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Application of a polynomial sieve:
beyond separation of variables

Dante Bonolis and Lillian B. Pierce

Let a polynomial f € Z[X;,..., X,] be given. The square sieve can provide an upper bound for the
number of integral x € [— B, B]" such that f(x) is a perfect square. Recently this has been generalized
substantially: first to a power sieve, counting x € [—B, B]" for which f(x) = y” is solvable for y € Z,
then to a polynomial sieve, counting x € [—B, B]" for which f(x) = g(y) is solvable, for a given
polynomial g. Formally, a polynomial sieve lemma can encompass the more general problem of counting
x €[—B, B]" for which F(y, x) =0 is solvable, for a given polynomial F. Previous applications, however,
have only succeeded in the case that F(y, x) exhibits separation of variables, that is, F(y, x) takes the
form f(x)—g(y). In the present work, we present the first application of a polynomial sieve to count x €
[=B, B]" such that F(y,x) = 0 is solvable, in a case for which F' does not exhibit separation of variables.
Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.

1. Introduction

Fix an integer m > 2 and integers d, e > 1. Consider the polynomial
F.X)=y" 4 y™@=D f(X) 4+ Y™ faoy (X) + fa(X). (1-1)

in which foreach 1 <i <d, f; € Z[Xy,..., X,] is a form with deg f; = m -e-i. We are interested in
counting
N(F,B):=|{x €[-B, B]"NZ":3y € Z such that F(y, x) = 0}|.

Trivially, N(F, B) < B"; our main result proves a nontrivial upper bound. We assume in what follows
that f; # 0, since otherwise (0, X) is a solution to F(Y, X) =0 for all X, and then B" < N(F, B) < B".
(Throughout, we use the convention that A <, B if there exists a constant C, possibly depending on «,
such that |4| < CB.)

Theorem 1.1. Fix n > 3. Fix integers m > 2 and e,d > 1. Let F be defined as in (1-1), with f; # 0.
Suppose the weighted hypersurface V(F(Y, X)) C P(e, 1,...,1) defined by F(Y, X) = 0 is nonsingular
over C. Then

N(F, B) < B" i+ (log B)itT,

The implicit constant may depend on n,m, d, e, but is otherwise independent of F.
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The main progress achieved in Theorem 1.1 is forn > 4, ¢ > 2,d > 2. The requirement that n > 3
occurs since a key step, Proposition 5.2, is not true for n = 2 (see Remark 5.4). In any case, forn = 2,3
the result of Theorem 1.1 is superseded by results of Broberg in [5], as described below in (1-14) and
(1-15). When e = 1, the variety V(F(Y, X)) C P(e, 1,...,1) is unweighted, so that in the setting of
Theorem 1.1, to bound N (F, B) it is equivalent to count points [Y : X7 :---: Xp] with | Y|, | X;| < B
on a nonsingular projective hypersurface of degree at least 2 in P”. Then the result of Theorem 1.1 (in
the stronger form N(F, B) K. d.ne B"~17¢) has already been obtained by work of Heath-Brown and
Browning, appearing in [6; 9; 10; 26; 27], as summarized by Salberger in [42]. Finally, when d = 1, the
result of Theorem 1.1 (aside from uniformity in the coefficients of F') follows from recent work of the
first author in [2] (see Remark 3.2).

The condition m > 2 is applied in two ways: first, in the construction of certain sieve weights (see
Section 1.2 and the proof of Lemma 1.2), and second, in Section 3.3 when we pass from the weighted
variety to an unweighted variety. For illustration, we also describe how an alternative approach to the
sieve lemma, conditional on GRH, can be devised when m = 1 (see Section 3.2 and Remark 1.3).

Bounding N (F, B) relates to a question of Serre on counting integral points in thin sets. Let V denote
the affine variety

V={,X)eA" ! F(Y,X) =0}, (1-2)

and consider the projection
7:V—=>A" (y,x)—x. (1-3)

Under the hypotheses of Theorem 1.1, the set Z = 7 (V(Q)) is a thin set of type II in A, in the
nomenclature of Serre. Serre has posed a general question that can be interpreted in our present setting as
asking whether it is possible to prove that

N(F, B) < B" !(log B)¢ (1-4)

for some c. Previous work by Broberg [5] nearly settled Serre’s conjecture for thin sets of type II in
P"=1 for n = 2, 3; see (1-14) and (1-15) below. For n > 4, Theorem 1.1 represents new progress toward
resolving Serre’s question for certain thin sets of type II. Note that as n — oo, the bound in Theorem 1.1
approaches a bound of the strength (1-4). We provide general background on Serre’s question, and state
precisely how Theorem 1.1 relates to previous literature on this question, in Section 1.1 and Section 1.2.

To prove Theorem 1.1, we develop an appropriate polynomial sieve lemma, and then bound each
contribution to the sieve using analytic, algebraic, and geometric ideas. A novel feature of this work is
that we do not assume that F(Y, X) exhibits separation of variables: that is, when d > 2, F(Y, X) of
the form (1-1) cannot in general be written as F(Y, X) = g(¥Y) — G(X) for polynomials g, G. A formal
polynomial sieve lemma has been formulated previously in a level of generality that does not require
separation of variables; see [8; 13]. However, in those works it has so far only been applied to count
points on a variety that does exhibit separation of variables. To our knowledge, Theorem 1.1 is the first
application of a polynomial sieve to produce an upper bound for N (F, B) in a case without separation of
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variables. We state precisely how Theorem 1.1 relates to previous literature on so-called square, power,
and polynomial sieves in Section 1.2.

A second strength of Theorem 1.1 is that the exponent in the upper bound for N (F, B) is independent
of e, where we recall that as a function of X, F has highest degree m -e - d. For any given x € [—-B, B]"
such that F(Y, x) = 0 is solvable, one observes that any solution y to F(y, x) = 0 must satisfy y < B¢,
and there can be at most md solutions y for the given x (or, equivalently, preimages under the projection
7 in (1-3)), since the coefficient of Y4 in F (Y, X) is nonzero. Thus an alternative method to bound
N(F, B) (up to an implicit constant depending on md) would be to count all (n + 1)-tuples {(y, x) :
y K B¢, x;i < B: F(y,x) = 0}. Other potential methods might be sensitive to the role of e or size of
d,m (see for example Remark 1.4), while in contrast both the method and the result of Theorem 1.1 do
not depend on e (aside from a possible implicit constant).

Third, we note that the result of Theorem 1.1 is independent of the coefficients of F'; the implicit
constant depends only on F in terms of its degree. To accomplish this, we adapt a strategy of [27], also
recently applied in a similar setting in [3], to show that either N (F, B) is already acceptably small, or
| F < Bmde)"™ 2 1 the latter case, we then show that any dependence on || F|| in the sieve method is
at most logarithmic, which we show is allowable for the result in Theorem 1.1.

1.1. Context of Theorem 1.1 within the study of Serre’s question on thin sets. Here we recall the notion
of thin sets defined by Serre in [46, §9.1 p. 121] and [45, p. 19]. Let k be a field of characteristic zero
and let V' be an irreducible algebraic variety in P} (respectively A7). A subset M of V(k) is said to
be a projective (respectively, affine) thin set of type I if there is a closed subset W C V., W # V, with
M C W(k) (i.e., M is not Zariski dense in V). A subset M of V (k) is said to be a projective (respectively,
affine) thin set of type II if there is an irreducible projective (respectively, affine) algebraic variety X with
dim X = dim V, and a generically surjective morphism 7 : X — V of degree d > 2 with M C n(X(k)).
Any thin set is a finite union of thin sets of type I and thin sets of type II. From now on we consider only
k = @, although Serre’s treatment considers any number field.
Given a thin set M C Ag, define the counting function

M(B):=|{xeMnz":

’

max |x;| < B}
1<i<n

so that trivially M (B) <« B" for all B > 1. A theorem of Cohen [16] (see also [46, Chapter 13, Theorem 1,
p- 177]) shows that

M (B) < B"V/2(log B)” for some y < 1, (1-5)

where <37 denotes that the implicit constant can depend on the coefficients of the equations defining M .

As Serre remarks, this bound is essentially optimal, since the thin set
M ={x = (x1,...,xp) € Z" : x1 is a square} (1-6)

has M(B) > B"~'/2. However, this M arises from a morphism that is singular; it is reasonable to
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expect that the result can be improved under an appropriate nonsingularity assumption (such as in the
setting of Theorem 1.1).

Now let M C I]J’ED_1 be a thin set in projective space. Define the height function H(x) for x =
[x1:--:xn] € [FDZD_1 such that (x1,...,x,) € Z" and ged(xy,...,x,) = 1 by H(x) = max<j<p |X;i|.
Define the associated counting function

My (B)={xe M(Q): H(x) < B}

so that trivially Mg (B) < B". Serre deduces in [46, Chapter 13, Theorem 3] from an application of
(1-5) that
My (B) <y B"'/?(og B)Y for some y < 1. (1-7)

Serre raises a general question in [46, p. 178]: is it possible to prove that

My (B) < B" !(log B)* (1-8)
for some ¢? (The set (1-6) is not an example of a thin set here because if M = {[xl2 IXp e ixp)p C I]j’a_1
then for any x; # 0,

[xX1:Xx2 000 x] = x1[x1 :xz:---:xn]z[xl2 TX1X2 el X1Xp| € M,

so that M D PE1)

1.1.1. Results for thin sets of type I. If Z is an irreducible projective variety in IP’E1 of degree d > 2,
Serre deduces from (1-7) that Zg(B) <z BYimZ+1/2(1og B)Y for some y < 1. Serre asks if it is
possible to prove that Zg (B) <z BY™Z (log B)¢ for some c. (This question is raised in both [46,
p. 178] and [45, p. 27]. Serre provides an example of a quadric for which a logarithmic factor necessarily
arises. See also the question in the case of a hypersurface in Heath-Brown [24, p. 227], formally stated in
both nonuniform and uniform versions as [27, Conjectures 1 and 2].) This is now called the dimension
growth conjecture (in the terminology of [7]), and is often described as the statement that

Zn(B) Lz BimZTe  forevery £ > 0. (1-9)

A refined version, credited to Heath-Brown and known as the uniform dimension growth conjecture, is
the statement that

ZH(B) Kndeg z,c B™ZTE  for every & > 0. (1-10)

In the case that Z C [P’ED_1 is a nonsingular projective hypersurface of degree d > 2, as mentioned
before, combined works of Browning and Heath-Brown have proved (1-10) for all » > 3. More generally,
Browning, Heath-Brown and Salberger proved (1-10) for all geometrically integral varieties of degree
d =2 and d > 6 (see [27] and [12], respectively). Recent work of Salberger has proved (1-9) in all
remaining cases, and has even proved the uniform version (1-10) for d > 4 [43]. See [14] for a helpful
survey, statements of open questions, and new progress such as an explicit bound Z g (B) < Cd £ BdimZ
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when deg Z = d > 5, for a certain C = C(n) and E = E(n). The resolution of the dimension growth
conjecture means that attention now turns to thin sets of type II, the subject of the present article.

1.1.2. Results for thin sets of type II. We turn to the case of thin sets of type II, our present focus. Given
a finite cover ¢ : X — P"~! over Q with n > 2, X irreducible and ¢ of degree at least 2, set

Np(¢) = {P € X(Q): H(¢(P)) = Bj| (1-11)
for the standard height function above. Serre’s question asks whether
Np(¢) <p.n B" '(log B) for some ¢, (1-12)
or in a uniform version,
NB(#) Kdegp,n B" 1(log B)¢ for some c. (1-13)

For n = 2, 3 work of Broberg via the determinant method proves cases of Serre’s conjecture up to the
logarithmic factor [5]. Precisely, for ¢ : X — P! of degree r > 2, Broberg proves

Np(p) g B¥™  forany &> 0. (1-14)
For ¢ : X — P? of degree r, Broberg proves
Np(p) Kpe B> e forr >3,  Np(¢p) g B*¢ forr =2, for any & > 0. (1-15)

For n > 4, the question remains open whether one can achieve Np(¢) < B"~1*¢ for all & > 0, although
we record some progress on this for specific types of ¢ in Section 1.2.

Now recall the setting of Theorem 1.1 in this paper, and the affine variety V C A”*! defined in (1-2)
according to the polynomial F (Y, X). Under the hypotheses of Theorem 1.1, we have:

(i) The variety V is irreducible (see Remark 3.3).
(ii) The projection r has degree dm > 1 since m > 2.

