Check for
Updates

Blind Multisignatures for Anonymous Tokens with Decentralized
Issuance

Ioanna Karantaidou®
George Mason University
Fairfax, VA, USA
New York University
New York, NY, USA
ikaranta@gmu.edu

Omar Renawi*
CISPA Helmholtz Center for
Information Security and
Saarland University
Saarbrucken, Germany
omar.renawi@cispa.de

Foteini Baldimtsi
George Mason University
Fairfax, VA, USA
Mysten Labs
New York, NY, USA
foteini@gmu.edu

Nikolaos Kamarinakis Jonathan Katz Julian Loss
University of Maryland Google CISPA Helmbholtz Center for
College Park, MD, USA Washington DC, USA Information Security

Common Prefix University of Maryland Saarbrucken, Germany
Athens, Greece College Park, MD, USA loss@cispa.de
k4m4@umd.edu jkatz2@gmail.com

Abstract

We propose the first constructions of anonymous tokens with de-
centralized issuance. Namely, we consider a dynamic set of sign-
ers/issuers; a user can obtain a token from any subset of the signers,
which is publicly verifiable and unlinkable to the issuance pro-
cess. To realize this new primitive we formalize the notion of blind
multi-signatures (BMS), which allow a user to interact with multi-
ple signers to obtain a (compact) signature; even if all the signers
collude they are unable to link a signature to an interaction with
any of them. We then present two BMS constructions, one based
on BLS signatures and a second based on discrete logarithms with-
out pairings. We prove security of both our constructions in the
Algebraic Group Model. We also provide a proof-of-concept imple-
mentation and show that it has low-cost verification, which is the
most critical operation in blockchain applications.

CCS Concepts

« Security and privacy — Public key (asymmetric) techniques;
Pseudonymity, anonymity and untraceability; « Theory of
computation — Cryptographic protocols.

Keywords
Blind Signatures, Anonymous Tokens, Decentralized Issuance

ACM Reference Format:

Ioanna Karantaidou®, Omar Renawi*, Foteini Baldimtsi, Nikolaos Kamari-
nakis, Jonathan Katz, and Julian Loss. 2024. Blind Multisignatures for Anony-
mous Tokens with Decentralized Issuance . In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS °24),
October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3690364

*Equal Contribution.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690364

This work is licensed under a Creative Commons Attribution-
NoDerivs International 4.0 License.

1508

1 Introduction

In the digital world, authorization plays a foundational role. From
regulating access to online services to ensuring the integrity of
voting systems, effective access-control mechanisms are crucial for
maintaining security and trust. User authorization can be imple-
mented via various methods depending on the application scenario.
Common approaches include using credentials such as usernames
and passwords or relying on third-party services, such as Auth0
or OpenlID, to access user accounts. However, these authentication
methods raise concerns regarding user privacy. Each time a user
logs in, the service learns everything about the user’s activities,
enabling the creation of a full profile of their habits. While this level
of information leakage may be necessary for certain applications,
in many other cases it is desirable to avoid it. Consider, for instance,
a subscription-based news portal. In a privacy-friendly world, the
only thing that the service should learn is whether the user has a
valid subscription to the service or whether the user has an account
and nothing else.

One prominent solution to the problem of anonymous user autho-
rization is anonymous tokens. In a nutshell, an anonymous token
system includes three types of parties: issuers, users, and verifiers.
An issuer provides an anonymous token to a user whose identity
is typically known by the issuer at the time of issuance. The user
can subsequently present the token to a verifier who can authenti-
cate its validity. Anonymous tokens must be both unforgeable and
anonymous, where unforgeability means that a user cannot forge a
token and anonymity guarantees unlinkability between token is-
suance and presentation/verification. Blind signatures are a related
notion; one can view anonymous tokens as blind signatures with no
message. There are a number of blind signatures and anonymous
token schemes with different properties [1, 13, 14, 19, 34, 55], and


https://orcid.org/0000-0002-0517-1656
https://orcid.org/0009-0004-1019-4897
https://orcid.org/0000-0003-3296-5336
https://orcid.org/0009-0009-8114-7445
https://orcid.org/0000-0001-6084-9303
https://orcid.org/0000-0002-7979-3810
https://doi.org/10.1145/3658644.3690364
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3658644.3690364
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690364&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

growing interest in their adoption by companies including Cloud-
fare,! Apple,z, Google,3 and Facebook.* A recent IETF draft ® aims
to standardize anonymous tokens.

Anonymous tokens can support public or private verifiability.
Privately verifiable tokens assume the issuer and the verifier are
the same entity, whereas publicly verifable tokens do not. Public
verifiability is essential for large heterogeneous systems with a large
number of verifiers who do not wish to also serve as token issuers.
For blockchain applications, public verifiability is also necessary so
tokens can be verified on-chain, possibly via a smart contract.

In all existing anonymous token systems, tokens are issued by
a single issuer. This, however, introduces a single point of failure:
if the token issuer is compromised it can issue an arbitrary num-
ber of tokens to unauthorized users. Furthermore, it is important
for certain applications that tokens be issued by multiple issuers
who jointly endorse a credential. Consider for example a tokenized
anonymous-voting application where the governors of a Decentral-
ized Autonomous Organization (DAO) wish to issue anonymous
tokens to external members so they can vote on various issues. The
voting policy may demand that a member is only eligible to vote if
they receive endorsement from a miminum number of governors.
To our knowledge, all prior work that would enable this use-case
relies on heavy machinery such as zero-knowledge proofs, timelock
encryption, or homomorphic encryption [3].

Publicly verifiable tokens with decentralized issuance. Motivated
by this discussion, we propose the concept of publicly verifiable
anonymous tokens with decentralized issuance. That is, we consider
a dynamic set of signers/issuers; a user can obtain a token signed by
any subset of the signers, which is publicly verifiable and unlinkable
to the issuance process. As a building block toward this primitive,
we propose blind multi-signatures (BMS). Multisignatures have the
benefit of allowing for a flexible set of issuers that may change
frequently, and require no-coordination amongst the issuers for
token generation. This can be preferable to primitives like threshold
signatures which require a coordinated Distributed Key Generation
(DKG) protocol to be executed amongst the set of signers/issuers,
and typically assume a static set of signers.

A BMS scheme can directly serve as a publicly verifiable anony-
mous token with decentralized issuance. Users can interact with
each signer separately, collect individual signatures, and then ag-
gregate them to obtain a final signature. As with multisignatures, a
BMS reveals the set of signers who issued the token. For certain ap-
plications, we consider this to be a feature, as different signers may
be responsible for certifying different attributes of a user. Know-
ing the identities of the signers can also enhance credibility of the
tokens. Additionally, it offers some type of “signer accountability”
For instance, if a signer is frequently associated with the issuance
of tokens that are later misused, that signer may be penalized. At
the same time, this raises the valid concern that disclosing the set
of signers results in a reduced anonymity set, as a token is only
unlinkable within the set of tokens that are signed by the same

!https://blog.cloudflare.com/privacy-pass-standard
Zhttps://developer.apple.com/news/?id=huqjyh7k
3https://github.com/google/anonymous-tokens,
https://developers.google.com/privacy-sandbox/protections/private- state-tokens
“https://research.fb.com/privatestats
Shttps://datatracker.ietf.org/wg/privacypass/about/

1509

loanna Karantaidou et al.

group of signers. We note, however, that for many applications this
is not necessarily a problem. For starters, when the total number
of signers is small and the number of users is large, the anonymity
set for each user is likely to remain large. In other cases, the set
of signers required for a valid token may be fixed (even as that set
may change in different epochs); this would be the case in the DAO
voting scenario discussed earlier, where a token is valid only when
signed by the set of all current governors.

1.1 Our Contributions

We now briefly summarize our technical contributions.

Blind multisignatures (BMS). The foundational building block
at the core of our constructions is blind multisignatures (BMS).
Multisignatures enable the computation of a joint signature on a
message m, by a set of n signers, without requiring any coordination
amongst the signers. As already explained, a BMS scheme can
directly serve as a anonymous token scheme with decentralized
issuance. In Section 3 we provide rigorous definitions for blind
multisignatures (BMS) and their corresponding security properties:
blindness and one-more unforgeability (OMUF). We then present
two BMS constructions with different tradeoffs, described next.

BMS based on BLS. In Section 4 we construct BM_BLS, a blind
multisignature based on the Boneh-Lynn-Shacham (BLS) signature
scheme [9]. We prove concurrent security of our construction in the
Algebraic Group and Random Oracle Models (AGM + ROM) based
on the g-dlog assumption. BLS is an efficient signature scheme that
uses pairings and has recently seen adoption in the blockchain
space (i.e., the Chia Network [16], Celo [12], Filecoin, and PoS
Ethereum) due to its efficient support for signature aggregation.
An IETF standardization effort for BLS has been ongoing since
2019 [30]. Blind BLS [7] and BLS multisignatures [8] already ex-
ist in the literature. However, combining them to obtain a blind
multisignature is not trivial. In particular, a significant challenge
is to avoid so-called rogue-key attacks where an adversary breaks
security by choosing a (malformed) public key based on the public
keys of honest parties. Our construction is secure against rogue-
key attacks in the plain public-key model, i.e., there is no need for
signers to prove knowledge of their signing keys. It also supports
public-key aggregation.

A pairing-free BMS. In Section 5 we present BM_SB, a pairing-
free BMS scheme based on the recent threshold blind-signature
scheme Snowblind [18]. We prove concurrent security based on the
discrete-logarithm (dlog) assumption in the AGM. Towards taming
the complexity of this proof, we follow a similar technique as in
recent work [28, 32]. In particular, we first propose a new crypto-
graphic primitive called a multi-identification (mID) scheme and
adapt the security notion to fit our new primitive. Then, we con-
struct a multi-identification scheme and prove its security. Finally,
we show how this implies security of our BMS scheme.

Compared to our BLS-based construction, our second scheme
enjoys more efficient verification (since it avoids pairings) and
has very short signatures regardless of the number of signers. As
opposed to our BLS construction, however, this scheme requires
each (corrupted) signer to submit a proof of possession of its public
key, which in turn prevents public key aggregation.


https://blog.cloudflare.com/privacy-pass-standard
https://developer.apple.com/news/?id=huqjyh7k
https://github.com/google/anonymous-tokens
https://developers.google.com/privacy-sandbox/protections/private-state-tokens
https://research.fb.com/privatestats
https://datatracker.ietf.org/wg/privacypass/about/

Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

Implementation and evaluation. In Section 6, we present a proof-
of-concept Python implementation of our two constructions, and a
generic smart-contract library for verifying our anonymous tokens
on the Ethereum blockchain. We evaluate the efficiency and cost of
our implementations, demonstrating their practicality. Verifying a
token on Ethereum costs about 232K gas for BM_BLS, irrespective
of the number of signers, and about 280K gas for a BM_SB token
issued by 11 signers. As of April 28th, 2024, when the median gas
price was approximately 7.4 gwei [35] and the Ethereum closing
price6 was 3,262.77 USD, this translates to a monetary cost of
~$5.60 and ~$6.76, respectively. Moreover, BM_BLS tokens can be
aggregated, meaning that the verification cost can be amortized
across multiple users. The amortized cost for verifying a batch of
32 or more tokens is around 110K gas, or ~$2.66.

