
Blind Multisignatures for Anonymous Tokens with Decentralized
Issuance

Ioanna Karantaidou*
George Mason University

Fairfax, VA, USA
New York University
New York, NY, USA
ikaranta@gmu.edu

Omar Renawi*
CISPA Helmholtz Center for
Information Security and

Saarland University
Saarbrucken, Germany
omar.renawi@cispa.de

Foteini Baldimtsi
George Mason University

Fairfax, VA, USA
Mysten Labs

New York, NY, USA
foteini@gmu.edu

Nikolaos Kamarinakis
University of Maryland
College Park, MD, USA

Common Pre!x
Athens, Greece
k4m4@umd.edu

Jonathan Katz
Google

Washington DC, USA
University of Maryland
College Park, MD, USA
jkatz2@gmail.com

Julian Loss
CISPA Helmholtz Center for

Information Security
Saarbrucken, Germany

loss@cispa.de

Abstract
We propose the !rst constructions of anonymous tokens with de-
centralized issuance. Namely, we consider a dynamic set of sign-
ers/issuers; a user can obtain a token from any subset of the signers,
which is publicly veri!able and unlinkable to the issuance pro-
cess. To realize this new primitive we formalize the notion of blind
multi-signatures (BMS), which allow a user to interact with multi-
ple signers to obtain a (compact) signature; even if all the signers
collude they are unable to link a signature to an interaction with
any of them. We then present two BMS constructions, one based
on BLS signatures and a second based on discrete logarithms with-
out pairings. We prove security of both our constructions in the
Algebraic Group Model. We also provide a proof-of-concept imple-
mentation and show that it has low-cost veri!cation, which is the
most critical operation in blockchain applications.

CCS Concepts
• Security and privacy→ Public key (asymmetric) techniques;
Pseudonymity, anonymity and untraceability; • Theory of
computation → Cryptographic protocols.

Keywords
Blind Signatures, Anonymous Tokens, Decentralized Issuance
ACM Reference Format:
Ioanna Karantaidou*, Omar Renawi*, Foteini Baldimtsi, Nikolaos Kamari-
nakis, Jonathan Katz, and Julian Loss. 2024. BlindMultisignatures for Anony-
mous Tokens with Decentralized Issuance . In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3690364

*Equal Contribution.

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690364

1 Introduction
In the digital world, authorization plays a foundational role. From
regulating access to online services to ensuring the integrity of
voting systems, e"ective access-control mechanisms are crucial for
maintaining security and trust. User authorization can be imple-
mented via various methods depending on the application scenario.
Common approaches include using credentials such as usernames
and passwords or relying on third-party services, such as Auth0
or OpenID, to access user accounts. However, these authentication
methods raise concerns regarding user privacy. Each time a user
logs in, the service learns everything about the user’s activities,
enabling the creation of a full pro!le of their habits. While this level
of information leakage may be necessary for certain applications,
in many other cases it is desirable to avoid it. Consider, for instance,
a subscription-based news portal. In a privacy-friendly world, the
only thing that the service should learn is whether the user has a
valid subscription to the service or whether the user has an account
and nothing else.

One prominent solution to the problem of anonymous user autho-
rization is anonymous tokens. In a nutshell, an anonymous token
system includes three types of parties: issuers, users, and veri!ers.
An issuer provides an anonymous token to a user whose identity
is typically known by the issuer at the time of issuance. The user
can subsequently present the token to a veri!er who can authenti-
cate its validity. Anonymous tokens must be both unforgeable and
anonymous, where unforgeability means that a user cannot forge a
token and anonymity guarantees unlinkability between token is-
suance and presentation/veri!cation. Blind signatures are a related
notion; one can view anonymous tokens as blind signatures with no
message. There are a number of blind signatures and anonymous
token schemes with di"erent properties [1, 13, 14, 19, 34, 55], and
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growing interest in their adoption by companies including Cloud-
fare,1 Apple,2, Google,3 and Facebook.4 A recent IETF draft 5 aims
to standardize anonymous tokens.

Anonymous tokens can support public or private veri!ability.
Privately veri!able tokens assume the issuer and the veri!er are
the same entity, whereas publicly verifable tokens do not. Public
veri!ability is essential for large heterogeneous systemswith a large
number of veri!ers who do not wish to also serve as token issuers.
For blockchain applications, public veri!ability is also necessary so
tokens can be veri!ed on-chain, possibly via a smart contract.

In all existing anonymous token systems, tokens are issued by
a single issuer. This, however, introduces a single point of failure:
if the token issuer is compromised it can issue an arbitrary num-
ber of tokens to unauthorized users. Furthermore, it is important
for certain applications that tokens be issued by multiple issuers
who jointly endorse a credential. Consider for example a tokenized
anonymous-voting application where the governors of a Decentral-
ized Autonomous Organization (DAO) wish to issue anonymous
tokens to external members so they can vote on various issues. The
voting policy may demand that a member is only eligible to vote if
they receive endorsement from a miminum number of governors.
To our knowledge, all prior work that would enable this use-case
relies on heavy machinery such as zero-knowledge proofs, timelock
encryption, or homomorphic encryption [3].

Publicly veri!able tokens with decentralized issuance. Motivated
by this discussion, we propose the concept of publicly veri!able
anonymous tokens with decentralized issuance. That is, we consider
a dynamic set of signers/issuers; a user can obtain a token signed by
any subset of the signers, which is publicly veri!able and unlinkable
to the issuance process. As a building block toward this primitive,
we propose blind multi-signatures (BMS). Multisignatures have the
bene!t of allowing for a #exible set of issuers that may change
frequently, and require no-coordination amongst the issuers for
token generation. This can be preferable to primitives like threshold
signatures which require a coordinated Distributed Key Generation
(DKG) protocol to be executed amongst the set of signers/issuers,
and typically assume a static set of signers.

A BMS scheme can directly serve as a publicly veri!able anony-
mous token with decentralized issuance. Users can interact with
each signer separately, collect individual signatures, and then ag-
gregate them to obtain a !nal signature. As with multisignatures, a
BMS reveals the set of signers who issued the token. For certain ap-
plications, we consider this to be a feature, as di"erent signers may
be responsible for certifying di"erent attributes of a user. Know-
ing the identities of the signers can also enhance credibility of the
tokens. Additionally, it o"ers some type of “signer accountability.”
For instance, if a signer is frequently associated with the issuance
of tokens that are later misused, that signer may be penalized. At
the same time, this raises the valid concern that disclosing the set
of signers results in a reduced anonymity set, as a token is only
unlinkable within the set of tokens that are signed by the same

1https://blog.cloud#are.com/privacy-pass-standard
2https://developer.apple.com/news/?id=huqjyh7k
3https://github.com/google/anonymous-tokens,
https://developers.google.com/privacy-sandbox/protections/private-state-tokens
4https://research.fb.com/privatestats
5https://datatracker.ietf.org/wg/privacypass/about/

group of signers. We note, however, that for many applications this
is not necessarily a problem. For starters, when the total number
of signers is small and the number of users is large, the anonymity
set for each user is likely to remain large. In other cases, the set
of signers required for a valid token may be !xed (even as that set
may change in di"erent epochs); this would be the case in the DAO
voting scenario discussed earlier, where a token is valid only when
signed by the set of all current governors.

1.1 Our Contributions
We now brie#y summarize our technical contributions.

Blind multisignatures (BMS). The foundational building block
at the core of our constructions is blind multisignatures (BMS).
Multisignatures enable the computation of a joint signature on a
message𝐿, by a set of𝑀 signers, without requiring any coordination
amongst the signers. As already explained, a BMS scheme can
directly serve as a anonymous token scheme with decentralized
issuance. In Section 3 we provide rigorous de!nitions for blind
multisignatures (BMS) and their corresponding security properties:
blindness and one-more unforgeability (OMUF). We then present
two BMS constructions with di"erent tradeo"s, described next.

BMS based on BLS. In Section 4 we construct BM_BLS, a blind
multisignature based on the Boneh–Lynn–Shacham (BLS) signature
scheme [9]. We prove concurrent security of our construction in the
Algebraic Group and Random Oracle Models (AGM + ROM) based
on the 𝑁-dlog assumption. BLS is an e$cient signature scheme that
uses pairings and has recently seen adoption in the blockchain
space (i.e., the Chia Network [16], Celo [12], Filecoin, and PoS
Ethereum) due to its e$cient support for signature aggregation.
An IETF standardization e"ort for BLS has been ongoing since
2019 [30]. Blind BLS [7] and BLS multisignatures [8] already ex-
ist in the literature. However, combining them to obtain a blind
multisignature is not trivial. In particular, a signi!cant challenge
is to avoid so-called rogue-key attacks where an adversary breaks
security by choosing a (malformed) public key based on the public
keys of honest parties. Our construction is secure against rogue-
key attacks in the plain public-key model, i.e., there is no need for
signers to prove knowledge of their signing keys. It also supports
public-key aggregation.

A pairing-free BMS. In Section 5 we present BM_SB, a pairing-
free BMS scheme based on the recent threshold blind-signature
scheme Snowblind [18]. We prove concurrent security based on the
discrete-logarithm (dlog) assumption in the AGM. Towards taming
the complexity of this proof, we follow a similar technique as in
recent work [28, 32]. In particular, we !rst propose a new crypto-
graphic primitive called a multi-identi!cation (mID) scheme and
adapt the security notion to !t our new primitive. Then, we con-
struct a multi-identi!cation scheme and prove its security. Finally,
we show how this implies security of our BMS scheme.

Compared to our BLS-based construction, our second scheme
enjoys more e$cient veri!cation (since it avoids pairings) and
has very short signatures regardless of the number of signers. As
opposed to our BLS construction, however, this scheme requires
each (corrupted) signer to submit a proof of possession of its public
key, which in turn prevents public key aggregation.
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Implementation and evaluation. In Section 6, we present a proof-
of-concept Python implementation of our two constructions, and a
generic smart-contract library for verifying our anonymous tokens
on the Ethereum blockchain. We evaluate the e$ciency and cost of
our implementations, demonstrating their practicality. Verifying a
token on Ethereum costs about 232K gas for BM_BLS, irrespective
of the number of signers, and about 280K gas for a BM_SB token
issued by 11 signers. As of April 28th, 2024, when the median gas
price was approximately 7.4 gwei [35] and the Ethereum closing
price6 was 3, 262.77 USD, this translates to a monetary cost of
↑$5.60 and ↑$6.76, respectively. Moreover, BM_BLS tokens can be
aggregated, meaning that the veri!cation cost can be amortized
across multiple users. The amortized cost for verifying a batch of
32 or more tokens is around 110K gas, or ↑$2.66.

1.2 Related Work
As already noted, although there exist a variety of anonymous
token constructions, none of them supports decentralized issuance.
We discuss two types of related work: (1) blind signatures with
multiple issuers and (2) decentralized anonymous credentials (a
primitve more general than anonymous tokens).

Blind multisignatures and threshold signatures. Blind signatures
with multiple signers can be found in the form of multisignatures
or threshold signatures, with the primary distinction between them
being whether the signers generate their keys independently (mul-
tisignatures) or whether they need to jointly run a protocol to
generate a single public key and individual key shares (threshold
signatures). Some blind multisignature schemes have been sug-
gested in the literature [7, 15, 41, 48, 58], but they all lack rigorous
security analysis. Several constructions of blind threshold signa-
tures exist [2, 18, 33, 36, 38, 56], but as we have noted these all
require coordination between the issuers during key generation
and do not immediately support dynamic signing sets.

Decentralized anonymous credentials. Anonymous credential sys-
tems are typically multi-use, i.e., credentials that encode a set of
attributes are issued once and presented multiple times. Compared
to anonymous tokens, which can be viewed as a single-use creden-
tial without attributes, those schemes are therefore much more
complex and expensive. The problem of decentralized issuance
for anonymous credentials has been addressed using di"erent ap-
proaches which we brie#y discuss below. We note, however, that
converting any of these anonymous credential schemes to an e$-
cient anonymous token scheme is non trivial.

A number of decentralized anonymous-credential schemes use
threshold techniques [20, 50, 56, 57]; these all have the drawback
of requiring the issuers to coordinate at the time of key generation
as discussed above. Another recent line of work [29, 45] constructs
decentralised multi-use anonymous credentials from aggregate
signatures with randomizable tags. Finally, some work [26] has
considered decentralized anonymous credentials based on peer-to-
peer anonymous attestation on a bulletin board/blockchain rather
than issuing authorities, a setting quite di"erent from the one we
consider here.

6See https://coinmarketcap.com/currencies/ethereum/historical-data.

2 Preliminaries
We let 𝑂 denote the security parameter. PPT means probabilistic
polynomial time. We let poly(𝑂) be an unspeci!ed polynomial func-
tion of 𝑂 and negl(𝑂) a negligible function. We let [𝑃] = {1, . . . , 𝑃}.