Thus Z = 7 (V(Q)) is a thin set of type II in A%, and in particular Cohen’s result (1-5) implies that
Z(B) = N(F, B) < B""/2(log B)”, (1-16)
following the same reasoning as [46, Chapter 13, Theorem 2, p. 178]. Or, interpreting the setting of
Theorem 1.1 as counting points on a finite cover ¢ of P"~! as in (1-11), this shows
Np(¢) < N(F, B) <4 B""'/?(log B)".

Our new work, Theorem 1.1, improves on (1-16) for each n > 3, for F of the form (1-1) with V(F(Y, X))
nonsingular, and approaches a uniform bound of the strength (1-13) as n — oo.

1.2. Context of Theorem 1.1 within sieve methods. We now recall a few recent developments of sieve
methods in the context of counting solutions to Diophantine equations, with a particular focus on progress
toward Serre’s conjecture for type II sets, as described above.
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1.2.1. Square sieve. Let f(X) € Z[Xy,..., X,] be a fixed polynomial. Let B be a “box,” such as
[—B. B]" or more generally [ [;[—B;, B;]. In [25], Heath-Brown codified the square sieve to count the
number of integral values x € B such that f(x) = y? is solvable over Z, building on a method of
Hooley [31]. At its heart was a formal sieve lemma involving a character sum with Legendre symbols.
Heath-Brown applied this in particular to improve the error term in an asymptotic for the number of
consecutive square-free numbers in a range. In [40], Pierce developed a stronger version of the square
sieve, with a sieving set comprised of products of two primes rather than primes; this effectively allows the
underlying modulus to be larger relative to the box B, by factoring the modulus and using the g-analogue
of van der Corput differencing. Pierce applied this to prove a nontrivial upper bound for 3-torsion in
class groups of quadratic fields [40]; Heath-Brown subsequently used this sieve method to prove there are
finitely many imaginary quadratic fields having class group of exponent 5 [28]; Bonolis and Browning
applied it to prove a uniform bound for counting rational points on hyperelliptic fibrations [3].

1.2.2. Power sieve. The square sieve has been generalized to a power sieve, in order to count integral
values x € B with f(x) = y” solvable, for a fixed r > 2. Recall the question of bounding Np(¢)
as in (1-12). For any n > 2, in the special case that ¢ is a nonsingular cyclic cover of degree r > 2,
Munshi observed this can be reduced to counting the number of integral values x € [—B, B]" with
F(xy,...,xp) = y" solvable, for a nonsingular form F of degree mr for some m > 1. To bound this,
Munshi developed a formal sieve lemma involving a character sum in terms of multiplicative Dirichlet
characters [39]. Munshi applied it to prove that

[{x €[~B. BI": F(x) = y" is solvable over Z}| « B 1% (log B) " (1-17)

Consequently, this proved Ng(¢) < B! +a (log B) 7 for nonsingular cyclic covers. (See [2, Remark 1]
for a note on the history of this result; the exponents stated here are slightly different from those presented
in [39].)

In [29] Heath-Brown and Pierce have strengthened the power sieve, by using a sieving set comprised
of products of primes, generalizing the approach of [40]. They used this method to prove that for any
polynomial f(X) e Z[X;,..., Xy] of degree d > 3 with nonsingular leading form, and for any r > 2,

BTG (log B)2, 2<n <S8,
l{x €[=B, B]": f(x) = y" is solvable over Z}| < { B"~ '+ =i (log B)2, n=0, (1-18)
B "4iF10 (log B2, n > 10.

This proves Serre’s conjecture (1-12) for Ng(¢), for all nonsingular cyclic covers, for n > 10. Indeed,
the bound achieved is even smaller than the general conjecture, which is reasonable due to the imposed
nonsingularity assumption.

Independently, Brandes also developed a power sieve in [4], applied to counting sums and differences
of power-free numbers.
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1.2.3. Polynomial sieve: with separation of variables. The next significant generalization addressed
counting x € B for which g(y) = f(x) is solvable, for appropriate polynomials g, /. Here, a quite
general framework for a polynomial sieve lemma was developed by Browning in [8]. Specifically, in
that work, Browning applied the polynomial sieve lemma to count x1, x, such that g(y) = f(xy, x3) is
solvable, for particular functions f, g, that enabled an application showing the sparsity of like sums of a
quartic polynomial of one variable.

Bonolis [2] further developed a polynomial sieve lemma with a character sum involving trace functions.
Applying this, he proved that for any polynomial g € Z[Y] of degree r > 2, and any irreducible form
F e 7[Xy, ..., Xy] of degree e > 2 such that the projective hypersurface V(F) defined by F = 0 is
nonsingular over C, then

[{x € [-B. B]" : F(x) = g(y) is solvable over Z}| « B”_H‘#(log Bt (1-19)

(This improves (1-17) and recovers the result initially stated in [39]; see [2, Remark 1].) This can also be
seen as an improvement on Cohen’s theorem (1-16) for a special type of thin set (defined as the image of
V={(y,x) e A" F(x) —g(y) = 0} under (y, x) — x, under the assumption that V(F) defines a
nonsingular projective hypersurface). The special case of our Theorem 1.1 when d = 1 follows from [2,
Theorem 1.1]; see Remark 3.2.

Notably, the method employed in [2] to prove (1-19) was the first to demonstrate nontrivial averaging
over pairs of primes in the sieving set, and exploiting such a strategy is central to the strength of our
main theorem. We explain explicitly the advantage of such averaging in equations (1-25) and (1-26),
below. For now, we simply state abstractly that any polynomial sieve method tests the solvability of
the desired equation modulo p for primes in a chosen sieving set P. The outcome of applying a sieve
lemma (such as Lemma 1.2 below) is that one must bound from above an expression roughly of the
form |P|72 ) p#qep 1 (P.q), where T'(p, q) studies the solvability of the desired equation modulo pairs
p # q € P. Previous to [2], papers applying any type of polynomial sieve produced an upper bound
for |T(p, q)| that was uniform over p, ¢ and then summed trivially over p # ¢ € P. Instead, averaging
nontrivially over p, g exploits the fact that T(p, g) is typically smaller than its worst (largest) upper
bound.

Most recently, a geometric generalization of Browning’s polynomial sieve lemma has been developed
over function fields by Bucur, Cojocaru, Lalin and the second author in [13]. They pose an analogue of
Serre’s question (1-8) in that setting (also raised by Browning and Vishe [11]), and apply a polynomial
sieve to prove a bound of analogous strength to (1-19), in the special case of nonsingular cyclic covers
in a function field setting. It remains an interesting open question to achieve a stronger bound such as
(1-18), or to prove results for finite covers that are noncyclic, in such a function field setting.

1.2.4. Polynomial sieve: without separation of variables. So far we have mentioned applications of a
sieve lemma to count solutions to G(Y, X)) = 0 when G separates variables as G(Y, X) = g(Y) — f(X)
for some polynomials g, . More generally, it is reasonable to ask—and this is a motivation for the
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present paper — whether an appropriate polynomial sieve can be employed to count solutions to equations
of the form G(Y, X) = 0 where G(Y, X) € Z[Y, X1, ..., Xy] is a polynomial of degree D of the form

GY.X)=YP+YP ' fi(X)+ -+ Yfp_1(X) + fp(X). (1-20)

where each f; is a form of degree i - e, and we assume that the weighted hypersurface V(G(Y, X))) C
P(e, 1,...,1) defined by G(Y, X) = 0 is nonsingular. Define

N(G,B):= |{x € [-B. B]" : 3y € Z such that G(y, x) = 0}|.

Under the assumption fp = 0, the aim is to improve on the trivial bound N (G, B) < B". To be clear,
the formal sieve lemmas appearing in [8; 13] include this level of generality, but have only been applied
to prove a bound for N (G, B) when separation of variables occurs. In this paper we accomplish the first
application of the polynomial sieve without assuming separation of variables, but under the additional
assumption that the degree D of G(Y, X) defined in (1-20) factors as D = md for some m > 2, and
all powers of Y that appear are divisible by m. (To see why this restriction is useful, see the proof
of Lemma 1.2; for an alternative approach when m = 1, conditional on GRH, see Remark 1.3 and
Section 3.2.)

The strength of our approach hinges on a particular formulation of the polynomial sieve, given in
Lemma 1.2. It is worthwhile to compare our formulation with the polynomial sieve presented in [8,
Theorem 1.1]. In [8, Theorem 1.1], the sieve weight system, adapted to counting solutions to (1-20), is
defined as follows:

wp,Bro(k) = a4 (vp(k) = 1)(D —vp(k)).

in which v,(k) = {y € F, : G(y,k) = 0 € F,}|. (These weights are then applied in an inequality
analogous to (3-1) below, to derive a sieve lemma.) Consequently, if G(Y, k) = 0 is solvable over Z,
the conditions 1 < v, (k) < D and @ > 0 guarantee that wp (k) > 0 for any p. In our approach, we
consider simpler weights:

wp(k) =vp(k)—1.

Thus, in our situation, if G(Y, k) = 0 is solvable over Z, we can only conclude that w, (k) > 0. However,
it is still possible to establish that w, (k) > 0 for a positive proportion of primes, which suffices for our
application. (Precisely, we obtain w,(k) > 0 for those p = 1 (mod m) where m > 2; see (3-2) in the
proof of Lemma 1.2.)

The simplicity of our weight system turns out to be crucial for bounding the terms that appear in the
polynomial sieve lemma. In the setting of the polynomial F(Y, X) as in (1-1), our main task will be to
prove square root cancellation for the sum

Z ep((a, u)),

(z,a)e[Fﬁ‘*'1
F(z¢,a)=0
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for generic a € [}, which can be accomplished by exploiting the smoothness of the variety V(F(Z¢, X)).
On the other hand, if we were to adopt [8, Theorem 1.1], the presence of the factor (v, (k))? would lead

Y. eplau)),

(z1,22,a)€F, T2
F(z{,a)=0
F(z5,a)=0

to the exponential sum

which is more challenging to handle, due to the highly singular nature of the variety V(F(Z¢, X)) N
V(F(Z3, X)).

1.3. Overview of the method. We now provide an overview of our method, highlighting four key aspects
of our strategy. To prove a nontrivial upper bound for N(F, B) via a sieve, we introduce a smooth
nonnegative function W : R"” — Rx defined by W(x) = w(x/B), where w is an infinitely differentiable,
compactly supported function that is = 1 on [—1, 1]?, and supported in [—2, 2]". Define the smoothed
counting function
S(F, B) := > W(k), (1-21)
F( y,k§€=e Onsolvable
which sums over k € Z" such that there exists y € Z with F(y, k) = 0. By construction
N(F,B) <S(F, B),

and we may focus on proving a nontrivial upper bound for S(F, B). We employ the following sieve
lemma, which we prove in Section 3.1. Here and throughout, given a polynomial f, we let || /|| denote
the maximum absolute value of any coefficient of f.

Lemma 1.2 (polynomial sieve lemma). Let e,d > 1 and m > 2 be integers. Consider the polynomial
FO.X) =Y Y™ @D (X)) + 4+ Y™ S (X) + Ja(X),

under the assumption that fz # 0, and that deg f; =m-e-i foreach 1 <i <d.

Let B > 1 and define a smooth weight W supported in [-2B,2B]" and = 1 on [—B, B]", as above.
Let P C {p = 1 mod m} be a finite set of primes p € [Q, 2Q], with cardinality P. Suppose that Q = B*
for some fixed 0 < k < 1 and that P > Q/log Q. Suppose also that

P e.q max{log | /4]l log B}. (1-22)
For each k € 7" and p € P define
vp(k) =[{y €Fp: F(y. k) =0 (mod p)j|.
Then
1 1
S(F.B) Kmea Y, W) +5d WE)+—5 3 | W) k)= D(vg(k) = 1))
k

k:fq(k)=0 D.9<P | k
P#q
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Remark 1.3. We observe that the same lemma holds for 72 = 1, conditional on GRH, with (1-22) replaced
by O > .0, max{(log || F'|)¥°, (log B)*°} for some oo > 2. For the sake of illustration, we demonstrate
this in Section 3.2, although we do not apply such a conditional result in this paper.

We now point out four key aspects of our method for applying this sieve lemma to prove Theorem 1.1.
First, for all k and for all primes p, v, (k) < md; this is because Y™ has coefficient 1 in F(Y, X ), so
that for all values of k, F(Y, k) is of degree md as a polynomial in Y. On the other hand, in the proof
of the lemma, we use the assumption that each prime in the sieving set has p = 1 (mod m) in order to
provide a lower bound v, (k) —1 > m —1 > 0 for many k, motivating our requirement that 72 > 2. This
is the first novelty of our method for dealing with a case in which the variables Y, X are not “separated.”