1.2 Related Work

As already noted, although there exist a variety of anonymous
token constructions, none of them supports decentralized issuance.
We discuss two types of related work: (1) blind signatures with
multiple issuers and (2) decentralized anonymous credentials (a
primitve more general than anonymous tokens).

Blind multisignatures and threshold signatures. Blind signatures
with multiple signers can be found in the form of multisignatures
or threshold signatures, with the primary distinction between them
being whether the signers generate their keys independently (mul-
tisignatures) or whether they need to jointly run a protocol to
generate a single public key and individual key shares (threshold
signatures). Some blind multisignature schemes have been sug-
gested in the literature [7, 15, 41, 48, 58], but they all lack rigorous
security analysis. Several constructions of blind threshold signa-
tures exist [2, 18, 33, 36, 38, 56], but as we have noted these all
require coordination between the issuers during key generation
and do not immediately support dynamic signing sets.

Decentralized anonymous credentials. Anonymous credential sys-
tems are typically multi-use, i.e., credentials that encode a set of
attributes are issued once and presented multiple times. Compared
to anonymous tokens, which can be viewed as a single-use creden-
tial without attributes, those schemes are therefore much more
complex and expensive. The problem of decentralized issuance
for anonymous credentials has been addressed using different ap-
proaches which we briefly discuss below. We note, however, that
converting any of these anonymous credential schemes to an effi-
cient anonymous token scheme is non trivial.

A number of decentralized anonymous-credential schemes use
threshold techniques [20, 50, 56, 57]; these all have the drawback
of requiring the issuers to coordinate at the time of key generation
as discussed above. Another recent line of work [29, 45] constructs
decentralised multi-use anonymous credentials from aggregate
signatures with randomizable tags. Finally, some work [26] has
considered decentralized anonymous credentials based on peer-to-
peer anonymous attestation on a bulletin board/blockchain rather
than issuing authorities, a setting quite different from the one we
consider here.

6See https://coinmarketcap.com/currencies/ethereum/historical-data.

1510

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

2 Preliminaries

We let A denote the security parameter. PPT means probabilistic
polynomial time. We let poly (1) be an unspecified polynomial func-
tion of A and negl(1) a negligible function. We let [t] = {1,...,t}.

We use x i D to refer to sampling a uniform element x from D.
We write y «— A9 (x) to denote the randomized output of an al-
gorithm A that takes x as input and has access to an oracle O.
Given a game Game parameterized by an adversary A, the success
probability of A in Game is Advgame (1) := Pr[Gamey4 = true].

2.1 Cryptographic Assumptions
AssUMPTION 1 ([24]). Let G be a cyclic group of order p. The
q-discrete-logarithm assumption holds if for every PPT algorithm A:

x<—Z;

Pr :x" = x| < negl(A).

x—AlgY1=g%....Y :gxq)
Note that the standard discrete-logarithm assumption is just the
1-dlog assumption.

Definition 1 (Bilinear Pairings). Let G1, Gy, Gt be groups of or-
der p. A pairing is an efficiently computable map e : G; XxG, — Gr
such that for all P € G1, Q € Go, and a,b € Z, it holds that
e(P2,0%) = (P2, Q)P = e(P,0P)? = e(P,0)%. If G; = Gy then

we say the pairing is symmetric.

2.2 The Algebraic Group Model (AGM)

The AGM [24] is a formal model for analyzing group-based cryp-
tosystems. In the AGM, the adversary A is assumed to be algebraic.
Roughly, this means that if § = (g1, ..., g¢) are the group elements
A has been given at any point in its execution, then if it outputs
a group element y it also outputs a representation Z such that
y = [lies gl.zi. We stress that group elements A receives from
any oracles it has access to are included in g, and any time A sub-
mits a group element y to one of its oracles it must also output a
representation of y.

2.3 Blind Signatures

A blind signature scheme [14] is an interactive protocol between
a signer and a user that allows the user to obtain a signature that
cannot later be linked to the user by the signer. A blind signature
scheme BS consists of the following algorithms:

e BS.KGen(11) — (sk, pk). Run by a signer to generate keys.

e BS.Sign(U(m, pk), S(sk)) — o. This is an interactive pro-
tocol between a (stateful) signer S with input the secret key
sk and a (stateful) user U with input a message m and the
signer’s public key. U outputs a signature o.

e BS.Ver(pk,m,o) — 0/1. Run by a verifier; outputs 1 iff o is
a valid signature for m under key pk.

Correctness can be formalized in the obvious way. A secure blind
signature scheme should satisfy blindness (i.e., a signature cannot
be linked back to its corresponding signing session, even by the
signer itself) and one-more unforgeability (i.e., an adversarial user ™
making ¢ blind signing queries cannot output £ + 1 valid signatures).
We recall the formal definitions in Appendix A.1.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

2.4 Multi-Signatures

A multi-signature scheme allows a set of signers to each generate a
signature on a message m; those signatures can then be aggregated
to form a compact signature of all the signers on m. Some multi-
signatures also support public-key aggregation which allows for a
compact representation of all the signers’ public keys. Our definition
roughly follows that of Drijvers et al. [21]. For public parameters pp,
a multi-signature scheme MS consists of the following algorithms:

o MS.KGen(pp) — (sk, pk). Run by a signer to obtain a key
pair.

MS.KAgg(Iz) — apk. Given a set of public keys K= {pk,
..., pk, }, outputs an aggregate public key apk.

MS.Sign (sk;,m) — o;. A signer with input’ a secret key
sk; and a message m outputs a signature o;.

MS.Comb(m, {0;}) — o. Individual signatures o; can be
combined into a signature o.

MS.Ver (apk, m, o) — 0/1. Outputs 1 if o is a valid signature
for message m under aggregate key apk.

We recall security definitions for multi-signatures in Appendix A.2.
We remark that one challenge in multi-signature schemes is avoid-
ing rogue-key attacks [27, 37, 39, 42, 44, 47], which can occur when
an attacker uses a public key that is not generated honestly, but
instead depends in some way on an honest signer’s public key. One
way to avoid such attacks is to rely on the so-called knowledge-of-
secret-key (KOSK) model which can be implemented by having each
signer include a zero-knowledge proof of knowledge (aka a proof of
possession) of their secret key along with their public key [7, 42, 52].
Schemes that do not require this extra assumption are said to be in
the plain public-key model [6, 8, 46].

3 Blind Multi-signatures

A blind multi-signature combines the features of both blind and
multi-signature schemes. It resembles a multi-signature in that it is
a signature on a message m signed by multiple signers that verifies
under the set of public keys of the signers K or under an aggregate
key apk if scheme supports key aggregation. It also resembles a
blind signature, as the signing happens in an interactive fashion
between a user U who knows m and a set of signers who should
be unable to link the final signature to the issuance process. Below
we provide a rigorous definition.

For public parameters pp, a blind multi-signature scheme BMS
consists of the following algorithms:

o BMS.KGen(pp) — (sk, pk). Run by a signer to obtain a key
pair.

. BMS.KAgg(Iz) — apk. Outputs an aggregate public key apk
for a set of public keys K= {pky.....pk,}.

e BMS.Sign(U(m, I?), {Si(ski)}ie[n]) — o This is an inter-
active protocol run between a user U and signers Sy, ..., Sy,
where the signers do not directly communicate with each
other. Each signer has only its own secret key as input; U
has a message m and the signers’ public keys K as input, and
outputs a signature o. We assume all keys in K are distinct.

7In some schemes, the signer additionally needs to know K.

1511

loanna Karantaidou et al.

e BMS.Ver(apk, m,o) — 0/1. Outputs 1 if ¢ is a valid signa-
ture on m under aggregate key apk.
Correctness requires that if signers honestly generate keys (sk;, pk;)
and then run o « BMS.Sign (U (m, 12), Si(sk;)), where K= {pk;},
then BMS.Ver(apk, m, o) = 1, where apk = BMS.KAgg(K).

Security. A blind multi-signature should satisfy one-more un-
forgeability and blindness.

Let apk be the aggregated public key for a set of signers, one of
whom is honest. One-more unforgeability requires that an adver-
sarial user U (possibly colluding with all corrupted signers) should
be unable to forge a signature that verifies under apk, unless this
signature came from its interaction with the honest signer. Below
we give the formal definition in the plain public-key model. (In the
KOSK model, the adversary must also output the secret key corre-
sponding to any adversarial public key.) The signing oracle Sign .«
simulates the honest signer’s execution of the signing protocol.

Definition 2 (One-more unforgeability (OMUF)). Given a blind
multi-signature scheme BMS = (KGen, KAgg, Sign, Ver), we define
the game OMUFEMS as follows:

e Setup: The challenger generates a key pair (sk*, pk*) using
BMS.KGen, and gives pk* to A.

e Queries: A may repeatedly query a signing oracle Sign+.

e Output: A outputs a list of tuples (o7, m’lk, 121), e (O’;_H,
mp. I_(}H); let apk; = BMS.KAgg(I?i) for all i. A wins if:
(1) pk* is in each set Ki, (2) BMS.Ver (apk;, m;, o;) = 1forall i,
and (3) the number of completed interactions with Sign .«
is at most ¢. If A wins, the game outputs true.

BMS is one-more unforgeable (OMUF) if for any PPT A,

Advg’jgﬂg(l) = Pr[OMUFE"MS = true] = negl(A1).

Sequential vs. concurrent security. The above models concurrent se-
curity, i.e., the adversary may concurrently run multiple executions
with Signg.+. To model sequential security, Signg+ should not open
a new signing session before the previous one is closed.

The next security property of blind multi-signatures is blindness,
i.e., even the signers themselves should be unable to link a signature
to its corresponding signing session. In the definition we assume
that all signers are colluding and we allow for maliciously generated
keys. In the blindness game the adversary A starts by choosing all
the signers’ public keys as well as two messages to be signed. The
honest user runs two executions of the signing protocol with A and
the given keys, one for each message, in a random order. A is then
given the two resulting signatures and asked to guess the order in
which the two messages were signed. Formally, given blind multi-
signature scheme BMS= (KGen, KAgg, Sign, Ver) let mBIindiMS
be the following game:

Definition 3 (Blindness). The adversary A outputs public keys
K = {pky....,pk,} and messages mg, m1. The challenger picks
b « {0, 1}, and runs two signing sessions as the user U (my, I?),
U(myi_p, I?) while A participates in the signing sessions as the n
signers. If one or both sessions fail to output a (valid) signature, the
game outputs (L, L). Otherwise, if A closes both sessions success-
fully, the game outputs the resulting signatures (o, 01). Eventually,



Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

A outputs a bit b” and wins the game if b’ = b, and in this case, the
game outputs true.
BMS is blind if for any PPT adversary A,

. 1
AdVIENE! (2) = Pr[mBlind ™ = true] = - + negl(2).