We use 𝑄
$
↓↔ D to refer to sampling a uniform element 𝑄 from D.

We write 𝑅 ↓ AO
(𝑄) to denote the randomized output of an al-

gorithm A that takes 𝑄 as input and has access to an oracle O.
Given a game Game parameterized by an adversary 𝑆, the success
probability of 𝑆 in Game is AdvGame

𝐿 (𝑂) := Pr[Game𝐿 = true].

2.1 Cryptographic Assumptions
A!!"#$%&’( 1 ([24]). Let G be a cyclic group of order 𝑇 . The

𝑁-discrete-logarithm assumption holds if for every PPT algorithm 𝑆:

Pr
[

𝑄 ↓ Z↗𝑀
𝑄↗ ↓ 𝑆(𝑈,𝑉1 = 𝑈𝑁 , . . . ,𝑉𝑂 = 𝑈𝑁

𝐿
)

: 𝑄↗ = 𝑄

]
↘ 𝑀𝑊𝑈𝑋 (𝑂).

Note that the standard discrete-logarithm assumption is just the
1-dlog assumption.

De!nition 1 (Bilinear Pairings). Let G1,G2,G𝑃 be groups of or-
der 𝑇 . A pairing is an e$ciently computable map 𝑊 : G1≃G2 → G𝑃
such that for all 𝑌 ⇐ G1, 𝑍 ⇐ G2, and 𝑎,𝑏 ⇐ Z𝑀 it holds that
𝑊 (𝑌𝑄,𝑍𝑅

) = 𝑊 (𝑌𝑄,𝑍)𝑅 = 𝑊 (𝑌,𝑍𝑅
)
𝑄 = 𝑊 (𝑌,𝑍)𝑄𝑅 . If G1 = G2 then

we say the pairing is symmetric.

2.2 The Algebraic Group Model (AGM)
The AGM [24] is a formal model for analyzing group-based cryp-
tosystems. In the AGM, the adversary A is assumed to be algebraic.
Roughly, this means that if ⇒𝑈 = (𝑈1, . . . ,𝑈𝑆 ) are the group elements
A has been given at any point in its execution, then if it outputs
a group element 𝑅 it also outputs a representation ⇒𝑐 such that
𝑅 =

∏
𝑇⇐ [𝑆 ] 𝑈

𝑈𝑀
𝑇 . We stress that group elements A receives from

any oracles it has access to are included in ⇒𝑈, and any time A sub-
mits a group element 𝑅 to one of its oracles it must also output a
representation of 𝑅.

2.3 Blind Signatures
A blind signature scheme [14] is an interactive protocol between
a signer and a user that allows the user to obtain a signature that
cannot later be linked to the user by the signer. A blind signature
scheme BS consists of the following algorithms:

• BS.KGen(1𝑉) → (𝑑𝑒, 𝑇𝑒). Run by a signer to generate keys.
• BS.Sign⇑U(𝐿, 𝑇𝑒),S(𝑑𝑒)⇓ → 𝑓 . This is an interactive pro-
tocol between a (stateful) signer S with input the secret key
𝑑𝑒 and a (stateful) user U with input a message𝐿 and the
signer’s public key. U outputs a signature 𝑓 .

• BS.Ver (𝑇𝑒,𝐿,𝑓) → 0/1. Run by a veri!er; outputs 1 i" 𝑓 is
a valid signature for𝐿 under key 𝑇𝑒 .

Correctness can be formalized in the obvious way. A secure blind
signature scheme should satisfy blindness (i.e., a signature cannot
be linked back to its corresponding signing session, even by the
signer itself) and one-more unforgeability (i.e., an adversarial userU
making 𝑔 blind signing queries cannot output 𝑔 +1 valid signatures).
We recall the formal de!nitions in Appendix A.1.
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2.4 Multi-Signatures
A multi-signature scheme allows a set of signers to each generate a
signature on a message𝐿; those signatures can then be aggregated
to form a compact signature of all the signers on𝐿. Some multi-
signatures also support public-key aggregation which allows for a
compact representation of all the signers’ public keys. Our de!nition
roughly follows that of Drijvers et al. [21]. For public parameters pp,
a multi-signature scheme MS consists of the following algorithms:

• MS.KGen(pp) → (𝑑𝑒, 𝑇𝑒). Run by a signer to obtain a key
pair.

• MS.KAgg( ⇒𝑕) → apk. Given a set of public keys ⇒𝑕 = {𝑇𝑒1,
. . ., 𝑇𝑒𝑊}, outputs an aggregate public key apk.

• MS.Sign (𝑑𝑒𝑇 ,𝐿) → 𝑓𝑇 . A signer with input7 a secret key
𝑑𝑒𝑇 and a message𝐿 outputs a signature 𝑓𝑇 .

• MS.Comb(𝐿, {𝑓𝑇 }) → 𝑓 . Individual signatures 𝑓𝑇 can be
combined into a signature 𝑓 .

• MS.Ver (apk,𝐿,𝑓) → 0/1. Outputs 1 if 𝑓 is a valid signature
for message𝐿 under aggregate key apk.

We recall security de!nitions for multi-signatures in Appendix A.2.
We remark that one challenge in multi-signature schemes is avoid-
ing rogue-key attacks [27, 37, 39, 42, 44, 47], which can occur when
an attacker uses a public key that is not generated honestly, but
instead depends in some way on an honest signer’s public key. One
way to avoid such attacks is to rely on the so-called knowledge-of-
secret-key (KOSK) model which can be implemented by having each
signer include a zero-knowledge proof of knowledge (aka a proof of
possession) of their secret key along with their public key [7, 42, 52].
Schemes that do not require this extra assumption are said to be in
the plain public-key model [6, 8, 46].

3 Blind Multi-signatures
A blind multi-signature combines the features of both blind and
multi-signature schemes. It resembles a multi-signature in that it is
a signature on a message𝐿 signed by multiple signers that veri!es
under the set of public keys of the signers ⇒𝑕 or under an aggregate
key apk if scheme supports key aggregation. It also resembles a
blind signature, as the signing happens in an interactive fashion
between a userU who knows𝐿 and a set of signers who should
be unable to link the !nal signature to the issuance process. Below
we provide a rigorous de!nition.

For public parameters pp, a blind multi-signature scheme BMS
consists of the following algorithms:

• BMS.KGen(pp) → (𝑑𝑒, 𝑇𝑒). Run by a signer to obtain a key
pair.

• BMS.KAgg( ⇒𝑕) → apk. Outputs an aggregate public key apk
for a set of public keys ⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊}.

• BMS.Sign⇑U(𝐿, ⇒𝑕), {S𝑇 (𝑑𝑒𝑇 )}𝑇⇐ [𝑊]⇓ → 𝑓 . This is an inter-
active protocol run between a userU and signersS1, . . . ,S𝑊 ,
where the signers do not directly communicate with each
other. Each signer has only its own secret key as input; U
has a message𝐿 and the signers’ public keys ⇒𝑕 as input, and
outputs a signature 𝑓 . We assume all keys in ⇒𝑕 are distinct.

7In some schemes, the signer additionally needs to know ⇒𝑋 .

• BMS.Ver (apk,𝐿,𝑓) → 0/1. Outputs 1 if 𝑓 is a valid signa-
ture on𝐿 under aggregate key apk.

Correctness requires that if signers honestly generate keys (𝑑𝑒𝑇 , 𝑇𝑒𝑇 )
and then run𝑓 ↓ BMS.Sign ⇑U(𝐿, ⇒𝑕),S𝑇 (𝑑𝑒𝑇 )⇓, where ⇒𝑕 = {𝑇𝑒𝑇 },
then BMS.Ver(apk,𝐿, 𝑓) = 1, where apk = BMS.KAgg( ⇒𝑕).

Security. A blind multi-signature should satisfy one-more un-
forgeability and blindness.

Let apk be the aggregated public key for a set of signers, one of
whom is honest. One-more unforgeability requires that an adver-
sarial userU (possibly colluding with all corrupted signers) should
be unable to forge a signature that veri!es under apk, unless this
signature came from its interaction with the honest signer. Below
we give the formal de!nition in the plain public-key model. (In the
KOSK model, the adversary must also output the secret key corre-
sponding to any adversarial public key.) The signing oracle Sign𝑌𝑍↗

simulates the honest signer’s execution of the signing protocol.

De!nition 2 (One-more unforgeability (OMUF)). Given a blind
multi-signature scheme BMS = (KGen,KAgg, Sign,Ver), we de!ne
the game OMUFBMS

𝐿 as follows:
• Setup: The challenger generates a key pair (𝑑𝑒↗, 𝑇𝑒↗) using
BMS.KGen, and gives 𝑇𝑒↗ to 𝑆.

• Queries: 𝑆 may repeatedly query a signing oracle Sign𝑌𝑍↗ .
• Output: 𝑆 outputs a list of tuples (𝑓↗1 ,𝐿

↗
1, ⇒𝑕1), . . . , (𝑓↗𝑎+1,

𝐿↗
𝑎+1, ⇒𝑕𝑎+1); let apk𝑇 = BMS.KAgg( ⇒𝑕𝑇 ) for all 𝑖 . 𝑆 wins if:

(1) 𝑇𝑒↗ is in each set ⇒𝑕𝑇 , (2)BMS.Ver (apk𝑇 ,𝐿𝑇 ,𝑓𝑇 ) = 1 for all 𝑖 ,
and (3) the number of completed interactions with Sign𝑌𝑍↗

is at most 𝑔 . If 𝑆 wins, the game outputs true.
BMS is one-more unforgeable (OMUF) if for any PPT 𝑆,

Adv𝑏𝑐𝑑𝑒
𝐿,BMS (𝑂) := Pr[OMUFBMS

𝐿 = true] = negl(𝑂).

Sequential vs. concurrent security. The above models concurrent se-
curity, i.e., the adversary may concurrently run multiple executions
with Sign𝑌𝑍↗ . To model sequential security, Sign𝑌𝑍↗ should not open
a new signing session before the previous one is closed.

The next security property of blind multi-signatures is blindness,
i.e., even the signers themselves should be unable to link a signature
to its corresponding signing session. In the de!nition we assume
that all signers are colluding and we allow for maliciously generated
keys. In the blindness game the adversary 𝑆 starts by choosing all
the signers’ public keys as well as two messages to be signed. The
honest user runs two executions of the signing protocol with𝑆 and
the given keys, one for each message, in a random order. 𝑆 is then
given the two resulting signatures and asked to guess the order in
which the two messages were signed. Formally, given blind multi-
signature scheme BMS= (KGen, KAgg, Sign, Ver) let mBlindBMS

𝐿
be the following game:

De!nition 3 (Blindness). The adversary 𝑆 outputs public keys
⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊} and messages 𝐿0,𝐿1. The challenger picks
𝑏 ↓ {0, 1}, and runs two signing sessions as the user U(𝐿𝑅 , ⇒𝑕),
U(𝐿1↔𝑅 , ⇒𝑕), while 𝑆 participates in the signing sessions as the 𝑀
signers. If one or both sessions fail to output a (valid) signature, the
game outputs (⇔,⇔). Otherwise, if 𝑆 closes both sessions success-
fully, the game outputs the resulting signatures (𝑓0,𝑓1). Eventually,
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𝑆 outputs a bit 𝑏↖ and wins the game if 𝑏↖ = 𝑏, and in this case, the
game outputs true.

BMS is blind if for any PPT adversary 𝑆,

Adv𝑓𝑔𝑕𝑇𝑊𝑖
𝐿,BMS (𝑂) := Pr[mBlindBMS

𝐿 = true] =
1
2
+ negl(𝑂).

4 BLS Blind Multisignatures
In this section we construct a blind multisignature scheme based on
blind BLS signatures. As such, we begin by reviewing the latter. We
also provide a proof of security for the blind BLS signature scheme
in the AGM+ROM, since this will serve as a useful warmup for our
eventual proof of security for the blind multisignature scheme.

4.1 Blind BLS Signatures
We start by describing the blind BLS signature scheme [7]. For
simplicity, in these sections we present constructions and proofs
using symmetric pairings. Let par = (G,G𝑃 , 𝑇,𝑈, 𝑊) denote the
system parameters and let H : {0, 1}↗ → G be a hash function. The
blind BLS scheme consists of the following algorithms:

• KGen(1𝑉) outputs (𝑑𝑒, 𝑇𝑒) = (𝑄,𝑗 ), where 𝑄
$
↓↔Z𝑀 and 𝑗 =

𝑈𝑁 ⇐ G.
• Sign⇑U(𝐿,𝑗 ),S(𝑑𝑒)⇓ outputs a signature 𝑓 as per Fig. 1.
• Ver (𝑇𝑒 = 𝑗 ,𝐿,𝑓): Checks whether 𝑊 (𝑓,𝑈) = 𝑊 (H(𝐿),𝑗 ).

Correctness is immediate and blindness holds unconditionally [7].

