoretic considerations. Retaining the setting of the Gross—
Kuz’min conjecture, suppose now that H contains a totally real field F such that
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H/F is Galois. Let G = Gal(H/F). For any representation M of G over C,,
and character x of an irreducible representation V, let MX denote the yx-isotypic
component of M (i.e., the span of the subrepresentations of M isomorphic to V).

Then
v, =@u;. X, =Dx;
X x

where the sums range over the characters x of irreducible representations V of G
on which ¢ acts as —1. The maps £, and o, also decompose as sums of maps

Ei‘,,oﬁ : U[)j — Xﬁ.
We define
_ -1
R;,‘(H) = det(E)lg o (oé) ).
We then have
R, (H) =[] R:(H). (32)
X

Now, for x as above,

X e X — d; X — ; Gy
ry = dll’nqu U b= dlmqu X 5= Z d1mq;p Ve,
plp

where the sum ranges over the primes of F above p, G, C G denotes the decompo-
sition group of a prime of H above p, and V ¢» denotes the maximal subspace of V
invariant under G,. When r} = 1, the regulator R%(H) is a Q-linear combination
of p-adic logarithms of algebraic numbers. As pointed out in Proposition 2.13 of
Gross [1981], the nonvanishing of R;,( (H) follows from the theorem of Brumer and
Baker (Theorem 4.3) in this case.

Theorem 4.8. If r;j = 1, then R}, (H) # 0.

There is a particular case when every rj < 1. If F contains only one prime
above p (for example F' = (D), and G is abelian (so every V has dimension 1), then
clearly rj < 1. Combining Theorem 4.8 with the factorization (32), we obtain:

Corollary 4.9. Let F be a totally real field with exactly one prime above p, and
let H be a CM abelian extension of F. Then the Gross—Kuz 'min conjecture holds
for H.

A similar analysis holds for Leopoldt’s conjecture, and one obtains:

Theorem 4.10 [Brumer 1967, Theorem 2]. Leopoldt’s conjecture holds for abelian
extensions of Q.
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4C. A theorem of Roy. Damien Roy has proven a number of beautiful results in
transcendence theory. We prove one of these now.

Theorem 4.11 (Roy). The structural rank conjecture is equivalent to the special
case of Schanuel’s conjecture that states that, if yi, ..., Yy, € £ are Q-linearly
independent, then

trdg Q(y1, ..., yp) =n.

Similarly, the p-adic structural rank conjecture is equivalent to the p-adic version
of the special case of Schanuel’s conjecture, but we will content ourselves with the
archimedean setting here. Theorem 4.11 is proven in [Roy 1995].

One direction of Roy’s theorem is relatively elementary.

Lemma 4.12. The special case of Schanuel’s conjecture implies the structural rank
conjecture.

Proof. We assume the special case of Schanuel’s conjecture. We first consider a
matrix M with entries in Z. Let M = ) M;c; with M; € My, (Q) and ¢; € &
linearly independent over Q. Write

Mx = ZMixi € Man(@(-xlv sy xn))

and let r = rank(M,). Let J, be an r x r submatrix of M, such that

det(Jy) = P(x1,...,x,) #0
in Q[x1, ..., x,]. The determinant of the corresponding submatrix of M is equal to
P(cy, ..., c,) and hence cannot vanish since the c; are algebraically independent,

by the special case of Schanuel’s conjecture. Therefore, rank(M) > r. Of course, it
is clear that rank(M) < r, so we get equality.
Now assume M has entries in . + ), but not in .. There are two cases.

Case 1: 1 is not in the Q-linear span of the entries of M. The Q-basis for this
span can be taken to have the form {1 +cy, c2, ..., ¢c,}, where ¢; € Z. It is easy to
check that the ¢; must be QQ-linearly independent, and hence, by the special case of
Schanuel’s conjecture, they are algebraically independent. The same is therefore
true of {1 +cy, ¢a, ..., cy}. The previous proof then applies to this basis.

Case 2: 1 is in the QQ-linear span of the entries of M. We may take a Q-basis of
this span of the form {co =1, c1, ..., ¢}, where ¢; € £ for i > 1. We proceed as

before. Write " "
M:ZMic,-, MX=ZM,-x,-.
i=0 i=0

Let r =rank(M,) and J, an r x r submatrix of M, with

det(Jy) = P(xq, ..., xn) #0.
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The determinant of the corresponding submatrix J of M is P(1,cy, ..., c,). Since P
is a nonzero homogeneous polynomial of degree r, its specialization P (1, x1, ..., x,)
is also nonzero, so det(J) = P(1, cy, ..., ¢;) # 0 by the algebraic independence of
the ¢;. Therefore, rank(M) > r, as desired. U

The main content of the converse is in the following lemma:

Lemma 4.13. Let k be a commutative ring and let P € k[x1, ..., x,]. There exists
a square matrix N with entries in

k+kx +---+kx,
such that det(N) = P.

Let us for the moment take the lemma for granted and prove Roy’s theorem.

Proof of Theorem 4.11. Assume the structural rank conjecture. Suppose ¢y, ..., ¢, €
% are linearly independent over Q and that P(cy, ..., ¢,) = 0 for some nonzero
P € Q[xy,...,x,]. Asin Lemma 4.13, let N be a square matrix with entries in
Q+ Qx; + - - - + Qx, such that det(N) = P.