4 BLS Blind Multisignatures

In this section we construct a blind multisignature scheme based on
blind BLS signatures. As such, we begin by reviewing the latter. We
also provide a proof of security for the blind BLS signature scheme
in the AGM+ROM,, since this will serve as a useful warmup for our
eventual proof of security for the blind multisignature scheme.

4.1 Blind BLS Signatures

We start by describing the blind BLS signature scheme [7]. For
simplicity, in these sections we present constructions and proofs
using symmetric pairings. Let par = (G, Gr, p, g,e) denote the
system parameters and let H : {0, 1}* — G be a hash function. The
blind BLS scheme consists of the following algorithms:

o KGen(1%) outputs (sk, pk) = (x, X), where x ﬁZp and X =
g° € G.

o Sign(U(m, X), S(sk)) outputs a signature o as per Fig. 1.

e Ver(pk = X, m, 0): Checks whether e(o, g) = e(H(m), X).

Correctness is immediate and blindness holds unconditionally [7].

S(sk =x) U(m, X)
m=H(m)-g rin
§=m* _— . s=sXT

Figure 1: Signing for Blind BLS

Boldyreva [7] showed that blind BLS is one-more unforgeable
under the “chosen-target" CDH assumption (or the one-more static
CDH assumption) in the ROM. In Appendix B, we prove one-more

unforgeability under the g-dlog assumption in the AGM+ROM.

While the two sets of assumptions/models are incomparable, we
note that our proof gives a tighter reduction. As noted earlier, our
main motivation for giving this proof is that it serves as a warmup
for the proof of unforgeability for our blind multisignature scheme
based on blind BLS.

4.2 BLS-Based Blind Multisignatures

We now present our blind multisignature scheme based on blind
BLS, which we denote by BM_BLS. Our main observation is that
we can construct a blind multisignature scheme directly from blind
BLS; that is, the user can interact with each signer exactly as in the
blind BLS scheme, and then combine the signatures it obtains into
a single multisignature using an additional hash function.

Let (G,Gr,p,g,€) and H : {0,1}* — G be as in the previous
section, and let Hygg : {0,1}* — Z}‘, be another hash function.

e BM_BLS.KGen(1%): As in the blind BLS scheme.
e BM_BLS.KAgg(K): Given keys K = {Xj,...,Xpn}, set a; =
Hagg (K. X;) and output apk = [T, X"

1512

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

o BM_BLS.Sign(X (m, K), {Si(ski)}ic[n]): U runs the inter-
active signing protocol with each signer as in Fig. 1, us-
ing independent randomness each time, to obtain partial
signatures {o;}. The final signature is computed as ¢ =
Hie[n] (T?i, where aj Hagg({Xla ce ,Xn}, X,’).

e BM_BLS.Ver(apk, m, 0): Checks if e(o, g) = e(H(m), apk).

To see that correctness holds, note first that
aiX; " = (H(m)g™) ix;™"

:H(m)xigrixig_rixi — H(m)xi

for all i. Thus,
g =e([] o9
i€[n]
e(H(m)Zit %14, g)
e(H(m), g¥icim %)
e(H(m), [ ] %)
i€[n]
e(H(m), [ | (4%
i€[n]
=e(H(m), [ | X
ie[n]

and BM_BLS.Ver outputs 1.

e(H(m),apk),

Discussion. Due of the simple nature of the protocol, U can con-
tact each signer in parallel to obtain the necessary partial signatures.
Moreover, even if some signers are unreachable, ¢ can compute a
multisignature based on the set of signers who respond.

Multisignature aggregation. Multisignatures on multiple, distinct
messages with respect to the same aggregate public key can be
aggregated. For example, given signatures o1 on message m; and
oy on message my, signed by the same set of signers, the aggre-
gate signature o o102 can verified by checking if e(o,g) =
e(H(m1)H(mg2), apk). This also enables more-efficient verification.

Security. Blindness follows by a natural extension of the proof
for blind BLS (cf. Appendix C.1). It is more challenging to prove
one-more unforgeability. We prove the following in Appendix C.2.

THEOREM 4. Assume the discrete logarithm problem is hard, and
model H, Hagg as random oracles. Then BM_BLS is one-more un-
forgeable for all PPT algebraic adversaries.

5 A Pairing-Free Construction

In this section we show an alternate construction of blind multisig-
natures that has the advantage of avoiding pairings. Motivated by
prior work [28], we introduce the concept of multi-identification
schemes with security against a certain form of man-in-the-middle
(MiTM) attacks, and then design such a scheme. Finally, we show
how to use such schemes to construct blind multisignatures.

5.1 Multi-Identification Schemes

Hauck et al. [28] prove OMUF security of blind signature schemes
built from identification schemes by proving one-more man-in-the-
middle (OMMIM) security of the underlying identification scheme.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

loanna Karantaidou et al.

Sipk; = g°,sky)

ai, bi,yi — Zq

A; = g“",Bi = gbi . hYi
com; := Heom (Pki> bi, yi)

Aj,Bi,com;

ci,{Bj.comj}jcin]

UK = {pky,...,pk,}, m)

Forie€ [n]: Bi « Zq4
a,r— Zq

A= HjAj’B:ZSHij
ﬁ:zgr'l_[jpk? bipe’ g
Forie€ [n]:¢; = Hsig(ﬁ,pki,ﬁ, m)
Fori € [n]:¢; ::Ei-a_3+/3i

bi,y;
{bi.yiticin)

If 3i € [n] com; # Heom (i, yi, bi):

Abort
If3i € [n] B; # g% - h¥i:

Abort
Y= 2je[n]Yj
zZi=a;+ (Ci + y3) - sk;

Zj

bi=2bjpy=2jyj2 =27
1 g% # A- [ pk7"Y VB #gb - hY:

Abort
Z=r+d’-z+a-b
y=a-y

Output 0 := (ﬁ, Y,2)

Figure 2: Blind multisignature scheme BM_SB.

We cannot immediately follow their methodology because it is not
clear how to build blind multisignatures from standard identifica-
tion schemes. To address this, we put forth the notion of a multi-
identification scheme (mID). In an mID scheme, a set of provers,
each of which has its own keys (pk,sk), interact with a verifier to
prove knowledge of their secret keys. Intuitively, mID schemes
allow provers to prove themselves to a verifier as a group. Although
not very useful on their own, mID schemes can be used as a tech-
nical tool to build blind multi-signature schemes.

Definition 5 (Multi-identification schemes). For public parameters
pp, an mID scheme is a tuple mID = (mID.KGen, mID.ldfy) where

e mID.KGen(pp): Outputs a pair of keys (sk, pk).

o mID.Idfy(P;, V): This is an interactive protocol between the
verifier V and multiple provers {#;}, in which the provers
do not directly communicate with each other. Each prover
has its own secret key as input, while the verifier has the
public keys of all the provers. The protocol terminates when
“Voutputs 1 (ACCEPT) or 0 (REJECT).

Definition 6 (Correctness). Let mID = (mID.KGen, mID.Idfy) be
an mID scheme with n provers ; and a verifier V. We say that
mID is correct iff for all pp it holds that

Vi € [n] : (sk;) « mID.KGen(pp) b=1l=1

P :
b — mID.Idfy(P; (ski, pk;), V({pky.. ... pk, 1)

1513

We generalize the security notion introduced by Hauck et al. [28]
for mID schemes. Analogous to the standard OMMIM definition,
we assume there is an active man-in-the-middle adversary A be-
tween the provers and the verifier. We also allow A to control all
but one of the provers.

Definition 7 (One-more MiTM (OMMIM) security). Let A be an
adversary and let mID := (mID.KGen, mID.ldfy) be an mID scheme.
Define the game £~-OMMIM as follows:

e Setup. Generate pp and run (sk*, pk*) < mID.KGen(pp).
Give pk* to A.

e Online phase. A interacts (concurrently) with an honest
prover using sk*, and an honest verifier. For the latter, it
must use a set of public keys containing pk™.

e Output. A succeeds if it successfully completes at least £+ 1
verifier sessions (i.e., by making the verifier output 1) but
closes at most ¢ sessions with the honest prover.

We say that mID is £~-OMMIM-secure if any PPT A succeeds with
negligible probability in the above game.

5.2 Constructing a Multi-Identification Scheme
We provide a construction of a multi-ID scheme, inspired by prior
work [18]. The protocol is depicted in Figure 5. Let pp := (G, g, q, h),
where G is a group of prime order g = 2 mod 3 with generator g,



Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

and h € G is a uniform group element. Define the scheme mID =
(mID.KGen, mID.ldfy) as follows:

e mID.KGen(pp): sample sk « Zg, set pk := g°%i, and output

(sk, pk).

o mlID.Idfy works as follows (see Fig. 5):

- mID.Prove;: Sample a;, b;, y; < Zgq and set A; := g% and
B; = gbi - h¥i. Then send (A;, B;).

- mID.Very: After receiving all {(A;, B;)}, choose ¢; « Zq4
for all i and send ¢; and {B;} to the ith prover.

— mlID.Provey: Send (b;, y;).

— mID.Very: After receiving {(b;, y;)} from all provers, abort
if B; # gbi - h¥ for some i. Otherwise, send {b;, y;} to all
provers.

- miD.Proves: Abort if B; # gPi - hYi for some j. Otherwise,
compute y = Zj yj and send z; := a; +b; + (¢; + y3) - skj.

— mID.Vers: After receiving {z;} from all provers, compute
A = [l;Ai, B =[];BiiR = A-By ::32,~ y;, and
z:=3,;zi.Return 1iffg* - hY =R - ]_[ipkfi+y .

To see that correctness holds, note that

R- 1—[ pk;ﬁy = p2jeln Ui . l_[ Aj'Pk§]+y
j€ln] je[n]
- nge[n] aj  pjeln] Ui . nge[n] skj-(cj+y®)

= gLt 4745k (€ +y") | pYjern s
= gZicm % . pY = g% . pY.
We prove the following in Appendix D:

THEOREM 8. Assume the discrete-logarithm problem is hard. Then
mlID is £-OMMIM-secure for all PPT algebraic adversaries.

