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Application of a polynomial sieve:

beyond separation of variables

Dante Bonolis and Lillian B. Pierce

Let a polynomial f 2 ZŒX1; : : : ; Xn� be given. The square sieve can provide an upper bound for the

number of integral x 2 Œ�B; B�n such that f .x/ is a perfect square. Recently this has been generalized

substantially: first to a power sieve, counting x 2 Œ�B; B�n for which f .x/ D yr is solvable for y 2 Z;

then to a polynomial sieve, counting x 2 Œ�B; B�n for which f .x/ D g.y/ is solvable, for a given

polynomial g. Formally, a polynomial sieve lemma can encompass the more general problem of counting

x 2 Œ�B; B�n for which F.y; x/D0 is solvable, for a given polynomial F . Previous applications, however,

have only succeeded in the case that F.y; x/ exhibits separation of variables, that is, F.y; x/ takes the

form f .x/�g.y/. In the present work, we present the first application of a polynomial sieve to count x 2

Œ�B; B�n such that F.y; x/ D 0 is solvable, in a case for which F does not exhibit separation of variables.

Consequently, we obtain a new result toward a question of Serre, pertaining to counting points in thin sets.

1. Introduction

Fix an integer m � 2 and integers d; e � 1. Consider the polynomial

F.Y; X/ D Y md C Y m.d�1/f1.X/ C � � � C Y mfd�1.X/ C fd .X/; (1-1)

in which for each 1 � i � d , fi 2 ZŒX1; : : : ; Xn� is a form with deg fi D m � e � i . We are interested in

counting

N.F; B/ WD
ˇ

ˇfx 2 Œ�B; B�n \ Z
n W 9y 2 Z such that F.y; x/ D 0g

ˇ

ˇ:

Trivially, N.F; B/ � Bn; our main result proves a nontrivial upper bound. We assume in what follows

that fd 6� 0, since otherwise .0; X/ is a solution to F.Y; X/ D 0 for all X , and then Bn � N.F; B/ � Bn.

(Throughout, we use the convention that A �� B if there exists a constant C , possibly depending on �,

such that jAj � CB:)

Theorem 1.1. Fix n � 3. Fix integers m � 2 and e; d � 1. Let F be defined as in (1-1), with fd 6� 0.

Suppose the weighted hypersurface V .F.Y; X// � P.e; 1; : : : ; 1/ defined by F.Y; X/ D 0 is nonsingular

over C. Then

N.F; B/ � Bn�1C 1
nC1 .log B/

n
nC1 :

The implicit constant may depend on n; m; d; e, but is otherwise independent of F .
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The main progress achieved in Theorem 1.1 is for n � 4, e � 2; d � 2. The requirement that n � 3

occurs since a key step, Proposition 5.2, is not true for n D 2 (see Remark 5.4). In any case, for n D 2; 3

the result of Theorem 1.1 is superseded by results of Broberg in [5], as described below in (1-14) and

(1-15). When e D 1, the variety V .F.Y; X// � P.e; 1; : : : ; 1/ is unweighted, so that in the setting of

Theorem 1.1, to bound N.F; B/ it is equivalent to count points ŒY W X1 W � � � W Xn� with jY j; jXi j � B

on a nonsingular projective hypersurface of degree at least 2 in Pn. Then the result of Theorem 1.1 (in

the stronger form N.F; B/ �m;d;n;" Bn�1C") has already been obtained by work of Heath-Brown and

Browning, appearing in [6; 9; 10; 26; 27], as summarized by Salberger in [42]. Finally, when d D 1, the

result of Theorem 1.1 (aside from uniformity in the coefficients of F ) follows from recent work of the

first author in [2] (see Remark 3.2).

The condition m � 2 is applied in two ways: first, in the construction of certain sieve weights (see

Section 1.2 and the proof of Lemma 1.2), and second, in Section 3.3 when we pass from the weighted

variety to an unweighted variety. For illustration, we also describe how an alternative approach to the

sieve lemma, conditional on GRH, can be devised when m D 1 (see Section 3.2 and Remark 1.3).

Bounding N.F; B/ relates to a question of Serre on counting integral points in thin sets. Let V denote

the affine variety

V D f.Y; X/ 2 A
nC1 W F.Y; X/ D 0g; (1-2)

and consider the projection

� W V ! A
n; .y; x/ 7! x: (1-3)

Under the hypotheses of Theorem 1.1, the set Z D �.V.Q// is a thin set of type II in An
Q

, in the

nomenclature of Serre. Serre has posed a general question that can be interpreted in our present setting as

asking whether it is possible to prove that

N.F; B/ � Bn�1.log B/c (1-4)

for some c. Previous work by Broberg [5] nearly settled Serre’s conjecture for thin sets of type II in

Pn�1 for n D 2; 3; see (1-14) and (1-15) below. For n � 4, Theorem 1.1 represents new progress toward

resolving Serre’s question for certain thin sets of type II. Note that as n ! 1, the bound in Theorem 1.1

approaches a bound of the strength (1-4). We provide general background on Serre’s question, and state

precisely how Theorem 1.1 relates to previous literature on this question, in Section 1.1 and Section 1.2.

To prove Theorem 1.1, we develop an appropriate polynomial sieve lemma, and then bound each

contribution to the sieve using analytic, algebraic, and geometric ideas. A novel feature of this work is

that we do not assume that F.Y; X/ exhibits separation of variables: that is, when d � 2, F.Y; X/ of

the form (1-1) cannot in general be written as F.Y; X/ D g.Y / � G.X/ for polynomials g; G. A formal

polynomial sieve lemma has been formulated previously in a level of generality that does not require

separation of variables; see [8; 13]. However, in those works it has so far only been applied to count

points on a variety that does exhibit separation of variables. To our knowledge, Theorem 1.1 is the first

application of a polynomial sieve to produce an upper bound for N.F; B/ in a case without separation of
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variables. We state precisely how Theorem 1.1 relates to previous literature on so-called square, power,

and polynomial sieves in Section 1.2.