For each pair of primes p # ¢ € P, the sieve lemma leads us to study

T(p.q):=Y_ Wk)(vp(k) - 1)(vg(k)—1). (1-23)

kezn

After an application of the Poisson summation formula, we see that

T(p.q) = (L) oW (%) g(u. pqg).
uezn"

prq

where

g, pg)i= Y (p(a)—1)(vg(@)— Depg((a,u)). (1-24)

a (mod pq)

Here we write each coordinate of a in terms of its residue class modulo pg, and e,q(7) = 271t/ P4 After
showing that g(u, pq) satisfies a multiplicativity relation, we can focus on the case of prime modulus,
and study

g, p):="Y_ (vp(a)—ey((a,u)).

n
aclky

We show that the main task to bound g(u, p) is to bound the exponential sum

> epl{a.u)).

(r.a)ery ™!

F(y,a)=0
Here we highlight a second aspect: the fact that the polynomial F(Y, X) is not homogeneous motivates a
more sophisticated approach to bounding this sum (see Remark 4.6). Given a polynomial H, let V/(H)
denote the corresponding variety {H = 0}, and let (X, U) = ), X;U;. Roughly speaking, for each
prime p we divide # € Z" into three cases: a type zero case when u = 0 (mod p), a good case when
V((X,u)) is not tangent to V(F(Y, X)) over Fp, and finally a bad case in which V({X, u)) is tangent to
V(F(Y, X)) over [F,. (More precisely, we reformulate this in terms of varieties in unweighted projective

n—1/2

space.) In the type zero case, we can only show that g(0, p) < p , but such cases are sparse. In the
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remaining two cases, we apply a version of the Weil bound to g(u, p), obtaining g(u, p) < p™? if u is
good and g(u, p) < p™2+1/2 if y is bad (Proposition 4.2).
A third crucial aspect arises when we assemble this information efficiently inside the third term on the

right-hand side of the sieve lemma, namely

7 L TGl < g 2 Y

P#GEP PF#qEP UEL"

W (i) g(u,pq)'. (1-25)
Pq

In many earlier applications of the power sieve or polynomial sieve to count solutions to Diophantine
equations, the strategy has been to bound |T'(p, ¢)| uniformly over p # ¢ and simply sum trivially
over p # ¢q. However, recent work of the first author demonstrated how to take advantage of nontrivial
averaging over the sum of p # ¢ € P; see [2]. In this paper, we also average nontrivially over p # ¢ and
this contributes to the strength of our main theorem.

In order to average nontrivially over p # g € P, we quantify the fact that there cannot be many triples
u, p, q for which u is simultaneously bad for both p and ¢g. Roughly speaking, we characterize the dual va-
riety of the original hypersurface V(F (Y, X)) according to an irreducible polynomial G(Uy, Uy, ..., U,),
and observe that G(0, ) # 0 precisely when the hyperplane V({(u, X)) is not tangent to V(F(Y, X))
over C. Then we reverse the order of summation in the right-hand side of (1-25), writing it as

1
Pz—anZZ

u€e’" p£qep

W (1) g(u, pq)‘ : (1-26)
Pa

The sum over u can be split into case (a) where G(0, #) # 0 and case (b) where G(0,#) = 0. In case
(a), we show u is bad modulo p and ¢ only if p and ¢ divide the (nonzero) value of a certain resultant
polynomial; thus there can only be very few such p,g.

A fourth key aspect arises in case (b), for which # is bad for all primes (since the value of the resultant
is zero). To compensate, we show that there are not too many u for which G(0, ) = 0. This step is
one of the significant novelties of the paper. It requires understanding not the variety V(G(Uy, U)) but
V(G(Uy,U)) N V(Uy), the intersection with the hyperplane Uy = 0. To tackle this, we show that any
polynomial divisor of G(0, U') has degree at least 2 (Proposition 5.2), so that we can apply strong bounds
of Heath-Brown [27] and Pila [41] to count solutions to G(0,u) = 0 (see (5-18)). To prove the key
result in Proposition 5.2, we employ a geometric argument to show that given a nonsingular projective
hypersurface X and a projective line £ not contained in X, the generic hyperplane containing £ is not
tangent to X'. This statement, proved in Section 6 via a strategy suggested by Per Salberger, is critical to
the method and the ultimate strength of Theorem 1.1.

Remark 1.4. It would be interesting to consider bounding N (F, B), in the setting of Theorem 1.1, by
other methods. As mentioned earlier, one approach is to count all (n + 1)-tuples {(y,x) € Z"T1: y «
B¢, x; < B: F(y,x) = 0}, for example, by applying the determinant method. Since the range of y
depends on e, such a direct approach is likely to produce a bound for N (F, B) with an exponent depending
on e. Alternatively, one could fix x5, ..., x, (with ~ B! such choices) and consider the resulting
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equation as a projective curve in variables y, x;. Supposing that the resulting curve is generically of
degree dme, an application of Bombieri-Pila [1] could count (y, x1) in the square [— B¢, B¢]>. This could
ultimately lead to a total bound of the form N(F, B) « B"~!.pe/dmete — gpn—1+1/dm+e Thjg putative
outcome appears independent of e, but the method has overcounted x; in the range B¢; nevertheless,
such an approach could be advantageous for large d, m.

1.4. Notation. We use e, (1) = e2711/4_ We denote X = (X1,..., Xn), U =(Uy, ..., Uy). Moreover, for

two vectors s = (81, ...57), ¢ = (t1,...,1,), we define (s, #) =Y/, sit;. We let || F|| denote the absolute
value of the maximum coefficient in a polynomial F € Z[ X1, ..., Xy]; similarly | X || = max;<;j<y | Xi|
for X € 7".

2. Reduction to remove dependence on || F ||

Recall that Theorem 1.1 states that the upper bound for N(F, B) is only dependent on the degree of
F, and not on the coefficients of F. In fact, the sieve methods we apply prove an upper bound for
N (F, B) that can depend on || F||. In this section we show by alternative methods that we may assume
that || F| < Bmde)"™™? " The method does not rely on assuming m > 2 in (1-1), and so without any
additional trouble we may work more generally in the setting of (1-20).

Lemma 2.1. Let V(G(Y, X)) C P(e, 1, ..., 1) be defined by
G, X)=YP +YP7 fi(X) +--+Y/p_1(X) + [p(X)

with each f; a form of deg f; =i -e, for fixed D,e > 1 and n > 1. Assume that fp # 0 and the weighted
hypersurface V(G(Y, X)) C P(e, 1,...,1) is absolutely irreducible. Then either

IG|| < BPO"™,
or N(G,B) <u.p.. B" .

Remark 2.2. Under the hypotheses of Theorem 1.1, for F asin (1-1), V(F(Y, X)) is absolutely irreducible
(following similar reasoning to Remark 3.3). As a result of this lemma, we can obtain the bound claimed
in Theorem 1.1 as long as all later dependence on || F|| is at most logarithmic in || F||, which we track as
the argument proceeds.

Proof. The method of proof follows [27, Theorem 4], or the recent similar result [3, Lemma 2.1]. Fix
n, D,e > 1. We start by considering the set of monomials

n
E = {YdYdel Xr?’n dYe+Zdi :De}’

i=1
in which the degrees dy, dy, ..., d, vary over all nonnegative integers satisfying dye + >_ d; = De. It
is easy to see that |£] < (De)"t1.
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Let B > 1 be fixed. Let v denote coordinates (y, x1,...,X,) and let {vq,... vy} enumerate the
set of points that are solutions to G(Y, X) = 0, with each of the last n coordinates of v; lying in
[— B, B]. Note that these count each X € [—B, B]" for which G(Y, X) is solvable at least once, so that
N(G,B) <N < D-N(G, B). (For the upper bound, we recall that the coefficient of Y2 in G(Y, X)
is nonzero, so that any given X can correspond to at most D such Y.) Then, we construct the N x |&|
matrix

C = ({)i=<i=N.
ees
Notice that rank C < || — 1, since the vector a € ZI€!\ {0} whose entries correspond to the coefficients
of G(Y, X) is such that Ca = 0. Moreover, a is primitive since the coefficient associated to Y 2 is
1. Now the strategy is to find another nonzero vector b in the nullspace of C and show that if b is in
the span of a then |G| is small, and if b is not in the span of a then we have an improved count for
N (G, B). We may assume henceforward that |£| < N, since otherwise we already have the upper bound
N(G,B) < N <|&| < (De)*™!, which suffices for the lemma.

If rank C < |€] — 2, then the nullspace has dimension at least 2, and we can take b € Z!! to be any
element in the nullspace that is not in the span of a. Let H(Y, X) be the polynomial defined by the
coefficients corresponding to the vector A and consider the polynomial R(X) =Res(G(Y, X), H(Y, X)),
which is a polynomial in X of degree <p ., 1. (See, e.g., [21, Ch 12], which we apply to take the
resultant of two polynomials in the variable Y, whose coefficients are determined by X.) We claim
that R(X) s 0: indeed, if R(X) = 0, then G and H would share an irreducible component. Since
G(Y, X) = 0 is irreducible, and deg H < De = deg G, it would follow that G is a constant multiple of
H, but this is not possible since we are assuming that @ and b are not proportional. Thus R(X) = 0.
Moreover, observe that for any x € 7"

R(x)=0 < G(Y,x) and H(Y, x) have a common root.

Note that any x such that G(y, x) = 0 is solvable contributes at least one row to the matrix C; each such
row also corresponds to a solution to H(y, x) = 0. Thus it follows that

N(G,B) =|{x €[-B, B]" : 3y € Z such that G(y,x) = H(y,x) = 0}|
<|{x €[-B,B]": R(x) =0}
<<n,D,e, Bn_l,

with an implicit constant independent of the coefficients of R, via an application of a trivial counting
bound for the nonzero polynomial R. (This bound is sometimes called the Schwartz-Zippel bound, and a
proof can be found in [27, Theorem 1]; we remark that although in that context the polynomial under
consideration is absolutely irreducible, the method of proof only requires that it is not identically zero.)

The remaining case is when rank C = || — 1, so that all |£] x |£] minors vanish, but at least one
(€] = 1) x (|€] — 1) minor does not; we claim there is a nonzero b € Z/¢! in the nullspace of C such that
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|b| = O(BPelEly = O(B(De)"+2). If so, then since a is primitive (and b must be proportional to a) it
follows that |a| < |b] < BP" > This shows that ||G|| < BP"**

An appropriate b can be constructed with entries that are (|| — 1) x (|| — 1) minors, so that the size
estimate |b| = O(BP¢I€l) follows from the fact that each entry of C is O(BP¢). For completeness, we
sketch this construction. Without loss of generality, we can let C’ denote the top |£] X |£] submatrix in

as claimed.

C, and assume that the minor C| 1 (obtained by omitting the first row and first column of C’) is nonzero.
Define a vector b as follows: for each 1 < j < |&|, define the entry b; to be the (1, j)-th cofactor of C';
in particular b; # 0 so b is nonzero, and |b| = O(BP¢U€1=1)) = O(BP¢IEl). We now show that b is in
the nullspace of C. Let r; denote the i-th row of C; then foreach 1 <i < N,

rieb=det| | =o. -1

Fle|

Indeed, fori =1 ori > |£], up to sign, r; - b is an |£]| x |€| minor of C, and all such minors vanish since
rankC < |€|. For 2 <i < |£|, the matrix (2-1) has two identical rows. Thus Cbh = 0. O

3. Preliminaries on the sieve lemma

In this section we gather together two preliminary steps: first, we prove the sieve inequality in Lemma 1.2;
for m = 1 we provide an alternative proof, conditional on GRH. Second, we formulate an equivalent
nonsingularity condition in unweighted projective space. We also make preliminary remarks on the

sieving set.
3.1. Proof of the polynomial sieve lemma. To prove Lemma 1.2, observe that

S(F.B)= Y Wk + > W(k),

k:fi(k)=0 kez":
Ja® fak)#0
F(y,k)=0 solvable

since within the first term, y = 0 is always a solution to F(y, k) = 0. We consider the weighted sum

2
) W(k)(Z(vp(m— 1)) . (3-1)

k:fa(k)#0 PEP

Fix k such that f;(k) # 0 and the polynomial F(Y, k) is solvable over Z, so that there exists yy € Z such
that F(yg,k) = 0. For any p € P such that p t f;(k), then yy % Omod p. Then since p = 1 mod m,
and due to the structure of F in (1-1), we have that {y¢, ¥pJo. ..., )/;”_1 Yo} are distinct solutions of
F(Y, k) =0 (mod p), where y," = 1 mod p and y,, is a primitive m-th root of unity in Fp. In particular,
for such p, v, (k) > m. Consequently, for each k such that f;(k) # 0 and F(Y, k) is solvable, we have
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that

k)= =m—-1) Y I»pP— > 1=(1/2)P (3-2)

DEP PEP,pt fa(k) PEP,plfa(k)

as long as P >, . 4 max{log || f41|,log B}. The last step follows since the number w( f;(k)) of distinct
prime divisors of f;(k) # 0 is at most

o( f4(k)) < log(f4(k))/ loglog( fa(k))
< log(| fa | BY€™)
Lm,e,d log || 4] +1log B.