S(𝑑𝑒 = 𝑄) U(𝐿,𝑗 )

𝑓̄=H(𝑓) ·𝑗𝑁
↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ 𝑘

$
↓↔ Z𝑀

𝑑 = 𝐿̄𝑁 𝑌
↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔→ 𝑓 = 𝑑𝑗 ↔𝑘

Figure 1: Signing for Blind BLS

Boldyreva [7] showed that blind BLS is one-more unforgeable
under the “chosen-target" CDH assumption (or the one-more static
CDH assumption) in the ROM. In Appendix B, we prove one-more
unforgeability under the 𝑁-dlog assumption in the AGM+ROM.
While the two sets of assumptions/models are incomparable, we
note that our proof gives a tighter reduction. As noted earlier, our
main motivation for giving this proof is that it serves as a warmup
for the proof of unforgeability for our blind multisignature scheme
based on blind BLS.

4.2 BLS-Based Blind Multisignatures
We now present our blind multisignature scheme based on blind
BLS, which we denote by BM_BLS. Our main observation is that
we can construct a blind multisignature scheme directly from blind
BLS; that is, the user can interact with each signer exactly as in the
blind BLS scheme, and then combine the signatures it obtains into
a single multisignature using an additional hash function.

Let (G,G𝑃 , 𝑇,𝑈, 𝑊) and H : {0, 1}↗ → G be as in the previous
section, and let Hagg : {0, 1}↗ → Z↗𝑀 be another hash function.

• BM_BLS.KGen(1𝑉): As in the blind BLS scheme.
• BM_BLS.KAgg( ⇒𝑕): Given keys ⇒𝑕 = {𝑗1, . . . ,𝑗𝑊}, set 𝑎𝑇 =
Hagg( ⇒𝑕 , 𝑗𝑇 ) and output apk =

∏𝑊
𝑇=1 𝑗

𝑄𝑀
𝑇 .

• BM_BLS.Sign⇑U(𝐿, ⇒𝑕), {S𝑇 (𝑑𝑒𝑇 )}𝑇⇐ [𝑊]⇓: U runs the inter-
active signing protocol with each signer as in Fig. 1, us-
ing independent randomness each time, to obtain partial
signatures {𝑓𝑇 }. The !nal signature is computed as 𝑓 =∏

𝑇⇐ [𝑊] 𝑓
𝑄𝑀
𝑇 , where 𝑎𝑇 = Hagg({𝑗1, . . . ,𝑗𝑊 }, 𝑗𝑇 ).

• BM_BLS.Ver (apk,𝐿,𝑓): Checks if 𝑊 (𝑓,𝑈) = 𝑊 (H(𝐿), apk).
To see that correctness holds, note !rst that

𝑓𝑇𝑗
↔𝑘𝑀
𝑇 = (H(𝐿)𝑈𝑘𝑀 )𝑁𝑀𝑗𝑇

↔𝑘𝑀

= H(𝐿)
𝑁𝑀𝑈𝑘𝑀𝑁𝑀𝑈↔𝑘𝑀𝑁𝑀 = H(𝐿)

𝑁𝑀

for all 𝑖 . Thus,

𝑊 (𝑓,𝑈) = 𝑊 (
∏
𝑇⇐ [𝑊]

𝑓𝑄𝑀𝑇 ,𝑈)

= 𝑊 (H(𝐿)

∑
𝑀⇐ [𝑂] 𝑁𝑀𝑄𝑀 ,𝑈)

= 𝑊 (H(𝐿),𝑈
∑

𝑀⇐ [𝑂] 𝑁𝑀𝑄𝑀 )

= 𝑊 (H(𝐿),
∏
𝑇⇐ [𝑊]

𝑈𝑁𝑀𝑄𝑀 )

= 𝑊 (H(𝐿),
∏
𝑇⇐ [𝑊]

(𝑈𝑁𝑀 )𝑄𝑀 )

= 𝑊 (H(𝐿),
∏
𝑇⇐ [𝑊]

𝑗𝑄𝑀
𝑇 ) = 𝑊 (H(𝐿), apk),

and BM_BLS.Ver outputs 1.

Discussion. Due of the simple nature of the protocol, U can con-
tact each signer in parallel to obtain the necessary partial signatures.
Moreover, even if some signers are unreachable, U can compute a
multisignature based on the set of signers who respond.

Multisignature aggregation. Multisignatures on multiple, distinct
messages with respect to the same aggregate public key can be
aggregated. For example, given signatures 𝑓1 on message𝐿1 and
𝑓2 on message 𝐿2, signed by the same set of signers, the aggre-
gate signature 𝑓 = 𝑓1𝑓2 can veri!ed by checking if 𝑊 (𝑓,𝑈) =
𝑊 (H(𝐿1)H(𝐿2), apk). This also enables more-e$cient veri!cation.

Security. Blindness follows by a natural extension of the proof
for blind BLS (cf. Appendix C.1). It is more challenging to prove
one-more unforgeability. We prove the following in Appendix C.2.

T)*’+*# 4. Assume the discrete logarithm problem is hard, and
model H,Hagg as random oracles. Then BM_BLS is one-more un-
forgeable for all PPT algebraic adversaries.

5 A Pairing-Free Construction
In this section we show an alternate construction of blind multisig-
natures that has the advantage of avoiding pairings. Motivated by
prior work [28], we introduce the concept of multi-identi!cation
schemes with security against a certain form of man-in-the-middle
(MiTM) attacks, and then design such a scheme. Finally, we show
how to use such schemes to construct blind multisignatures.

5.1 Multi-Identi!cation Schemes
Hauck et al. [28] prove OMUF security of blind signature schemes
built from identi!cation schemes by proving one-more man-in-the-
middle (OMMIM) security of the underlying identi!cation scheme.
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"

#

$

S𝑇 (𝑇𝑒𝑇 = 𝑈𝑌𝑍𝑀 , 𝑑𝑒𝑇 ) U( ⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊},𝐿)
𝑎𝑇 ,𝑏𝑇 ,𝑅𝑇 ↓ Z𝑂
𝑆𝑇 ω 𝑈𝑄𝑀 ,𝑙𝑇 ω 𝑈𝑅𝑀 · 𝑚𝑙𝑀

𝑛𝑜𝐿𝑇 ω Hcom (𝑇𝑒𝑇 ,𝑏𝑇 ,𝑅𝑇 )
𝐿𝑀 ,𝑔𝑀 ,𝑚𝑛𝑓𝑀

↔↔↔↔↔↔↔↔↔↔↔↔↔↔→ For 𝑖 ⇐ [𝑀] : 𝑝𝑇 ↓ Z𝑂
𝑞, 𝑘 ↓ Z𝑂
𝑆 ω

∏
𝑜 𝑆 𝑜 ,𝑙 ω

∏
𝑜 𝑙 𝑜

𝑟 ω 𝑈𝑘 ·
∏

𝑜 𝑇𝑒
𝑝3

·𝑞 𝑃

𝑜 · 𝑆𝑝3
· 𝑙𝑝

For 𝑖 ⇐ [𝑀] : 𝑛𝑇 ω Hsig ( ⇒𝑕, 𝑇𝑒𝑇 ,𝑟,𝐿)

For 𝑖 ⇐ [𝑀] : 𝑛𝑇 ω 𝑛𝑇 · 𝑞↔3
+ 𝑝𝑇

𝑚𝑀 ,{𝑔 𝑃 ,𝑚𝑛𝑓 𝑃 } 𝑃 ⇐ [𝑂]

↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

𝑅𝑀 ,𝑙𝑀
↔↔↔↔↔↔↔↔↔→

{𝑅𝑀 ,𝑙𝑀 }𝑀⇐ [𝑂]

↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

If ↙𝑖 ⇐ [𝑀] 𝑛𝑜𝐿𝑇 ε Hcom (𝑖,𝑅𝑇 ,𝑏𝑇 ):
Abort

If ↙𝑖 ⇐ [𝑀] 𝑙𝑇 ε 𝑈𝑅𝑀 · 𝑚𝑙𝑀 :
Abort

𝑅 ω
∑

𝑜⇐ [𝑊] 𝑅 𝑜
𝑐𝑇 ω 𝑎𝑇 + (𝑛𝑇 + 𝑅3) · 𝑑𝑒𝑇

𝑈𝑀
↔↔↔↔↔↔→ 𝑏 ω

∑
𝑜 𝑏 𝑜 ,𝑅 ω

∑
𝑜 𝑅 𝑜 , 𝑐 ω

∑
𝑜 𝑐 𝑜

If 𝑈𝑈 ε 𝑆 ·
∏

𝑜⇐ [𝑊] 𝑇𝑒
𝑚 𝑃+𝑙3

𝑜 ∝ 𝑙 ε 𝑈𝑅 · 𝑚𝑙 :
Abort

𝑐 ω 𝑘 + 𝑞3 · 𝑐 + 𝑞 · 𝑏
𝑅 ω 𝑞 · 𝑅
Output 𝑓 := (𝑟,𝑅, 𝑐)

Figure 2: Blind multisignature scheme BM_SB.

We cannot immediately follow their methodology because it is not
clear how to build blind multisignatures from standard identi!ca-
tion schemes. To address this, we put forth the notion of a multi-
identi!cation scheme (mID). In an mID scheme, a set of provers,
each of which has its own keys (𝑇𝑒 ,𝑑𝑒), interact with a veri!er to
prove knowledge of their secret keys. Intuitively, mID schemes
allow provers to prove themselves to a veri!er as a group. Although
not very useful on their own, mID schemes can be used as a tech-
nical tool to build blind multi-signature schemes.

De!nition 5 (Multi-identi!cation schemes). For public parameters
pp, anmID scheme is a tuplemID ω (mID.KGen,mID.Idfy) where

• mID.KGen(pp): Outputs a pair of keys (𝑑𝑒, 𝑇𝑒).
• mID.Idfy⇑P𝑇 ,V⇓: This is an interactive protocol between the
veri!erV and multiple provers {P𝑇 }, in which the provers
do not directly communicate with each other. Each prover
has its own secret key as input, while the veri!er has the
public keys of all the provers. The protocol terminates when
Voutputs 1 (,--*$%) or 0 (+*.*-%).

De!nition 6 (Correctness). Let mID ω (mID.KGen,mID.Idfy) be
an mID scheme with 𝑀 provers P𝑇 and a veri!er V . We say that
mID is correct i" for all pp it holds that

Pr
[

′𝑖 ⇐ [𝑀] : (𝑑𝑒𝑇 ) ↓ mID.KGen(pp)
𝑏 ↓ mID.Idfy⇑P𝑇 (𝑑𝑒𝑇 , 𝑇𝑒𝑇 ),V({𝑇𝑒1, . . . , 𝑇𝑒𝑊})⇓

: 𝑏 = 1
]
= 1.

We generalize the security notion introduced by Hauck et al. [28]
for mID schemes. Analogous to the standard OMMIM de!nition,
we assume there is an active man-in-the-middle adversary A be-
tween the provers and the veri!er. We also allow A to control all
but one of the provers.

De!nition 7 (One-more MiTM (OMMIM) security). Let A be an
adversary and letmID ω (mID.KGen,mID.Idfy) be anmID scheme.
De!ne the game 𝑔-OMMIM as follows:

• Setup. Generate pp and run (𝑑𝑒↗, 𝑇𝑒↗) ↓ mID.KGen(pp).
Give 𝑇𝑒↗ to 𝑆.

• Online phase. 𝑆 interacts (concurrently) with an honest
prover using 𝑑𝑒↗, and an honest veri!er. For the latter, it
must use a set of public keys containing 𝑇𝑒↗.

• Output. A succeeds if it successfully completes at least 𝑔 + 1
veri!er sessions (i.e., by making the veri!er output 1) but
closes at most 𝑔 sessions with the honest prover.

We say that mID is 𝑔-OMMIM-secure if any PPT 𝑆 succeeds with
negligible probability in the above game.

5.2 Constructing a Multi-Identi!cation Scheme
We provide a construction of a multi-ID scheme, inspired by prior
work [18]. The protocol is depicted in Figure 5. Let pp ω (G,𝑈,𝑁,𝑚),
where G is a group of prime order 𝑁 = 2 mod 3 with generator 𝑈,
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and 𝑚 ⇐ G is a uniform group element. De!ne the scheme mID =
(mID.KGen,mID.Idfy) as follows:

• mID.KGen(pp): sample 𝑑𝑒 ↓ Z𝑂 , set 𝑇𝑒 ω 𝑈𝑌𝑍𝑀 , and output
(𝑑𝑒, 𝑇𝑒).

• mID.Idfy works as follows (see Fig. 5):
– mID.Prove1: Sample 𝑎𝑇 ,𝑏𝑇 ,𝑅𝑇 ↓ Z𝑂 and set 𝑆𝑇 ω 𝑈𝑄𝑀 and
𝑙𝑇 ω 𝑈𝑅𝑀 · 𝑚𝑙𝑀 . Then send (𝑆𝑇 ,𝑙𝑇 ).