A second strength of Theorem 1.1 is that the exponent in the upper bound for N.F; B/ is independent

of e, where we recall that as a function of X , F has highest degree m � e � d . For any given x 2 Œ�B; B�n

such that F.Y; x/ D 0 is solvable, one observes that any solution y to F.y; x/ D 0 must satisfy y � Be ,

and there can be at most md solutions y for the given x (or, equivalently, preimages under the projection

� in (1-3)), since the coefficient of Y md in F.Y; X/ is nonzero. Thus an alternative method to bound

N.F; B/ (up to an implicit constant depending on md) would be to count all .n C 1/-tuples f.y; x/ W

y � Be; xi � B W F.y; x/ D 0g. Other potential methods might be sensitive to the role of e or size of

d; m (see for example Remark 1.4), while in contrast both the method and the result of Theorem 1.1 do

not depend on e (aside from a possible implicit constant).

Third, we note that the result of Theorem 1.1 is independent of the coefficients of F ; the implicit

constant depends only on F in terms of its degree. To accomplish this, we adapt a strategy of [27], also

recently applied in a similar setting in [3], to show that either N.F; B/ is already acceptably small, or

kFk � B.mde/nC2

. In the latter case, we then show that any dependence on kFk in the sieve method is

at most logarithmic, which we show is allowable for the result in Theorem 1.1.

1.1. Context of Theorem 1.1 within the study of Serre’s question on thin sets. Here we recall the notion

of thin sets defined by Serre in [46, §9.1 p. 121] and [45, p. 19]. Let k be a field of characteristic zero

and let V be an irreducible algebraic variety in Pn
k

(respectively An
k

). A subset M of V .k/ is said to

be a projective (respectively, affine) thin set of type I if there is a closed subset W � V , W ¤ V , with

M � W .k/ (i.e., M is not Zariski dense in V ). A subset M of V .k/ is said to be a projective (respectively,

affine) thin set of type II if there is an irreducible projective (respectively, affine) algebraic variety X with

dim X D dim V , and a generically surjective morphism � W X ! V of degree d � 2 with M � �.X.k//.

Any thin set is a finite union of thin sets of type I and thin sets of type II. From now on we consider only

k D Q, although Serre’s treatment considers any number field.

Given a thin set M � An
Q

, define the counting function

M.B/ WD
ˇ

ˇfx 2 M \ Z
n W max

1�i�n
jxi j � Bg

ˇ

ˇ;

so that trivially M.B/ � Bn for all B � 1. A theorem of Cohen [16] (see also [46, Chapter 13, Theorem 1,

p. 177]) shows that

M.B/ �M Bn�1=2.log B/
 for some 
 < 1, (1-5)

where �M denotes that the implicit constant can depend on the coefficients of the equations defining M .

As Serre remarks, this bound is essentially optimal, since the thin set

M D fx D .x1; : : : ; xn/ 2 Z
n W x1 is a squareg (1-6)

has M.B/ � Bn�1=2. However, this M arises from a morphism that is singular; it is reasonable to
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expect that the result can be improved under an appropriate nonsingularity assumption (such as in the

setting of Theorem 1.1).

Now let M � Pn�1
Q

be a thin set in projective space. Define the height function H.x/ for x D

Œx1 W � � � W xn� 2 Pn�1
Q

such that .x1; : : : ; xn/ 2 Zn and gcd.x1; : : : ; xn/ D 1 by H.x/ D max1�i�n jxi j.

Define the associated counting function

MH .B/ D fx 2 M.Q/ W H.x/ � Bg

so that trivially MH .B/ � Bn. Serre deduces in [46, Chapter 13, Theorem 3] from an application of

(1-5) that

MH .B/ �M Bn�1=2.log B/
 for some 
 < 1. (1-7)

Serre raises a general question in [46, p. 178]: is it possible to prove that

MH .B/ � Bn�1.log B/c (1-8)

for some c? (The set (1-6) is not an example of a thin set here because if M D fŒx2
1

W x2 W � � � W xn�g � Pn�1
Q

then for any x1 ¤ 0,

Œx1 W x2 W � � � W xn� D x1Œx1 W x2 W � � � W xn� D Œx2
1 W x1x2 W � � � W x1xn� 2 M;

so that M � Pn�1
Q

.)

1.1.1. Results for thin sets of type I. If Z is an irreducible projective variety in Pn�1
Q

of degree d � 2,

Serre deduces from (1-7) that ZH .B/ �Z Bdim ZC1=2.log B/
 for some 
 < 1. Serre asks if it is

possible to prove that ZH .B/ �Z Bdim Z .log B/c for some c. (This question is raised in both [46,

p. 178] and [45, p. 27]. Serre provides an example of a quadric for which a logarithmic factor necessarily

arises. See also the question in the case of a hypersurface in Heath-Brown [24, p. 227], formally stated in

both nonuniform and uniform versions as [27, Conjectures 1 and 2].) This is now called the dimension

growth conjecture (in the terminology of [7]), and is often described as the statement that

ZH .B/ �Z;" Bdim ZC" for every " > 0. (1-9)

A refined version, credited to Heath-Brown and known as the uniform dimension growth conjecture, is

the statement that

ZH .B/ �n;deg Z;" Bdim ZC" for every " > 0. (1-10)

In the case that Z � Pn�1
Q

is a nonsingular projective hypersurface of degree d � 2, as mentioned

before, combined works of Browning and Heath-Brown have proved (1-10) for all n � 3. More generally,

Browning, Heath-Brown and Salberger proved (1-10) for all geometrically integral varieties of degree

d D 2 and d � 6 (see [27] and [12], respectively). Recent work of Salberger has proved (1-9) in all

remaining cases, and has even proved the uniform version (1-10) for d � 4 [43]. See [14] for a helpful

survey, statements of open questions, and new progress such as an explicit bound ZH .B/ � CdEBdim Z
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when deg Z D d � 5, for a certain C D C.n/ and E D E.n/. The resolution of the dimension growth

conjecture means that attention now turns to thin sets of type II, the subject of the present article.