Let M be the matrix N with x; replaced by c¢;. We then have det(M) = 0. Note
that the matrix M, in the structural rank conjecture is the homogenization of the
matrix N, with entries in Qxo 4+ Qx; + - - - + Qx,. We are using here that the ¢; are
Q-linearly independent from 1, since e is transcendental. The conjecture implies
that det(M,) = 0, whence det(N) = 0 by specializing xo = 1, a contradiction. [J

It remains now to prove Lemma 4.13. We first remark that this lemma is actually
the starting point of an important avenue of research in theoretical computer science,
where the lemma is usually attributed to Valiant [1979]. There are well-known
efficient algorithms for calculating the determinant of a matrix, so expressing a
general polynomial as a determinant gives an algorithm for efficiently calculating
values of a polynomial. The minimal dimension of a matrix necessary to express a
given polynomial as a determinant is known as the determinantal complexity of the
polynomial. The study of the growth of determinantal complexity in families of
polynomials is a topic with an extensive literature.

We follow Roy’s proof of Lemma 4.13. We will prove the more general statement
that, given any matrix N € M,,x,, (P,), there exists a matrix N' € M, s,y (P1) such
that det(N) = det(N’). Lemma 4.13 is the case where we start with an element
N € P4, which we view as a 1 x 1 matrix. The advantage of the more general
statement is that it may be proven by induction on d. We need to establish two
sublemmas. The first establishes that, given a matrix N € M, «, (P;), we may write
it as a product of matrices with entries in spaces Py with d’ < d. The matrices
that arise in the proof are not necessarily square, and this is resolved by the second
lemma.
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Lemma 4.14. For a nonnegative integer d, let P; C k[x, ..., x,] denote the k-
subspace of polynomials of total degree < d. Given N € M, (Py) withd > 1,
there exists an integer s and matrices

AEmes(Pdfl)a BGMsxm(Pl)
such that N = AB.
Proof. Let N = (a;, ;) with a; ; € P;. We can write

n

a j= E Ci,jeXe + Ci jn+1
=1

with Ci,jt € P;_iforl <f£<n+1. Let

X1
X2
ci,j =(cije) € Mixmrty(Pa—1), x=| 1 | € Mut1yx1(P1).

Xn
1

Define

A= (Ci,j) € mem(n—i—l)(Pd—l)v B=x® lyuxm € M(n+l)m><m(Pl)~
Then one calculates that N = AB. Ol

The matrices A and B in Lemma 4.14 are not square, so we cannot recursively
apply the lemma. This is resolved by the following observation:

Lemma 4.15. Let A € M,,, s, B € My,,,. Then

I; B
det(AB) = det (—A 0) ,

where the matrix on the right is square of dimension m + s.

Proof. We simply note that

I, 0 I; B Iy, =B\ (I, 0O
A I, —-A 0 0 I1,)] \O0 AB
and take determinants of both sides. |

We can now prove our main lemma.

Proof of Lemma 4.13. As indicated above, we will show by induction on d that,
for any matrix N € M, (Py), there exists a matrix N’ € M/, (Py) such that
det(N) = det(N).

The base case d = 1 is trivial. For d > 1 we use Lemma 4.14 to write N = A B with
A e M,.;(Py_1) and B € My, (P1). Lemma 4.15 then yields det(N) = det(N’)
with N' € M(u45)x(m+s)(Pa—1). The induction is now complete.

The lemma is the case where we start with a 1 x 1 matrix in P,. O
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5. The theorem of Waldschmidt and Masser

To our knowledge, the strongest general unconditional result toward the structural
rank conjecture is Theorem 1.6 of Waldschmidt and Masser, stated in the introduc-
tion. For the sake of variety, we will prove the p-adic version of the conjecture in
this section, though the proof of the archimedean version is essentially the same
(both versions are proven in [Waldschmidt 1981]). The statement of the p-adic
version is exactly the same as the archimedean one, with . replaced by .Z),.

Theorem 5.1 (Waldschmidt and Masser). Let m and n be positive integers and let
M € My, »n(Zp). Suppose that

rank(M) < mn_
m—+n

Then there exist P € GL,,(Q) and Q € GL,,(Q) such that

My 0
PMQ =

where the 0 block has dimension m’ x n’ withm'/m +n'/n > 1.

5A. Applications. Let us first state some applications of the complex and p-adic
Waldschmidt—Masser theorems. The six exponentials theorem, which had been
proven earlier in the 1960s, is a corollary of the Waldschmidt—Masser theorem.

Proof of Theorem 4.2. The case where M = 0 is trivial. Therefore suppose
M € M»,3(%) has rank 1. Since 1 < g, the Waldschmidt—Masser theorem implies
that, after a rational change of basis on the left and right, the matrix M has the

block matrix form 0
M,
PMQ =
o= (3t )
where the 0 block has dimension 1 x 2 or 2 x 1. In the first case, our matrix has the

form
PMQ = (* 0 0).

% ko ok

Such a matrix has rank 1 only if it has the form

PMQ:(OOO) or PMQ:(* OO).

* ok ok * 00

In the first case, we see that P M has the same shape, which says that the rows
of M are linearly dependent over (. In the second case, we see that M Q has the
same shape, which says that the columns of M are linearly dependent over Q0. The
case where the original block of zeroes has dimension 2 x 1 is similar. (]
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In the case of a square matrix, the Waldschmidt—Masser theorem simplifies to
the following:

Corollary 5.2. Let M € M,,,(ZL) or Myx,(£)). Suppose that rank(M) < %n
Then there exist P, Q € GL, (Q) such that

M O

PMQ = ( M, M3) (block matrix)

where the 0 block has dimension m x m’ withm +m’ > n.