– mID.Ver1: After receiving all {(𝑆𝑇 ,𝑙𝑇 )}, choose 𝑛𝑇 ↓ Z𝑂
for all 𝑖 and send 𝑛𝑇 and {𝑙 𝑜 } to the 𝑖th prover.

– mID.Prove2: Send (𝑏𝑇 ,𝑅𝑇 ).
– mID.Ver2: After receiving {(𝑏𝑇 ,𝑅𝑇 )} from all provers, abort
if 𝑙𝑇 ε 𝑈𝑅𝑀 · 𝑚𝑙𝑀 for some 𝑖 . Otherwise, send {𝑏𝑇 ,𝑅𝑇 } to all
provers.

– mID.Prove3: Abort if 𝑙 𝑜 ε 𝑈𝑅 𝑃 ·𝑚𝑙 𝑃 for some 𝑠 . Otherwise,
compute 𝑅 ω

∑
𝑜 𝑅 𝑜 and send 𝑐𝑇 ω 𝑎𝑇 + 𝑏𝑇 + (𝑛𝑇 +𝑅3) · 𝑑𝑒𝑇 .

– mID.Ver3: After receiving {𝑐𝑇 } from all provers, compute
𝑆 ω

∏
𝑇 𝑆𝑇 , 𝑙 ω

∏
𝑇 𝑙𝑇 , 𝑟 ω 𝑆 · 𝑙, 𝑅 ω

∑
𝑇 𝑅𝑇 , and

𝑐 ω
∑
𝑇 𝑐𝑇 . Return 1 i" 𝑈𝑈 · 𝑚𝑙 = 𝑟 ·

∏
𝑇 𝑇𝑒

𝑚𝑀+𝑙3

𝑇 .
To see that correctness holds, note that

𝑟 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑚 𝑃+𝑙3

𝑜 = 𝑚
∑

𝑃 ⇐ [𝑂] 𝑙 𝑃 ·

∏
𝑜⇐ [𝑊]

𝑆 𝑜 · 𝑇𝑒
𝑚 𝑃+𝑙3

𝑜

= 𝑈
∑

𝑃 ⇐ [𝑂] 𝑄 𝑃 · 𝑚
∑

𝑃 ⇐ [𝑂] 𝑙 𝑃 · 𝑈
∑

𝑃 ⇐ [𝑂] 𝑌𝑍 𝑃 · (𝑚 𝑃+𝑙3
)

= 𝑈
∑

𝑃 ⇐ [𝑂] 𝑄 𝑃+𝑌𝑍 𝑃 · (𝑚 𝑃+𝑙3
)
· 𝑚

∑
𝑃 ⇐ [𝑂] 𝑙 𝑃

= 𝑈
∑

𝑃 ⇐ [𝑂] 𝑈 𝑃 · 𝑚𝑙 = 𝑈𝑈 · 𝑚𝑙 .

We prove the following in Appendix D:

T)*’+*# 8. Assume the discrete-logarithm problem is hard. Then
mID is 𝑔-OMMIM-secure for all PPT algebraic adversaries.

5.3 A Pairing-Free BMS
In this section, we introduce a pairing-free blind multi-signature
scheme BM_SB. Our scheme is inspired by the blind threshold-
signature scheme Snowblind [18]. For the reader’s convenience,
we illustrate the scheme as an interactive protocol in Figure 2. For
pp = (G,𝑁,𝑈,𝑚) as in the previous section, and for hash functions
Hcom : {0, 1}↗ → Z𝑀 and Hsig : {0, 1}↗ → Z𝑀 treated as random
oracles, we de!ne BM_SB as follows:

• BM_SB.KGen(1𝑉): As before.
• BM_SB.Sign is an interactive protocol run by a user Usr and
multiple signers. It works as follows (see Figure 2):
– Sign1 (𝑑𝑒𝑇 ): Sample 𝑎𝑇 ,𝑏𝑇 ,𝑅𝑇 ↓ Z𝑂 , and compute𝑆𝑇 ω 𝑈𝑄𝑀 ,
𝑙 ω 𝑈𝑅𝑀 · 𝑚𝑙𝑀 , and 𝑛𝑜𝐿𝑇 ω Hcom (𝑇𝑒𝑇 ,𝑏𝑇 ,𝑅𝑇 ). Then send
(𝑆𝑇 ,𝑙𝑇 , 𝑛𝑜𝐿𝑇 ).

– Usr1 ( ⇒𝑕 = {𝑇𝑒𝑇 },𝐿): Upon receiving (𝑆𝑇 ,𝑙𝑇 , 𝑛𝑜𝐿𝑇 ) from
all signers, sample 𝑞, 𝑘 ↓ Z𝑂 and 𝑝𝑇 ↓ Z𝑂 for all 𝑖 , and
compute 𝑆 ω

∏
𝑜 𝑆 𝑜 , 𝑙 ω

∏
𝑜 𝑙 𝑜 , and 𝑟 ω 𝑈𝑘 ·𝑆𝑝3

· 𝑙𝑝 ·∏
𝑜 𝑇𝑒

𝑝3
·𝑞 𝑃

𝑜 . Then for all 𝑖 compute 𝑛𝑇 ω Hsig ( ⇒𝑕, 𝑇𝑒𝑇 ,𝑟,𝐿)

and 𝑛𝑇 ω 𝑛𝑇 ·𝑞↔3
+𝑝𝑇 . Send 𝑛𝑇 , {𝑙 𝑜 , 𝑛𝑜𝐿 𝑜 } 𝑜 to the 𝑖th signer.

– Sign2: Send 𝑏𝑇 ,𝑅𝑇 .
– Usr2: Upon receiving 𝑏 𝑜 ,𝑅 𝑜 from all signers, abort if 𝑙 𝑜 ε
𝑈𝑅 𝑃 · 𝑚𝑙 𝑃 or 𝑛𝑜𝐿 𝑜 ε Hcom (𝑇𝑒 𝑜 ,𝑏 𝑜 ,𝑅 𝑜 ) for some 𝑠 . Other-
wise, send {𝑏 𝑜 ,𝑅 𝑜 } 𝑜 to all signers.

– Sign3: Compute 𝑅 ω
∑

𝑜 𝑅 𝑜 and 𝑐𝑇 ω 𝑎𝑇 + (𝑛𝑇 + 𝑅3) · 𝑑𝑒𝑇 ,
and send 𝑐𝑇 .

– Usr3: Upon receiving 𝑐 𝑜 from all signers, compute 𝑏 ω∑
𝑜 𝑏 𝑜 ,𝑅 ω

∑
𝑜 𝑅 𝑜 , and 𝑐 ω

∑
𝑜 𝑐 𝑜 . Abort if 𝑈𝑈 ε 𝑆 ·∏

𝑜 𝑇𝑒
𝑚 𝑃+𝑙3

𝑜 or 𝑙 ε 𝑈𝑅 · 𝑚𝑙 . Compute 𝑐 ω 𝑘 + 𝑞3 · 𝑐 + 𝑞𝑏

and 𝑅 ω 𝑞𝑅, and output the signature 𝑓 = (𝑟,𝑅, 𝑐).
• Vrfy( ⇒𝑕,𝐿,𝑓): Parse 𝑟,𝑅, 𝑐 ↓ 𝑓 , compute 𝑛𝑇 ω Hsig ( ⇒𝑕, 𝑇𝑒𝑇 ,

𝑟,𝐿) for all 𝑖 , and output 1 if𝑅 ε 0 and𝑟·
∏

𝑇 𝑇𝑒
𝑚𝑀+𝑙

3

𝑇 = 𝑈𝑈 ·𝑚𝑙 ,
and 0 otherwise.

(BM_SB.KAgg is not de!ned because the scheme does not support
key aggregation, and Vrfy takes the set of keys ⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊}
as input instead of an aggregate key apk.)

To see that correctness holds, note that

𝑈𝑈 · 𝑚𝑙 = 𝑈𝑘 · 𝑈𝑝 ·𝑅 · 𝑚𝑙 · 𝑈𝑝
3𝑈

= 𝑈𝑘 · (𝑈𝑅 · 𝑚𝑙)𝑝 · (𝑈
∑

𝑃 𝑈𝑀 )𝑝
3

= 𝑈𝑘 · 𝑙𝑝 · (𝑈
∑

𝑀 𝑄𝑀+(𝑚𝑀+𝑙
3
) ·𝑌𝑍𝑀 )𝑝

3

= 𝑈𝑘 · 𝑙𝑝 · 𝑈𝑝
3
·
∑

𝑀 𝑄𝑀 · (𝑈
∑

𝑀 (𝑚𝑀+𝑙
3
) ·𝑌𝑍𝑀 )𝑝

3

= 𝑈𝑘 · 𝑙𝑝 · 𝑆𝑝3
·

(∏
𝑇

𝑇𝑒 (𝑚𝑀+𝑙
3
)

𝑇

)𝑝3

= 𝑈𝑘 · 𝑙𝑝 · 𝑆𝑝3
·

∏
𝑇

𝑇𝑒 (𝑚𝑀 ·𝑝
↔3
+𝑞𝑀+(𝑙 ·𝑝↔1

)
3
) ·𝑝3

𝑇

= 𝑈𝑘 · 𝑙𝑝 · 𝑆𝑝3
·

∏
𝑇

𝑇𝑒𝑝
3
·𝑞𝑀

𝑇 ·

∏
𝑇

𝑇𝑒 (𝑚𝑀+𝑙
3
)

𝑇

= 𝑟 ·

∏
𝑇

𝑇𝑒 (𝑚𝑀+𝑙
3
)

𝑇 .

We prove the following in Appendix E.

T)*’+*# 9. For all PPT A, AdvmBlind
A,BM_SB (𝑂) ↘

1
2 + negl(𝑂).

T)*’+*# 10. Assume the discrete logarithm problem is hard, and
model Hcom and Hsig as random oracles. Then BM_SB is one-more
unforgeable for all PPT algebraic adversaries in the KOSK model.

6 Evaluation
We present proof-of-concept implementations of BM_BLS and
BM_SB, written in Python. (Code available at https://github.com/
k4m4/bm-poc.) We also implemented a signature-veri!cation smart
contract (in Solidity) for each scheme. For our evaluation, we used
the BN254 elliptic curve (using an EIP-1964 implementation,8 with
Rust bindings), which is estimated to provide around 100 bits of
security [53]. We used BN254 for both schemes since, at the time of
writing, it is the only pairing-friendly elliptic curve supported by
Ethereum, but also the only curve over which EC addition and EC
multiplication can be practically performed on an Ethereum smart
contract.

6.1 Implementation Benchmarks
Table 1 shows the sizes of the token (i.e., signature) and the public
keys in the signing set for each scheme. A BM_BLS token 𝑓 ⇐ G1

8https://github.com/matter-labs/eip1962
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is 64 bytes long, while a BM_SB token 𝑓 = (𝑟,𝑅, 𝑐) ⇐ G1 ≃Z𝑀 ≃Z𝑀
is 128 bytes long. BM_BLS public keys can be aggregated into a
single G1-element that is 64 bytes long, regardless of the number
of signers/issuers. Conversely, BM_SB does not support public-
key aggregation, meaning that all public keys in the signing set
need to be transmitted. Moreover, BM_SB public keys need to be
accompanied by corresponding proofs of possession (not re#ected
in the numbers in Table 1).

Construction Token size Public key size
G1 Z𝑀 Bytes G1 Bytes

BM_BLS 1 0 64 1 64
BM_SB 1 2 128 𝑀 64𝑀

Table 1: Token and public key sizes, assuming 𝑀 signers.

Table 2 gives the communication costs for issuance. We record
the number of bytes exchanged between the user and a single signer,
expressed as a function of the total number of signers 𝑀. The data
transferred from the user to a signer is denoted by 𝑡 → 𝑢 , and
𝑢 → 𝑡 represents the data transferred from a signer to the user.

Figure 3 shows the execution times for issuance and veri!ca-
tion of a single token, averaged over 10 trials. (Measurements were
performed on a 2021 MacBook Pro laptop with a 10-core Apple
M1 Pro processor and 16 GB of RAM.) We use Python co-routines
to simulate communication between the user and signers, hence
latency costs are excluded. Issuance costs account for the user’s cost
plus the cost of all signers. Key aggregation costs are not accounted
for. BM_BLS veri!cation involves just a single pairing check, irre-
spective of number of issuers, while BM_SB veri!cation requires
multiple EC additions and EC multiplications, the amount of which
grows proportionally to the number of issuers. The main bottleneck
for BM_BLS veri!cation is the EC multiplications performed by
the hash-to-curve operations (more details in the next section).

6.2 Smart-Contract Implementation
We envision that blockchain applications can leverage blind mul-
tisignatures to enable a set of signers to issue tokens o"-chain that
can then be veri!ed by smart contracts on-chain. An example of
such an application is a DAO with tokenized anonymous voting,
as discussed in the introduction. As such, we also implemented an
Ethereum Solidity smart contract performing token veri!cation for
BM_BLS and BM_SB.