Thus the last inequality in (3-2) holds as long as
P > e,q max{log | fall. log B}, (3-3)

leading to the corresponding hypothesis in the lemma.
From (3-2) and the nonnegativity of the weight W, we see that

2 2
Py i< Y Wi Tepw-n) =S wio( Tew-n).
k

kez™; k:fa(k)#0 PEP PEP
~ (Gk) o Ja(k)#
F(y,k)=0 solvable
Opening the square on the right-hand side, the contribution from p = ¢ € P is
DN W) (vp k) = 1) Kmog P W(K).

PEP k k

since vy (k) < md for all k, as previously mentioned. The contribution from p # g € P is bounded in

2

DPF#qGEP

absolute value by

> W) (vp (k) — 1) (vg (k) — 1)‘.

k

Assembling all these terms, we see that Lemma 1.2 is proved.

Remark 3.1. When we apply Lemma 1.2 to prove Theorem 1.1, we can assume that || || < || F|| <
B(mde)nﬂ, by Lemma 2.1. This will allow us to verify that (3-3) holds for our choice of sieving set, as

we will verify in Section 7 when we choose Q in (7-4).

3.2. Alternative proof when m = 1, conditional on GRH. Recall from Section 1.2.4 the general problem
of counting x € [—B, B]" such that G(y, x) = 0 is solvable in Z, with G(Y, X) of degree D as in (1-20).
In our main work in this paper, we assume that D = md with m > 2 and that G is a polynomial in Y.
This additional structure allowed us to choose a sieving set P C [Q, 2Q] of primes p = 1 (mod m), so
that all the m-th roots of unity are present in [, for each p € P. With this property, we could define
sieve weights that exhibit an appropriate lower bound in the form (3-2) for most k in the support of W (k)
and a positive proportion of primes.
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Nevertheless, we can proceed by a different argument to develop a sieve lemma to bound the number
of x € [ B, B]" such that G(y, x) = 0 is solvable over Z, with no condition on the degree D; that is,
to prove a version of Lemma 1.2 in the case m = 1. As a first step, we naturally try to introduce a
system of weights, according to a fixed set of primes. Let us take P = {Q < p <20 : p prime} for
some parameter Q to be chosen optimally with respect to B. In particular, by the prime number theorem,
|P| > Q(log Q)~! forall Q > 1. Fix k € Z". For each prime p € P, set

vp(k) =[{y €Fp:G(y,k) =0 (mod p)}|.

Since G(y, k) contains the term y2, it is not the zero polynomial in y, and vp(k) < D. Consider, as in
the proof of Lemma 1.2 above, the weighted sum

2
> Wi Xepw-). (3-4)
k:fp(k)#0 PEP
In order to deduce a sieve lemma, we need a lower bound for the arithmetic weight (the squared term),
for those k for which fp (k) # 0 and G(Y, k) = 0 is solvable over Z.

Here is one approach. Let k be fixed, with fp (k) # 0 and G(Y, k) = 0 solvable over Z, and k in the
support of W. Then G(Y, k) = (Y — y9)gx (Y) for some yg € Z \ {0} and some (monic) gz (Y) € Z[Y]
of degree D — 1. For each such &, we can obtain a suitable lower bound for the arithmetic weight in (3-4)
as long as for a positive proportion of p € P, g has a root over [,,. Let gx be an irreducible factor of
gk . Let Fy denote the splitting field of gx over Q, say Fj = Q(wy). Since gy, is irreducible, then it
is the minimal polynomial of o in Z[Y], and it is separable (since we are working over characteristic
zero), and the splitting field is Galois over Q. By Dedekind’s theorem, for all p { [OF, : Z[ak]], gk splits
completely over [, precisely when (p) = pOF, splits completely in Fy; see, e.g., [37, Theorem 27,
p-79]. Then

k) =D =) [{rebp: g =02} [{yek:g()=0}.
DPEP PEP PEP
If gy is linear in Z[Y], this sum is of size |P|, which suffices. If deg gx > 2, we continue to argue that

Z(vp (k) —1) > deg(gr) ‘{p € P: gr (Y) completely split over [Fp}|

DEP . .
> |{p € P : pOF, splits completely in Fk}‘ — ‘{p €P:pl|lOF, :Z[cxk]]}|. (3-5)

Let
7k (Q) = |{p < Q: pOp, splits completely in F}|

and N(k) = {p|[OF, : Zlak]]}|. The Chebotarev density theorem, in the unconditional form of [34,
Theorem 1.3], shows that

Bo
(@) -2 |- 1L 9

_ . _
Grllog 0|~ 1Grllog oo T OD4(QU02 O (3-6)
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for every A >2, as long as Q > exp(10 deg Fy, (log | D(Fy)|)?). Here Gy, is the Galois group Gal(Fy /Q),
D(Fy,) is the discriminant of the splitting field Fy /Q, and deg Fy = deg|F) /Q)| is the degree of the
extension. The implicit constant in the error term depends only on 4 and deg F, = |G| < (D —1)!. The
real number 1/2 < Bg < 1, if it exists, is the (real, simple) exceptional zero of the associated Dedekind
zeta function {f, ; if no exceptional zero exists, that term does not appear in the result.

In particular, under the assumption of GRH for {f, , Lagarias and Odlyzko’s Theorem 1.1 in [34] (in
the refined form of Serre [44, Theorem 4]) shows that for any Q > 2, the entire right-hand side of (3-6)
may be replaced by

O(G |71 02 log(| D(Fi)| Q¢ Fr)) = 0p (0 ? 1og Q) + Op(0/? log | D(Fy))),

in which the implied constant is absolute and effectively computable. There exists a constant Qo (D)
depending only on D such that the first term is < %ﬁ QO(log Q) ! for all Q > Q¢ (D). The second

term is also < %ﬁQ(log )7 ! if for example Q > Q;(D)(log D(Fy))% for a constant Q1 (D) and
some fixed g > 2. This shows that under GRH, for all Q > p (log D(Fj))*° some fixed g > 2,

7k (Q) — 7k (Q/2) >p Q/log @ >p |P|. (3-7)

Two tasks remain in order to complete a lower bound for (3-5): (i) to bound D (F} ) from above, so
that the lower bound Q > p (log D(Fj))*° can be made uniform over k, and (ii) to count

N(k) =[KplOF, : Zlak)l}| = 0(OF, : Z[ak]]) K 1og[OF, : Z[ak]l/ loglog[OF, : Z[ag])-
We note the relation

D(Fy)[OF, : Z]ag])* = Disc(gg ). (3-8)

which holds by [38, Remark 2.25 and equation (8) on p. 38]. (Since gy was assumed to be irreducible
and we are in characteristic zero, then gy is separable and Disc(gy ) # 0.) Thus for both remaining tasks,
it suffices to bound Disc(gy ) from above, since by (3-8) both

N (k) < logDisc(gg), log D(F}) <logDisc(gy).

Now Disc (g ) (the resultant of g (Y') and g}c (Y), as defined in [21, Chapter 13, Proposition 1.1]) is
a polynomial in the coefficients of gj with degree bounded in terms of D. The coefficients of gy are
polynomials in k and the coefficients of G(Y, X)) with degree at most D. Since we only consider & in
the support of W, |k| < B, and the coefficients of g; are < |G| BP. Thus

log Disc (gx) <p log |G| + log B.
In combination with (3-7), we can conclude in (3-5) that for some constant Cp,

Y (p(k)—1)>>p 0/log O — Cp(log |G| +log B),
DEP
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for all Q > Cp, max{(log|G|)*, (log B)*} for some g > 2. By taking C}, sufficiently large, we
achieve ) ,cp(vp(k) —1) > |P| = P. This shows that, conditional on GRH,

2 2
PE Y W< ) W(k)(Z(vp(k)—l)) SZW(k)(Z(vp(k)—l)).
kez": k:fp(k)#0 pEP k peP
Sp(k)#0
G(y,k)=0 solvable

From here, the remainder of the proof used above for Lemma 1.2 can be repeated, and this completes the

proof of the claim in Remark 1.3.

3.3. Associated variety in unweighted projective space. It is a hypothesis of Theorem 1.1 that the
weighted hypersurface V(F(Y, X)) C P(e, 1,..., 1), defined by F(Y, X) = 0, is nonsingular over C. It
is convenient to relate V(F (Y, X)) to a variety in unweighted projective space. We claim that for

FY,X)=Y 4 y@=Dm £ (X) 4.+ f4(X),

then V(F (Y, X)) C P(e, 1,...,1) is nonsingular if and only if V(F(Z¢, X)) C P" is nonsingular. Here,
we again apply the assumption m > 2. Indeed the weighted projective variety is nonsingular if and only
if the only solution of

F(Y,X) =0,

oF d—1 )1
s X) = ¥ fi(X)-m(d—i)ym@==1 =g,
i=0

oF I
K(Y,X)—O, ]—1,...,71,

(3-9)

on A1 is the point P = 0. (By convention we set fo(X) = 1.) Similarly, the projective variety
V(F(Z¢, X)) is nonsingular if and only if the only solution of

F(z¢,X)=0,
oF e -l N\ 7em(d—i)—1
ﬁ(z ,X):igof,'(X)-me(d—z)Z =0, (3-10)
aF .
——(Z¢,X) = =1,...
an( X)=0, j=1....n,
on A"T1 is the point P = 0. Moreover, note that
IF d—1 .
S (LX) =mY" =y fi(X)d =)y, (3-11)
i=0
d—1

g—g(ze,X) =emZ" ' Y fi(X)(d —i)Zem@=imh,
i=0
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We will momentarily use this to confirm that if 7 > 2, a nonzero solution (say P = (y,x) € A*T1) to
(3-9) exists if and only if a solution (namely Q = (y1/¢, x) € A"*1) to (3-10) exists.

To clarify the role of the assumption 7 > 2, let us briefly make a general observation. In general, let a
polynomial G(Y, X) be given as in (1-20) and assume V(G(Y, X)) C P(e, 1,..., 1) is nonsingular; we
may assume e > 2 (since otherwise the variety is already unweighted). Then we claim V(G(Z°¢, X))
is nonsingular (as a projective variety) if and only if V(G (Y, X)) N V(Y) is nonsingular (as a weighted
projective variety). By the chain rule,

a e e—1 86 e
—36 (Z°,X)=¢Z (_BY)(Z , X).
Observe that

Sing(V(G(Z°. X)) = {(z.x) € P": V1 x G(z°, x) = 0}
= {(0.x) € P": Vx G(0,x) = 0} U {(z.x) € P" : Vy x G(z°. x) = 0}
={0,x)eP":VxG(0,x)=0}UD (3-12)

under the assumption that V(G (Y, X)) is nonsingular. On the other hand, by the Jacobian criterion,
Sing(V(G(Y, X)) NV(Y)) ={0,x) e P":VxG(0,x) = 0}.

(Here we have used that G(0, X) is itself homogeneous in X, so that Vy G(0, X ) = 0 implies G(0, X) =0
by Euler’s identity.) Since the singular sets are identical, this proves the claim.

Let us apply this in our case with G taken to be the polynomial F (Y, X), with V(F(Y, X)) assumed
to be nonsingular. We consider whether there are any (0, x) € P” such that Vx F(0, x) = 0. Supposing
such (0, x) exists, it must be the case that (0F/3dY)(0, x) # 0, since otherwise (0, x) would be a singular
point on V(F(Y, X)). If m > 2, then due to the leading factor Y"*~! in (3-11), any point (0, x) € P"* must
lead to (0F/dY)(0,x) = 0. Consequently there can be no such (0, x), and Sing(V(F(Y, X)) N V(Y))
must be empty. Hence by the general argument above, so is Sing(V(F(Z¢, X))). In conclusion, if m > 2,
V(F(Y, X)) being nonsingular implies V(F(Z¢, X)) is nonsingular.