Corollary 5.3. The Leopoldt regulator matrix and the Gross—Kuz min regulator
matrix have rank at least half their expected ranks.

Proof. Let r be the expected rank of the Leopoldt matrix. Let

M’ = (log|o;(u;))

i,j=1,...r

be an r x r submatrix of the archimedean regulator with det(M’) # 0. Let
M = (log, 0 ()i j=1,....r

be the corresponding submatrix of the Leopoldt matrix.

If the rank of the Leopoldt matrix is less than %r, the same is true for M. The
Waldschmidt—Masser theorem then implies that there exist P, Q € GL, (Q) such that
P M Q has an upper right 0 block with dimension m x m’, where m +m’ > r. But
then P M’Q has this same property. This implies that det(M') = 0, a contradiction.

The same proof works for Gross’s regulator, using ord,, instead of log|-|. [

5B. Auxiliary polynomial. As in the proof of Baker’s theorem, the Waldschmidt—
Masser theorem is proven by constructing, under the assumptions of the theorem, a
suitable auxiliary polynomial whose existence implies the conclusion of the theorem.
Waldschmidt’s result is that the auxiliary polynomial exists, and Masser’s theorem
is that this polynomial gives the desired conclusion. Let us describe this in greater
detail.

We have M = (a; ;) with a; j =log,(x; ;) € £). Here x; j € Q*. After scaling
M if necessary, we may assume that |x; ; — 1|, < 1. Fori =1,...,m, let

,,,,,

Let X = (x1,x2, ..., Xyn) C (Q*)" be the subgroup generated by the x;. For each
positive integer N, define

X(N) = {ﬁxff laez,0<a < N}.
i=1

For a polynomial P in several variables, we write deg(P) for the total degree of P.
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Theorem 5.4 [Waldschmidt 1981]. Suppose r = rank(M) < mn/(m + n). There
exists € > 0 such that, for all N sufficiently large, there exists a nonzero P €
Z[t1, ..., t,] such that deg(P) < N"™/"=€ and P(x) =0 for all x € X (N).

Waldschmidt’s theorem is the “transcendence” part of Theorem 1.6. Masser’s
theorem, which is a purely algebrogeometric statement, takes the existence of
an auxiliary polynomial P as above and deduces the relations necessary to give
the desired result about the original matrix M. We will describe the statement
of Masser’s theorem precisely in a moment, but first let us comment about the
numerology concerning the auxiliary polynomial in the statement of Theorem 5.4.
We can view the existence of a polynomial with prescribed zeroes as a system of
linear equations in the coefficients of the polynomial. Each zero gives one such
linear equation. If the x; ; are generic, the size of X (N) is (N +1)". A polynomial
of degree < d has fewer than d" coefficients. Therefore, if the x; ; are generic,
we expect that we would require d" > (N 4 1)™ for a polynomial to exist, so, in
particular, d > N™/". For this reason, the existence of the auxiliary polynomial P
in Theorem 5.4 does not hold for generic x; ;.

Let us now state Masser’s theorem precisely. Let k be a field of characteristic 0,
let (x; j) € My, x,(k*). Define X and X (N) as above. Define a pairing

"< 7"k, (@), b)) =",
ij
Theorem 5.5 [Masser 1981]. Let N > 0 and suppose there exists P € k[t, ..., t;]
such that deg(P) < (N/n)™" and P(x) =0 for all x € X(N). Then there exist
subgroups A C 7™ and B C 7" of ranks m' and n’, respectively, with (A, B) = 1
andm'/m+n'/n > 1.

Theorems 5.4 and 5.5 combine to give Theorem 5.1. In the remainder of this
section, we prove these two theorems.

5C. Waldschmidt’s theorem. We will give two proofs of Waldschmidt’s theorem.

5C1. Proof 1 of Waldschmidt’s theorem. Our first proof is similar in spirit to
Waldschmidt’s original proof. For simplicity, we will assume x; ; € Z and x; ; =
1 (mod p). Standard techniques (scaling by an integer to obtain algebraic integers,
and taking norms to obtain integers) allow one to handle the general case, but we
would like to avoid the extra notation required.

Let r denote the rank of the matrix M € M,,»,(Z,). After reordering columns
if necessary, we can assume that the last n — r columns of M are in the Z,-linear
span of the first » columns. Then, for each i > r, there exist A; 1,...,4;, € Z,
such that, if z = (21, ..., z,) € X, we have

il A2

) L .
2i=2,"2, -z, fori>r. (33)
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To make sense of the right-hand side of this equality, note that, for A € Z,, the

function
o0

tr=0+@—-1) = ()‘) (t—1) (34)
is a convergent power series in r — 1. Hence, if t € 1 + pZ,,, then (34) converges
inZ,.

Our goal is to find a polynomial P € Z[ty, ..., t,] such that P(z) =0 for z € X (N).
Define u; =t; — 1 and consider the canonical map

Ai, Air ~
o 2t, ... )] =>Zplluy, ..., u, 1/t —1; P )l’-‘:rH:Zp[[ul,...,u,]]. (35)

The elements in the quotient in (35) are interpreted as power series in the u; via (34).
Fix a positive integer c. Define ¢, to be the composition of ¢ with the canonical
reduction

Zplluy, ..., ull— (Z/pDluy, ..., u 1/, ..., u). (36)

If a polynomial P € Z[ty, ..., t,] satisfies ¢.(P) = 0, then P (z) will be divisible
by p¢ for any z € X. Indeed, ¢(P)(z) = P(z) is well defined for z € X, since the
kernel of ¢ vanishes on X. Next, it is clear that ¢(P)(z) (mod p¢) depends only
on the coefficients of ¢(P) modulo p¢. Finally, we note that

zi=1 (mod p) = u; =0 (mod p) = u; =0 (mod p°).