For Ethereum compatibility and e$ciency, we use the minSig
approach [4] (reducing signature size at the expense of an increase
in the public-key size). In addition, in our BM_BLS implementation
we switch to asymmetric, Type-3 pairings. This means public keys
are now of the form (𝑗1,𝑗2) = (𝑈𝑁1 ,𝑈

𝑁
2 ) ⇐ G1≃G2, as the user needs

𝑗1 to unblind, while veri!cation and key aggregation rely on 𝑗2. A
key’s validity needs to be veri!ed by checking 𝑊 (𝑗1,𝑈2)

?= 𝑊 (𝑈1,𝑗2).
When moving to the asymmetric setting, we have to use a version
of the AGM for asymmetric pairings [5, 17], and unforgeability will
require the co-qdlog assumption [5].

Constr. 𝑘
𝑡 → 𝑢 𝑢 → 𝑡 Bytes exchanged
G Z𝑀 G Z𝑀 Per round Total

BM_BLS 1 1 0 1 0 128 128

BM_SB
1 0 𝑀 2 1 32𝑀 + 160

64𝑀 + 2242 0 𝑀 ↔ 1 0 2 32𝑀 + 32
3 0 0 0 1 32

Table 2: Communication overhead for token issuance, mea-
sured between the user and a single signer, as a function of
the total number of signers 𝑀.

For practical on-chain token veri!cation, we use Ethereum’s
BN254 pre-compiled contracts to perform group operations and
asymmetric pairing checks at reduced gas costs [10, 11, 51]. We
adopt the hash-to-curve implementation of Fouque and Tibouchi [23,
31, 49], since the constant-time “hash and pray” alternative is vul-
nerable to a gas grie!ng attack [40]. Our smart contract maintains
a nulli!er 𝑣 that keeps track of which tokens have been veri!ed;
upon successful veri!cation of a token 𝑓 , it adds H(𝑓) to 𝑣 .

In Figure 4, we show the gas costs for verifying a single token
via our smart contract. We exclude the one-time cost of public key
aggregation, but we include the cost of checking whether the token
has already been presented (i.e., checking whether H(𝑓) ⇐ 𝑣) and
storing the hash of the token in the nulli!er. BM_BLS veri!cation
requires 2 pairings and a single hash-to-curve operation; it costs ∞
232𝑕 gas, irrespective of the number of signers. On the other hand,
the BM_SB veri!cation cost grows with the number of signers 𝑀.
Verifying a BM_SB token requires computing 𝑀 hashes (SHA-256,
in our implementation), 𝑀 + 2 elliptic-curve additions, and 3𝑀 + 2
elliptic-curve multiplications. The cost of verifying a BM_SB token
exceeds that of a BM_BLS token for ∈ 11 signers.
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Figure 3: Execution times for issuance and veri!cation of a
single token.
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Figure 4: Ethereum gas cost for token veri!cation, as a func-
tion of the number of signers.

An important bene!t of BM_BLS is that it supports aggregation
of tokens that share the same issuer set (as described in Section 4).
This can be used to improve veri!cation costs. Table 3 shows the gas
costs for verifying aggregate tokens issued by the same set of 11 is-
suers. (We use a set of size 11 since that is the threshold at which the
cost of verifying a BM_SB token exceeds that of a BM_BLS token.)
Costs include the !xed transaction base fee (21K gas), hashing to
curve, performing curve additions, multiplications, and pairings,
and checking/maintaining the nulli!er; since key aggregation only
needs to be done once, we do not include it in the costs. Note that
verifying more than ∞ 260 BM_BLS or ∞ 100 BM_SB tokens will
exceed Ethereum’s ∞ 30𝑤 block gas limit.

BM_BLS.Ver (𝑓) BM_SB.Ver (𝑓)

Num. of
tokens Total Amortized Total

1 232,083 232,083 279,746
2 370,692 185,346 559,492
4 576,120 144,030 1,118,984
8 1,011,144 126,393 2,237,968
16 1,814,572 113,411 4,475,936
32 3,615,310 112,978 8,951,872
64 6,966,217 108,847 17,903,744
128 13,846,324 108,174 35,807,488
256 27,277,340 106,552 71,614,976
512 54,596,438 106,634 143,229,952
1024 110,386,321 107,799 286,459,904

Table 3: Total and amortized gas costs for verifying multiple
tokens issued by the same set of 11 issuers.

Excluding public-key aggregation, verifying an aggregate of 𝑔
BM_BLS tokens requires 2𝑔 curve additions, 𝑔 hash-to-point in-
vocations, and 2 pairings. On the other hand, BM_SB tokens are
not aggregatable, so their veri!cation cost grows linearly with the
number of tokens being veri!ed. The BM_SB token veri!cation
cost also grows with the number of signers, as described earlier.
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A Cryptographic De!nitions
A.1 Blind Signatures

De!nition 11 (Correctness). A blind signature scheme is correct
if for BS.Sign ⇑U(𝐿, 𝑇𝑒), S(𝑑𝑒)⇓ → 𝑓 , then BS.Ver (𝑇𝑒 ,𝐿, 𝑓) = 1
with overwhelming probability.

For one-more unforgeability, the adversary is the user U that
has to forge a signature on 𝑇𝑒↗ that did not come out of its inter-
actions with signer that holds the secret to 𝑇𝑒↗. The the one-more
unforgeability game goes as follows: The challenger is going to !x
the honest signer key pair (𝑑𝑒↗, 𝑇𝑒↗) and respond to the adversary’s
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(𝑆) signing queries with signatures on messages of the 𝑆’s choice.
After 𝑁 complete signing sessions during query phase, 𝑆 has to
submit 𝑁 + 1 signatures on distinct messages during the forgery
phase. If all signatures verify correctly, it means that a forgery has
happened and 𝑆 wins the game. Since the challenger cannot test
whether a message was signed during the query phase (because of
blindness), when the number of submitted signatures during the
forgery exceeds the number of signatures seen during the query
phase, a forgery took place.

Below we give the formal one-more unforgeability de!nition.
We !rst de!ne the signing oracle Sign𝑌𝑍↗ .

Sign𝑌𝑍↗ : Its functionality is similar to the oracle de!ned for multi-
signatures in Section A.2. It simulates the honest signer’s execution
of BS.Sign ⇑ S(𝑑𝑒↗)⇓ and it outputs some intermediate value that
can be used to compute the !nal signature.

De!nition 12 (One-More Unforgeability). For a blind signature
scheme BS, let game OMUFBS𝐿 be the following game:

• Setup: The challenger generates the parameters and a key
pair (𝑑𝑒↗, 𝑇𝑒↗). It runs the adversary 𝑆(par, 𝑇𝑒↗).

• Queries: 𝑆 interacts with the signing oracle Sign𝑌𝑍↗
(𝑌𝑍↗

) .
• Output: 𝑆 submits a tuple of forgeries (𝑓↗1 ,𝐿

↗
1), . . . , (𝑓

↗
𝑎+1,

𝐿↗
𝑎+1) and wins if BS.Ver( 𝑇𝑒↗,𝐿𝑇 , 𝑓𝑇 ) = 1 ′𝑖 ⇐ [𝑔 + 1] and

the number of valid signatures received from its interaction
with the challenger during the Query phase is not more than
𝑔 . If 𝑆 wins, the game outputs true.

ThenBS is one-more unforgeable (OMUF) if for any probabilistic
polynomial time adversary 𝑆,

AdvOMUF
𝐿,BS (𝑂) := Pr[OMUFBS𝐿 = true] = negl(𝑂)

The second security property of blind signatures is that of blind-
ness, i.e. the signer or a third party looking at a signing transcript
cannot link a signature to its corresponding signing session.

The idea of the blindness game is the following: The adversarial
entity 𝑆 is the signer. In the malicious signer model [22], a key
pair (𝑑𝑒 , 𝑇𝑒) and two messages are picked by the signer 𝑆. The
challenger of the blindness game can interact with 𝑆 and outputs
two signatures. The signatures correspond to the messages picked
by 𝑆 and 𝑆 is allowed to keep the transcripts of the signing ses-
sions. In order to win the game, 𝑆 has to link each transcript to its
corresponding message/signature.

Below we give the formal blindness de!nition.

De!nition 13 (Blindness). Given a blind signature scheme BS =
(KGen, Sign,Ver) let game BlindBS𝐿 be the following game:

The adversary 𝑆 picks a pair of keys (𝑑𝑒, 𝑇𝑒) and messages𝐿0,
𝐿1. The challenger picks 𝑏 ⇐ {0, 1} and runs two signing sessions
as the user. 𝑆 participates in the signing sessions as the signer 𝑢
and is given back 𝑓0,𝑓1 by the challenger. 𝑆 has to output a bit 𝑏↖,
and wins if 𝑏↖ = 𝑏. If 𝑆 wins, the game outputs true.

BS is blind if for any probabilistic polynomial time adversary 𝑆,

Adv𝑔𝑕𝑇𝑊𝑖𝐿,BS (𝑂) := Pr[BlindBS𝐿 = true] ↘
1
2
+ 𝑀𝑊𝑈𝑋 (𝑂).

A.2 Multi-Signatures
We de!ne the security model for multi-signatures that support key
aggregation.

Security Model. A multi-signature should satisfy the properties
of correctness and unforgeability (i.e. an adversarial user should
not be able to forge a signature that veri!es under apk for a set of
signers where at least one signer is honest).

We start with correctness for multi-signatures, which guarantees
that if all signers participate honestly, then the !nal signature will
verify under the aggregate key computed on their public keys.

De!nition 14 (Correctness). A multi-signature scheme is correct
if for every 𝑀, 𝑖 ⇐ [𝑀], (𝑑𝑒𝑇 , 𝑇𝑒𝑇 ) ↓ MS.KGen(1𝑉) and for every
𝐿, if all signers with public keys in ⇒𝑕 participate in the interactive
MS.Sign then the output is a signature 𝑓 such thatMS.Ver (apk,𝐿,
𝑓) = 1 with overwhelming probability for apk = MS.KAgg ( ⇒𝑕 ).

For unforgeability, even if an adversary has corrupted all but one
signer with public key 𝑇𝑒↗, the adversary should still not be able to
forge a signature that veri!es under an apk that includes 𝑇𝑒↗. The
honest keys (𝑑𝑒↗, 𝑇𝑒↗) are generated and stored by the challenger.
The unforgeability adversary can query on messages of its choice
and see signatures under {𝑇𝑒↗} or its supersets. In order for the
adversary to win, it has to submit a forgery on a new message𝐿↗

signed by a set of public keys that includes 𝑇𝑒↗.
Below we give the formal unforgeability de!nition. The signing

oracle Sign𝑌𝑍↗ simulates one signer running algorithm Sign. It takes
as input the parameters par, the signer’s secret key 𝑑𝑒↗ and the
message 𝐿. For concurrent security, the oracle runs many open
sessions, each one identi!ed by its session number, whereas in the
sequential setting, the oracle returns only messages for the current
open session and will not initiate a new one before this is complete.

De!nition 15 (Unforgeability). For multisignature scheme MS,
let EUF-CMAMS

𝐿 be the following game:
• Setup: The challenger generates a key pair (𝑑𝑒↗, 𝑇𝑒↗) for
the honest signer. It runs the adversary 𝑆(par, 𝑇𝑒↗).

• Queries: 𝑆 picks a message𝐿 and queries the signing oracle
Sign𝑌𝑍↗

(𝑌𝑍↗,· ) . This step can be repeated multiple times for
di"erent inputs𝐿.

• Output: 𝑆 outputs 𝑓↗,𝐿↗, ⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊} and succeeds
if 𝑇𝑒↗ ⇐ ⇒𝑕 , no signing queries were made on𝐿↗, and

MS.Ver (KAgg( ⇒𝑕),𝐿↗,𝑓↗) = 1.

MS is EUF-CMA-secure (existentially unforgeable under chosen-
message attacks) if for any PPT adversary 𝑆,

AdvEUF-CMA
𝐿,MS (𝑂) := Pr[EUF-CMAMS

𝐿 = true] = 𝑀𝑊𝑈𝑋 (𝑂)

A stronger adversary. A stronger de!nition for unforgeability
requires the keys set ⇒𝑕 to be known to the signers and the adversary
𝑆 has never queried Sign𝑌𝑍↗

(𝑌𝑍↗,𝑓↗, ⇒𝑋↗
) , where ⇒𝑕↗ was used in the

adversary’s forgery. It is satis!ed by Schnorr-based multi-signature
schemes [43, 46]. In these schemes, the set of signers is embedded
in the signature share and cannot be easily changed.