1.1.2. Results for thin sets of type II. We turn to the case of thin sets of type II, our present focus. Given

a finite cover � W X ! Pn�1 over Q with n � 2, X irreducible and � of degree at least 2, set

NB.�/ D jfP 2 X.Q/ W H.�.P // � Bgj (1-11)

for the standard height function above. Serre’s question asks whether

NB.�/ ��;n Bn�1.log B/c for some c, (1-12)

or in a uniform version,

NB.�/ �deg �;n Bn�1.log B/c for some c. (1-13)

For n D 2; 3 work of Broberg via the determinant method proves cases of Serre’s conjecture up to the

logarithmic factor [5]. Precisely, for � W X ! P1 of degree r � 2, Broberg proves

NB.�/ ��;" B2=rC" for any " > 0. (1-14)

For � W X ! P2 of degree r , Broberg proves

NB.�/ ��;" B2C" for r � 3, NB.�/ ��;" B9=4C" for r D 2, for any " > 0. (1-15)

For n � 4, the question remains open whether one can achieve NB.�/ � Bn�1C" for all " > 0, although

we record some progress on this for specific types of � in Section 1.2.

Now recall the setting of Theorem 1.1 in this paper, and the affine variety V � AnC1 defined in (1-2)

according to the polynomial F.Y; X/. Under the hypotheses of Theorem 1.1, we have:

(i) The variety V is irreducible (see Remark 3.3).

(ii) The projection � has degree dm > 1 since m � 2.

Thus Z D �.V.Q// is a thin set of type II in An
Q

, and in particular Cohen’s result (1-5) implies that

Z.B/ D N.F; B/ �F Bn�1=2.log B/
 ; (1-16)

following the same reasoning as [46, Chapter 13, Theorem 2, p. 178]. Or, interpreting the setting of

Theorem 1.1 as counting points on a finite cover � of Pn�1 as in (1-11), this shows

NB.�/ � N.F; B/ �� Bn�1=2.log B/
 :

Our new work, Theorem 1.1, improves on (1-16) for each n � 3, for F of the form (1-1) with V .F.Y; X//

nonsingular, and approaches a uniform bound of the strength (1-13) as n ! 1.

1.2. Context of Theorem 1.1 within sieve methods. We now recall a few recent developments of sieve

methods in the context of counting solutions to Diophantine equations, with a particular focus on progress

toward Serre’s conjecture for type II sets, as described above.
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1.2.1. Square sieve. Let f .X/ 2 ZŒX1; : : : ; Xn� be a fixed polynomial. Let B be a “box,” such as

Œ�B; B�n or more generally
Q

i Œ�Bi ; Bi �. In [25], Heath-Brown codified the square sieve to count the

number of integral values x 2 B such that f .x/ D y2 is solvable over Z, building on a method of

Hooley [31]. At its heart was a formal sieve lemma involving a character sum with Legendre symbols.

Heath-Brown applied this in particular to improve the error term in an asymptotic for the number of

consecutive square-free numbers in a range. In [40], Pierce developed a stronger version of the square

sieve, with a sieving set comprised of products of two primes rather than primes; this effectively allows the

underlying modulus to be larger relative to the box B, by factoring the modulus and using the q-analogue

of van der Corput differencing. Pierce applied this to prove a nontrivial upper bound for 3-torsion in

class groups of quadratic fields [40]; Heath-Brown subsequently used this sieve method to prove there are

finitely many imaginary quadratic fields having class group of exponent 5 [28]; Bonolis and Browning

applied it to prove a uniform bound for counting rational points on hyperelliptic fibrations [3].

1.2.2. Power sieve. The square sieve has been generalized to a power sieve, in order to count integral

values x 2 B with f .x/ D yr solvable, for a fixed r � 2. Recall the question of bounding NB.�/

as in (1-12). For any n � 2, in the special case that � is a nonsingular cyclic cover of degree r � 2,

Munshi observed this can be reduced to counting the number of integral values x 2 Œ�B; B�n with

F.x1; : : : ; xn/ D yr solvable, for a nonsingular form F of degree mr for some m � 1. To bound this,

Munshi developed a formal sieve lemma involving a character sum in terms of multiplicative Dirichlet

characters [39]. Munshi applied it to prove that

ˇ

ˇfx 2 Œ�B; B�n W F.x/ D yr is solvable over Zg
ˇ

ˇ� Bn�1C 1
n .log B/

n�1
n (1-17)

Consequently, this proved NB.�/�Bn�1C 1
n .log B/

n�1
n for nonsingular cyclic covers. (See [2, Remark 1]

for a note on the history of this result; the exponents stated here are slightly different from those presented

in [39].)

In [29] Heath-Brown and Pierce have strengthened the power sieve, by using a sieving set comprised

of products of primes, generalizing the approach of [40]. They used this method to prove that for any

polynomial f .X/ 2 ZŒX1; : : : ; Xn� of degree d � 3 with nonsingular leading form, and for any r � 2,

jfx 2 Œ�B; B�n W f .x/ D yr is solvable over Zgj �

8

ˆ

ˆ

<

ˆ

ˆ

:

Bn�1C n.8�n/C4
6nC4 .log B/2; 2 � n � 8;

Bn�1C 1
2nC10 .log B/2; n D 9;

Bn�1� n�10
2nC10 .log B/2; n � 10:

(1-18)

This proves Serre’s conjecture (1-12) for NB.�/, for all nonsingular cyclic covers, for n � 10. Indeed,

the bound achieved is even smaller than the general conjecture, which is reasonable due to the imposed

nonsingularity assumption.