Now, the ring on the right in (36) is finite. The total number of monomials in
ui,...,u, modulo (uf,...,u;) is ", so the total number of possible values of

these coefficients mod p€ is
+1

(P =p”
Therefore, by the pigeonhole principle, if we have a subset of Z[#4, ..., t,] of size
greater than pcr+l , then some two elements of the subset, say P; and P,, will have
equal image under ¢, and the difference P = P, — P, will satisfy P(z) =0 (mod p°)
for all z € X.

We will take the subset of all polynomials with degree in each variable less than
some constant d with coefficients that are nonnegative integers less than p” for
some constant /. The size of this subset is p¢", and hence the condition that we
want is

hd" > " t!. (37)

Now, we also want to use the principle of “discreteness of the integers” discussed
in the proof of Baker’s theorem to ensure that the condition P (z) =0 (mod p€) for
z € X(N) implies that P(z) = 0. For this, we need a crude bound on | P(z)| (the
archimedean absolute value). Suppose that A is an upper bound on |x; ;|. Then, for
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each z = (21, ..., 2,) € X(N), we have |z;| < AN™. Therefore, each monomial in
the evaluation of P(z) has absolute value at most p” AN and in total we obtain
|P(Z)| < dnphANdmn.
Therefore, if
dnphANdmn < pc’ (38)
then we indeed have the implication

P(z) =0 (mod p¢) = P(z) =0.

To prove the theorem, we set d = | N"/"~€/n |, so that the constructed polynomial
P will have degree less than N"/"~¢, as required. We search for parameters /& and ¢
such that both (37) and (38) hold. Not surprisingly, these inequalities are pulling in
the opposite direction — the first says that £ is large relative to ¢, and the second
says that & is small relative to c. For N large, the two inequalities will be satisfied if

h-N™"" T ¢ >klogN +h+k Nmtm/n=e

for the appropriate constants k and k’.

If we set c = N*+M/7+€ and h = ¢N~? for a small § > 0, then it is clear that
the second inequality will hold for N sufficiently large. Plugging these parameters
into the first inequality yields

m—8>(%+1+e>r.

It is clear that we can choose small positive § and € satisfying this inequality if

mn
m-+n’

m > (ﬂ + 1>r, ie., r<
n
This completes the proof.

5C2. Proof 2 of Waldschmidt’s theorem. For our second proof, we will return to
the completely general case, i.e., we do not assume that x; ; € Z, only that x; ; € Q*.
Our motivation in giving the second proof is that it introduces an important topic
in transcendence theory not discussed earlier, namely the theory of interpolation
determinants pioneered by Michel Laurent. Laurent [1991] gave a new proof of
the six exponentials theorem using his new theory. The basic idea is that we will
view the existence of the desired polynomial P as the solution of a linear system
of equations in the coefficients of the polynomial, and show that the associated
determinant vanishes.

Again we will construct a polynomial P such that the degree in each variable is
less than d = [ N"/"~¢/n] and such that P(z) = 0 for all z € X (N). Consider the
matrix whose rows are indexed by our desired zeroes z € X (N), and columns are
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indexed by the exponents
yeZ'd—1)={0n,....y) 0=y =d -1}
of the monomials of our desired polynomial,
L= (z") € M(n+1ynxar (Cp).

It suffices to show that rank(L) < N"7"¢/n™ < d", as then any nonzero vector in
its kernel will be the coefficients of our desired polynomial. Of course, by making
€ smaller, we can ignore the constant n”, since N€ > n™ for N large.

We state without proof the following elementary interpretation of the rank of a
matrix:

Lemma 5.6. Let k be a field and suppose that a matrix
(@i, ;) € My (k)
has rank equal to r. Then there exist vectors
Bisee s Bus V1o Yn €K"
such that a; j = (B;, v;)-
In our situation, we have M = log » (xi,j) € My, (Cp) with rank r. We write
log,(xi,j) = (Bi, vj) for Bi,y; €C).

Without loss of generality, we can scale all the g; and y; to assume all their
coordinates have absolute value < p~!. (This just scales the matrix M, which
affects neither the assumptions nor conclusions of the theorem.)

If z =[] x% for £ € 7™, then, for y € Z", we have

i=1"i
7= eXP(Z Bili, Z Vj)’j>-

Next we will require a p-adic Schwarz’ lemma. For a positive integer d and real
R > 0, define

By(R) = {(z1. ... 2a) : lzi| < R for all i} C 5.
For analytic f : B4(R) — C,, define

|f|R=Z€H§%)|f(Z)I- (39)

Lemma 5.7. Suppose that f : Bi(R) — C,, is analytic and has a zero of order at
least n at 7 = 0. Then, for any 0 < R’ < R, we have

e < (g) /lk.
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Proof. Let g(z) = f(z)/7". This is analytic on B{(R) since f has a zero of order
at least n at z = 0. For any z € B;(R’), we have

F@I < R 18@)1 < (R Igle = ()1 11

The last equality uses the p-adic maximal modulus principle, which states that
the maximum in (39) is achieved on the boundary |z| = R. See [Cherry 2009,
Theorem 1.4.1] or [Stansifer 2012, Theorem 7] for a proof of this analytic fact. [

Now we present Laurent’s main theorem on interpolation determinants.