A.3 The ROS Problem
De!nition 16 (Random Inhomogeneities in an Overdetermined Sys-

tem of Linear Equations (ROS) [25, 54]). Let G be a group of prime
order 𝑁 with generator 𝑈. For a positive integer 𝑔 ⇐ Z+, an adversary
A, a hash function Hros : Z𝑎𝑂 x ω → Z𝑂 modeled as a random oracle
for an arbitrary set ω, de!ne the game 𝑔-ROS as follows.

1518



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Ioanna Karantaidou et al.

• Setup. Ais executed with 𝑁 and 𝑔 as input, and it gets oracle
access to Hros.

• Online phase. The game simulates the oracle Hros for Aand
responds to its queries.

• Output. The game outputs 1 i" Aterminates and outputs (i)
pair-wise distinct tuples ( ⇒𝑥1,𝑎𝑦𝑄1), . . . , ( ⇒𝑥𝑎+1,𝑎𝑦𝑄𝑎+1), and
(ii) (𝑛1, . . . , 𝑛𝑎 ) ⇐ Z𝑎𝑂 , such that for all 𝑖 ⇐ [𝑔 + 1] the equality

∑
𝑜⇐ [𝑎 ]

𝑥𝑇, 𝑜 · 𝑛 𝑜 = Hros ( ⇒𝑥𝑇 ,𝑎𝑦𝑄𝑇 ) .

B Unforgeability of Blind BLS
T)*’+*# 17. Given an algebraic adversary𝑆making𝑁↔1 parallel

signing queries and 𝑍 random oracle queries against the blind BLS
scheme, there is a PPT algorithm that breaks 𝑁-dlog in the ROM with
probability at least ( 12 ↔

1
𝑀 ) Adv

OMUF
𝐿,BLS (𝑂).

Proof overview. Our proof involves two possible strategies on the
challenger side, one of them is picked at random in the beginning:
the secret 𝑄 is either embedded in the random oracle’s responses
or in the honest signer’s public key, the adversary 𝑆 is unaware
of the strategy used and unable to plan their attack accordingly.
A successful forgery results in solving for 𝑄 and in the !rst case
reduces to the discrete logarithm problem and in the second case
to the 𝑁-dlog problem with overwhelming probability. To picture
why, in the second case, 𝑁↔1 queries to the signing oracle are using
𝑁 powers of the unknown 𝑄 in the exponent. We use the AGM to
exctract 𝑁 equations from the forgery and we show that not all
equations are trivial. Our reduction uses the 𝑁-dlog instance to
simulate 𝑁 ↔ 1 signing queries. The scheme’s unforgeability overall
relies on 𝑁-dlog assumption as the problem’s hardness also implies
the discrete logarithm assumption and covers both strategies.

P+’’/. For simplicity we focus !rst on the case where 𝑁 = 2.
So we have an adversary 𝑆 who makes a single signing query and
then outputs two forgeries. Let 𝑗 = 𝑈𝑁 be the signing public key.
Let 𝑚1, . . . ,𝑚𝑟 be the responses 𝑆 receives to its random-oracle
queries. Let 𝐿1 denote the query 𝑆 makes to the signing oracle.
Note that 𝑆 must also provide a representation of𝐿1 with respect
to 𝑈,𝑗 ,𝑚1, . . . ,𝑚𝑟 , so𝐿1 = 𝑈𝑝𝑗 𝑞 ∏

𝑇⇐ [𝑟 ] 𝑚
𝑠𝑀
𝑇 .

In response to the signing query, 𝑆 receives 𝑑1 = 𝐿𝑁
1 . When

𝑆 outputs its forgeries (𝐿1,𝑓1) and (𝐿2,𝑓2), we assume w.l.o.g.
that 𝐿1,𝐿2 were queried to the random oracle, and arrange the
indices so that H(𝐿1) = 𝑚1 and H(𝐿2) = 𝑚2. If these are valid
forgeries then 𝑓 𝑜 = 𝑚𝑁𝑜 for 𝑠 = 1, 2. Note further that𝑆must provide

representations of 𝑓1,𝑓2, say 𝑓 𝑜 = 𝑈𝑝 𝑃𝑗 𝑞 𝑃

(∏
𝑇⇐ [𝑟 ] 𝑚

𝑠𝑀,𝑃
𝑇

)
· 𝑑

𝑡 𝑃

1 , for
𝑠 = 1, 2. Thus,

𝑚𝑁𝑜 = 𝑓 𝑜 = 𝑈𝑝 𝑃𝑗 𝑞 𝑃

(∏
𝑇

𝑚
𝑠𝑀,𝑃
𝑇

)
· 𝑑

𝑡 𝑃

1

= 𝑈𝑝 𝑃𝑈𝑞 𝑃𝑁

(∏
𝑇

𝑚
𝑠𝑀,𝑃
𝑇

)
·𝐿

𝑡 𝑃 ·𝑁
1

= 𝑈𝑝 𝑃𝑈𝑞 𝑃𝑁

(∏
𝑇

𝑚
𝑠𝑀,𝑃
𝑇

) (
𝑈𝑝𝑈𝑞𝑁

∏
𝑇

𝑚𝑠𝑀𝑇

)𝑡 𝑃 ·𝑁

(1)

or, by some algebra:

𝑈𝑝 𝑃+𝑞 ↖

𝑃𝑁+𝑞
↖↖

𝑃 𝑁
2 ∏

𝑇

𝑚
𝑠𝑀,𝑃+𝑠 ↖

𝑀,𝑃𝑁

𝑇 = 1 (2)

for 𝑠 = 1, 2, where 𝑝↖𝑜 , 𝑝
↖↖
𝑜 ,𝑧

↖
𝑇, 𝑜 are e$ciently computable.

There are now two cases: either for some 𝑠, 𝑖 the exponent of
𝑚𝑇 in the 𝑠th equation (i.e., 𝑧𝑇, 𝑜 + 𝑧 ↖𝑇, 𝑜𝑄) is non-zero, or for all 𝑠, 𝑖
the exponent of 𝑚𝑇 in the 𝑠th equation is zero. If 𝑆 succeeds with
probability 𝛥 , then either the !rst or second case must happen with
probability at least 𝛥/2.

Assume the !rst case happens with probability at least 𝛥/2. We
can use this to solve the discrete-logarithm problemwith probability
at least 𝛥/2 ↔ 1/𝑇 as follows. Given 𝑉 , set the public key to 𝑗 = 𝑈𝑁

for known, uniform 𝑄 ⇐ Z𝑀 . For the 𝑖th hash query, program the
response to be 𝑚𝑇 = 𝑈𝑌𝑀𝑉 𝑘𝑀 for uniform 𝑑𝑇 , 𝑘𝑇 ⇐ Z↗𝑀 . (If 𝑚𝑇 = 1 for
some 𝑖 then we can solve for log𝑗 𝑉 directly, so we assume this
does not happen in what follows.) Since 𝑄 is known, queries to
the signing oracle can be answered easily. If 𝑆 forges and the !rst
case happens then, except with probability 1/𝑇 , we get an equation
of the form 𝑈𝐿𝑉𝑔 = 1 with 𝑆,𝑙 known and 𝑙 ε 0, which allows
us to solve for log𝑗 𝑉 . To see this is the case, note that all the
exponents in (2) are known, and so we have an equation of the
form 𝑈𝑄 ·

∏
𝑇 (𝑈

𝑌𝑀𝑉 𝑘𝑀 )𝑅𝑀 = 𝑈𝑄+
∑

𝑀 𝑅𝑀𝑌𝑀 · 𝑉
∑

𝑀 𝑅𝑀𝑘𝑀 = 1, with 𝑎 and the
{𝑏𝑇 } known, and at least one of the {𝑏𝑇 } non-zero. Letting 𝑖 be the
largest index for which 𝑏𝑇 is non-zero and viewing {𝑏 𝑜 } 𝑜<𝑇 as !xed,
note that 𝑘𝑇 is uniform from 𝑆’s point of view and there is at most
one non-zero value of 𝑏𝑇 for which

∑
𝑇 𝑏𝑇𝑘𝑇 = 0. This concludes the

analysis of the !rst case.
Before continuing, we analyze (2) in more detail. Assume we are

in the second case, so for all 𝑠, 𝑖 we have 𝑧𝑇, 𝑜 + 𝑧 ↖𝑇, 𝑜𝑄 = 0. Call an
equation of this form trivial if 𝑧 ↖𝑇, 𝑜 = 0 (which implies 𝑧𝑇, 𝑜 = 0). We
claim that it is not possible for all equations to be trivial. To see
this, note that (using equation (1))

𝑧 ↖𝑇, 𝑜 =
{

𝛩 𝑜 · 𝑧𝑇 𝑖 ε 𝑠
𝛩 𝑜 · 𝑧𝑇 ↔ 1 𝑖 = 𝑠 .

Thus, all equations are trivial only if 𝛩1, 𝛩2,𝑧1,𝑧2 are such that

𝛩1 · (𝑧1, 𝑧2) = (1, 0)
𝛩2 · (𝑧1, 𝑧2) = (0, 1) .

But since the vector (𝑧1,𝑧2) ⇐ Z2𝑀 spans a vector space of dimension
at most 1, this is impossible.

Returning to the main proof, assume the second case happens
with probability at least 𝛥/2; we use this to solve the 2-dlog as-
sumption with probability at least 𝛥/2. Given 𝑉1 = 𝑈𝑁 ,𝑉2 = 𝑈𝑁

2
,

we set the public key equal to 𝑗 = 𝑉1 and program 𝑚𝑇 = 𝑈𝑘𝑀

(for uniform 𝑘𝑇 ⇐ Z↗𝑀 ) for all 𝑖 . When 𝑆 makes signing query

𝐿1 = 𝑈𝑝𝑗 𝑞 ∏
𝑇 𝑚

𝑠𝑀
𝑇 , we answer it with 𝑑1 = 𝑉𝑝

1 𝑉
𝑞
2
∏

𝑇 𝑉
𝑘𝑀𝑠𝑀
1 . When

𝑆 outputs its forgeries, we derive equations as in (2), e.g.,

𝑈𝑝 𝑃𝑉
𝑞 ↖

𝑃

1 𝑉
𝑞 ↖↖

𝑃

2

∏
𝑇

𝑈𝑘𝑀𝑠𝑀,𝑃𝑉
𝑘𝑀𝑠 ↖

𝑀,𝑃

1 = 1

for 𝑠 = 1, 2, where 𝑧𝑇, 𝑜 ,𝑧 ↖𝑇, 𝑜 are e$ciently computable. Since we are

in the second case, we know that 𝑈𝑘𝑀𝑠𝑀,𝑃𝑉
𝑘𝑀𝑠 ↖

𝑀,𝑃

1 = 1 for all 𝑖, 𝑠 . As we
have shown above, it is not possible for all equations to be trivial;
thus, for some 𝑖, 𝑠 it must hold that 𝑧 ↖𝑇, 𝑜 ε 0. We can use any such
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non-trivial equation to solve for 𝑄 = log𝑗 𝑉1. This completes the
proof when 𝑁 = 2.

We sketch how to extend the above argument for arbitrary 𝑁 > 2.
The key thing that changes is that now 𝑆’s queries to the signing
oracle can also depend on answers to previous signing queries.
Thus, in general, when 𝑆 makes its 𝑠th query 𝐿 𝑜 to the signing
oracle it now provides a representation in terms of 𝑈,𝑗 , {𝑚𝑇 }𝑇⇐ [𝑟 ] ,
and {𝑑𝑇 }𝑇< 𝑜 . However, it is easy to show by induction that this
allows derivation of a representation of the form

𝐿 𝑜 = 𝑈
∑𝑃

𝑄=0 𝑞 𝑃 ,𝑄 𝑁𝑄
·

∏
𝑇⇐ [𝑟 ]

𝑚
∑𝑃↔1

𝑄=0 𝑠𝑀,𝑃 ,𝑄 𝑁𝑄

𝑇 (3)

where the {𝑝 𝑜,𝑍 } and {𝑧𝑇, 𝑜,𝑍 } are e$ciently computable. Thus, the
analogue of (2) for the 𝑁 forgeries output by 𝑆 becomes

𝑈
∑𝐿

𝑄=0 𝑞
↖

𝑃 ,𝑄 𝑁𝑄
∏

𝑇⇐ [𝑟 ]

𝑚
∑𝐿↔1

𝑄=0 𝑠
↖

𝑀,𝑃 ,𝑄 𝑁𝑄

𝑇 = 1 (4)

for 𝑠 = 1, . . . ,𝑁, where the {𝑝↖𝑜,𝑍 } and {𝑧 ↖𝑇, 𝑜,𝑍 } are e$ciently com-
putable. As before, we have two cases: either for some 𝑠, 𝑖 the expo-
nent of 𝑚𝑇 in the 𝑠th equation is non-zero, or for all 𝑠, 𝑖 the expo-
nent of 𝑚𝑇 in the 𝑠th equation is zero. A reduction to the discrete-
logarithm problem in the !rst case is the same as before, so we
focus on the second case.