However if m = 1, there is no leading factor of Y in (3-11), and indeed at (0, x), (3-11) evaluates to
fa—1(x). Thus points (0, x) for which f;_;(x) # 0 and Vyx F(0, x) = 0 can lead to singular points on
V(F(Y, X)) N V(Y) and hence to singular points on F(F(Z¢, X)). (Nevertheless, there cannot be too
many singular points, as we will observe in (4-1) below that the singular locus has at most dimension 0.)

In the other direction, suppose that V(F(Z€, X)) is nonsingular, so that as computed in (3-12),

Sing(V(F(Z°,X))) ={(0,x) e P" : Vx F(0,x) =0} U{(z,x) e P" : Vy x F(z°,x) = 0}

is empty. If there were a point (, x) in Sing(V (Y, X)) then if y = 0 this would produce an element in
the first set on the right-hand side, while if y # 0 then taking z = ylle (working over C) would produce
a point in the second set on the right-hand side. Thus V(F(Y, X)) must be nonsingular (and here we did
not need to apply m > 2).
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Remark 3.2. In the special case that d = 1, then F(Y,X) = Y™ + f1(X). Thus V(F(Y, X)) C
P(e, 1,...,1) is nonsingular if and only if V(Z¢™ + f1(X)) C P" is nonsingular, with f; % 0 homoge-
neous of degree em. This occurs if and only if V( f1(X)) C P*~! is nonsingular; in this special case,
the problem we consider falls in the scope of the work in [2, Theorem 1.1], which proves this case of
Theorem 1.1. Our method of proof works regardless, so we allow d = 1 as we continue.

Remark 3.3. Recall the affine hypersurface V C Ag“ defined in (1-2) according to the polyno-
mial F(Y, X). We note that V is irreducible under the conditions of Theorem 1.1. Suppose it is
reducible, so that F(Y, X) = G(Y, X)H (Y, X) for some nonconstant polynomials. Then F(Z¢, X) =
G(Z¢, X)H(Z¢, X) so that the projective variety V(F(Z¢, X)) is reducible. Consequently, by [13,
Lemma 11.1], V(F(Z¢, X)) is singular, which is a contradiction because by the discussion above,
V(F(Y, X)) is nonsingular if and only if V/(F(Z¥¢, X)) is nonsingular.

3.4. Initial considerations of the sieving set. We suppose that @ = B* for some 0 < k < 1 to be chosen
later (see (7-4)). We will choose a sieving set

P cl0.20]

comprised of primes with certain properties. In the special case that (e, m) = 1, it is sensible to restrict
our attention to a set Py of primes in [Q, 2Q] such that

(1) p =1 (mod m) (recalling m > 2) and
(i) p =2mode, and
(iii) the reduction of V/(F(Y, X)) as a weighted variety over Fp is nonsingular.

The first criterion (i) we have used in the proof of the sieve lemma (Lemma 1.2). The second criterion
(i) ensures that (e, p —1) = 1 so that every y € [, satisfies y = z¢ for some z € F,. Then for each p € P,
we can simply consider the reduction V(F(Z¢, X)) C PﬂF’p in place of the weighted variety, so that (iii)
is equivalent to

(iii’) the reduction of V(F(Z¢, X)) C [P’% is nonsingular.
p

By the Chinese remainder theorem and the Siegel-Walfisz theorem on primes in arithmetic progressions,
under the assumption that (e, m) = 1, there are >>,, . Q/log Q primes that satisfy (i) and (ii) in any
dyadic region [Q, 2Q)], for all Q sufficiently large. We could then choose the sieving set Py to be the
subset of such primes for which (iii’) holds; the remaining task is to show there are sufficiently few primes
that violate (iii).

Recall from Section 3.3 that V(F(Y, X)) is nonsingular over C (as a weighted projective variety) if
and only if V(F(Z¢, X)) C P”" is nonsingular over C. Thus under the hypothesis of Theorem 1.1, the
latter is nonsingular, and consequently there are no nontrivial simultaneous solutions of the system (3-10),
and thus the resultant

( oF OF 8F)
r:=Res| F —

T9ZaX, T Xy,



Application of a polynomial sieve: beyond separation of variables 1535

of those n + 2 polynomials in n 4 1 variables is a nonzero integer. Moreover, by [21, Chapter 13,
Proposition 1.1], 7 is a polynomial in the coefficients of F with degree bounded in terms of m, e, d. By
[15, Section IV], the reduction V,(F(Z¢, X)) of V(F(Z¢, X)) modulo p is singular precisely when
p|r, which can only occur for at most w(r) primes, where

w(r) K logr/loglogr <K e.qlog| Fl. (3-13)

(Notice that the argument in this paragraph made no assumption on the relative primality of e and m.)

In particular, if (e, m) = 1, then as long as Q is sufficiently large, say Q >, .4 (log | F][)! %o for
any fixed 8o > 0 or even Q >, . 4 (log || F||)(loglog | F||), we can conclude that |Py| >, ..a O/ log Q.
After we choose Q to be a certain power of B (see (7-4)), this will only require a lower bound on B that
is on the order of a power of log || ||, which we will see can be accommodated by the bound on the
right-hand side of our claim in Theorem 1.1.

These remarks all apply in the case that (e,m) = 1. However, we can also argue more generally
without this assumption, as we demonstrate in the next section, by working not with V(F(Z¢, X)) as
above, but with a finite collection of varieties W;, defined according to F (]/i z¢,X) =0in [y, for a
certain primitive root y € [F; (see Lemma 4.3). Thus we postpone our definition of the sieving set, in
general, until the end of the next section.

4. Estimates for exponential sums

In this section we apply the Weil bound to prove an upper bound for the exponential sum g(u, p) (see
(1-24)) in the case that u is each of three types: type zero, good, or bad modulo p (Definition 4.1). At the
end, in Section 4.2 we then define the sieving set P.

We note the multiplicativity condition

g, pg):i=Y (vp(a)—1)(vg(a) — Depg((a, u)) = g(qu, p)g(pu.q),
a mod pgq

where gqg = 1 mod p, and pp = 1 mod g. This leads us to study the key exponential sums with prime
modulus:
g, p):i=Y_ (vpla)— ey ({a,u)).
acky

Let p be a fixed prime of good reduction for F(Z¢, X), so that V(F(Z¢, X)) C [P’%p is a nonsingular
projective hypersurface. For any point P € V(F(Z¢, X)), let Tp C [P’gp denote the projective tangent
space to V(F(Z¢, X)) at P. A linear space L is tangent to V(F(Z¢, X)) at P if Tp C L;if L is a
hyperplane, this is equivalent to P being a singular point of V(F(Z¢, X)) N L (see [20, p. 57]).

Given u € 7" with u # 0 (mod p), if V({X, u)) C I]J’gp is not tangent to V(F(Z¢, X)) at any point
(i.e., they intersect transversely), we simply say V({X, u)) is not tangent to V(F(Z¢, X)); otherwise,
we will say they are tangent (and as we will discuss below in (4-1), there are at most finitely many points
at which they are tangent).
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Using this terminology, we will classify # € Z”" in terms of three cases:
Definition 4.1. For u € 7" and p € P we say that:

(1) u is of type zero mod p if u = 0 (mod p),
(i1) u is good mod p if u # 0 (mod p) and V({X, u)) C IP% is not tangent to V(F(Z¢, X)) C [FD% ,
p D
(iii) u is bad mod p if u # 0 (mod p), and V({X, u)) C [P’% is tangent to V(F(Z¢, X)) C [P’% .
P P

(The fact that we define these types in relation to V(F(Z¢, X)), is justified by Lemma 4.4, below.) The
main result of this section is the following:

Proposition 4.2. Assume that p > 2 is a prime of good reduction for F(Z¢, X), that is V(F(Z°¢, X)) C

IP’% is nonsingular.
p

(i) If u is type zero modulo p then g(u, p) < p"~'/2;
(ii) If u is good modulo p then g(u, p) < p"/?;
(iii) If u is bad modulo p then g(u, p) <K p(”‘H)/Z,

The implied constants can depend on n,m, e, d, but are independent of || F||, u, p.

In a final step of the proof, we will apply the property that if V(F(Z¢, X)) C P" is nonsingular, any
hyperplane L has

dim{P € V(F(Z¢,X)): Tp < L} = dim(Sing(V(F(Z¢, X)) N L)) <0. A-1)

Here, by dim(Sing(V)) we mean the dimension of the singular locus of a variety V' C P". We will apply
this in (4-3) over Fp for p a prime of good reduction for F(Z¢, X). The result (4-1) is a special case of
Zak’s theorem on tangencies as in [20, Theorem 7.1, Remark 7.5], valid over any algebraically closed
field, or [33, Lemma 3], valid over any perfect field. More simply, in our setting (4-1) can be shown
directly, and we do so in Remark 4.5.

As preparation for proving Proposition 4.2, we transform g (u, p) into an exponential sum over solutions
to F(y,a) = 0 by writing

gu.p)=Y vp(@e,((a.u)— Y ep({a.u))

acl) acl}

= —Suco "+ Y eplam)) Y 1

acfky Y€EFp
F(y,a)=0

=—8u—0- 0"+ D e¢pla.u)),

(v.a)eryt!
F(y,a)=0
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where 8,—¢9 = 1 if u = 0 (mod p) and is 0 otherwise. The task now is to estimate the sum

g, p)+8u=o-p"= > ep{a.u)).

(r.a)erit!
F(y,a)=0

A barrier to doing this efficiently is that the polynomial F(Y, X) is not homogeneous (see Remark 4.6).
Recall the definition of F (Y, X) in (1-1), and recall the integer e > 1 fixed in that definition. As a first
step, we prove:

Lemma 4.3. Fixaprime p>2. Let f =(e,p—1),andlety € I]:; be a primitive f-th root of unity. Then

Z ep({a,u)) fz Z ep((a,u)),

(y,@)ew i=0 (z,a)eW;
where
W ={(y.a) e ;" : F(y.a) =0},
W;={(z.a) e AT F(y'z¢,a) =0}, fori=0,....[ -1

(This lemma replaces the remarks in Section 3.4 that applied in the special case (e, p —1) = 1.)

Proof. We start by claiming that for any y € [F; there exists an unique i € {0, ..., f —1} and some z € [F;
such that y = yz¢: we write e = £k where
(£,q) =1forany ¢q|(p—1), kz%

Note that then f|k and also there exists some integer N such that k|( V). Since y is a generator for
the group [F;,‘/[Fxf, then for any y € [ there exists an unique i € {0, ..., f —1} and z; € [, such that
y=y .zf On the other hand, we can apply the same principle to z;, finding an unique j € {0, ..., f—1}
and z; € [ such that z; = J//z{ Thus, y =y Zf =y ()//zf)f = y’ . Iteratlng this process N
times, we can find zy € [FX such that y = y z]{, with k| V. Then, y = y (zf /k)k On the other

NIk

hand, since (£, p—1) = 1, we have that z3, = z¢ for some z € [F’< so that y = p/z%* = y?2¢ and this

proves the claim. Moreover, note that once we have obtained z such that y = yz¢ then we can multiply
z by any f-th root of unity, so that there are f such values z.
Next, for any i € {0,..., f — 1} we can consider the map

i Wi— W  (z, a)|—>()/z ,a).

From this, we deduce that if (y, a) is in the image of ¢; then

-1 | ify#0,
il ={] 270

On the other hand, if (0,a) € W, then (0,a) € W; for each of i =0, ..., f — 1. The result follows. O
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When we apply Lemma 4.3 it will be convenient to treat all cases analogously as i varies; to do so we
will employ the following lemma.

Lemma 4.4. Fixe > 1 and recall F(Y, X) from (1-1). Let p be a prime, and let u € Fn Then for any
o€ [F the variety V(F(aZ¢, X))NV({{X,u)) C IP’ is isomorphic to V(F(Z¢,X))N V((X u)) C [P’” .