Theorem 5.8 (Laurent). Let 0 < R’ < R and let f1, ..., fy be analytic functions
B.(R) — C,.
Letzy,...,2zq € B.(R'). Then L =det(fj(z;)) satisfies

R\ €@ d
IL| < <E> []1£1x
i=1
where, for d sufficiently large relative to r,
O,(d) > —d"thir, (40)
6e

Proof. Define A(z) = det(f;(z;z)), which is analytic on |z| < R/R’. We will show
that A(z) has a zero of order at least ®, (d) at z =0 for some combinatorial function
O, satisfying (40), which we will define in a moment. The result then follows from
Schwarz’ lemma:

-0,(d)
ILl =AM =< <F> |Alr/r

using the trivial upper bound

d
|Algse <[ ]1fil&-
i=1

(Note that, in the complex case, we would need a factor of d! on the right, but, in
the nonarchimedean setting, this factor is not required because of the strong triangle
inequality.)

Write each f; as a power series in the variables u1, ..., u, € C,. By multilinearity
of the determinant, it suffices to consider the case f;(u) =u" = ull)” u§2j . -u’r)'j

for nonnegative integers v;;. Then

A(z) = =i 1Vl det(z)"),
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where ||vj|| =vji +vj>+---+vj. If any two tuples v; are equal, this determinant
vanishes and A(z) is identically 0. If not, then the order of vanishing is at least

d
O,d) = min{z llv;ll ‘ Vi,...,V4 € (Zzo)r with v; #v; if i ;éj}.
j=1

For example, ®((d) = %d (d —1). For a proof of the combinatorial inequality (40),
see [Waldschmidt 1992, Lemma 4.3]. O

We can now apply Laurent’s theorem to complete the proof of Waldschmidt’s
theorem. We want to show that any square submatrix L' = (ziy ) of L of dimension
d" ~ N™7"¢ has vanishing determinant, where

Zly -5 24 € X(N), yeZ”(d—l), d:LNm/nfeJ.

As explained earlier, the entries of the matrix L’ can be written in the form
exp((X" Biti, X" viyi)) with € € Z™(N) corresponding to z. For each y we have the

function
fHluy, ... u) = eXp(<u, Z Vi)’i>)

We apply Laurent’s theorem on interpolation determinants with R =1and R’ =1/p.
We find
|L/| < C_N(m—ne)(r+1)/r

’

where C > 1 is a constant.
Now we want to put a bound on the archimedean absolute value of L’. Let

A =max |x; j]oo-
ij

Then |7’ | < AN V""" ™1 Therefore,
|L/|OO S (Nm—ne)! ) DN(m/n)JrIer%nJrl)e.
The factorial is dominated by the other term and can be ignored. Scaling to obtain
integrality just scales D. The same is true for taking norm from the field generated
by the x; ; down to @ in order to obtain an element of Z.
Therefore, we will have L' =0 if

N(m—ne)(rJrl)/r N(m/n)+1+m—(n+1)e
C > D .

Of course, for this inequality to hold for large N, the precise values of C and D do
not matter; all that matters is that we have the corresponding inequality of exponents.
It therefore suffices to have

(m—ne)rrll>%+1+m—(n+1)e.
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This simplifies to

1 - m+n +£<n—r).
r mn m r

There exists € > 0 satisfying this inequality if and only if

mn

r << .
m—+n

This gives the desired vanishing of det(L") and completes the second proof of
Waldschmidt’s theorem.

5D. Masser’s theorem. We conclude this section by proving Masser’s theorem,
stated in Theorem 5.5 above. This is a purely algebrogeometric statement that does
not involve the logarithm or exponential functions. In particular, we work over an
arbitrary field k of characteristic 0. Recall the notation established in Section 5B.
We let the group X C (k*)" act on the polynomial ring R =k[zq, ..., t,] by

- f=fait, 2202, ..., Zaty).

Recall that the subgroup X is generated by elements xi, ..., x,. If a € Z", we

write x? = [[/L, x" € X. For a prime ideal p C R, let

Stabx (p) = {a € Z" | x“ -p =p}.

Before delving into the proof, it is instructive to consider the simplest case,
n=m=2. Welet N > 0 and suppose there exists P € k[¢t{, t;] such that deg(P) < N
and P(x) =0 for all x € X (2N). We want to show that either

(A) there is a nonzero a € 72 such that x* = (1, 1) (this corresponds to m’ = 1 and
n' =2),or

(B) there exists a nonzero b € Z? such that z” = zll”zz =1 for all z € X (this

corresponds to m’ =2 and n’ = 1).

We factor P into a product [ [ P; of irreducibles of k[#;, ,]. We can assume that
none of the P; are monomials, since monomials have no zeroes in (k*)%. We will
first show that, if any P; satisfies rank(Stab x((P,-))) =2, then we are in the second
case above. This follows from Lemma 5.9 below, but it is relatively easy to see
in this case explicitly. Indeed, if 7{"#5> is a monomial occurring in P;, then the
equation z P; = A P; for z € X and A € k* yields

'z =%

’ /
Letting tla' tgz be some other monomial occurring in P; (recall we may assume that
P; is not a monomial) we get a similar equation; dividing these two cancels A, so
we obtain

b
=1,
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where b; = a; —a; for i = 1, 2 are not both zero. If rank(StabX((P,-))) =2, then
this holds for all z in a finite-index subgroup of X, so, replacing (by, by) by an
appropriate multiple, we are in case (B).