As before, in the second case we have
∑𝑂↔1
𝑍=0 𝑧

↖

𝑇, 𝑜,𝑍 𝑄𝑍 = 0 for
all 𝑠, 𝑖 , and we call an equation of this form trivial if 𝑧 ↖𝑇, 𝑜,1 = 0.
We again claim that it is impossible for all equations to be trivial.
Indeed, de!ne the vectors ⇒𝑧 𝑜 = (𝑧1, 𝑜,1, . . . ,𝑧𝑂, 𝑜,1) ⇐ Z𝑂𝑀 for 𝑠 =
1, . . . ,𝑁 ↔ 1, where ⇒𝑧 𝑜 corresponds to the vector of exponents of
𝑚1, . . . ,𝑚𝑂 for the 𝑠 th signing query of 𝑆. Then all equations can be
trivial only if there exist 𝛩1,1, . . . , 𝛩𝑂,𝑂↔1 such that

∑𝑂↔1
𝑜=1 𝛩𝑇, 𝑜 · ⇒𝑧 𝑜 =

𝑊𝑇 ⇐ Z𝑂𝑀 , for 𝑖 = 1, . . . ,𝑁, where 𝑊𝑇 is the vector that is 1 at position 𝑖
and 0 everywhere else. But since the {⇒𝑧 𝑜 } span a vector space of
dimension at most 𝑁 ↔ 1, and the {𝑊𝑇 } are 𝑁 linearly independent
vectors, this is clearly impossible.

With this in place, we now show how to solve the 𝑁-dlog assump-
tion when the second case happens with probability at least 𝛥/2.
Given 𝑉1 = 𝑈𝑁 , . . . ,𝑉𝑂 = 𝑈𝑁

𝐿
, we set the public key equal to 𝑗 = 𝑉1

and program 𝑚𝑇 = 𝑈𝑘𝑀 , where 𝑘𝑇 ⇐ Z↗𝑀 is uniform. When 𝑆 makes its
𝑠th signing query as in (3), we answer it with

We have
∏𝑜

𝑍=0 𝑉
𝑞 𝑃 ,𝑄

𝑍+1 ·
∏

𝑇⇐ [𝑟 ]

∏𝑜↔1
𝑍=0 𝑉

𝑘𝑀 ·𝑠𝑀,𝑃 ,𝑄
𝑍+1 for 𝑠 = 1, . . . ,𝑁 ↔ 1.

When𝑆 outputs its forgeries, we derive equations as in (4) and !nd
𝑖, 𝑠 for which

∑𝑂↔1
𝑍=0 𝑧

↖

𝑇, 𝑜,𝑍 𝑄𝑍 = 0 and 𝑧 ↖𝑇, 𝑜,1 ε 0. We then use that
equation to solve for 𝑄 . ⊋

C Proofs for BM_BLS
C.1 Blindness
We show:

T)*’+*# 18. BM_BLS is unconditionally blind.

P+’’/. Let 𝑆 be an adversary controlling 𝑀 signers, picking two
messages𝐿0,𝐿1, and playing the game of De!nition 3. At the end
of the game, 𝑆 holds two transcripts 𝑃𝑅= {𝐿𝑅

1 , . . . , 𝐿
𝑅
𝑊 , 𝑑𝑅1 , . . . , 𝑑

𝑅
𝑊}

and 𝑃1↔𝑅= {𝐿1↔𝑅
1 , . . . ,𝐿1↔𝑅

𝑊 , 𝑑1↔𝑅1 , . . . , 𝑑1↔𝑅𝑊 } and signatures 𝑓0, 𝑓1.
All elements in 𝑃𝑅 , 𝑃1↔𝑅 are independent from𝐿0,𝐿1, 𝑓0, 𝑓1. ⊋

C.2 One-More Unforgeability of BM_BLS
We sketch a proof of Theorem 4 based on the proof of Theorem 17.

P+’’/. 𝑆’s output forgery consists of (𝐿1, 𝑓1, ⇒𝑕1), . . . , (𝐿𝑂 , 𝑓𝑂 ,
⇒𝑕𝑂). Let 𝑗 = 𝑈𝑁 be the public key of the honest signer, given to 𝑆.
For the forgery to be valid, 𝑗 will be included in all key sets ⇒𝑕1,
. . . , ⇒𝑕𝑂 . Let 𝑚1, . . . ,𝑚𝑟 be the responses 𝑆 receives to its random-
oracle queries. Let𝐿 𝑜 be the 𝑠th query to the signing oracle and
𝑑 𝑜 the output. Together with 𝐿 𝑜 , 𝑆 provides a representation in
terms of 𝑈,𝑗 , {𝑚𝑇 }𝑇⇐ [𝑟 ] , and {𝑑𝑇 }𝑇< 𝑜 , i.e. all the group elements
given so far, including previous signing queries. For every element
𝛬 submitted in the forgery (𝛬 ⇐{𝑓 𝑜 } for 𝑠 ⇐ [𝑁], or 𝛬 ⇐{𝑗 𝑜,𝑆 },
𝑗 𝑜,𝑆 ⇐ ⇒𝑕𝑜 and for 𝑃 ⇐ [| ⇒𝑕𝑜 |]), it also provides a representation in
terms of 𝑈,𝑗 , {𝑚𝑇 }𝑇⇐ [𝑟 ] , and {𝑑𝑇 }𝑇⇐ [𝑂↔1] . 𝛬 can also be written in

the following form 𝛬 = 𝑈
∑𝐿

𝑄=0 𝑞 𝑃 ,𝑄 𝑁𝑄
·
∏

𝑇⇐ [𝑟 ] 𝑚
∑𝐿

𝑄=0 𝑠𝑀,𝑃 ,𝑄 𝑁𝑄

𝑇 where
the {𝑝 𝑜,𝑍 } and {𝑧𝑇, 𝑜,𝑍 } are e$ciently computable.

When𝑆 outputs its forgery, we assume it has queried the random
oracle Hagg for every element in ⇒𝑕𝑜 that outputs an element 𝑎 𝑜,𝑆 in
Z↗𝑀 . Without loss of generality, we assume that the honest signer’s
key appears !rst in every set ⇒𝑕𝑜 , 𝑗 𝑜,1 = 𝑗 . We also assume w.l.o.g.
that𝐿1, . . . ,𝐿𝑂 were queried to the random-oracle H, and arrange
the indices so that H(𝐿1) = 𝑚1, . . . , H(𝐿𝑂) = 𝑚𝑂 .

From the validity of the signatures it holds that

𝑓 𝑜 = 𝑚
𝑄 𝑃 ,1𝑁+

∑
𝑅 𝑄 𝑃 ,𝑅 (log𝑆 𝑢 𝑃 ,𝑅+

∑
𝑀⇐ [𝑇 ] log𝑈𝑀 𝑢 𝑃 ,𝑅 )

𝑜 (5)

for 𝑠 ⇐ [𝑁], 𝑖 ⇐ [𝑍] and 𝑃 ⇐ [| ⇒𝑕𝑜 |]. Since all 𝑓 𝑜 ,𝑗 𝑜,𝑆 have the
form of 𝛬 , we can e$ciently move all terms in one side, group the
exponents and derive an equation of the form

𝑈
∑𝐿

𝑄=0 𝑞
↖

𝑃 ,𝑄 𝑁𝑄
∏

𝑇⇐ [𝑟 ]

𝑚
∑𝐿

𝑄=0 𝑠
↖

𝑀,𝑃 ,𝑄 𝑁𝑄

𝑇 = 1 (6)

for 𝑠 = 1, . . . ,𝑁, where {𝑝↖𝑜,𝑍 ,𝑧
↖

𝑇, 𝑜,𝑍 } are e$ciently computable.
As before, we have two cases: either for some 𝑠, 𝑖 the exponent of

𝑚𝑇 in the 𝑠 th equation is non-zero, or for all 𝑠, 𝑖 the exponent of 𝑚𝑇 in
the 𝑠 th equation is zero. If𝑆 succeeds with probability 𝛥 , then either
the !rst or second case must happen with probability at least 𝛥/2.
When the second case happens, we derive 𝛩1,1, . . . , 𝛩𝑂,𝑂↔1 such that∑𝑂↔1

𝑜=1 𝛩𝑇, 𝑜 · ⇒𝑧 𝑜 = 𝑊𝑇 ⇐ Z𝑂𝑀 for 𝑖 = 1, . . . ,𝑁, where ⇒𝑧 𝑜 corresponds
to the vector of exponents of 𝑚1, . . . ,𝑚𝑂 for the 𝑠th signing query
of 𝑆. 𝑊𝑇 = ⇒0 happens when the adversary outputs a signature 𝑓𝑇
such that the exponent of 𝑚𝑇 in (5) has the linear term in 𝑄 equal
to zero. Since 𝑆 does not control the outputs ⇒𝑎𝑇 = (𝑎𝑇,1, . . . ,𝑎𝑇, | ⇒𝑋𝑀 |

)

of Hagg, this happens with probability 𝑍/𝑇 . From the union bound,
the probability that one 𝑊𝑇 is the zero vector is less than𝑁 ·𝑍/𝑇 . With
probability at least 𝛥/2↔𝑁 ·𝑍/𝑇 , the 2nd case happens and 𝑊1, . . . , 𝑊𝑂
are non-zero vectors. Then, a reduction to the 𝑁-dlog problem is
the same as before.

We now focus on the !rst case. When we handle case one the
secret key 𝑄 is picked and known and it holds that the exponent of
at least one hash query in Equation 6 is non-zero. We again program
the response for the 𝑖th hash query to be 𝑚𝑇 = 𝑈𝑌𝑀𝑉 𝑘𝑀 for uniform
𝑑𝑇 , 𝑘𝑇 ⇐ Z↗𝑀 and from (6), get an equation of the form 𝑈𝐿𝑉𝑔 = 1 with
𝑆,𝑙 known and 𝑙 ε 0, except with probability 1/𝑇 .
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We can derive an equation 𝑈𝐿𝑉𝑔1 (𝑉 2
)
𝑔2 = 1 and solve a qua-

dratic equation for log𝑗 𝑉 . ⊋

D One-More MitM Security of mID
In this section, we provide a proof overview of Theorem 8 and refer
to the full version of our paper for the complete proof.

Proof overview. We follow the framework used to prove the
OMUF security of BS[ 𝑣1 ] [18]. In particular, we show that in or-
der for an adversary to win Game 𝑔-OMMIM against mID, it must
either win Game 𝑔-ROS for 𝑔 = 1 (see Def. 16), which is shown
to be information-theoretically hard in [25], or it must solve the
dlog problem. To this end, we proceed via a series of games to rule
out bad events regarding the algebraic representation of the group
elements submitted by the algebraic adversary A upon Ver1 queries.
In Game1, we show that A cannot use 𝑇𝑒1 in the representation
of the group element 𝑙, because otherwise, this is equivalent to
solving dlog𝑗𝑇𝑒1. Then, in Game2, we show that A cannot use the
group elements 𝑚 and 𝑇𝑒1 in the representations of the public keys
of the corrupted provers 𝑇𝑒𝑍 for 2 ↘ 𝑒 ↘ 𝑀. If 𝑚 or 𝑇𝑒1 occur in the
representation of any 𝑇𝑒𝑍 , a reduction wins the dlog game. Next,
we show in Game3 that using the group element A𝑀𝑇𝑖 of a prover
session 𝑇𝑖𝛯 in the representation of 𝑟𝑤𝑇𝑖 of a successful veri!er
session 𝛱𝑖𝛯 forces A to make a Prove3 query for the session 𝑇𝑖𝛯 ,
otherwise a reduction can win the dlog game. Then, we show in
Game4 that the value 𝑅𝑤𝑇𝑖 at the veri!er side of successful veri!er
sessions must satisfy a certain equation; otherwise, a reduction can
win the dlog game. Finally, in Games 5-8, we show that a reduction
wins the dlog game unless A can solve the 1-ROS problem.