5.3 A Pairing-Free BMS

In this section, we introduce a pairing-free blind multi-signature
scheme BM_SB. Our scheme is inspired by the blind threshold-
signature scheme Snowblind [18]. For the reader’s convenience,
we illustrate the scheme as an interactive protocol in Figure 2. For
pp = (G, g, g, h) as in the previous section, and for hash functions
Heom : {0,1}* — Zp and Hsjg : {0,1}* — Z,, treated as random
oracles, we define BM_SB as follows:

e BM_SB.KGen(14): As before.

e BM_SB.Sign is an interactive protocol run by a user Usr and

multiple signers. It works as follows (see Figure 2):

- Signy(sk;): Sample aj, b;, y; < Zg, and compute A; = g%,
B = gbi - hY, and com; := Hcom (pk;, bi, yi). Then send
(Ai, Bi, comi).

- Usnp (IZ’ = {pk;}, m): Upon receiving (A;, B, com;) from
all signers, sample a, r « Zq and f; «— Zg for all i, and
compute A = HjAj, B:= ]_[ij, and R = g -A"’3 - B%.
]_[j pk?j'ﬁj. Then for all i compute ¢; = Hsig(l?,pki, R, m)
andc; :=¢j-a”3 +pi. Send c;, {Bj, comj} j to the ith signer.

— Signy: Send b, y;.

- Usry: Upon receiving b, y; from all signers, abort if B; #
g% - hYi or comj # Heom(pkj, bj,y;) for some j. Other-
wise, send {b;,y;}; to all signers.

1514

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

- Signs: Compute y = ¥ y; and z; = a; + (¢ + y°) - ski,
and send z;.
- Usrs: Upon receiving z; from all signers, compute b :=
2jbjy = Xjyj,and z = };z;. Abortif g* # A -
R 3
ijk;ﬁy or B # gb -hY. Compute z == r+a> - z + ab
and § := ay, and output the signature o = (R, 7,2).
o Vrfy(K, m, 0): Parse 1_2, Y,z « o, compute c; :f Hj;g(K,pki,
R, m) for all i, and output 1 ify # 0 andR-]_[ipkfi+y =g*-hY,
and 0 otherwise.
(BM_SB.KAgg is not defined because the scheme does not support
key aggregation, and Vrfy takes the set of keys K= {pky.....pk,}
as input instead of an aggregate key apk.)
To see that correctness holds, note that
gE. Y =gr .ga-b . hﬂ.goﬁz
(¢ - )" - (%17
. (gZiai+(Ci+y3)'Ski)a3

:gr-
:gr.Ba

B* .ga3~z,- a; , (gZi(Ci+y3)'Ski)!Z3

[

:gr-

CAX

a3
(ei+y?)
pee”)
i
3 @ra Bt (Ga)P) o
CAY npki
A
A Tk P T ] ke
; .
_ — =3
=R- npkl@ﬁy ).
i

1
We prove the following in Appendix E.

=gr_Boc

:gr.Bzz

=gr‘Ba

THEOREM 9. For all PPT A, Adv'Blind

nom se() < 1 +negl(2).

THEOREM 10. Assume the discrete logarithm problem is hard, and
model Heom and Hsig as random oracles. Then BM_SB is one-more
unforgeable for all PPT algebraic adversaries in the KOSK model.

6 Evaluation

We present proof-of-concept implementations of BM_BLS and
BM_SB, written in Python. (Code available at https://github.com/
k4m4/bm-poc.) We also implemented a signature-verification smart
contract (in Solidity) for each scheme. For our evaluation, we used
the BN254 elliptic curve (using an EIP-1964 implementation,® with
Rust bindings), which is estimated to provide around 100 bits of
security [53]. We used BN254 for both schemes since, at the time of
writing, it is the only pairing-friendly elliptic curve supported by
Ethereum, but also the only curve over which EC addition and EC
multiplication can be practically performed on an Ethereum smart
contract.

6.1 Implementation Benchmarks

Table 1 shows the sizes of the token (i.e., signature) and the public
keys in the signing set for each scheme. A BM_BLS token o € G

8https://github.com/matter-labs/eip1962


https://github.com/k4m4/bm-poc
https://github.com/k4m4/bm-poc
https://github.com/matter-labs/eip1962

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

is 64 bytes long, while a BM_SB token ¢ = (R, 7,z) € G X ZpXZp
is 128 bytes long. BM_BLS public keys can be aggregated into a
single G1-element that is 64 bytes long, regardless of the number
of signers/issuers. Conversely, BM_SB does not support public-
key aggregation, meaning that all public keys in the signing set
need to be transmitted. Moreover, BM_SB public keys need to be
accompanied by corresponding proofs of possession (not reflected
in the numbers in Table 1).

. Token size Public key size
Construction
Gy | Zp | Bytes || Gy Bytes
BM_BLS 1 0 64 1 64
BM_SB 1 2 128 n 64n

Table 1: Token and public key sizes, assuming n signers.

Table 2 gives the communication costs for issuance. We record
the number of bytes exchanged between the user and a single signer,
expressed as a function of the total number of signers n. The data
transferred from the user to a signer is denoted by U — S, and
S — U represents the data transferred from a signer to the user.

Figure 3 shows the execution times for issuance and verifica-
tion of a single token, averaged over 10 trials. (Measurements were
performed on a 2021 MacBook Pro laptop with a 10-core Apple
M1 Pro processor and 16 GB of RAM.) We use Python co-routines
to simulate communication between the user and signers, hence
latency costs are excluded. Issuance costs account for the user’s cost
plus the cost of all signers. Key aggregation costs are not accounted
for. BM_BLS verification involves just a single pairing check, irre-
spective of number of issuers, while BM_SB verification requires
multiple EC additions and EC multiplications, the amount of which
grows proportionally to the number of issuers. The main bottleneck
for BM_BLS verification is the EC multiplications performed by
the hash-to-curve operations (more details in the next section).

6.2 Smart-Contract Implementation

We envision that blockchain applications can leverage blind mul-
tisignatures to enable a set of signers to issue tokens off-chain that
can then be verified by smart contracts on-chain. An example of
such an application is a DAO with tokenized anonymous voting,
as discussed in the introduction. As such, we also implemented an
Ethereum Solidity smart contract performing token verification for
BM_BLS and BM_SB.

For Ethereum compatibility and efficiency, we use the minSig
approach [4] (reducing signature size at the expense of an increase
in the public-key size). In addition, in our BM_BLS implementation
we switch to asymmetric, Type-3 pairings. This means public keys
are now of the form (X1, X2) = (g7,9;) € G1xGy, as the user needs
X1 to unblind, while verification and key aggregation rely on X,. A

key’s validity needs to be verified by checking e(X1, g2) 2 e(g1,X2).
When moving to the asymmetric setting, we have to use a version
of the AGM for asymmetric pairings [5, 17], and unforgeability will
require the co-qdlog assumption [5].

1515

loanna Karantaidou et al.

Constr. | r U—-S | S—>U Bytes exchanged
G| Zp G | Zp | Per round Total
BMBLS | 1|1 0 |1] 0 128 128
110 n 2 1 32n + 160
BM_SB 210 |n-1]0 2 32n+32 64n + 224
310 0 0 1 32

Table 2: Communication overhead for token issuance, mea-
sured between the user and a single signer, as a function of
the total number of signers n.

For practical on-chain token verification, we use Ethereum’s
BN254 pre-compiled contracts to perform group operations and
asymmetric pairing checks at reduced gas costs [10, 11, 51]. We
adopt the hash-to-curve implementation of Fouque and Tibouchi [23,
31, 49], since the constant-time “hash and pray” alternative is vul-
nerable to a gas griefing attack [40]. Our smart contract maintains
a nullifier D that keeps track of which tokens have been verified;
upon successful verification of a token o, it adds H(o) to D.

In Figure 4, we show the gas costs for verifying a single token
via our smart contract. We exclude the one-time cost of public key
aggregation, but we include the cost of checking whether the token
has already been presented (i.e., checking whether H(o) € D) and
storing the hash of the token in the nullifier. BM_BLS verification
requires 2 pairings and a single hash-to-curve operation; it costs ~
232K gas, irrespective of the number of signers. On the other hand,
the BM_SB verification cost grows with the number of signers n.
Verifying a BM_SB token requires computing n hashes (SHA-256,
in our implementation), n + 2 elliptic-curve additions, and 3n + 2
elliptic-curve multiplications. The cost of verifying a BM_SB token
exceeds that of a BM_BLS token for > 11 signers.

—4— BM_BLS Sign
--+4--- BM BLS.Verify

—— BM SB.Sign
--p-- BM_SB.Verify

—
=

—

Execution time [ms]

,_
<

22 9.3 24 23

Number of issuers

Figure 3: Execution times for issuance and verification of a
single token.



Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

R

BM_BLS.Verify

~s— BM SB.Verify

s
2500 /
2000 ;
3 ’/
e /
% 1500 /
O 1000 J
500 /,
) ) — et 2
0
20 Pk 22 23 ol 5 5

Number of issuers

Figure 4: Ethereum gas cost for token verification, as a func-
tion of the number of signers.

An important benefit of BM_BLS is that it supports aggregation
of tokens that share the same issuer set (as described in Section 4).
This can be used to improve verification costs. Table 3 shows the gas
costs for verifying aggregate tokens issued by the same set of 11 is-
suers. (We use a set of size 11 since that is the threshold at which the
cost of verifying a BM_SB token exceeds that of a BM_BLS token.)
Costs include the fixed transaction base fee (21K gas), hashing to
curve, performing curve additions, multiplications, and pairings,
and checking/maintaining the nullifier; since key aggregation only
needs to be done once, we do not include it in the costs. Note that
verifying more than ~ 260 BM_BLS or ~ 100 BM_SB tokens will
exceed Ethereum’s ~ 30M block gas limit.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Acknowledgements

1. Karantaidou was funded by a Protocol Labs fellowship. O. Re-
nawi and J. Loss were funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) — 507237585. J. Loss
was also funded by the European Union, ERC-2023-STG, Project
ID: 101116713. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the
European Union. Neither the European Union nor the granting
authority can be held responsible for them. F. Baldimtsi was funded
by NSF #2143287.

References

[1] Ghous Amjad, Kevin Yeo, and Moti Yung. 2023. RSA Blind Signatures with Public
Metadata. Available at https://eprint.iacr.org/2023/1199.

[2] Elli Androulaki, Jan Camenisch, Angelo De Caro, Maria Dubovitskaya, Kaoutar
Elkhiyaoui, and Bjorn Tackmann. 2020. Privacy-preserving auditable token
payments in a permissioned blockchain system. In AFT 2020. ACM, 255-267.

[3] Aragon ZK Research (AZKR). 2023. Nouns Private Voting Research Sprint -
Technical Report. https://research.aragon.org/nouns-tech.html.

[4] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Francois Garillot, Jonas Lind-
strom, Ben Riva, Arnab Roy, Alberto Sonnino, Pun Waiwitlikhit, and Joy Wang.
2024. Subset-optimized BLS Multi-signature with Key Aggregation. In Financial
Cryptography 2024. Available at https://eprint.iacr.org/2023/498.