Independently, Brandes also developed a power sieve in [4], applied to counting sums and differences

of power-free numbers.
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1.2.3. Polynomial sieve: with separation of variables. The next significant generalization addressed

counting x 2 B for which g.y/ D f .x/ is solvable, for appropriate polynomials g; f . Here, a quite

general framework for a polynomial sieve lemma was developed by Browning in [8]. Specifically, in

that work, Browning applied the polynomial sieve lemma to count x1; x2 such that g.y/ D f .x1; x2/ is

solvable, for particular functions f; g, that enabled an application showing the sparsity of like sums of a

quartic polynomial of one variable.

Bonolis [2] further developed a polynomial sieve lemma with a character sum involving trace functions.

Applying this, he proved that for any polynomial g 2 ZŒY � of degree r � 2, and any irreducible form

F 2 ZŒX1; : : : ; Xn� of degree e � 2 such that the projective hypersurface V .F / defined by F D 0 is

nonsingular over C, then

ˇ

ˇfx 2 Œ�B; B�n W F.x/ D g.y/ is solvable over Zg
ˇ

ˇ� Bn�1C 1
nC1 .log B/

n
nC1 : (1-19)

(This improves (1-17) and recovers the result initially stated in [39]; see [2, Remark 1].) This can also be

seen as an improvement on Cohen’s theorem (1-16) for a special type of thin set (defined as the image of

V D f.y; x/ 2 AnC1 W F.x/ � g.y/ D 0g under .y; x/ 7! x, under the assumption that V .F / defines a

nonsingular projective hypersurface). The special case of our Theorem 1.1 when d D 1 follows from [2,

Theorem 1.1]; see Remark 3.2.

Notably, the method employed in [2] to prove (1-19) was the first to demonstrate nontrivial averaging

over pairs of primes in the sieving set, and exploiting such a strategy is central to the strength of our

main theorem. We explain explicitly the advantage of such averaging in equations (1-25) and (1-26),

below. For now, we simply state abstractly that any polynomial sieve method tests the solvability of

the desired equation modulo p for primes in a chosen sieving set P . The outcome of applying a sieve

lemma (such as Lemma 1.2 below) is that one must bound from above an expression roughly of the

form jPj�2
P

p¤q2P
T .p; q/, where T .p; q/ studies the solvability of the desired equation modulo pairs

p ¤ q 2 P . Previous to [2], papers applying any type of polynomial sieve produced an upper bound

for jT .p; q/j that was uniform over p; q and then summed trivially over p ¤ q 2 P . Instead, averaging

nontrivially over p; q exploits the fact that T .p; q/ is typically smaller than its worst (largest) upper

bound.

Most recently, a geometric generalization of Browning’s polynomial sieve lemma has been developed

over function fields by Bucur, Cojocaru, Lalín and the second author in [13]. They pose an analogue of

Serre’s question (1-8) in that setting (also raised by Browning and Vishe [11]), and apply a polynomial

sieve to prove a bound of analogous strength to (1-19), in the special case of nonsingular cyclic covers

in a function field setting. It remains an interesting open question to achieve a stronger bound such as

(1-18), or to prove results for finite covers that are noncyclic, in such a function field setting.

1.2.4. Polynomial sieve: without separation of variables. So far we have mentioned applications of a

sieve lemma to count solutions to G.Y; X/ D 0 when G separates variables as G.Y; X/ D g.Y / � f .X/

for some polynomials g; f . More generally, it is reasonable to ask — and this is a motivation for the
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present paper — whether an appropriate polynomial sieve can be employed to count solutions to equations

of the form G.Y; X/ D 0 where G.Y; X/ 2 ZŒY; X1; : : : ; Xn� is a polynomial of degree D of the form

G.Y; X/ D Y D C Y D�1f1.X/ C � � � C YfD�1.X/ C fD.X/; (1-20)

where each fi is a form of degree i � e, and we assume that the weighted hypersurface V .G.Y; X/// �

P.e; 1; : : : ; 1/ defined by G.Y; X/ D 0 is nonsingular. Define

N.G; B/ WD
ˇ

ˇfx 2 Œ�B; B�n W 9y 2 Z such that G.y; x/ D 0g
ˇ

ˇ:

Under the assumption fD 6� 0, the aim is to improve on the trivial bound N.G; B/ � Bn. To be clear,

the formal sieve lemmas appearing in [8; 13] include this level of generality, but have only been applied

to prove a bound for N.G; B/ when separation of variables occurs. In this paper we accomplish the first

application of the polynomial sieve without assuming separation of variables, but under the additional

assumption that the degree D of G.Y; X/ defined in (1-20) factors as D D md for some m � 2, and

all powers of Y that appear are divisible by m. (To see why this restriction is useful, see the proof

of Lemma 1.2; for an alternative approach when m D 1, conditional on GRH, see Remark 1.3 and

Section 3.2.)

The strength of our approach hinges on a particular formulation of the polynomial sieve, given in

Lemma 1.2. It is worthwhile to compare our formulation with the polynomial sieve presented in [8,

Theorem 1.1]. In [8, Theorem 1.1], the sieve weight system, adapted to counting solutions to (1-20), is

defined as follows:

wp;Bro.k/ D ˛ C .�p.k/ � 1/.D � �p.k//;

in which �p.k/ D jfy 2 Fp W G.y; k/ D 0 2 Fpgj. (These weights are then applied in an inequality

analogous to (3-1) below, to derive a sieve lemma.) Consequently, if G.Y; k/ D 0 is solvable over Z,

the conditions 1 � �p.k/ � D and ˛ > 0 guarantee that wp;Bro.k/ > 0 for any p. In our approach, we

consider simpler weights:

wp.k/ D �p.k/ � 1:

Thus, in our situation, if G.Y; k/ D 0 is solvable over Z, we can only conclude that wp.k/ � 0. However,

it is still possible to establish that wp.k/ > 0 for a positive proportion of primes, which suffices for our

application. (Precisely, we obtain !p.k/ > 0 for those p � 1 .mod m/ where m � 2; see (3-2) in the

proof of Lemma 1.2.)