Therefore, we are left to consider the case where each irreducible factor P; of P
satisfies rank(Stab X((Pi))) < 1. In this case, we will show that there is a polynomial
of the form

k
0= Zai(zi - P),
i=1

where a; € Z and z; € X (N), such that P and Q are relatively prime. Let us first
explain why this completes the proof. Since P vanishes on X (2/N), each polynomial
z- P with z € X () vanishes on X (N); hence, the polynomial Q vanishes on X (N).
Therefore, both P and Q vanish on X (N). The set X (N) has size (N + 1)? unless
we are in case (A) above. Butdeg Q <deg P < N, and the polynomials are coprime,
so we would obtain a contradiction to Bézout’s theorem if these polynomials had
(N + 1)? common zeroes. We must therefore be in case (A).

To see the existence of the polynomial Q, we first show that, for each irreducible
polynomial P;, there exists z; such that z;” 1. P, does not divide P, or, equivalently,
P; does not divide z; - P. This is established by counting. Since rankx ((7;)) <1,
there are at least N 41 distinct ideals among the set (z7'-P)asz ranges over X (N).
See Lemma 5.12 below for a proof. But P has degree less than N, which is a
bound on the number of irreducible factors, so some z~! - P; must not be a factor
of P. With these z; in hand, the existence of the linear combination Q is an easy
inductive argument using the pigeonhole principle; see Lemma 5.13 below.

We now return to the general case. Recall that the height ht(p) of a prime ideal p
is the largest integer r such that there exists a chain of distinct prime ideals

PoCp1 C---Chpr=p.

Lemma5.9. Letm=(t; —1,...,t,—1). Let p C m be a prime of height n’ and let
A = Staby (p). There exists a subgroup B C Z" of rank > n’ such that (A, B)x = 1.

Proof. Let B={y e 7" | (A, y)x = 1}. Choose Z C 7" such that

Q"=0BaQZ.
We want to show that s :=rank(Z) <n —n’. Let {71, ..., 25} be a basis for Z.
Write z; = (zi1, - -, Zin)-
Fori=1,...,s letu; =[[j_ ;" € R =kl ..., '] Since

trd; Frac(R'/pR') =n —n’,
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if s > n — n’ then there exists a nonzero polynomial Q with coefficients in k such
that Q(uy, ..., us) € pR’. Suppose this is the case, and write Q(u1, ..., uy) as a
polynomial Q'(¢y, ..., t,) € pR’.

For any a € A, we have x*- Q" € pR’, so

Q' (xtyepR cmR = Q' x)=0 = QWa,z1)x,...,{a, z5)x) =0.

Fix a and apply this with a replaced by da, asd =0, 1, . ... Using the Vandermonde
trick from Baker’s theorem, we find that some Z-linear combination of the z; is
orthogonal to a. More precisely, we have (a, w)x = 1 for some

weS= {Zwizi #0‘ |w;| Sdeg(Q)}-
i=1

A:UwL.

weSs

Therefore,

But A is a finitely generated free abelian group and cannot be written as a finite
union of proper subgroups. Therefore, there exists w € S such that (A, w) = 1. But
then w € B, contradicting w € Z. Therefore, s <n —n’, as desired. ([

Given Lemma 5.9, our task now is to show the existence of a prime ideal p with
height n” such that rank(Stabx (p)) = m’, where m’/m +n’/n > 1. This is provided
by the following theorem:

Theorem 5.10. Let N > 0 and suppose there exists
P eklt,.... t;]

such that deg(P) < (N/n)m/” and P(x) =0 forall x € X(N). Then there exists a
prime ideal p C m of height n’ such that

/

rank(Staby (p)) =m',  where frm'/m+ % > 1.

Lemma 5.9 and Theorem 5.10 combine to give Theorem 5.5. We will prove the
contrapositive of Theorem 5.10. For each 1 <n’ <n, let m" =m,, be the maximal
rank of Staby(p) as p ranges over the primes contained in m with height equal
ton’. If any m" =m, then m’/m+n'/n=1+4n"/n > 1, so we are done. Therefore,
assume that every m’ < m and define

Note that

/ /

nm>%<=>%+%>l- (41)

Theorem 5.10 will arise as a corollary of the following statement:
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Theorem 5.11. Let f € R have degree D and let
N=D771 +D772+‘_.+D77n‘
There exists z € X (N) such that f(z) #0.

Theorem 5.11 implies Theorem 5.10. Indeed, if each 5, for 1 <n’ < n satisfies
Ny < n/m, then Theorem 5.11 implies that there exists z € X (n deg(P)”/’”) such
that P(z) # 0. But, by assumption, n deg(P)"/™ < N, yielding a contradiction to
the assumption P(z) =0 for all z € X (N). Therefore, some 5, is larger than n/m,
giving the desired result by (41).

The proof of Theorem 5.11 requires significant commutative algebra. We first
establish some notation. Let

M= U z-m, Sqm=R-IM.
z€X(N)

The set Soy is multiplicatively closed. For an ideal a C R, define
a* = (S @) NR D a.

Note that, for a prime ideal p C R, we have p* = p if and only if p C z - m for some
z € X, and p* = R otherwise. Indeed, if p* # p, then there exists /s € (ngtlp) NR
such that ¢ /s ¢ p. Write /s = g € R with g ¢ p. Since t = gs € p and p is prime,
this implies that s € p. Since s € Soi, we conclude that p ¢ 91, and hence p Z z-m
for any z € X (N). Furthermore, in this case, we have s/s = 1 € p*, so p* = R. Now,
all of these steps are clearly reversible, except possibly “p ¢ 9t implies p ¢ z-m for
all z € X(N)”. The inverse (equivalently, converse) of this statement reads “p C 901
implies p C z-m for some z € X (N)”. This is precisely the prime avoidance lemma.
This completes the proof of our claim about p*.