[5] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. 2020. A Classification
of Computational Assumptions in the Algebraic Group Model. In Advances in
Cryptology — CRYPTO 2020, Part I (Lecture Notes in Computer Science, Vol. 12171),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 121-151. https://doi.org/10.1007/978-3-030-56880-1_5

[6] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-
Key model and a general forking lemma. In ACM CCS 2006: 13th Conference
on Computer and Communications Security, Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA,
390-399. https://doi.org/10.1145/1180405.1180453

[7] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind Sig-
natures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography
(Lecture Notes in Computer Science, Vol. 2567), Yvo Desmedt (Ed.). Springer, Heidel-
berg, Germany, Miami, FL, USA, 31-46. https://doi.org/10.1007/3-540-36288-6_3

[8] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures
for Smaller Blockchains. In Advances in Cryptology — ASIACRYPT 2018, Part I
(Lecture Notes in Computer Science, Vol. 11273), Thomas Peyrin and Steven Gal-
braith (Eds.). Springer, Heidelberg, Germany, Brisbane, Queensland, Australia,

BM_BLS.Ver(m) BM_SB.Ver (m)
Num. of Total Amortized Total
tokens
1 232,083 232,083 279,746
2 370,692 185,346 559,492
4 576,120 144,030 1,118,984
8 1,011,144 126,393 2,237,968
16 1,814,572 113,411 4,475,936
32 3,615,310 112,978 8,951,872
64 6,966,217 108,847 17,903,744
128 13,846,324 108,174 35,807,488
256 27,277,340 106,552 71,614,976
512 54,596,438 106,634 143,229,952
1024 110,386,321 107,799 286,459,904

Table 3: Total and amortized gas costs for verifying multiple

tokens issued by the same set of 11 issuers.

Excluding public-key aggregation, verifying an aggregate of ¢
BM_BLS tokens requires 2¢ curve additions, ¢ hash-to-point in-
vocations, and 2 pairings. On the other hand, BM_SB tokens are
not aggregatable, so their verification cost grows linearly with the
number of tokens being verified. The BM_SB token verification
cost also grows with the number of signers, as described earlier.

1516

435-464. https://doi.org/10.1007/978-3-030-03329-3_15

[9] DanBoneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the Weil
Pairing. In Advances in Cryptology — ASIACRYPT 2001 (Lecture Notes in Computer
Science, Vol. 2248), Colin Boyd (Ed.). Springer, Heidelberg, Germany, Gold Coast,
Australia, 514-532. https://doi.org/10.1007/3-540-45682-1_30

[10] Vitalik Buterin and Christian Reitwiessner. 2017. EIP-197: Precompiled contracts
for optimal ate pairing check on the elliptic curve alt_bn128. https://eips.ethereum.
org/EIPS/eip-197.

[11] Antonio Salazar Cardozo and Zachary Williamson. 2018. EIP-1108: Reduce
alt_bn128 precompile gas costs. https://eips.ethereum.org/EIPS/eip-1108.

[12] Celo. 2021. Celo BLS Snarks. https://github.com/celo-org/celo-bls-snark-rs.

[13] Melissa Chase, F. Betiil Durak, and Serge Vaudenay. 2023. Anonymous To-
kens with Stronger Metadata Bit Hiding from Algebraic MACs. In Advances in
Cryptology—Crypto 2023, Part II (LNCS, Vol. 14082). Springer, 418-449. https:
//doi.org/10.1007/978-3-031-38545-2_14

[14] David Chaum. 1983. Blind Signature System. In Advances in Cryptology —
CRYPTO’83, David Chaum (Ed.). Plenum Press, New York, USA, Santa Barbara,
CA, USA, 153.

[15] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. 2003. ID-based multi-proxy
signature and blind multisignature from bilinear pairings. Proc. KIISC 3 (2003),
11-19.

[16] Chia Network. 2022. BLS Signatures. https://github.com/Chia-Network/bls-
signatures.

[17] Geoffroy Couteau and Dominik Hartmann. 2020. Shorter Non-interactive Zero-
Knowledge Arguments and ZAPs for Algebraic Languages. In Advances in Cryp-
tology — CRYPTO 2020, Part III (Lecture Notes in Computer Science, Vol. 12172),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, Germany,
Santa Barbara, CA, USA, 768-798. https://doi.org/10.1007/978-3-030-56877-1_27

[18] Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. 2023. Snowblind: A Threshold Blind Signature in Pairing-Free Groups.
In Advances in Cryptology — CRYPTO 2023, Part I (Lecture Notes in Computer


https://eprint.iacr.org/2023/1199
https://research.aragon.org/nouns-tech.html
https://eprint.iacr.org/2023/498
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/3-540-45682-1_30
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-197
https://eips.ethereum.org/EIPS/eip-1108
https://github.com/celo-org/celo-bls-snark-rs
https://doi.org/10.1007/978-3-031-38545-2_14
https://doi.org/10.1007/978-3-031-38545-2_14
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://doi.org/10.1007/978-3-030-56877-1_27

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

Science, Vol. 14081), Helena Handschuh and Anna Lysyanskaya (Eds.). Springer,
Heidelberg, Germany, Santa Barbara, CA, USA, 710-742. https://doi.org/10.1007/
978-3-031-38557-5_23

Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
PETS 2018, 3 (2018), 164-180. https://doi.org/10.1515/POPETS-2018-0026

[20] Jack Doerner, Yashvanth Kondi, Eysa Lee, Abhi Shelat, and LaKyah Tyner. 2023.

Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance.
Available at https://eprint.iacr.org/2023/602.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gre-
gory Neven, and Igors Stepanovs. 2019. On the Security of Two-Round Multi-
Signatures. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, San Francisco, CA, USA, 1084-1101. https://doi.org/10.1109/SP.
2019.00050

Marc Fischlin. 2006. Round-Optimal Composable Blind Signatures in the Common
Reference String Model. In Advances in Cryptology — CRYPTO 2006 (Lecture
Notes in Computer Science, Vol. 4117), Cynthia Dwork (Ed.). Springer, Heidelberg,
Germany, Santa Barbara, CA, USA, 60-77. https://doi.org/10.1007/11818175_4
Pierre-Alain Fouque and Mehdi Tibouchi. 2012. Indifferentiable Hashing to
Barreto—Naehrig Curves. In LatinCrypt 2012 (LNCS). Springer, 1-17.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group Model
and its Applications. In Advances in Cryptology — CRYPTO 2018, Part I (Lecture
Notes in Computer Science, Vol. 10992), Hovav Shacham and Alexandra Boldyreva
(Eds.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 33-62. https:
//doi.org/10.1007/978-3-319-96881-0_2

Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. 2020. Blind Schnorr
Signatures and Signed ElGamal Encryption in the Algebraic Group Model. In
Advances in Cryptology — EUROCRYPT 2020, Part II (Lecture Notes in Computer
Science, Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg,
Germany, Zagreb, Croatia, 63-95. https://doi.org/10.1007/978-3-030-45724-2_3
Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-
mous Credentials. In ISOC Network and Distributed System Security Symposium —
NDSS 2014. The Internet Society, San Diego, CA, USA.

Lein Harn. 1994. Group-oriented (t, n) threshold digital signature scheme and
digital multisignature. IEE Proc. Computers and Digital Techniques 141, 5 (1994),
307-313.

Eduard Hauck, Eike Kiltz, and Julian Loss. 2019. A Modular Treatment of Blind
Signatures from Identification Schemes. In Advances in Cryptology — EURO-
CRYPT 2019, Part IIl (Lecture Notes in Computer Science, Vol. 11478), Yuval Ishai
and Vincent Rijmen (Eds.). Springer, Heidelberg, Germany, Darmstadt, Germany,
345-375. https://doi.org/10.1007/978-3-030-17659-4_12

Chloé Hébant and David Pointcheval. 2022. Traceable Constant-Size Multi-
authority Credentials. In SCN 2022 (LNCS, Vol. 13409). Springer, 411-434.

IETF. 2019. IETF BLS Signature Scheme. https://datatracker.ietf.org/doc/draft-
boneh-bls-signature/.

IETF. 2022. IETF Hashing to Elliptic Curves. https://datatracker.ietf.org/doc/draft-
irtf-cfrg-hash-to-curve/.

Julia Kastner, Julian Loss, and Omar Renawi. 2023. Concurrent Security of
Anonymous Credentials Light, Revisited. In ACM CCS 2023. ACM, 45-59.

Jinho Kim, Kwangjo Kim, and Chulsoo Lee. 2002. An Efficient and Provably
Secure Threshold Blind Signature. In ICISC 01: 4th International Conference on
Information Security and Cryptology (Lecture Notes in Computer Science, Vol. 2288),
Kwangjo Kim (Ed.). Springer, Heidelberg, Germany, Seoul, Korea, 318-327.

Ben Kreuter, Tancréde Lepoint, Michele Orrii, and Mariana Raykova. 2020. Anony-
mous Tokens with Private Metadata Bit. In Advances in Cryptology—Crypto 2020,
Part I (LNCS, Vol. 12170). Springer, 308-336.

Alex Kroeger. 2023. Gas Prices Dashboard. https://dune.com/kroeger0x/gas-
prices.

Veronika Kuchta and Mark Manulis. 2014. Rerandomizable threshold blind
signatures. In International Conference on Trusted Systems. Springer, 70-89.
Susan K. Langford. 1996. Weakness in Some Threshold Cryptosystems. In Ad-
vances in Cryptology — CRYPTO’96 (Lecture Notes in Computer Science, Vol. 1109),
Neal Koblitz (Ed.). Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 74-82.
https://doi.org/10.1007/3-540-68697-5_6

Chin-Laung Lei, Wen-Shenq Juang, and Pei-Ling Yu. 2002. Provably secure blind
threshold signatures based on discrete logarithm. Journal of Information Science
and Engineering 18, 1 (2002), 23-39.

Chuan-Ming Li, Tzonelih Hwang, and Narn-Yih Lee. 1995.  Threshold-
Multisignature Schemes where Suspected Forgery Implies Traceability of Ad-
versarial Shareholders. In Advances in Cryptology — EUROCRYPT 94 (Lecture
Notes in Computer Science, Vol. 950), Alfredo De Santis (Ed.). Springer, Heidelberg,
Germany, Perugia, Italy, 194-204. https://doi.org/10.1007/BFb0053435

Chih Cheng Liang and Kobi Gurkan. 2020. Non-constant time hash to point
attack vector. https://github.com/thehubbleproject/hubble-contracts/issues/171.
Accessed: 2024-04-26.

Rongxing Lu, Zhenfu Cao, and Yuan Zhou. 2005. Proxy blind multi-signature
scheme without a secure channel. Applied mathematics and computation 164, 1
(2005), 179-187.

[42

[43

(44

[45

[46]

[47

[49

(50

[51

[52

o
&

[54

[55

‘o
o

(57]

(58]

A

loanna Karantaidou et al.

Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. 2006.
Sequential Aggregate Signatures and Multisignatures Without Random Oracles.
In Advances in Cryptology — EUROCRYPT 2006 (Lecture Notes in Computer Science,
Vol. 4004), Serge Vaudenay (Ed.). Springer, Heidelberg, Germany, St. Petersburg,
Russia, 465-485. https://doi.org/10.1007/11761679_28

Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. 2018.
Simple Schnorr Multi-Signatures with Applications to Bitcoin. Cryptology ePrint
Archive, Report 2018/068. https://eprint.iacr.org/2018/068.

Markus Michels and Patrick Horster. 1996. On the Risk of Disruption in Sev-
eral Multiparty Signature Schemes. In Advances in Cryptology — ASITACRYPT 96
(Lecture Notes in Computer Science, Vol. 1163), Kwangjo Kim and Tsutomu
Matsumoto (Eds.). Springer, Heidelberg, Germany, Kyongju, Korea, 334-345.
https://doi.org/10.1007/BFb0034859

Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig.
2023. Aggregate Signatures with Versatile Randomization and Issuer-Hiding
Multi-Authority Anonymous Credentials. In ACM CCS 2023. ACM, 30-44.
Jonas Nick, Tim Ruffing, and Yannick Seurin. 2021. MuSig2: Simple Two-Round
Schnorr Multi-signatures. In Advances in Cryptology — CRYPTO 2021, Part I
(Lecture Notes in Computer Science, Vol. 12825), Tal Malkin and Chris Peikert
(Eds.). Springer, Heidelberg, Germany, Virtual Event, 189-221. https://doi.org/
10.1007/978-3-030-84242-0_8

Kazuo Ohta and Tatsuaki Okamoto. 1999. Multi-signature schemes secure against
active insider attacks. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences 82, 1 (1999), 21-31.

H Petersen, P Horster, and M Michels. 1995. Blind multisignature schemes and
their relevance to electronic voting. In 11th Annual Computer Security Applications
Conference. IEEE, 149-155.

Hubble Project. 2020. Hubble Project Solidity BLS Implementation. https://github.
com/thehubbleproject/hubble-contracts/blob/master/contracts/libs/BLS.sol.
Deevashwer Rathee, Guru Vamsi Policharla, Tiancheng Xie, Ryan Cottone, and
Dawn Song. 2023. ZEBRA: SNARK-based Anonymous Credentials for Practical,
Private and Accountable On-chain Access Control. Available at https://eprint.
iacr.org/2022/1286.

Christian Reitwiessner. 2017. EIP-196: Precompiled contracts for addition and
scalar multiplication on the elliptic curve alt_bn128. https://eips.ethereum.org/
EIPS/eip-196.

Thomas Ristenpart and Scott Yilek. 2007. The Power of Proofs-of-Possession:
Securing Multiparty Signatures against Rogue-Key Attacks. In Advances in
Cryptology — EUROCRYPT 2007 (Lecture Notes in Computer Science, Vol. 4515),
Moni Naor (Ed.). Springer, Heidelberg, Germany, Barcelona, Spain, 228-245.
https://doi.org/10.1007/978-3-540-72540-4_13

Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S. Wahby. 2020.
Pairing-Friendly Curves. Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-07.
Internet Engineering Task Force. https://datatracker.ietf.org/doc/draft-irtf-cfrg-
pairing-friendly-curves/07/

Claus-Peter Schnorr. 2001. Security of Blind Discrete Log Signatures against
Interactive Attacks. In ICICS 01: 3rd International Conference on Information and
Communication Security (Lecture Notes in Computer Science, Vol. 2229), Sihan Qing,
Tatsuaki Okamoto, and Jianying Zhou (Eds.). Springer, Heidelberg, Germany,
Xian, China, 1-12.

Tjerand Silde and Martin Strand. 2022. Anonymous Tokens with Public Metadata
and Applications to Private Contact Tracing. In Financial Cryptography 2022
(LNCS, Vol. 13411). Springer, 179-199.

Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and George
Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Credentials
with Applications to Distributed Ledgers. In NDSS 2019. The Internet Society.
Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy Gueta,
Benny Pinkas, and Avishay Yanai. 2022. Utt: Decentralized ecash with accountable
privacy. Available at https://eprint.iacr.org/2022/452.

Raylin Tso, Zi-Yuan Liu, and Yi-Fan Tseng. 2019. Identity-based blind multisigna-
ture from lattices. IEEE Access 7 (2019), 182916-182923.

Cryptographic Definitions

A.1 Blind Signatures

Definition 11 (Correctness). A blind signature scheme is correct
if for BS.Sign (U (m, pk), S(sk)) — o, then BS.Ver (pk, m, o) =1
with overwhelming probability.

For one-more unforgeability, the adversary is the user U that
has to forge a signature on pk* that did not come out of its inter-
actions with signer that holds the secret to pk*. The the one-more
unforgeability game goes as follows: The challenger is going to fix
the honest signer key pair (sk*, pk*) and respond to the adversary’s


https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1007/978-3-031-38557-5_23
https://doi.org/10.1515/POPETS-2018-0026
https://eprint.iacr.org/2023/602
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/11818175_4
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/978-3-030-17659-4_12
https://datatracker.ietf.org/doc/draft-boneh-bls-signature/
https://datatracker.ietf.org/doc/draft-boneh-bls-signature/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://dune.com/kroeger0x/gas-prices
https://dune.com/kroeger0x/gas-prices
https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/BFb0053435
https://github.com/thehubbleproject/hubble-contracts/issues/171
https://doi.org/10.1007/11761679_28
https://eprint.iacr.org/2018/068
https://doi.org/10.1007/BFb0034859
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://github.com/thehubbleproject/hubble-contracts/blob/master/contracts/libs/BLS.sol
https://github.com/thehubbleproject/hubble-contracts/blob/master/contracts/libs/BLS.sol
https://eprint.iacr.org/2022/1286
https://eprint.iacr.org/2022/1286
https://eips.ethereum.org/EIPS/eip-196
https://eips.ethereum.org/EIPS/eip-196
https://doi.org/10.1007/978-3-540-72540-4_13
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/07/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/07/
https://eprint.iacr.org/2022/452

Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

(A) signing queries with signatures on messages of the A’s choice.
After g complete signing sessions during query phase, A has to
submit g + 1 signatures on distinct messages during the forgery
phase. If all signatures verify correctly, it means that a forgery has
happened and A wins the game. Since the challenger cannot test
whether a message was signed during the query phase (because of
blindness), when the number of submitted signatures during the
forgery exceeds the number of signatures seen during the query
phase, a forgery took place.

Below we give the formal one-more unforgeability definition.
We first define the signing oracle Sign .

Signg+: Its functionality is similar to the oracle defined for multi-
signatures in Section A.2. It simulates the honest signer’s execution
of BS.Sign ( S(sk™)) and it outputs some intermediate value that
can be used to compute the final signature.

Definition 12 (One-More Unforgeability). For a blind signature
scheme BS, let game OMUFES be the following game:

o Setup: The challenger generates the parameters and a key
pair (sk*, pk™). It runs the adversary A(par, pk™).

e Queries: A interacts with the signing oracle Sign» (k™).
e OQutput: A submits a tuple of forgeries (O'i‘, m’f), (GZ,‘H,

my, ) and wins if BS.Ver( pk*, m; , 0;) = 1Vi € [£+ 1] and
the number of valid signatures received from its interaction
with the challenger during the Query phase is not more than
¢.If A wins, the game outputs true.
Then BS is one-more unforgeable (OMUF) if for any probabilistic
polynomial time adversary A,

AdvRIT (1) = PrIOMUFS® = true] = negl(1)

The second security property of blind signatures is that of blind-
ness, i.e. the signer or a third party looking at a signing transcript
cannot link a signature to its corresponding signing session.

The idea of the blindness game is the following: The adversarial
entity A is the signer. In the malicious signer model [22], a key
pair (sk, pk) and two messages are picked by the signer A. The
challenger of the blindness game can interact with A and outputs
two signatures. The signatures correspond to the messages picked
by A and A is allowed to keep the transcripts of the signing ses-
sions. In order to win the game, A has to link each transcript to its
corresponding message/signature.

Below we give the formal blindness definition.

Definition 13 (Blindness). Given a blind signature scheme BS =
(KGen, Sign, Ver) let game BIindE\S be the following game:

The adversary A picks a pair of keys (sk, pk) and messages my,
mj1. The challenger picks b € {0, 1} and runs two signing sessions
as the user. A participates in the signing sessions as the signer S
and is given back oy, o1 by the challenger. A has to output a bit b’,
and wins if b’ = b. If A wins, the game outputs true.

BS is blind if for any probabilistic polynomial time adversary A,

. 1
Advi 55! (2) := Pr[Blind}® = true] < - + negl(2).

A.2 Multi-Signatures

We define the security model for multi-signatures that support key
aggregation.

1518

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Security Model. A multi-signature should satisfy the properties
of correctness and unforgeability (i.e. an adversarial user should
not be able to forge a signature that verifies under apk for a set of
signers where at least one signer is honest).

We start with correctness for multi-signatures, which guarantees
that if all signers participate honestly, then the final signature will
verify under the aggregate key computed on their public keys.

Definition 14 (Correctness). A multi-signature scheme is correct
if for every n, i € [n], (sk;, pk;) < MS.KGen(1*) and for every
m, if all signers with public keys in K participate in the interactive
MS.Sign then the output is a signature o such that MS.Ver (apk, m,
o) = 1 with overwhelming probability for apk = MS.KAgg ().

For unforgeability, even if an adversary has corrupted all but one
signer with public key pk*, the adversary should still not be able to
forge a signature that verifies under an apk that includes pk™. The
honest keys (sk*, pk*) are generated and stored by the challenger.
The unforgeability adversary can query on messages of its choice
and see signatures under {pk*} or its supersets. In order for the
adversary to win, it has to submit a forgery on a new message m*
signed by a set of public keys that includes pk™.

Below we give the formal unforgeability definition. The signing
oracle Signg~ simulates one signer running algorithm Sign. It takes
as input the parameters par, the signer’s secret key sk* and the
message m. For concurrent security, the oracle runs many open
sessions, each one identified by its session number, whereas in the
sequential setting, the oracle returns only messages for the current
open session and will not initiate a new one before this is complete.

Definition 15 (Unforgeability). For multisignature scheme MS,
let EU F—CMAX‘S be the following game:

e Setup: The challenger generates a key pair (sk*, pk*) for
the honest signer. It runs the adversary A(par, pk™).

e Queries: A picks amessage m and queries the signing oracle
Signgs (sk".) This step can be repeated multiple times for
different inputs m.

e Output: Aoutputs o*, m*,K = {pky, ..., pk,} and succeeds
if pk* € K, no signing queries were made on m™, and

MS.Ver (KAgg(K), m*, *) = 1.