17
In partlcular foru =0, we conclude V(F(aZ®, X)) C [P’E is isomorphic to V(F(Z¢, X)) C [P’”

Proof. Let B € F; be such that 8¢ = «. Then the change of variables (Z, X) — (8Z, X) induces an
isomorphism between V(F(Z¢, X))NV({(X,u)) and V(F(axZ¢, X))NV({X,u)). O

4.1. Proof of Proposition 4.2. We are now ready to prove our main result of this section, Proposition 4.2.
In the following, we denote f = (e, p — 1). An application of Lemma 4.3 leads to

g(u, p) = —du=op +fZ > ep((au)). (4-2)

i=0 (z,a)eW;

4.1.1. Type zero case. Assume u = 0 (mod p). The right-hand side of (4-2) becomes

f—1
g0.p)=—p"+— Z Yoo —p”+%ZIWiI-
i=0

i=0 (z,a)eW;

By definition, for any i = 0,..., f — 1 the set W; is the set of the [F,-points on the affine variety
V(F(y'Z¢, X)) C NF’I;H. By hypothesis, p is of good reduction for V(F(Z¢, X)), so V(F(Z¢, X)) C
ng is nonsingular. Then by Lemma 4.4, we have that V(F(y'Z¢, X )lC ng is a nonsingular V.ariety for
eachi =0,..., f—1 (and in particular is absolutely irreducible over [), and certainly V(F(y*'Z¢, X))
is defined over [,,. Thus the Lang-Weil bound [35] implies that (counting projectively)

\V(F(' Z8 X)) (Fp)| = p" ' + Opea(p™ ' 7Y2)  foreachi =0,...,f—1,

so that |W;| = p" + Om,e,d,(p"_l/z) foreachi =0,..., f — 1. Thus we may conclude that g(0, p) <K
pn—1/2‘

4.1.2. Good/bad case. Assume u # 0 (mod p); we may initially argue the good and the bad cases
together. The right hand side of (4-2) becomes

glu.p)= Z 3 ep((a.u)).

i=0 (z,a)eW;

In either the good or the bad case, it suffices to estimate each sum

gi(u, p) = Z ep((a,u)), fori =0,.., f—1.

(z.a)eW;
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First we prove that for any « € [F;, gi(u, p) = gi(au, p). Indeed

gileu,p)= Y ep(laau))= > ep{a,au))

(z,a)eW; (z,a)e[Ff,’“
F(y'z¢,a)=0
= > ellaan)= > ep((bou))
(z,a)eFpt! (t,b)erp™!
F(y'z¢,a)=0 @™ F(y't¢,b)=0
= > e(b.u)=gi(u,p),
(t,b)eri ™!
F(y't°,b)=0

where in the fourth step we use the change of variables (z,a) = («t,ab), for o = 1 (mod p). Hence

(p—D)gi(w.p) = gi(eu, p)

x
a€l,

=Y Y elaoan)

o€l (z,a)eﬂ:Z"'1

F(y'z¢,a)=0
= 2 2 eCaw= 3 D ee@w)- 3 1
(z,a)eFi T o€y (z,a)eFit! @€hp (z.a)eFpt!
F(yiz¢,a)=0 F(yiz¢,a)=0 F(yiz¢,a)=0

=p(p=D|(V(F('Z¢. X)) NV (. X))(Ep)| = (p=D|V(F(Y' Z¢. X)(Ep)| + (p=1).
where in the last step we have passed to counting points over [, in the projective sense. Applying [32,
Appendix by N. Katz, Theorem 1], we have that

n-l n+8;

V(FG/'Z8. X))F) =D p/ + Onmea(p 2 ).
j=0
, n—2 . n—1+38; 4
((V(FG/'ZE X)) NV, XIDE) = p) + Onmea(p™ 2 ),
j=0

where §; = dim(Sing(V(F(y*Z¢, X)))) and §; 5, = dim(Sing(V(F(y*Z¢, X)) N V({u, X )))).
On the other hand, Lemma 4.4 implies that §; = §p and §; , = J¢,, for each i. Moreover, §y = —1
since we are assuming that p is of good reduction for V(F(Z¢, X)). Thus, we obtain
nt+1téo.u
gilu,p)=0(p~2 ), (4-3)
with an implicit constant depending only on n,m, e, d. Finally, by (4-1),

5 { 0 if V({u, X)) is tangent to V(F(Z¢, X)),
0w =1\

1 otherwise,
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and this completes the proof of the good and bad cases in Proposition 4.2.

Remark 4.5. This remark justifies (4-1). Let V = V(H (X)) C P" be a nonsingular hypersurface and
L =V({a, X)) be a hyperplane. We may suppose without loss of generality that @; # 0. By the Jacobian
criterion, Sing(V N L) is the set of points on the intersection V' N L for which the (7 + 1) x 2 matrix
with columns V H and a has rank 1. Consequently, Sing(V N L) C W where

W=VnV(g)n-:--NV(gn,

in which foreachi =2,...,n,
oH oH
i(X)=a1—(X) —a;i—(X).
gi(X) alaXi( ) ataXl( )
On the other hand, W N V(dH/dX;) = Sing(V) = & under the hypothesis that V is nonsingular.
Consequently, dim W < 0, implying dim(Sing(V N L)) < 0, as desired.

Remark 4.6. It is worth remarking what we have gained from the arguments in this section. Briefly,
suppose # # 0 (mod p) and consider

gu.p)= > ella.u)).

+1
(v,a)el,

F(y,a)=0

To work directly with this sum rather than passing through the dissection into the components W; as
we did above, we would first need to homogenize the polynomial F(Y, x), say defining a homogeneous
polynomial

F(T.Y.X)=TmdEDymd .y pme=Dym g (X)+ fa(X).

(Here we suppose that e > 2 for this example.) Then observe that [1 : 0 : ---: 0] is a singular point on
V(F(T,Y, X)) C P"*t1. Consequently, if one proceeded to estimate g (u, p), roughly analogous to the
approach in (4-3), by counting points on the complete intersection described by

VF(T,Y,X)NV({u, X)) NV(T =1),

the role of dy 4 in the exponent is now played by a dimension that is always at least 0, ultimately leading

1/2

to a result that is larger by a factor of p'/“ than the results we obtain in Proposition 4.2.

4.2. Choice of the sieving set. We can now continue the discussion initiated in Section 3.4, and choose
the sieving set. We suppose that Q = B* for some 1/2 <k <1 to be chosen later (see (7-4)). We choose

the sieving set

PclQ.20]

comprised of all primes in this range such that (i) p = 1 (mod m) (recalling m > 2), and (iii’) the reduction
V(F(Z¢,X)) C [P’% is nonsingular.
p
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By the Siegel-Walfisz theorem on primes in arithmetic progressions, there are >>,, Q/log Q primes
such that p = 1 (mod m) in any dyadic region [Q, 2Q], for all Q >, 1 sufficiently large, which we
assume is a condition met henceforward. We recall from (3-13) that at most Oy, , 4 (log || F||) primes fail
(iii"). We henceforward assume that

Q > m.e,a (log | Fl)(oglog | ) (4-4)

for an appropriately large implied constant, so that consequently

=|P|>m Q/log O _Cm,e,d(log I £1]) Pm.e,d 0Q/log Q. (4-5)

When we finally choose Q as a power of B, (4-4) will impose a lower bound on B; we defer this to (7-4).

S. Estimating the main sieve term: the bad-bad case

This section is the technical heart of the paper. We show how to bound the most difficult contribution to
the sieve, which occurs when u is bad with respect to two primes p # g € P. (We reserve the treatment
of all other cases, when u is either type zero, or good with respect to at least one of these primes, to
Section 7; these remaining cases are significantly easier.)

We recall from the sieve lemma, Lemma 1.2, that S(F, B) is bounded above by a sum of three terms.
The first two terms can be bounded simply:

> W)+ — ZW(k) < B" '+ B"P. (5-1)
ke: fa (k)=0

Here the first term follows from the Schwartz-Zippel trivial bound <, . 4 B"~! for the number of zeroes
of f; with k € supp(W), since f; # 0 (see, e.g., [27, Theorem 1], which as mentioned before has a
method of proof that applies even if f; is not absolutely irreducible). We will call the remaining, third,
term on the right-hand side of the sieve lemma the main sieve term.

P2 YT (pq)l—P2 Z( )
Pzan > Z‘W(%) g(u,pq)‘. (5-2)

Now we are ready to estimate the main sieve term, which after an application of Poisson summation
inside the definition (1-23) of T'(p, q) is
( ) gu, pq)‘
P,q€P DP.g€EP
P#q p#q
P.geP u
P#q

We will apply Proposition 4.2 to bound g (u, pg), according to the “type” of # modulo p and ¢, respectively;
this leads to cases we can abbreviate as zero-zero, zero-good, zero-bad, good-good, good-bad, and bad-bad.
Unsurprisingly, the greatest difficulty is to bound the contribution of the bad-bad case, and we focus on
this first, returning to the other cases in Section 7.
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Recall that W is a nonnegative function with W(u) = w(u/B) for an infinitely differentiable, non-
negative function w that is = 1 on [—1, 1] and vanishes outside of [-2, 2]. Thus W(u) = B"w(Bu) and
w(u) has rapid decay in u, so that

W) < B" [+ |ui| B (5-3)

i=1
for any M > 1; we will for example specify a lower bound on M at (5-22) and can certainly always
assume M > 2n. In particular, we will later apply the fact that for any B, L > 1,

> IW(u/L)| < max{B", L"}. (5-4)

uez"

5.1. The dual variety. To consider any bad case, it is useful to consider certain facts about the dual
variety. Recall that m > 2 and d,e > 1, and

F(Y,X)=Y" £ ym@d=1 £ (X)+ -+ f1(X), (5-5)

in which for each 1 <i <d, f; is a polynomial in Z[ X1, ..., X,] with deg f; = m-e-i. By hypothesis,
the variety defined by F(Y, X) = 0 in weighted projective space, denoted V(F(Y, X)) C Pc(e, 1,...,1),
is nonsingular. Recall from Section 3.3 that V(F(Y, X)) C Pc(e, 1, ..., 1) is nonsingular if and only if
V(F(Z¢, X)) C P{ is nonsingular. The dual variety V* = V(F(Z¢, X))* C P{ of a hypersurface is a
hypersurface. We denote by

GWUy,Uy,...,Uy) (5-6)

the irreducible homogeneous polynomial such that V(G) = V* (see, e.g., [13, Proposition 11.2, Appen-
dix]). Recall that deg F'(Z¢, X) = mde; by [19, Proposition 2.9],

deg G = mde(mde —1)""! > 2.

In our analysis of the bad-bad case in Section 5.2, our strategy is to divide our analysis depending on
whether u has the property G(0,u) # 0 or G(0,u) = 0. In the first case, we now show via an explicit
constructive argument that

[(p : u is bad modulo p3| pm.e.q 1og(1F ). (5-7)

Let us prove this. A given u has the property G (0, #) # 0 if and only if the hyperplane V' ({u, X)) C P¢

is not tangent to V(F(Z¢, X)) C PZ; that is, if and only if for any [z : x] € V(F(Z¢, X)) N V({X, u)),
the matrix

g—g(ze, x) 0

E?TFl(Ze:x) Ui (5-8)

JoF .
3—)(,1(26,17) Un



Application of a polynomial sieve: beyond separation of variables 1543

has maximal rank (i.e., at least one 2 x 2 minor is nonvanishing). Now define n + 2 polynomials in
Z,X1,..., Xy, with integral coefficients (depending on u) as follows: set

HO,M(Z’X)zF(Ze’X)’ Hn+1,u(Z,X)=(X,”>a

and for 1 <i <n set

LX) Uy
oF e
z€,x) u;_
det ‘”5"—1(6 ) iz for2 <i <n.
a—XI.(Z LX) U
Then define the resultant (see [21, Chapter 13])

OF (e 0
det(%%(z ) ) fori =1,

fIi,u(Z’X) =

R(u) =Res(Hou, Hiy, ..., Hyt1,u). (5-9)
The following are all equivalent:
(1) u has the property that V' ({u, X)) is tangent to V(F(Z°¢, X)).
(2) Forsome [z:x] € V(F(Z¢, X))NV({X,u)), (5-8) has rank < 2.
(3) The polynomials H; ,(Z, X) (for 0 <i < n + 1) share a common (nonzero) root.
4) R(u)=0.