We next recall some definitions from commutative algebra. An associated prime
of an ideal a C R is a prime ideal p such that there exists an R-module injection
R/p — R/a. (The associated primes play the role of the irreducible factors in our
simplified proof for n =m = 2.) Anideal a C R is called unmixed of height r if all
its associated prime ideals have height r.

Next we recall the definitions of dimension and degree of an ideal of R and some
of the basic properties of these functions. Let Ry = k[t, ..., t,]. For f € R, let
fo € Ro denote the homogenization of f, defined by padding each monomial of f
with the correct power of 7y to obtain a homogeneous polynomial of degree deg(f).
For an ideal a C R, let ag denote the homogeneous ideal generated by fj for f € a.
Then Rg/ay is a graded Rp-module.

There is a polynomial

Ho(t) = aqt® + - - - +ag € Q[x],
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called the Hilbert polynomial of a, such that
H,(i) = dimg (i-th graded piece of Ry/ag)

for i sufficiently large. We define the dimension and degree of a, respectively, by
d(a)=d, £(a):=L0(Ro/ag):=ay-d!

These are both integers. They satisfy the following properties:

e £((f)) is the degree of f in the usual sense.
o If a C b and ht(a) = ht(b), then £(a) > £(b).

o If a and b are unmixed of height r, then so is an b, and
Lanb) <f(a)+£(b).

Note that from this it follows that, if a is unmixed, then the number of associated
primes of a is < [(a). To see this, we note that there is a primary decomposition
a={i_; 9i, where {,/q;} is the set of associated primes.

We can now begin the proof of Theorem 5.11. Let f € R have degree D and let
N, =D"+...4+ D" forl<r<n+1l.

We will inductively construct f;, a Z-linear combination of elements in X (N,) - f
such that a, = (fi, ..., f,) satisfies the following: either a} = R, or a} is unmixed
of height r and degree at most D".

This will give the theorem: for r =n -+ 1, af cannot have height n 41, so a* = R,
which implies a, ¢ 9. In particular, f; ¢ m for some i, so, if fi =) dj(z;- f)
withd; € Z and z; € X(N,41), then f(z;) # 0 for some z;, as desired.

Base case: Take fi; = f and a; = (f). Then aj = (f*), where f* is the quotient
of f by any irreducible factors not lying in 9%. If f* # 1, then (f*) is unmixed of
height 1 by Krull’s principal ideal theorem, and has degree < D = deg(f).

Inductive step: Suppose r > 2 and that we have constructed fi,..., f,—;. If
ay_, = R, then we can take f, = f. We have af = R, and we are done. Therefore,
we suppose that af_, is unmixed of height » — 1 and degree at most D" —1. The
construction of f; is slightly elaborate in this case, so let us outline the steps:

(1) For any associated prime p of a*_,, show by counting that there exists a €

Z™(D™-") such that x ~“p is not associated to a;_, i.e., that p is not associated
to x“ay_,.
(2) Show that this implies there exists 1 <i <r — 1 such that x* f; ¢ p.

(3) Show that this implies there exists a Z-linear combination f, of these x f;
that does not lie in any p associated to a;_,.
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(4) Letting a, = (a,_1, f+), show that a = R or a is unmixed of height r.

It is perhaps worth pointing out here that the fourth point above is precisely
the reason that associated primes appear in this proof — the key fact is that, if an
element f, does not lie in any prime associated to a;_,, then the height of af =
(a,—1, f+)* goes up by one (or a* = R). Let us now carry out the four steps above:
(1) Let p be associated to a*_,. Then p C 9, so p C z-m for some z € X, so

77! -p C m. By definition, rank(Staby (z7! p) < m;_l, whence rank(Stabyx (p)) <
i

m._,.

Lemma 5.12. Let T be a positive integer. Let 7™ (T) denote the set of tuples
(ai,...,ayn) €Z" withO<a; <T foreachi. If H C Z™ is a subgroup of rank h,
then the image of 7™(T) in 7™/ H has size at least (T + 1)"~".

Before proving the lemma, we first note that it implies that the image of
7" (D"-1) in 7"/ Stabyx (p) has size at least

(LD + ])m_m/r—l - (1)7],,1)m—m’r71 —p—1

Now, the number of primes associated to a;‘Ll is at most its degree E(a’:il) <D 1
Therefore, there exists a € Z"(D™-") such that x “p is not an associated prime
of a¥_,. Equivalently, p is not an associated prime of x“ay_,. This completes the
first step.

Proof of Lemma 5.12. Choose m — h elements of the canonical basis of Z™ that
generate a subgroup B such that H N B = {0}. Then the canonical map from Z™
to Z™/H is injective when restricted to B. The result follows since B N Z™(T)
contains exactly (T + 1)"~" elements. O

(2) Since p and x“a’_, are unmixed of the same height r — 1, but p is not associated
to x“ay¥_,, it follows that x“a”_, ¢ p. This implies x“a,_; ¢ p since p* = p. Since

ar—l - (f]a LR ] fr—])a
this implies there exists 1 <i <r — 1 such that x“ f; ¢ p.
(3) The third step follows from a general lemma:

Lemma 5.13. Let p1, ..., ps be prime ideals of R and let
fl, ceey fS S R

such that f; & p;. Then there exists a Z-linear combination of the f; that does not
lie in any p;.