MS is EUF-CMA-secure (existentially unforgeable under chosen-
message attacks) if for any PPT adversary A,

AdvEREMA(R) = Pr[EUF-CMANS = true] = negl(2)

A stronger adversary. A stronger definition for unforgeability
requires the keys set K to be known to the signers and the adversary
A has never queried Signg+ (sk"m"K") ' \where K* was used in the
adversary’s forgery. It is satisfied by Schnorr-based multi-signature
schemes [43, 46]. In these schemes, the set of signers is embedded
in the signature share and cannot be easily changed.

A.3 The ROS Problem

Definition 16 (Random Inhomogeneities in an Overdetermined Sys-
tem of Linear Equations (ROS) [25, 54]). Let G be a group of prime
order g with generator g. For a positive integer £ € Z*, an adversary
A, a hash function Hyg : Zg x Q — Zg modeled as a random oracle
for an arbitrary set Q, define the game £-ROS as follows.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

o Setup. Ais executed with g and ¢ as input, and it gets oracle
access to Hyos.

e Online phase. The game simulates the oracle Hqs for Aand
responds to its queries.

e Output. The game outputs 1 iff Aterminates and outputs (i)
pair-wise distinct tuples (py, auxy), ..., (Pr+1, auxes1), and
(ii) (c1,...,cp) € Zé, such that for all i € [£ + 1] the equality

Z PijCj= Hros (Pi» aux;).
Jjelt]

B Unforgeability of Blind BLS

THEOREM 17. Given an algebraic adversary A making g—1 parallel
signing queries and Q random oracle queries against the blind BLS
scheme, there is a PPT algorithm that breaks q-dlog in the ROM with
probability at least (— - —) Advgié‘tJSF(/l)

Proof overview. Our proof involves two possible strategies on the
challenger side, one of them is picked at random in the beginning:
the secret x is either embedded in the random oracle’s responses
or in the honest signer’s public key, the adversary A is unaware

of the strategy used and unable to plan their attack accordingly.

A successful forgery results in solving for x and in the first case
reduces to the discrete logarithm problem and in the second case
to the g-dlog problem with overwhelming probability. To picture
why, in the second case, g — 1 queries to the signing oracle are using
q powers of the unknown x in the exponent. We use the AGM to
exctract q equations from the forgery and we show that not all
equations are trivial. Our reduction uses the g-dlog instance to
simulate q — 1 signing queries. The scheme’s unforgeability overall
relies on g-dlog assumption as the problem’s hardness also implies
the discrete logarithm assumption and covers both strategies.

Proor. For simplicity we focus first on the case where ¢ = 2.

So we have an adversary A who makes a single signing query and

then outputs two forgeries. Let X = g* be the signing public key.

Let hq,..., hQ be the responses A receives to its random-oracle

queries. Let m; denote the query A makes to the signing oracle.

Note that A must also provide a representation of m; with respect
to ¢, X, hy,. ..,hQ, somy = g"’Xﬁ nie[QJ h
In response to the signing query, A receives 57 = my. When

A outputs its forgeries (m1, 01) and (my, 02), we assume w.l.o.g.

that mj, mp were queried to the random oracle, and arrange the
indices so that H(my) = h; and H(my) = hy. If these are valid
forgeries then o = h}‘ for j = 1, 2. Note further that A must provide

representations of oy, 03, say o = g“J'X'BJ' (I_IiE[Q] hi/i’j) -Efj, for

j =1,2. Thus,
h;-C:O'j = ganﬁj (nhi/lj)glaj
i

— glljgﬁjx (l_[ h{i,j) .mfj-x
i
5j-x
999"~ (l_[ h,-yi’j) (gagﬁ “T] hiy") (1)

1 1

loanna Karantaidou et al.

or, by some algebra:

A I USRS @)

for j = 1,2, where ﬂ; ﬁ;’ N ; are efficiently computable.

There are now two cases: either for some j, i the exponent of
h; in the jth equation (i.e., yi; + Yi/,jx) is non-zero, or for all j, i
the exponent of h; in the jth equation is zero. If A succeeds with
probability e, then either the first or second case must happen with
probability at least €/2.

Assume the first case happens with probability at least €/2. We
can use this to solve the discrete-logarithm problem with probability
at least €/2 — 1/p as follows. Given Y, set the public key to X = g*
for known, uniform x € Z,,. For the ith hash query, program the
response to be h; = ¢g*Y"i for uniform s;,r; € Z;. (If h; = 1 for
some i then we can solve for log, Y directly, so we assume this
does not happen in what follows.) Since x is known, queries to
the signing oracle can be answered easily. If A forges and the first
case happens then, except with probability 1/p, we get an equation
of the form gAYB = 1 with A, B known and B # 0, which allows
us to solve for log, Y. To see this is the case, note that all the
exponents in (2) are known, and so we have an equation of the
form g? - []; (g% Y"1)bi = ga+Zibisi . yXibiri — 1, with a and the
{bi} known, and at least one of the {b;} non-zero. Letting i be the
largest index for which b; is non-zero and viewing {b;} j<; as fixed,
note that r; is uniform from A’s point of view and there is at most
one non-zero value of b; for which }}; b;r; = 0. This concludes the
analysis of the first case.

Before continuing, we analyze (2) in more detail. Assume we are
in the second case, so for all j,i we have y; j + ylf’jx = 0. Call an
equation of this form trivial if ylf, ;=0 (which implies y; j = 0). We
claim that it is not possible for all equations to be trivial. To see
this, note that (using equation (1))

; 1) j Vi i£]
Yij_{ 5]'-)/1'—1 i=j.
Thus, all equations are trivial only if 81, da, y1, y2 are such that

61-(r1, 12) (1, 0)
62-(y1, y2) = (0, 1).
But since the vector (y1,y2) € Zf, spans a vector space of dimension
at most 1, this is impossible.
Returning to the main proof, assume the second case happens
with probability at least €/2; we use this to solve the 2-dlog as-

sumption with probability at least €/2. Given Y; = ¢*, Y, = gxz,
we set the public key equal to X = Y; and program h; = g™
(for uniform r; € Z;‘,) for all i. When A makes signing query
m = ¢?XP [1; hl, we answer it with 51 = Y Yzﬁ [1;Y,"". When
A outputs its forgeries, we derive equations as in (2), e.g.,

aJYﬁ ﬁ l_[grlY‘/YlY”=

for j = 1,2, where y; j, yl. . are efficiently computable. Since we are

in the second case, we know that g/ Y, i =1forall i, j. As we

have shown above, it is not possible for all equations to be trivial;
thus, for some i, j it must hold that ylf j # 0. We can use any such



Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

non-trivial equation to solve for x = logg Y:. This completes the
proof when g = 2.

We sketch how to extend the above argument for arbitrary g > 2.
The key thing that changes is that now A’s queries to the signing
oracle can also depend on answers to previous signing queries.
Thus, in general, when A makes its jth query m; to the signing
oracle it now provides a representation in terms of g, X, {hi};c[ 0]
and {5;}i<j. However, it is easy to show by induction that this
allows derivation of a representation of the form

S B xk Zj;l Yijk X<
g k_oﬁ],k EI l_[ hi k=0 T5J
i€[Q]

where the {; 1} and {y; j 1 } are efficiently computable. Thus, the
analogue of (2) for the q forgeries output by A becomes

DRSPS
k 0 ]kx 1—[ h k=0 7i,jk
i€[Q]
.,q, where the {ﬂ; ot and {yl.j i} are efficiently com-

©)

mj =

©

forj=1,..
putable. As before, we have two cases: either for some j, i the expo-
nent of h; in the jth equation is non-zero, or for all j, i the expo-
nent of h; in the jth equation is zero. A reduction to the discrete-
logarithm problem in the first case is the same as before, so we
focus on the second case.

As before, in the second case we have ZZ;; ylfj k
all j, i, and we call an equation of this form trivzfa’l if ylf, =

k = 0 for
0.
We again claim that it is impossible for all equations to be trivial.
Indeed, define the vectors y; = (y1j1,-..,¥qj1) € ZZ for j
1,...,q — 1, where ¥; corresponds to the vector of exponents of
hy, ..., hq for the jth signing query of A. Then all equations can be
trivial only if there exist 61,1, ..., dq,4-1 such that 2?:_11 8ij - )7]. =
ej € Zg, fori=1,...,q, where e; is the vector that is 1 at position i
and 0 everywhere else. But since the {¥;} span a vector space of
dimension at most g — 1, and the {e;} are q linearly independent
vectors, this is clearly impossible.

With this in place, we now show how to solve the g-dlog assump-
tion when the second case happens with probability at least €/2.
Given Y1 =g%,..., Yy = 7, we set the public key equal to X = Y;
and program h; = g%, where r; € Z, is uniform. When A makes its

Jjth signing query as in (3), we answer it with

rl Yijk
We have Hk 0 k+1 Tliero Hk —0 Yer1 »q-L
When A outputs its forgerles we derive equations as in (4) and find
=0 and y{j 1 # 0. We then use that

]

forj=1,..

i, j for which Zk 0 Yl]k

equation to solve for x.

C Proofs for BM_BLS

C.1 Blindness
We show:

THEOREM 18. BM_BLS is unconditionally blind.

ProoOF. Let A be an adversary controlling n signers, picking two
messages mg, my, and playing the game of Definition 3. At the end

of the game, A holds two transcripts ;= {ﬁll’, e ﬁz, §l1’, ooy Sp}
and t;_p= {ﬁ%_b, _}l b 3} b, §,11_b} and signatures oy, 07.
All elements in tp, t;_p, are independent from mg, m1, 0p, 01. O

1520

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

C.2 One-More Unforgeability of BM_BLS

We sketch a proof of Theorem 4 based on the proof of Theorem 17.
Proor. A’s output forgery consists of (my, o1, I?l), e, (mq, ags
I?q). Let X = g* be the public key of the honest signer, given to A.
For the forgery to be valid, X will be included in all key sets K1,
. I%q. Let hq, ..., hQ be the responses A receives to its random-
oracle queries. Let m; be the jth query to the signing oracle and
5j the output. Together with mj, A provides a representation in
terms of g, X, {hi}ic|g], and {3i}i<j, ie. all the group elements
given so far, including previous signing queries. For every element
Z submitted in the forgery (Z €{oj} for j € [q], or Z €{Xj+},
Xjt € I?j and for t € [|I?J|]), it also provides a representation in
terms of g, X, {hi}ic[0), and {3i}ic[g-1]- Z can also be written in

ok
the following form Z = gzz=0 Bix 5~ [Ticrog hzk o Vark

the {f; r} and {y; j x} are efficiently computable
When A outputs its forgery, we assume it has queried the random

where

oracle Hyagg for every element in K j that outputs an element a; ; in
Z;‘,. Without loss of generality, we assume that the honest signer’s

key appears first in every set I?j, Xj,1 = X. We also assume w.lo.g.
that mq, ..., mq were queried to the random-oracle H, and arrange
the indices so that H(m1) = hy, ..., H(mg) = h
From the validity of the signatures it holds that
ajix+; aj(logy Xj+¥ e (o) logy, Xjit)

oj=h j ' (5)
for j € [q],i € [Q] and t € [|K;|]. Since all 6}, X;; have the
form of Z, we can efficiently move all terms in one side, group the
exponents and derive an equation of the form

, q ’ k
PRSI [1 i sy
i€[Q]

.,q, where {'B;‘,k’

As before, we have two cases: either for some j, i the exponent of
h; in the jth equation is non-zero, or for all j, i the exponent of h; in
the jth equation is zero. If A succeeds with probability €, then either
the first or second case must happen with probability at least €/2.
When the second case happens, we derive 61 1, ..., 5q,q,1 such that

e .,q, where y; corresponds

(6)

forj=1,.. ylfj k} are efficiently computable.

j:_115i,j . )7]' =e € ZZ fori =1,..
to the vector of exponents of Ay, ..., hq for the jth signing query
of A. ¢; = 0 happens when the adversary outputs a signature o;
such that the exponent of h; in (5) has the linear term in x equal
to zero. Since A does not control the outputs a@; = (ain, .-, ai,lkil)
of Hagg, this happens with probability Q/p. From the union bound,
the probability that one e; is the zero vector is less than q-Q/p. With
probability at least €/2—q-Q/p, the 2nd case happens and e, . . ., eq
are non-zero vectors. Then, a reduction to the g-dlog problem is
the same as before.