Now we consider the analogues of these statements for each p. Fix a prime p. For a polynomial
L € Z[U), let L denote its reduction modulo p. By definition, # is bad modulo p precisely when H iu (for

0 <i <n+1) have a common nontrivial root modulo p, that is if and only if p|Res(HO,u, oo Hpyp1 ).
By [15, Section 1V], as a polynomial in U,

RGS(IT[O’U, ey ITI,H_]’U) = E(U),

where R is defined as in (5-9). (That is, the resultant of the reductions modulo p is the reduction modulo
p of the resultant.) Thus for each u such that G(0, u) # 0 so that R(u) # 0, we can conclude that

}{p : u is bad modulo p}‘ =w(Res(Hoy, ..., Hyx1,u)),

where w(r) indicates the number of distinct prime divisors of an integer r; we recall in particular
that w(r) < (logr)/(loglogr). By [21, Chapter 13, Proposition 1.1], the resultant is a homogeneous
polynomial in the coefficients of the forms Hy 4., . .., Hy41,, (With degree bounded in terms of n, m, e, d).
Thus, for every value of u such that G(0, u) # 0 so that Res(Hy 4, . . ., Hy+1,4) is a nonzero integer,

a)(ReS(HO,u’ cee Hn+1,u)) Lnm,e,d log(|| F'[|[[a]])- (5-10)

Finally, if G(0,u) = 0, then the hyperplane V({u, X)) C P{ is tangent to V(F(Z¢, X)) C P¢ so that
(5-8) has rank 1 over C; consequently # is bad for all primes p. Thus in this latter case, we will instead
focus on showing there are sufficiently few solutions to G(0, u) = 0.
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Remark 5.1. It is a common occurrence that one requires the fact that there are “quite few” primes of
bad reduction for a variety of the form V N {ug Xy + - - - up X, = 0} for some variety V and parameter
(uo,uy,...,up) of interest, in this case V(G) with G describing the dual of F, and uy = 0. The fact
that our result (5-7) depends only logarithmically on || F|| is important for our ultimate deduction that
the implicit constant in Theorem 1.1 is independent of || F||; see the application in Section 5.2.1. This
motivated the explicit argument we gave above. Alternatively, we thank Per Salberger for pointing out
that the useful references [17, pp. 95-98] and [18] also provide similar constructions leading to explicit
results of the form (5-10) and hence (5-7). We remark that if we did not require logarithmic dependence
on || F||, one could apply a result such as [13, Proposition 11.5(3), Appendix] to conclude immediately
that for all sufficiently large primes (in an inexplicit sense), # is bad modulo p precisely when p|G(0, u)
(so that |{p : u is bad modulo p}| < log |lu|| when G(0, u) # 0), but with dependence on G and hence
on F that has not been made explicit, and so does not immediately suffice for our application.

5.2. Bad-bad case. We use the above facts to control the contribution of the bad-bad case to the sieve,

~ [ u
" ()l
pq (5-11)
We start by exchanging the order of summation between u and the primes p, ¢, and then splitting the

ISP ML (T RSP VD VLSS VD o)

which by Proposition 4.2 is bounded by

p2Q2n Z Z W(pq)g(u pq)‘<< p2Q2n Z Z

D.g€P budGZ”d D.g€P budGZ”d
u bad mod p u bad mod p
P#q u bad mod g P#q u bad mod g

sum as

ue7" p.geP ucz" p.q uez"
P#q G(0,u)=0 p#q G(0,u)#0 p#q
u bad mod p u bad mod p u bad mod p
u bad mod g u bad mod g u bad mod g

In this section, we will prove that the contribution from G (0, #) # 0 is

> X ‘W(i)‘«n,m,e,d 0" (log B)™. (5-12)
Pq

uez" D.qE€EP
GO,u)#0  p#q
u bad mod p
u bad mod g

On the other hand, we will prove that the contribution from G(0, #) = 0 is

2 \n—2+3i+e
P 'W(%)‘<<8P2(Q2”B—“(M‘”+B”(%) 3 ) (5-13)

ue7” P.g€P
G(0,u)=0 P#q
u bad mod p
u bad mod g

for a small 0 < @ < 1 of our choice, and any ¢ > 0. Once we have proved these two inequalities, we will
wrap up the contribution of the bad-bad case in Section 5.2.3.
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5.2.1. The case G(0,u) # 0. Proving (5-12) is quite simple; by the decay (5-3) for W and the bound
(5-10) for counting p, g,

2 X

-M
(L)< % ]‘[(1+ ) ey

ueZ” D,gE€P ue7" i=1
G(0,u)#0 P#q G(0,u)#0
u bad mod p
u bad mod g

N—-M
> ]‘[( ) o2

ue7" j=1
Ln,m,e,d an(log B)z-

Here we have used the fact that Q = B* with 1/2 <« <1 (so that Q%" > B™), and the fact from
Lemma 2.1 that in the only case we need to consider, log || F'|| <;,¢,4 log B. This proves (5-12) with an
implied constant independent of || F||.

5.2.2. The case G(0,u) = 0. Proving (5-13) is a key novel aspect of our proof. Note that if G(0, u) = 0,
then u is bad mod p for all p € P. Then

o (e 2 0o e

uez" D,gEP uez" i=1
G(0,u)=0 P#q G(0,u)=0
u bad mod p
u bad mod g

Let 0 <« < 1 be a parameter to be chosen later and consider the cube
Cot — [—Q2/Bl_“, QZ/Bl—a]n C R".

This is slightly larger than the “essential support” of the sum over u, so that outside this box we can
exploit decay more efficiently. We will ultimately prove that

n -M 2 \n—2+1/3+¢
Blu;| 2n p—n p—a(M—1) Q
> ]_[(1+ Q2) < Q*"B"B” +| 3= : (5-15)
ue7" i=1
G(0,u)=0

for any € > 0. We split the sum as

3 ]‘[(1+B|M’|) + ) ]_[(1+B|”’)M. (5-16)

ueCyN7" i=1 u¢CyNZ" i=1
G(Ou) 0 G(0,u)=0

In the second sum in (5-16), we can exploit decay:

Blu;| - Blui| o2y 1
o (DR i (S R CO P

G(0,u)=0 G(0,u)=0
luj|>Q*/ B!~
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The contribution of these u to (5-14) is thus <« Q2" P2B~¢M =1 for 0 < @ < 1 and any M > 2n; this
contributes the first term in (5-13).

It remains to deal with the first sum appearing on the right-hand side of (5-16), summing over u € Cy
such that G(0, #) = 0. Here we show that there are few solutions to G (0, #) = 0. Recall the definition
of the form G from Section 5.1. Consider V(G(0,U)) C P"~! defined by G(0,U) = 0 as a function
of U. (First notice that G(0, U) is not identically zero; indeed, if it were then we would conclude that
{Uy =0} C{G(Uy, Uy,...,U,) = 0}. Recalling that G(Uy, U) is irreducible, both these projective
varieties have dimension # — 1 so that in fact we must have {G = 0} = {Uy = 0}. But this is impossible,
since G has degree > 1.) Thus V(G(0,U)) C [P’g_1 is a projective variety of dimension n — 2 and
deg G(0,U) = deg G(Uy, U) > 2. Moreover, let us decompose G(0, U) into irreducible components,
i.e., by writing

L
GO.U) =[] Gu). (5-17)
(=1

where G¢(U) is an irreducible polynomial for each £ < L (and L <, ;.4 1). Set dy := deg Gy. We

have
n

Blui \™M L
1
> T(+%) = X =y ¥
ueC,NZ" i=1 ueCy,N7" L=1ueC,N7"
G(0,u)=0 G(0,u)=0 Go(u)=0

In the next section, we shall prove:

Proposition 5.2. Let n > 3. For the homogeneous polynomial G(Uy,Uy,...,U,) € ClUy, Uy, ..., Uy]
defined in (5-6), G(0,Uy,...,U,) contains no linear factor, that is, we cannot write G(0,U) =
L(U)H(U) for any linear form L(U) € C[Uy, ..., Uy).

Remark 5.3. As a consequence of Proposition 5.2, G(0, Uy, ..., U,) contains no factor in one or two
variables. For suppose that in the notation of (5-17) some factor Gy (U) (after an appropriate GL,(C)
change of variables) can be written as a polynomial g;(U;) or g,(Uy, U;). Then g (U;) is a monomial,
hence a product of linear factors, contradicting the proposition. Alternatively, any form g, (U, U,)
factors over C into homogeneous linear factors in Uy, U;, as a consequence of the fundamental theorem
of algebra applied to g,(1,7) € C[t], followed by noting g, (U1, U,) = Uldeggzgz(l, U,/ Uy). This again
would contradict the proposition. (Since the statement of Proposition 5.2 is false if n = 2, see Remark 5.4
for an alternative approach for n = 2.)

The crucial point is that Proposition 5.2 implies that for each £ =1, ..., L the degree dy > 2 (and G,
depends on at least 3 variables). By [27, Theorem 2] and [41, Theorem A], we have, for any ¢ > 0,

(QZ/Bl—a)n—Z-‘ra ifdy =2,
D I e (5-18)
ueC,Nz" (Q°/B %) ¢ if dy > 2.
Ge(u)=0

Within these results, the implied constant is independent of || F|| in each case. In particular, we may
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conclude that foreach{=1,..., L,

1
Qz n—2+z+e
Z 1 <, (W .

ueCyNZ"
G¢(0,u)=0

Thus the total contribution of these terms to (5-14) is

2 \n—2+1+e

np2 Q
<Lg B*P (m) .
This contributes the second term in (5-13), and hence (5-13) is proved.

5.2.3. Conclusion of the bad-bad sieve term. From (5-12) and (5-13) we conclude that the total contribu-
tion of the bad-bad case (5-11) to the sieve is

o+ 5 s 21 2 e (M—1) ([ 02 n—2+%+e
n n —o - n

5 /
B‘g—i-g(a)—i-s
Lg Qn(QP_z(log B)* + QB_a(M_l) + (W)), (5-19)
3

where g(o) = a(n — % +¢ ) for any ¢’ > 0. To simplify the third term above, henceforward we assume

= B with
0
<k<l (5-20)

NI

Then the above is
<o 0"(OP 2(log B)? + QB~¢M~D | B—ﬁ+g(<x)+s’)’ (5-21)
for any &’ > 0. In the first term on the right-hand side, we observe by (4-5) that P >> Q/log Q so that
QP %(log B)?> « Q" '(log B)* « B_3/4(10g B)*.

In the second term, we can choose o = ﬁ(n — % +&)sog(a) = 2—14, and set M > max{2n,o~! +1}.
Regarding the third term, so far this is true for any ¢’ > 0; let us take ¢’ = 1/100, say. We conclude that

n+1 .
T X (L) <o e sy 4 on 4 pEt ) < 0 2)
Q uez7" D,qE€P rq
GO0,u)=0 p#q
u bad mod p
u bad mod g

since B > Q. The implied constant is independent of || F||. (Here we could even obtain a term that
is 0(Q™"), but this will not change our main theorem, since the good-good contribution to the sieve is
O(Q").) This completes the treatment of the bad-bad contribution to the sieve, except for the proof of
Proposition 5.2, which we provide in the next section. Then in Section 7 we show that the contributions
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of all the other types to the sieve are also dominated by <« Q", and then conclude the proof of our main
theorem.

Remark 5.4 (the case n = 2). The method of this paper applies for » = 2 up until Proposition 5.2; arguing
as in Remark 5.3 shows that G(0, Uy, U,) factors over C into homogeneous linear factors in Uy, U;, so
that proposition is false for » = 2. Thus in the nomenclature of (5-17), each degree dy = 1, and the
estimate (5-18) is replaced by (Q?/B'~%)"~1. Thus (5-19) is replaced by

Q"(QP_Z(log B)2 + QB—O!(M—I) + B(n—l)a+1Q—l) <« Qn-i-l’

upon taking ¢ = 0 and using Q > BY/2, Ultimately, arguing in this way for n = 2 leads to the choice
Q = B'/2(log B)!/? and the outcome S(F, B) < B"'*1/2(log B)/2, which is essentially no better
than (1-16), aside from the fact that we can remove the dependence on || F|| in the implicit constant. In
any case, Broberg’s results (1-14) and (1-15) supersede the outcome of the methods of this paper for
n=2,73.

6. Proof of Proposition 5.2

In this section we prove the critical Proposition 5.2 that allows us to deduce all factors in G (0, U) have at
least degree 2, so that we can apply the nontrivial bounds of Heath-Brown and Pila in (5-18). We thank
Per Salberger for suggesting the following strategy to prove the proposition.

Let n > 3. Suppose to the contrary that G(0, U) contains a linear factor, that is,

G(0,U)= L(U)HU) (6-1)

for some linear form L. Then by a linear change of variables we can reduce to the case in which we may
assume that L(U) = Uy, and conclude that

G(0,U) = U, H(U)

for some homogeneous polynomial H. Then any point (0, 0, u5, ..., u,) € {Uy = U; =0} C P” satisfies
G(0,U) = 0 and thus defines a tangent hyperplane to V(F(Z¢, X)) C P", given by

u2X2+"'+uan:O.