E Proofs for BM_SB
E.1 Blindness

P+’’/. Let A be an adversary playing Game mBlind against
BM_SB. Let the transcripts of the two executions be𝛴0 ω {𝛴0,1, . . . ,
𝛴0,𝑊} and 𝛴1 ω {𝛴1,1, . . . ,𝛴1,𝑊}, where 𝛴𝑇, 𝑜 = (𝑆𝑇, 𝑜 ,𝑙𝑇, 𝑜 , 𝑛𝑇, 𝑜 , {𝑛𝑜𝐿𝑇,𝑍
}𝑍⇐ [𝑊] ,𝑅𝑇, 𝑜 ,𝑏𝑇, 𝑜 , {𝑏𝑇,𝑍 ,𝑅𝑇,𝑍 }𝑍⇐ [𝑊] , 𝑐𝑇, 𝑜 ) for 𝑖 ⇐ {0, 1} and 𝑠 ⇐ [𝑀],
and let (𝐿0,𝑓0 = (𝑟0,𝑅0, 𝑐0)) and (𝐿1,𝑓1 = (𝑟1,𝑅1, 𝑐1)) be the
message-signature pairs. De!ne 𝛶𝑇,𝑍 (A) ω (𝛴𝑇 ,𝐿𝑍 ,𝑓𝑍 ) for 𝑖,𝑒 ⇐

{0, 1}.
First, we show that, for all 𝑖,𝑒 ⇐ {0, 1}, 𝛶𝑇,𝑍 (A) determines a

valid user state ust ω (𝑘𝑇,𝑍 ,𝑞𝑇,𝑍 , 𝑝𝑇,𝑍,1, . . . , 𝑝𝑇,𝑍,𝑊). 9 We construct a
user state ust𝑇,𝑍 by de!ning the blinding factors

𝑞𝑇,𝑍 =
𝑅𝑍∑

𝑜⇐ [𝑊] 𝑅𝑇, 𝑜
, (7)

𝑘𝑇,𝑍 = 𝑐𝑍 ↔ 𝑞3𝑇,𝑍 ·

∑
𝑜⇐ [𝑊]

𝑐𝑇, 𝑜 ↔ 𝑞𝑇,𝑍 ·

∑
𝑜⇐ [𝑊]

𝑏𝑇, 𝑜 , (8)

𝑝𝑇,𝑍, 𝑜 = 𝑛𝑇, 𝑜 ↔ Hsig ( ⇒𝑕𝑍 , 𝑇𝑒𝑍, 𝑜 ,𝐿𝑍 ,𝑟𝑍 ) · 𝑞
↔3
𝑇,𝑍 . (9)

Next, we show that these values are uniformly distributed in
Z𝑂 (before A gets access to𝐿𝑍 ,𝑓𝑍 ). The uniformity of 𝑞𝑇,𝑍 follows
from the uniformity of 𝑅𝑍 , which is computed by the experiment as
𝑅𝑍 = 𝑞𝑍 ·

∑
𝑜⇐ [𝑊] 𝑅𝑍, 𝑜 , where 𝑞𝑍 is the real blinding factor used by

the experiment in the 𝑒-𝑃𝑚 user session. Similarly, the uniformity

9Note that the user state is determined via the tuple ust because all other values on
the user side are !xed (given the transcripts and the message-signature pair).

of 𝑘𝑇,𝑍 follows from the uniformity of 𝑐𝑍 , which is computed by
the experiment as 𝑐𝑍 = 𝑘𝑍 + 𝑞3

𝑍
· 𝑐𝑍 + 𝑞𝑍 · 𝑏𝑍 , and 𝑘𝑍 is chosen

uniformly at random. Finally, 𝑝𝑇,𝑍, 𝑜 is uniformly distributed as long
as A does not query Hsig on ( ⇒𝑕𝑍 , 𝑇𝑒𝑍, 𝑜 ,𝐿𝑍 ,𝑟𝑍 ). Since 𝑟𝑍 = 𝑈𝑘𝑄 ·∑

𝑜 𝑇𝑒
𝑝3
𝑄 ·𝑞𝑄,𝑃
𝑜 · 𝑆𝑝3

𝑀,𝑄 · 𝑙𝑝𝑄 is computed by the experiment, and thus,
it is uniformly random due to the uniformity of the real blinding
factor 𝑘𝑍 , the probability that A queries Hsig on 𝑟𝑍 is at most 𝑟𝑉

𝑂 ,
where 𝑍𝑥 is the number of hash queries A makes to Hsig.

Finally, we show that such a user state ust de!nes a valid signa-
ture (𝑟𝑍 ,𝑅𝑍 , 𝑐𝑍 ) and hashes 𝑛𝑍,1, . . . , 𝑛𝑍,𝑊 such that

𝑟𝑍 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑚𝑄,𝑃+𝑙

3
𝑄

𝑜 = 𝑈𝑈𝑄 · 𝑚𝑙𝑄 ,

for all 𝑖,𝑒 ⇐ {0, 1}. We assume A closes both signing sessions
successfully, otherwise, the game outputs (⇔,⇔), and in this case,
A’s advantage is in winning the game is 0. This implies that both
transcripts 𝛴1, and 𝛴2 are valid.

Since the 𝑒-𝑃𝑚 user session outputs a valid signature (𝑟𝑍 ,𝑅𝑍 , 𝑐𝑍 )
and hashes 𝑛𝑍, 𝑜 for all 𝑠 ⇐ [𝑀], it holds that

𝑟𝑍 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑚𝑄,𝑃+𝑙

3
𝑄

𝑜 = 𝑈𝑈𝑄 · 𝑚𝑙𝑄 ,

hence

𝑟𝑍 = 𝑈𝑈𝑄 · 𝑚𝑙𝑄 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
↔𝑚𝑄,𝑃↔𝑙

3
𝑄

𝑜 .

Substituting Equations (7)–(9) into this equation yields

𝑟𝑍 = 𝑈𝑘𝑀,𝑄+𝑝
3
𝑀,𝑄 ·

∑
𝑃 ⇐ [𝑂] 𝑈𝑀,𝑃+𝑝𝑀,𝑄 ·

∑
𝑃 ⇐ [𝑂] 𝑅𝑀,𝑃 · 𝑚𝑝𝑀,𝑄 ·

∑
𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃

·

∏
𝑜⇐ [𝑊]

𝑇𝑒
↔ (𝑚𝑀,𝑃↔𝑞𝑀,𝑄,𝑃 ) ·𝑝3

𝑀,𝑄↔𝑝
3
𝑀,𝑄 · (

∑
𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃 )

3

𝑜 .

We rearrange the equation as

𝑟𝑍 = 𝑈𝑘𝑀,𝑄 · 𝑈𝑝
3
𝑀,𝑄 ·

∑
𝑃 ⇐ [𝑂] 𝑈𝑀,𝑃 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑝3
𝑀,𝑄 · (↔𝑚𝑀,𝑃↔ (

∑
𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃 )

3
)

𝑜 ·

𝑈𝑝𝑀,𝑄 ·
∑

𝑃 ⇐ [𝑂] 𝑅𝑀,𝑃 · 𝑚𝑝𝑀,𝑄 ·
∑

𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃 ·
∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑝𝑀,𝑄 ·𝑞𝑀,𝑃 ,𝑄
𝑜 .

Since 𝛴𝑇 is a valid transcript for all 𝑖 ⇐ {0, 1}, it follows that 𝑆𝑇 ·∏
𝑜⇐ [𝑊] 𝑇𝑒

𝑚 𝑃+(
∑

𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃 )
3

𝑜 =
∏

𝑜⇐ [𝑊] 𝑆𝑇, 𝑜 · 𝑇𝑒
𝑚 𝑃+(

∑
𝑃 ⇐ [𝑂] 𝑙𝑀,𝑃 )

3

𝑜 = 𝑈𝑈𝑀 ,
and 𝑙𝑇 = 𝑈𝑅𝑀 · 𝑚𝑙𝑀 , where 𝑏𝑇 =

∑
𝑜⇐ [𝑊] 𝑏𝑇, 𝑜 ,𝑅𝑇 =

∑
𝑜⇐ [𝑊] 𝑅𝑇, 𝑜 , 𝑐𝑇 =∑

𝑜⇐ [𝑊] 𝑐𝑇, 𝑜 . Consequently, we have

𝑟𝑍 = 𝑈𝑘𝑀,𝑄 · 𝑆
𝑝3
𝑀,𝑄

𝑇 · 𝑙
𝑝𝑀,𝑄
𝑇 ·

∏
𝑜⇐ [𝑊]

𝑇𝑒
𝑞𝑀,𝑃 ,𝑄 ·𝑝3

𝑀,𝑄
𝑜 .

It holds that (𝑟𝑍 ,𝑅𝑍 , 𝑐𝑍 ) = (𝑈𝑘𝑀,𝑄 ·𝑆
𝑝3
𝑀,𝑄

𝑇 ·𝑙
𝑝𝑀,𝑄
𝑇 ·

∏
𝑜⇐ [𝑊] 𝑇𝑒

𝑞𝑀,𝑃 ,𝑄 ·𝑝3
𝑀,𝑄

𝑜 ,

𝑞𝑇,𝑍 ·
∑

𝑜⇐ [𝑊] 𝑅𝑇, 𝑜 , 𝑘𝑇,𝑍 + 𝑞3
𝑇,𝑍

·
∑

𝑜⇐ [𝑊] 𝑐𝑇, 𝑜 + 𝑞𝑇,𝑍 ·
∑

𝑜⇐ [𝑊] 𝑏𝑇, 𝑜 ), and

𝑛𝑍, 𝑜 = Hsig ( ⇒𝑕𝑍 , 𝑇𝑒𝑍, 𝑜 ,𝑈
𝑘𝑀,𝑄 · 𝑆

𝑝3
𝑀,𝑄

𝑇 · 𝑙
𝑝𝑀,𝑄
𝑇 ·

∏
𝑜⇐ [𝑊] 𝑇𝑒

𝑞𝑀,𝑃 ,𝑄 ·𝑝3
𝑀,𝑄

𝑜 ,𝐿𝑍 ),
which concludes the claim. ⊋
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!

"

#

$

P𝑇 (𝑇𝑒𝑇 = 𝑈𝑌𝑍𝑀 , 𝑑𝑒𝑇 ) V( ⇒𝑕 = {𝑇𝑒1, . . . , 𝑇𝑒𝑊})
𝑎𝑇 ,𝑏𝑇 ↓ Z𝑂,𝑅𝑇 ↓ Z↗𝑂
𝑆𝑇 ω 𝑈𝑄𝑀

𝐿𝑀 ,𝑔𝑀
↔↔↔↔↔↔↔↔↔→

Wait for all provers to commit
𝑆 ω

∏
𝑜⇐ [𝑊] 𝑆 𝑜 ,𝑙 ω

∏
𝑜⇐ [𝑊] 𝑙 𝑜

For all 𝑠 ⇐ [𝑀] : 𝑛 𝑜 ↓ Z𝑂
𝑚𝑀 ,{𝑔 𝑃 } 𝑃 ⇐ [𝑂]

↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

𝑅𝑀 ,𝑙𝑀
↔↔↔↔↔↔↔↔↔→

Wait for all provers to send openings for 𝑙𝑇
If ↙𝑖 ⇐ [𝑀] : 𝑙𝑇 ε 𝑈𝑅𝑀 · 𝑚𝑙𝑀 ∝ 𝑅𝑇 = 0:

Abort
𝑅 ω

∑
𝑜⇐ [𝑊] 𝑅 𝑜 ,𝑟 ω 𝑆 · 𝑚𝑙

{ (𝑅 𝑃 ,𝑙 𝑃 ) } 𝑃 ⇐ [𝑂]

↓↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔

If ↙ 𝑠 ⇐ [𝑀] : 𝑙 𝑜 ε 𝑈𝑅 𝑃 · 𝑚𝑙 𝑃 :
Abort

𝑅 ω
∑

𝑜⇐ [𝑊] 𝑅 𝑜
𝑐𝑇 ω 𝑎𝑇 + (𝑛𝑇 + 𝑅3) · 𝑑𝑒𝑇

𝑈𝑀
↔↔↔↔↔↔→

Wait for all provers to respond
𝑐 ω

∑
𝑜⇐ [𝑊] 𝑐 𝑜

If 𝑟 ·
∏

𝑜⇐ [𝑊] 𝑇𝑒
𝑚 𝑃+𝑙3

𝑜 ε 𝑈𝑈 · 𝑚𝑙 :
Abort

Figure 5: Multi-identi!cation scheme mID executed by 𝑀 provers and a veri!er.

E.2 One-More Unforgeability
We present the proof overview here and refer to our full version
for the complete proof.

Proof outline. We prove one-more unforgeability following prior
work [28, 32]. BM_SB is built from a secure multi-ID scheme mID.
It remains to show that the OMMIM security of mID implies the
OMUF security of BM_SB. To this end, we provide a reduction R1
that exploits any algebraic forger A winning Game OMUF against
our BM_SB scheme to win Game OMMIM against mID. However,
for R1 to function properly, it requires a few conditions to hold;
therefore, we !rst prove that these restrictions indeed hold. In

particular, we start by showing that A must make (at least) an Hsig-
query for each valid signature it outputs. As A is algebraic, it must
submit a representation for each group element in its queries toHsig.
This allows R1 to learn the representation for each group element
𝑟 that occurs in the forgeries output by A. We then show that a
speci!c relation must hold between the forgeries A outputs and the
representation of 𝑟 that A submits in the corresponding query to
Hsig. Finally, we provide the reduction R1 that runs GameOMMIM
against mID and uses its challenger’s prover and veri!er oracles
to simulate the signers and the random oracle Hsig, respectively,
for A. When A terminates and outputs 𝑔 + 1 valid signatures, R1
crafts responses to close the veri!er sessions using those signatures,
which allows it to win the game OMMIM.
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