The simplicity of our weight system turns out to be crucial for bounding the terms that appear in the

polynomial sieve lemma. In the setting of the polynomial F.Y; X/ as in (1-1), our main task will be to

prove square root cancellation for the sum

X

.z;a/2F
nC1
p

F.ze;a/D0

ep.ha; ui/;
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for generic a 2 Fn
p , which can be accomplished by exploiting the smoothness of the variety V .F.Ze; X//.

On the other hand, if we were to adopt [8, Theorem 1.1], the presence of the factor .�p.k//2 would lead

to the exponential sum
X

.z1;z2;a/2F
nC2
p

F.ze
1

;a/D0

F.ze
2

;a/D0

ep.ha; ui/;

which is more challenging to handle, due to the highly singular nature of the variety V .F.Ze
1
; X// \

V .F.Ze
2
; X//.

1.3. Overview of the method. We now provide an overview of our method, highlighting four key aspects

of our strategy. To prove a nontrivial upper bound for N.F; B/ via a sieve, we introduce a smooth

nonnegative function W W Rn ! R�0 defined by W .x/ D w.x=B/, where w is an infinitely differentiable,

compactly supported function that is � 1 on Œ�1; 1�n, and supported in Œ�2; 2�n. Define the smoothed

counting function

S.F; B/ WD
X

k2Zn

F.y;k/D0 solvable

W .k/; (1-21)

which sums over k 2 Zn such that there exists y 2 Z with F.y; k/ D 0. By construction

N.F; B/ � S.F; B/;

and we may focus on proving a nontrivial upper bound for S.F; B/. We employ the following sieve

lemma, which we prove in Section 3.1. Here and throughout, given a polynomial f , we let kf k denote

the maximum absolute value of any coefficient of f .

Lemma 1.2 (polynomial sieve lemma). Let e; d � 1 and m � 2 be integers. Consider the polynomial

F.Y; X/ D Y md C Y m.d�1/f1.X/ C � � � C Y mfd�1.X/ C fd .X/;

under the assumption that fd 6� 0, and that deg fi D m � e � i for each 1 � i � d .

Let B � 1 and define a smooth weight W supported in Œ�2B; 2B�n and � 1 on Œ�B; B�n, as above.

Let P � fp � 1 mod mg be a finite set of primes p 2 ŒQ; 2Q�, with cardinality P . Suppose that Q D B�

for some fixed 0 < � � 1 and that P � Q= log Q. Suppose also that

P �m;e;d maxflog kfdk; log Bg: (1-22)

For each k 2 Zn and p 2 P define

�p.k/ D jfy 2 Fp W F.y; k/ D 0 .mod p/gj:

Then

S.F; B/ �m;e;d

X

kWfd .k/D0

W .k/ C
1

P

X

k

W .k/ C
1

P2

X

p;q2P

p¤q

ˇ

ˇ

ˇ

ˇ

ˇ

X

k

W .k/.�p.k/ � 1/.�q.k/ � 1/

ˇ

ˇ

ˇ

ˇ

ˇ

:
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Remark 1.3. We observe that the same lemma holds for m D 1, conditional on GRH, with (1-22) replaced

by Q �m;e;d maxf.log kFk/˛0 ; .log B/˛0g for some ˛0 > 2. For the sake of illustration, we demonstrate

this in Section 3.2, although we do not apply such a conditional result in this paper.

We now point out four key aspects of our method for applying this sieve lemma to prove Theorem 1.1.

First, for all k and for all primes p, �p.k/ � md ; this is because Y md has coefficient 1 in F.Y; X/, so

that for all values of k, F.Y; k/ is of degree md as a polynomial in Y . On the other hand, in the proof

of the lemma, we use the assumption that each prime in the sieving set has p � 1 .mod m/ in order to

provide a lower bound �p.k/ � 1 � m � 1 > 0 for many k, motivating our requirement that m � 2. This

is the first novelty of our method for dealing with a case in which the variables Y; X are not “separated.”

For each pair of primes p ¤ q 2 P , the sieve lemma leads us to study

T .p; q/ WD
X

k2Zn

W .k/.�p.k/ � 1/.�q.k/ � 1/: (1-23)

After an application of the Poisson summation formula, we see that

T .p; q/ D

�

1

pq

�n
X

u2Zn

OW

�

u

pq

�

g.u; pq/;

where

g.u; pq/ WD
X

a .mod pq/

.�p.a/ � 1/.�q.a/ � 1/epq.ha; ui/: (1-24)

Here we write each coordinate of a in terms of its residue class modulo pq, and epq.t/ D e2�it=pq . After

showing that g.u; pq/ satisfies a multiplicativity relation, we can focus on the case of prime modulus,

and study

g.u; p/ WD
X

a2F
n
p

.�p.a/ � 1/ep.ha; ui/:

We show that the main task to bound g.u; p/ is to bound the exponential sum

X

.y;a/2F
nC1
p

F.y;a/D0

ep.ha; ui/:

Here we highlight a second aspect: the fact that the polynomial F.Y; X/ is not homogeneous motivates a

more sophisticated approach to bounding this sum (see Remark 4.6). Given a polynomial H , let V .H /

denote the corresponding variety fH D 0g, and let hX ; U i D
P

i XiUi . Roughly speaking, for each

prime p we divide u 2 Zn into three cases: a type zero case when u � 0 .mod p/, a good case when

V .hX ; ui/ is not tangent to V .F.Y; X// over Fp , and finally a bad case in which V .hX ; ui/ is tangent to

V .F.Y; X// over Fp . (More precisely, we reformulate this in terms of varieties in unweighted projective

space.) In the type zero case, we can only show that g.0; p/ � pn�1=2, but such cases are sparse. In the
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remaining two cases, we apply a version of the Weil bound to g.u; p/, obtaining g.u; p/ � pn=2 if u is

good and g.u; p/ � pn=2C1=2 if u is bad (Proposition 4.2).