We now focus on the first case. When we handle case one the
secret key x is picked and known and it holds that the exponent of
at least one hash query in Equation 6 is non-zero. We again program
the response for the ith hash query to be h; = g% Y"? for uniform
SisTi € Z;; and from (6), get an equation of the form g4YB = 1 with
A, B known and B # 0, except with probability 1/p.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA.

We can derive an equation g4YB! (YZ)BZ
dratic equation for log, Y

= 1 and solve a qua-
m]

D One-More MitM Security of mID

In this section, we provide a proof overview of Theorem 8 and refer
to the full version of our paper for the complete proof.

Proof overview. We follow the framework used to prove the
OMUF security of BS54 [18]. In particular, we show that in or-
der for an adversary to win Game £-OMMIM against mID, it must
either win Game £-ROS for ¢ = 1 (see Def. 16), which is shown
to be information-theoretically hard in [25], or it must solve the
dlog problem. To this end, we proceed via a series of games to rule
out bad events regarding the algebraic representation of the group
elements submitted by the algebraic adversary A upon Ver; queries.
In Gamey, we show that A cannot use pk; in the representation
of the group element B, because otherwise, this is equivalent to
solving dlog,pk. Then, in Game, we show that A cannot use the
group elements h and pk; in the representations of the public keys
of the corrupted provers pk; for 2 < k < n.If h or pk; occur in the
representation of any pky., a reduction wins the dlog game. Next,
we show in Games that using the group element A ;4 of a prover
session pid in the representation of R,;; of a successful verifier
session vid forces A to make a Proves query for the session pid,
otherwise a reduction can win the dlog game. Then, we show in
Gamey that the value y,;4 at the verifier side of successful verifier
sessions must satisfy a certain equation; otherwise, a reduction can
win the dlog game. Finally, in Games 5-8, we show that a reduction
wins the dlog game unless A can solve the 1-ROS problem.

E Proofs for BM_SB
E.1 Blindness

PRrROOF. Let A be an adversary playing Game mBlind against
BM_SB. Let the transcripts of the two executions be Ty := {To 1, .. .,
Ton} and Ty == {Ty,1,..., Ty}, where T; j = (A; j, By j, ci,j, {com; .
Yke[n) Yijs bijs {biks Yik Yke[n]» 7ij) for i € {0,1} and j € [n],
and let (mg, 00 = (Ro, Yy, z0)) and (my,01 = (Rl,yl,zl)) be the
message-signature pairs. Define V; ;. (A) = (T;, my, op) for i,k €
{0, 1}.

First, we show that, for all i,k € {0,1}, V;;(A) determines a
valid user state ust == (r;k, @; g Bif 15 - - > Bikon)- 9
user state ust; ;. by defining the blinding factors

We construct a

Y
P L — ()
2je[n] Yij
ri’kzik—azk- Z Zij = Qif - Z b j, 3)
Jjeln] jeln]
Bikj=cij— Hsig(Kk,Pkk,j, mi Re) - ;- )

Next, we show that these values are uniformly distributed in
Zg (before A gets access to my, o). The uniformity of a; ;. follows
from the uniformity of 7, which is computed by the experiment as
Yk = ¥k Xje[n] Yk,j» Where ay is the real blinding factor used by
the experiment in the k-th user session. Similarly, the uniformity

“Note that the user state is determined via the tuple ust because all other values on
the user side are fixed (given the transcripts and the message-signature pair).

1521

loanna Karantaidou et al.

of r; . follows from the uniformity of zj, which is computed by
the experiment as z; = r + a]i -z} + ai - by, and ry is chosen
uniformly at random. Finally, f; ;. ; is uniformly distributed as long

as A does not query Hsjg on (I?k,pkk’j, my., Ry.). Since Ry, = ¢'* -

3.8y ; 3
2 pk;{k Prs . A%k . B% is computed by the experiment, and thus,
it is uniformly random due to the uniformity of the real blinding
factor ry, the probability that A queries Hgjg on Ry, is at most QTH
where Qp is the number of hash queries A makes to Hsjg.
Finally, we show that such a user state ust defines a valid signa-

ture (Ry, Yk, 2x) and hashes ¢y 5, ..., ¢k , such that

1_[ kaj+yk :gfk . hgk,

Jj€ln]

for all i,k € {0,1}. We assume A closes both signing sessions
successfully, otherwise, the game outputs (L, L), and in this case,
A’s advantage is in winning the game is 0. This implies that both
transcripts T1, and T are valid.

Since the k-th user session outputs a valid signature (R, Y Zk)
and hashes ¢y ; for all j € [n], it holds that

e [ ok =

jeln]

Zk - hYk,

hence

= =3

Zk . Bk . Ok Yk

g - [ pk; :
Jjeln]

Ry =

Substituting Equations (7)—(9) into this equation yields

Ry = g’i,k+“ik'2je[n] 24k Ljein) bij | patikLjein) Yig

) n ka(Ci,j_ﬁi,k,j)'azk_
J

j€ln]

o} (Zjetny Yij)’

We rearrange the equation as

Ry = gk - g% et 2 I ij[?'k«_q’j_@jq"' vus)).
jeln]
gai,k'ZjE[n] bij . p@ik Ljeln) Yij . 1—1 pk?i,k'ﬁi,j,k.

Jjeln]

Since T; is a valid transcript for all i € {0, 1}, it follows that A; -

C +(Z el yi,')3 cit(Zjern yiﬂ)3 i
[Tjeqn S o= [Tjen) Aij 'pkjj Jetm 2 =g,
and B, = g i . h¥i, where b; = Zje[n] bi,jsyi = Zje[n] Yij»Zi =

2 je[n] %i,j- Consequently, we have

3 o
Rk = gri,k . A?ivk . B?i’k . 1_[ pkf”/*k at,k
Jj€ln]

ﬁz]kak

It holds that (R, yk,zk) = (gik A, % B Tl jen) pk; ,

Xik - ZjE[n ylj’r1k+a Z]E n]zl,]+azk 2]6 [n] blj) and

Bi,
H]e [n] Pk e

0{

Ek,j = HSig(Kk)pkk’j)gri,k . Ai i.k .
which concludes the claim.

R my),
O



Blind Multisignatures for Anonymous Tokens with Decentralized Issuance

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA.

Pi(pk; = g%, ski)
aj, bi — Zg,yi — ZZ
Aj =g
Ai,B;
_
ci{Bj}je(n)
bi.yi
_
{(bj.y;) }jeln)
If3j € [n] : B # g% - hYi:
Abort
Y= Zje[n] Yj
zi = aj+ (ci +y°) - sk;
G

pk,})

Wait for all provers to commit
A= 1lje(n) 4j, B = Ije[n) Bj
Forall j € [n] : ¢j « Zq4

Wait for all provers to send openings for B;
If3ie[n]:B;#gb-hY%i vy =0:

Abort
yi=Yje[n) Yy R=A-hY

Wait for all provers to respond
2= Yjeln] 7
Sy L, 2y
IfR-l_[je[n]pkj #g°-hY:
Abort

Figure 5: Multi-identification scheme mID executed by n provers and a verifier.

E.2 One-More Unforgeability

We present the proof overview here and refer to our full version
for the complete proof.

Proof outline. We prove one-more unforgeability following prior
work [28, 32]. BM_SB is built from a secure multi-ID scheme mID.
It remains to show that the OMMIM security of mID implies the
OMUF security of BM_SB. To this end, we provide a reduction Ry
that exploits any algebraic forger A winning Game OMUF against
our BM_SB scheme to win Game OMMIM against mID. However,
for Ry to function properly, it requires a few conditions to hold;
therefore, we first prove that these restrictions indeed hold. In

1522

particular, we start by showing that A must make (at least) an Hs;g-
query for each valid signature it outputs. As A is algebraic, it must
submit a representation for each group element in its queries to Hsjg.
This allows Rj to learn the representation for each group element
R that occurs in the forgeries output by A. We then show that a
specific relation must hold between the forgeries A outputs and the
representation of R that A submits in the corresponding query to
Hsig. Finally, we provide the reduction Ry that runs Game OMMIM
against mID and uses its challenger’s prover and verifier oracles
to simulate the signers and the random oracle Hs;g, respectively,
for A. When A terminates and outputs ¢ + 1 valid signatures, Ry
crafts responses to close the verifier sessions using those signatures,
which allows it to win the game OMMIM.



	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	2.1 Cryptographic Assumptions
	2.2 The Algebraic Group Model (AGM)
	2.3 Blind Signatures
	2.4 Multi-Signatures

	3 Blind Multi-signatures
	4 BLS Blind Multisignatures
	4.1 Blind BLS Signatures
	4.2 BLS-Based Blind Multisignatures

	5 A Pairing-Free Construction
	5.1 Multi-Identification Schemes
	5.2 Constructing a Multi-Identification Scheme
	5.3 A Pairing-Free BMS

	6 Evaluation
	6.1 Implementation Benchmarks
	6.2 Smart-Contract Implementation

	References
	A Cryptographic Definitions
	A.1 Blind Signatures
	A.2 Multi-Signatures
	A.3 The ROS Problem

	B Unforgeability of Blind BLS
	C Proofs for BM_BLS
	C.1 Blindness
	C.2 One-More Unforgeability of BM_BLS

	D One-More MitM Security of mID
	E Proofs for BM_SB
	E.1 Blindness
	E.2 One-More Unforgeability