Proof. Induction on s. In the base case s = 1, there is nothing to prove. For
s > 1, suppose that g is a Z-linear combination of fi, ..., fy;_; that does not lie in
Prs ..., ps—1. If g € ps, then we can simply take g and we are done. So suppose
8 €Ps.
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Consider all linear combinations f; +ag with a € Z. For each a, consider the
set Sy C {p1, ..., ps—1} consisting of the p; such that f; + ag € p;. There are 251
possible subsets S,. By the pigeonhole principle, if we take a =0, ..., 2°~!, then
there must exist distinct a and ’ such that S, = S,/. But, if f;+ag and fy+d'g € p;
for 1 <i <s—1,then (a —a')g € p;, whence g € p; (since k has characteristic 0),
a contradiction. Therefore, f; +ag ¢ p; fori <s — 1.

Also, f; ¢ p, but g € p; implies f; +ag ¢ p,. Therefore, f; + ag is the desired
linear combination. ]

We can now complete step (3): We conclude that there is a Z-linear combination
fr of the x% f; (where 1 <i <r—1and a € Z"(D"-1)) such that f, does not lie
in any associated prime of ay_.

(4) The fourth step will follow from the following lemma:

Lemma 5.14. Let a C R be unmixed of height r — 1 and suppose f € R is not
contained in any of the primes associated to a. Let b = a+ (f). Then either b = R
or b has height r. In the latter case, £(b) < {(a) -deg f.

Proof. Leta=¢q;N---Nq, be aminimal primary decomposition and let p; be the
radical of q;. If p; + (f) = R for all i, then, for each i, there exists an element of
the form 1 — gf € p;, and hence an element of the form (1 —gf)/ € q;. The product
of these lies in a. This product is congruent to 1 modulo f, so 1 € b = (a, f).
Therefore, assume that there exists some p = p; such that p + (f) # R.

By Krull’s principal ideal theorem, the image b of b in R/p has height 1. The
inverse image of any associated prime of b C R/p in R is a prime of height
(r — 1) + 1 = r. Therefore, the height of b is at most r and, since b D a, the height
is at least r — 1.

But, if the height of b is » — 1, then it has some associated prime p’ of height r — 1.
But p’ O b D a. As a is unmixed of height » — 1, this implies that p’ is an associated
prime of a. But f € p’ and we assumed f was not contained in any associated
primes of a. This is a contradiction, so we must have that the height of b is r.

To conclude, we note that (a 4+ (f))o D ao + (f)o; hence,

£(b) = £(Ro/bo) < £(Ro/(ao+ (f)0)) = £(Ro/a) - deg(f) = £(a) - deg(f).

The second-to-last equality requires explanation. Firstly, f is not contained in any
of the associated primes of ag since f is not contained in any of the associated primes
of a. This implies that multiplication by fj is injective on Ro/ag. This multiplication
map has degree equal to deg( f) and cokernel equal to Ry/(ag + (fo)), whence

Hao-l-(fo)(t +deg(f)) = Hy, (f +deg(f)) — Hy, ).

This yields Z(Ro/(ao + (f)o)) = Z(Ro/ao) -deg(f), as desired. O
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We can now complete step (4). We have a, = a,_1 + (f;). Let b=a’_, + (f).
Then a’ D b, and Lemma 5.14 implies that either b = R or b has height r and
L)y<D~'.D=D".

If b = R then of course a = R, so assume the latter case holds. Let p be
an associated prime of af. Then ht(p) > ht(a’) > r. We want to show equality.
We know p C m/, where m’ = zm for some z € X(N). We can work in the
localization Ry, which is a regular local ring. The ideal a, R,y is generated by r
elements, so Krull’s height theorem implies it has height at most r; hence, it has
height exactly r. Therefore it is unmixed of height r and hence the same is true of
the associated prime p.

Finally, a® D b and both are unmixed of height r so £(a}) < £(b) < D". This
completes the proof of step (4), and of Theorem 5.11.

6. The matrix coefficient conjecture

Both the assumption and the conclusion of the Waldschmidt—Masser theorem are
quite strong. For instance, in the case of a square matrix of dimension n with
entries in .Z or %), one assumes that the rank of the matrix is less than %n and one
concludes that, after a rational change of basis on both sides, one can arrange a
large block of zeroes, precisely a block of dimension m’ x n’, where m" +n’ > n.

We would like a statement that is more sensitive, and gives a “rational” condition
whenever the rank is not full. Such a statement is necessary if one wants to prove
Leopoldt’s conjecture, rather than the partial result given in Corollary 5.3.

To this end, we have formulated with Mahesh Kakde the following conjecture.
The name matrix coefficient conjecture is inspired by the theory of automorphic
representations, where expressions of the form w’ Mv are called matrix coefficients.

Conjecture 6.1 (Dasgupta and Kakde). Let M be a square matrix of dimension n
with entries in £ or £,,. If det(M) =0, then there exist nonzero vectors w, v € Q"
such that w'Mv = 0.

Despite its simplicity, Conjecture 6.1 remains quite deep: in the case n = 2, it is
easily seen to be equivalent to the four exponentials conjecture. We have proven
the following about the matrix coefficient conjecture:

o Conjecture 6.1 is implied by the structural rank conjecture.

« The version of Conjecture 6.1 over .Z), implies both Leopoldt’s conjecture and
the Gross—Kuz’min conjecture.

We have also developed a strategy to study Conjecture 6.1 using auxiliary poly-
nomials, but unfortunately the construction of the necessary polynomials remains a
mystery. Our hope is that Conjecture 6.1 may be more tractable than the structural
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rank conjecture. We will prove the results stated above and explore Conjecture 6.1
further in forthcoming work.
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