A third crucial aspect arises when we assemble this information efficiently inside the third term on the

right-hand side of the sieve lemma, namely

1

P2

X

p¤q2P

jT .p; q/j �
1

P2Q2n

X

p¤q2P

X

u2Zn

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

: (1-25)

In many earlier applications of the power sieve or polynomial sieve to count solutions to Diophantine

equations, the strategy has been to bound jT .p; q/j uniformly over p ¤ q and simply sum trivially

over p ¤ q. However, recent work of the first author demonstrated how to take advantage of nontrivial

averaging over the sum of p ¤ q 2 P; see [2]. In this paper, we also average nontrivially over p ¤ q and

this contributes to the strength of our main theorem.

In order to average nontrivially over p ¤ q 2 P , we quantify the fact that there cannot be many triples

u; p; q for which u is simultaneously bad for both p and q. Roughly speaking, we characterize the dual va-

riety of the original hypersurface V .F.Y; X// according to an irreducible polynomial G.UY ; U1; : : : ; Un/,

and observe that G.0; u/ ¤ 0 precisely when the hyperplane V .hu; Xi/ is not tangent to V .F.Y; X//

over C. Then we reverse the order of summation in the right-hand side of (1-25), writing it as

1

P2Q2n

X

u2Zn

X

p¤q2P

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

: (1-26)

The sum over u can be split into case (a) where G.0; u/ ¤ 0 and case (b) where G.0; u/ D 0. In case

(a), we show u is bad modulo p and q only if p and q divide the (nonzero) value of a certain resultant

polynomial; thus there can only be very few such p; q.

A fourth key aspect arises in case (b), for which u is bad for all primes (since the value of the resultant

is zero). To compensate, we show that there are not too many u for which G.0; u/ D 0. This step is

one of the significant novelties of the paper. It requires understanding not the variety V .G.UY ; U // but

V .G.UY ; U // \ V .UY /, the intersection with the hyperplane UY D 0. To tackle this, we show that any

polynomial divisor of G.0; U / has degree at least 2 (Proposition 5.2), so that we can apply strong bounds

of Heath-Brown [27] and Pila [41] to count solutions to G.0; u/ D 0 (see (5-18)). To prove the key

result in Proposition 5.2, we employ a geometric argument to show that given a nonsingular projective

hypersurface X and a projective line ` not contained in X , the generic hyperplane containing ` is not

tangent to X . This statement, proved in Section 6 via a strategy suggested by Per Salberger, is critical to

the method and the ultimate strength of Theorem 1.1.

Remark 1.4. It would be interesting to consider bounding N.F; B/, in the setting of Theorem 1.1, by

other methods. As mentioned earlier, one approach is to count all .n C 1/-tuples f.y; x/ 2 ZnC1 W y �

Be; xi � B W F.y; x/ D 0g, for example, by applying the determinant method. Since the range of y

depends on e, such a direct approach is likely to produce a bound for N.F; B/ with an exponent depending

on e. Alternatively, one could fix x2; : : : ; xn (with � Bn�1 such choices) and consider the resulting
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equation as a projective curve in variables y; x1. Supposing that the resulting curve is generically of

degree dme, an application of Bombieri-Pila [1] could count .y; x1/ in the square Œ�Be; Be �2. This could

ultimately lead to a total bound of the form N.F; B/ � Bn�1 �Be=dmeC" D Bn�1C1=dmC". This putative

outcome appears independent of e, but the method has overcounted x1 in the range Be; nevertheless,

such an approach could be advantageous for large d; m.

1.4. Notation. We use eq.t/ D e2� it=q . We denote X D .X1; : : : ; Xn/, U D .U1; : : : ; Un/. Moreover, for

two vectors s D .s1; : : : sn/; t D .t1; : : : ; tn/, we define hs; ti D
Pn

iD1 si ti . We let kFk denote the absolute

value of the maximum coefficient in a polynomial F 2 ZŒX1; : : : ; Xn�; similarly kXk D max1�i�n jXi j

for X 2 Zn.

2. Reduction to remove dependence on kF k

Recall that Theorem 1.1 states that the upper bound for N.F; B/ is only dependent on the degree of

F , and not on the coefficients of F . In fact, the sieve methods we apply prove an upper bound for

N.F; B/ that can depend on kFk. In this section we show by alternative methods that we may assume

that kFk � B.mde/nC2

. The method does not rely on assuming m � 2 in (1-1), and so without any

additional trouble we may work more generally in the setting of (1-20).

Lemma 2.1. Let V .G.Y; X// � P.e; 1; : : : ; 1/ be defined by

G.Y; X/ D Y D C Y D�1f1.X/ C � � � C YfD�1.X/ C fD.X/

with each fi a form of deg fi D i � e, for fixed D; e � 1 and n � 1. Assume that fD 6� 0 and the weighted

hypersurface V .G.Y; X// � P.e; 1; : : : ; 1/ is absolutely irreducible. Then either

kGk � B.De/nC2

;

or N.G; B/ �n;D;e Bn�1.

Remark 2.2. Under the hypotheses of Theorem 1.1, for F as in (1-1), V .F.Y; X// is absolutely irreducible

(following similar reasoning to Remark 3.3). As a result of this lemma, we can obtain the bound claimed

in Theorem 1.1 as long as all later dependence on kFk is at most logarithmic in kFk, which we track as

the argument proceeds.