In particular, for all [ty : -+ : u,] € P"2, this hyperplane contains the line £ given by X5 =--- = X, =0
in P". We note that this line £ is not contained in V(F(Z¢, X)), since for example in the coordinates
[Uy : Uy : Uy :---: Uy] we see that the point [1 : 0:0:---:0]€£but[l:0:0:---:0] &V, since in
the definition of F the coefficient of Z™9¢ is 1. Thus under the assumption (6-1) we have shown that
the generic hyperplane through £ is tangent to V(F(Z¢, X)). We will see this is impossible, and our
assumption (6-1) is false (so that Proposition 5.2 is verified), by the following proposition.

Proposition 6.1. Let n > 3. Let X C P" be a nonsingular hypersurface and let £ be a line not contained

in X. Then the generic hyperplane in P" containing { is not tangent to X .



Application of a polynomial sieve: beyond separation of variables 1549

Let X be given as in the proposition. Without loss of generality we can make a change of coordinates
so that
{={X, ==X, =0}

Let F € C[Xp, X1, ..., Xu] be such that X = {F = 0}, and let D denote the degree of F. Our strategy is
to construct the blow-up of X along the zero-dimensional subvariety Z C X, where we define
Z={NXCP"
Under the hypothesis that £ is not contained in X, then deg Z < D. We also define the open set
U=X\Z.

To prove the proposition, we first notice that we can parametrize the hyperplanes containing £ in P” by
points in P"~2 using the map

P"2 > {HCP":degH =1, LC H}, [vp:-:v4]>{v2Xs 4+ v, X, =0}
Thus, it will suffice to show that there exists an open set V C P"~2 such that for all v =[vy :---:v,] € V,

X N{vp X+ -+ v Xy =0}

is smooth, so that in particular the hyperplane {v, X5 +-- -4+ v, X, = 0} C P" is not tangent to X. We will
prove this in two steps, first focusing on the intersection of the hyperplane with the open set U = X'\ Z,
and then focusing on the intersection of the hyperplane with the finite set of points in Z. In agreement
with the citations we apply in what follows, from now on we will use the terminology “regular” for a
scheme instead of “smooth.” For a nonsingular hypersurface such as X, these notions are identical by
the Jacobian criterion [36, Chapter 4, Theorem 2.19 and Example 2.10]; more generally, the notions are
equivalent for any algebraic variety over a perfect field, and in particular over C [36, Chapter 4, Corollary
3.33].
Define a rational map ¢ : X --> P"~2 given by

o [ Xo: Xi: Xy Xy [Xo -0 Xa)
This is a regular map on U. We claim that there exists a projective variety Y and two morphisms
7:Y = X,and ¢ : Y — P"2 guch that:
(i) The diagram _
Y
N
b3
X %5 pr2
is commutative.
(ii) The morphism 7 restricts to an isomorphism 7 : 7~ (U) — U.

(iii)) The projective variety Y is regular.
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Let us assume this claim for now and see how to conclude the proof of the proposition. Since Y is regular,
we can apply Kleiman’s Bertini theorem [23, Chapter III, Corollary 10.9] to the morphism ¢ : Y —»Pr2,
and deduce that given a generic hyperplane H C P"~2, 3—1(H) C Y is regular. Let us fix one of these
generic hyperplanes, and call it

H={Xo+ - +upX, =0} CP" 2,

By the choice of H, $~'(H) N z~!(U) is nonsingular. Recall that 7 is an isomorphism when restricted
to the open set 7! (U). Thus we also learn that

(@ {H) N2 ' (U) ==@ " (H)NU =9 (H)NU
={[xo:x1:x2:-:xp] €U :uupxy +---4+upx, =0}

is regular. Since such H are generic in P”~2, we conclude that there is an open set V; C P"~2 such that
forall v =[vy :---: v,] € V1, the intersection

Uﬂ{szz—l-'-'-{—ann:O}

is regular.
Let us next focus on the intersection of the hyperplane with the set Z. For any P € Z, a hyperplane
{VaXy 4+ 4+ v, X, =0} with [vy :---: v,] € P"72 is tangent to X at P if the Jacobian matrix at P,
H(p) 0
a X1 Z(P) 0

Jy(P) = 8X2(P) v2 ],

8_F'(P ) v‘n

has rank < 1. From this it is clear that if elther aF (P) # 0 or a; (P) # 0 then rank Jy(P) = 2
for any v € P2, On the other hand, f (P) X1 £ (P) = 0 then rank, (P) < 1 if and only if

[3 be (P):---: a X, (P)] since we are assumlng that X is a nonsingular hypersurface. For each P € Z
we define

%) otherw1se.

. OF dF BF _
Cpe {{[axz (P):-o: 2(P)])if £4-(P) = £5-(P) =0,
If we define Vp = P"~2\ Cp, it follows that for any v € Vp the intersection

Xﬂ{U2X2+"'+Uan=0}

is regular at P.
Finally consider the set

V=vin ) Vp.
PezZ
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Since deg Z < D, then V is a nonempty open subset of P"~2. For each v € V, the hyperplane
VX5 + -+ + vpx, = 0 contains £, and

(L Xo 4+ Xy =0NUUZ)={vXo++0, Xy =0INX

is regular, or equivalently, nonsingular; thus {v, X +--- 4 v, X, = 0} is not tangent to X". This completes
the proof of Proposition 6.1, except for the proof of properties (i), (ii), and (iii) in the claim.
We now prove the claim of properties (i), (ii) and (iii). From the rational map ¢ : X --> P"~2 given by

o [Xo: Xi: Xy i Xyl [Xo -0 Xal,
we consider the graph I" = I', of the map ¢,
I={(x,px)):xeU}C X xP" 2

Define the Zariski closure X = I’ € X x P"~2. Define the projection map 7’ : X > X acting by
(x,¢(x)) = (x). Then the blow-up is X along with a morphism ¢’ such that

X
(AN
4

X -2y pr2
is a commutative diagram (see, e.g., [22, Chapter 7, p. 82]). Moreover, from the definition of the blow-up
it follows that 7z’ restricts to an isomorphism 7" : (')~ (U) — U, ie., X satisfies properties (i) and (ii),
but it might be singular. To resolve this, we apply Hironaka’s resolution of singularities: as a consequence
of [30, Theorem 1] (see also [30, p. 112]), there is a projective variety Y and a morphism [ : Y > X
such that f is an isomorphism when restricted to the inverse image f~!(V) of the open set V of the
regular points of X, and such that Y is regular. Then the claim follows by taking 7 = /o f, ¢ =¢’o [
and observing that ()~ (U) C V.

7. Concluding arguments

In Section 5 we proved that the contribution of the bad-bad terms to the sieve is << Q". We now turn to
analyzing the contributions of the other types, as defined in Definition 4.1. We will treat these in three
sections; in each case we apply the relevant bound for |g(u, pq)| from Proposition 4.2 and the bound
(5-4) for W. Once we have treated these cases, we proceed in Section 7.4 to choose the parameter Q,
and conclude the proof of Theorem 1.1.

7.1. Zero-type cases. We first consider any case in which # is zero-type modulo p, divided into cases
according to whether u is zero-type, good, or bad modulo g. The contribution of the first case (upon
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setting ¥ = pqv and applying (5-4)) is

1 n u Q2n—1 . i
P2 Z Z 'W(E)g(”’pq)’«])z—w Z Z ‘W(v)‘<<B o .
P.9€EP  uer”" P.gEP vETN

pF#q U zeromod p p#q
u zero mod q

The contribution of the second case (upon setting # = pv, applying (5-4) with L = Q < B) is

1
P2—Q2nZZ

P.g€P ue7"
pF#q U zeromod p
u good mod q

Qn—l/ZQn/ZPZ
P2Q2n

‘W (i) g(u,pq)‘ <

3w (1)’ < BrQ~M?*12,
P4 0

vez"

The contribution of the third case (upon setting # = pv, applying (5-4) with L = Q < B) is

1 1 n—n
pz—anZ > W(%)'«BQ 2,

P,q;P ueZ”d
U zero mod p
P7a u bad mod g

n—1/2 nn/2+1/2 p2
0 0 P
P2Q2n

)W (i) g(u,pq)' <
Pq

vezn
As long as n > 2, all these cases contribute at most << B" Q™! to the sieve, which is acceptable.
7.2. Good-good case. The contribution to the sieve from the good-good case is:
1 ~ [ u Q" P? ~( u n
pigm 2 L W (o) e rn| < Frgm | (G5)| <0
peo™ P9EP  uez" rq PEQ=" uezn Q

pF#q U goodmod p
u good mod g

after applying (5-4) with L = Q? > B, since under the assumption (5-20), k > 1/2.

7.3. Good-bad case. The contribution to the sieve from the good-bad case is

1 A u A u
e INED SR L4 () FONTIEE-=) Sl DD DL d o) | G
P2Q P.9€P  uez" P4 L PEP g#peP uc7" P4q
p#q U good mod p u bad mod g

u bad mod g

Qn+1/2

Here we proceed by imitating the key step from Section 5 for the bad-bad case, and sum over g before
summing over . We again define G(Uy, U) as in (5-6), and let R(u) denote the resultant (5-9), so that

> W(l)'«P > 'W(é)‘w(R(u)) Lnme.d PO log B,
#PEP

PEP  uez" rq uez"
G(0,u)7#0 u bad mod ¢ G(0,u)#0

with an implied constant independent of || || (in the first case of Lemma 2.1), by arguing as in the proof
of (5-12).

Notice that in the good-bad case, we do not need to consider a possible contribution from those u
for which G(0, u) = 0: when G(0, u) = 0, then all ¢ have the property that u is bad for ¢, whereas by
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definition in the good-bad case, u is good for at least one prime. In total, the contribution to the sieve
from the good-bad case is thus

ont1/2
P2 Q2n

- PQ*"(log B) < 0""1/2P~(log B) < Q",

since Q = B* for some 1/2 < k < 1 and under our acting assumption (4-4), by (4-5), P > Q/log Q.
Thus we can conclude that the total contribution of the good-bad case (7-1) of the sieve is < Q", with an
implied constant independent of || F|| (in the first case of Lemma 2.1).

7.4. Final conclusion of the sieve and choice of parameters. We now assemble all the terms of the main
sieve term in (5-2): we can conclude that

1 -

-5 2 ITh.ol< B"0™ + 0" (7-2)
p,ffP
Vall

The first term is from all zero-type cases, and the last term includes the good-good, good-bad, and bad-bad
cases. We apply this in the sieve lemma, along with the bound (5-1) for the two simple terms in the sieve,
to conclude that (in the first case of Lemma 2.1) our counting function admits the bound

S(F,B) €nmea (B ' +B"P~'+B"07' + 0") < (B"P™' + O"). (7-3)

Choose
Q — Bn/(n+1)(10g B)l/(l’l+l). (7_4)

The requirement (5-20) is met for all n > 3. (If n = 2, then this argument leads to the choice Q ~ B 2/3,
which does not suffice to prove sufficient decay in the bad-bad case; see Remark 5.4.) Recall from (4-4)
and (4-5) that

P =P Pm,e,d O(log Q)_l >um,e,d Bn+T(log B) n+1

as long as

O > me,a (log || Fll)(loglog || F]]). (7-5)

Recall also that we require P >, , 4 max{log || f4|,log B} in Lemma 1.2. Certainly the first condition
is satisfied under the assumption (7-5). The second condition is satisfied for Q as in (7-4) for all B >, 1.
To meet the requirement (7-5) for Q as chosen in (7-4), it suffices to require that

n+1
B> .e,d (log | F|loglog|| F|[) » .

For such B, the conclusion of the sieve process in (7-3) shows that

S(F. B) Kpmea B"™' T (log B)#iT,
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where the implicit constant is independent of || F||. This suffices for Theorem 1.1. Finally, for all
B < p.e,a (log| F|lloglog ||F||)nni, we apply the trivial bound

S(F, B) <n B" <yme.qa (log| F|loglog || F|)"t" <« (log || F|))"*?
Knmd.e (log BY'2 &, B *it1 (log Bywtr,

Here we applied the fact from Lemma 2.1 that in the case it remains to prove Theorem 1.1, | F| <«
Bmdo)"*2 g4 that log | F|| <p,m,d.e log B. This completes the proof of Theorem 1.1.
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