Proof. The method of proof follows [27, Theorem 4], or the recent similar result [3, Lemma 2.1]. Fix

n; D; e � 1. We start by considering the set of monomials

E WD

(

Y dY X
d1

1
� � � X dn

n W dY e C

n
X

iD1

di D De

)

;

in which the degrees dY ; d1; : : : ; dn vary over all nonnegative integers satisfying dY e C
P

di D De. It

is easy to see that jEj � .De/nC1.
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Let B � 1 be fixed. Let v denote coordinates .y; x1; : : : ; xn/ and let fv1; : : : vN g enumerate the

set of points that are solutions to G.Y; X/ D 0, with each of the last n coordinates of vj lying in

Œ�B; B�. Note that these count each X 2 Œ�B; B�n for which G.Y; X/ is solvable at least once, so that

N.G; B/ � N � D � N.G; B/. (For the upper bound, we recall that the coefficient of Y D in G.Y; X/

is nonzero, so that any given X can correspond to at most D such Y .) Then, we construct the N � jEj

matrix

C D .ve
i /1�i�N

e2E

:

Notice that rank C � jEj � 1, since the vector a 2 ZjEj n f0g whose entries correspond to the coefficients

of G.Y; X/ is such that Ca D 0. Moreover, a is primitive since the coefficient associated to Y D is

1. Now the strategy is to find another nonzero vector b in the nullspace of C and show that if b is in

the span of a then kGk is small, and if b is not in the span of a then we have an improved count for

N.G; B/. We may assume henceforward that jEj � N , since otherwise we already have the upper bound

N.G; B/ � N � jEj � .De/nC1, which suffices for the lemma.

If rank C � jEj � 2, then the nullspace has dimension at least 2, and we can take b 2 ZjEj to be any

element in the nullspace that is not in the span of a. Let H.Y; X/ be the polynomial defined by the

coefficients corresponding to the vector b and consider the polynomial R.X/ D Res.G.Y; X/; H.Y; X//,

which is a polynomial in X of degree �D;e;n 1. (See, e.g., [21, Ch 12], which we apply to take the

resultant of two polynomials in the variable Y , whose coefficients are determined by X .) We claim

that R.X/ 6� 0: indeed, if R.X/ � 0, then G and H would share an irreducible component. Since

G.Y; X/ D 0 is irreducible, and deg H � De D deg G, it would follow that G is a constant multiple of

H , but this is not possible since we are assuming that a and b are not proportional. Thus R.X/ 6� 0.

Moreover, observe that for any x 2 Zn

R.x/ D 0 () G.Y; x/ and H.Y; x/ have a common root:

Note that any x such that G.y; x/ D 0 is solvable contributes at least one row to the matrix C ; each such

row also corresponds to a solution to H.y; x/ D 0. Thus it follows that

N.G; B/ D jfx 2 Œ�B; B�n W 9y 2 Z such that G.y; x/ D H.y; x/ D 0gj

� jfx 2 Œ�B; B�n W R.x/ D 0gj

�n;D;e; Bn�1;

with an implicit constant independent of the coefficients of R, via an application of a trivial counting

bound for the nonzero polynomial R. (This bound is sometimes called the Schwartz-Zippel bound, and a

proof can be found in [27, Theorem 1]; we remark that although in that context the polynomial under

consideration is absolutely irreducible, the method of proof only requires that it is not identically zero.)

The remaining case is when rank C D jEj � 1, so that all jEj � jEj minors vanish, but at least one

.jEj � 1/ � .jEj � 1/ minor does not; we claim there is a nonzero b 2 ZjEj in the nullspace of C such that
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jbj D O.BDejEj/ D O.B.De/nC2

/. If so, then since a is primitive (and b must be proportional to a) it

follows that jaj � jbj � B.De/nC2

. This shows that kGk � B.De/nC2

as claimed.

An appropriate b can be constructed with entries that are .jEj � 1/ � .jEj � 1/ minors, so that the size

estimate jbj D O.BDejEj/ follows from the fact that each entry of C is O.BDe/. For completeness, we

sketch this construction. Without loss of generality, we can let C
0 denote the top jEj � jEj submatrix in

C , and assume that the minor C
0
1;1

(obtained by omitting the first row and first column of C
0) is nonzero.

Define a vector b as follows: for each 1 � j � jEj, define the entry bj to be the .1; j /-th cofactor of C0;

in particular b1 ¤ 0 so b is nonzero, and jbj D O.BDe.jEj�1// D O.BDejEj/. We now show that b is in

the nullspace of C . Let ri denote the i -th row of C ; then for each 1 � i � N ,

ri � b D det

0

B

B

B

@

ri

r2
:::

rjEj

1

C

C

C

A

D 0: (2-1)

Indeed, for i D 1 or i > jEj, up to sign, ri � b is an jEj � jEj minor of C , and all such minors vanish since

rankC < jEj. For 2 � i � jEj, the matrix (2-1) has two identical rows. Thus Cb D 0. �

3. Preliminaries on the sieve lemma

In this section we gather together two preliminary steps: first, we prove the sieve inequality in Lemma 1.2;

for m D 1 we provide an alternative proof, conditional on GRH. Second, we formulate an equivalent

nonsingularity condition in unweighted projective space. We also make preliminary remarks on the

sieving set.

3.1. Proof of the polynomial sieve lemma. To prove Lemma 1.2, observe that

S.F; B/ D
X

kWfd .k/D0

W .k/ C
X

k2ZnW
fd .k/¤0

F.y;k/D0 solvable

W .k/;

since within the first term, y D 0 is always a solution to F.y; k/ D 0. We consider the weighted sum

X

kWfd .k/¤0

W .k/

�

X

p2P

.�p.k/ � 1/

�2

: (3-1)

Fix k such that fd .k/ ¤ 0 and the polynomial F.Y; k/ is solvable over Z, so that there exists y0 2 Z such

that F.y0; k/ D 0. For any p 2 P such that p − fd .k/, then y0 6� 0 mod p. Then since p � 1 mod m,

and due to the structure of F in (1-1), we have that fy0; 
py0; : : : ; 
 m�1
p y0g are distinct solutions of

F.Y; k/ � 0 .mod p/, where 
 m
p � 1 mod p and 
p is a primitive m-th root of unity in Fp . In particular,

for such p, �p.k/ � m. Consequently, for each k such that fd .k/ ¤ 0 and F.Y; k/ is solvable, we have



Application of a polynomial sieve: beyond separation of variables 1529

that
X

p2P

.�p.k/ � 1/ � .m � 1/
X

p2P;p−fd .k/

1 �m P �
X

p2P;pjfd .k/

1 � .1=2/P; (3-2)

as long as P �m;e;d maxflog kfdk; log Bg. The last step follows since the number !.fd .k// of distinct

prime divisors of fd .k/ ¤ 0 is at most

!.fd .k// � log.fd .k//= log log.fd .k//

� log.kfdkBdem/

�m;e;d log kfdk C log B:

Thus the last inequality in (3-2) holds as long as

P �m;e;d maxflog kfdk; log Bg; (3-3)

leading to the corresponding hypothesis in the lemma.

From (3-2) and the nonnegativity of the weight W , we see that

P2
X

k2ZnW
fd .k/¤0

F.y;k/D0 solvable

W .k/ �
X

kWfd .k/¤0

W .k/

�

X

p2P

.�p.k/ � 1/

�2

�
X

k

W .k/

�

X

p2P

.�p.k/ � 1/

�2

:

Opening the square on the right-hand side, the contribution from p D q 2 P is
X

p2P

X

k

W .k/.�p.k/ � 1/2 �m;d P
X

k

W .k/;

since �p.k/ � md for all k, as previously mentioned. The contribution from p ¤ q 2 P is bounded in

absolute value by
X

p¤q2P

ˇ

ˇ

ˇ

ˇ

X

k

W .k/.�p.k/ � 1/.�q.k/ � 1/

ˇ

ˇ

ˇ

ˇ

:

Assembling all these terms, we see that Lemma 1.2 is proved.

Remark 3.1. When we apply Lemma 1.2 to prove Theorem 1.1, we can assume that kfdk � kFk �

B.mde/nC2

, by Lemma 2.1. This will allow us to verify that (3-3) holds for our choice of sieving set, as

we will verify in Section 7 when we choose Q in (7-4).

3.2. Alternative proof when m D 1, conditional on GRH. Recall from Section 1.2.4 the general problem

of counting x 2 Œ�B; B�n such that G.y; x/ D 0 is solvable in Z, with G.Y; X/ of degree D as in (1-20).

In our main work in this paper, we assume that D D md with m � 2 and that G is a polynomial in Y m.

This additional structure allowed us to choose a sieving set P � ŒQ; 2Q� of primes p � 1 .mod m/, so

that all the m-th roots of unity are present in Fp, for each p 2 P . With this property, we could define

sieve weights that exhibit an appropriate lower bound in the form (3-2) for most k in the support of W .k/

and a positive proportion of primes.
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Nevertheless, we can proceed by a different argument to develop a sieve lemma to bound the number

of x 2 Œ�B; B�n such that G.y; x/ D 0 is solvable over Z, with no condition on the degree D; that is,

to prove a version of Lemma 1.2 in the case m D 1. As a first step, we naturally try to introduce a

system of weights, according to a fixed set of primes. Let us take P D fQ � p � 2Q W p primeg for

some parameter Q to be chosen optimally with respect to B. In particular, by the prime number theorem,

jPj � Q.log Q/�1 for all Q � 1. Fix k 2 Zn. For each prime p 2 P , set

�p.k/ D jfy 2 Fp W G.y; k/ D 0 .mod p/gj:

Since G.y; k/ contains the term yD , it is not the zero polynomial in y, and �p.k/ � D. Consider, as in

the proof of Lemma 1.2 above, the weighted sum

X

kWfD.k/¤0

W .k/

�

X

p2P

.�p.k/ � 1/

�2

: (3-4)

In order to deduce a sieve lemma, we need a lower bound for the arithmetic weight (the squared term),

for those k for which fD.k/ ¤ 0 and G.Y; k/ D 0 is solvable over Z.

Here is one approach. Let k be fixed, with fD.k/ ¤ 0 and G.Y; k/ D 0 solvable over Z, and k in the

support of W . Then G.Y; k/ D .Y � y0/ Qgk.Y / for some y0 2 Z n f0g and some (monic) Qgk.Y / 2 ZŒY �

of degree D � 1. For each such k, we can obtain a suitable lower bound for the arithmetic weight in (3-4)

as long as for a positive proportion of p 2 P , Qgk has a root over Fp. Let gk be an irreducible factor of

Qgk. Let Fk denote the splitting field of gk over Q, say Fk D Q.˛k/. Since gk is irreducible, then it

is the minimal polynomial of ˛k in ZŒY �, and it is separable (since we are working over characteristic

zero), and the splitting field is Galois over Q. By Dedekind’s theorem, for all p − ŒOFk
W ZŒ˛k ��, gk splits

completely over Fp precisely when .p/ D pOFk
splits completely in Fk; see, e.g., [37, Theorem 27,

p. 79]. Then

X

p2P

.�p.k/ � 1/ D
X

p2P

ˇ

ˇfy 2 Fp W Qgk.y/ D 0g
ˇ

ˇ�
X

p2P

ˇ

ˇfy 2 Fp W gk.y/ D 0g
ˇ

ˇ:

If gk is linear in ZŒY �, this sum is of size jPj, which suffices. If deg gk � 2, we continue to argue that

X

p2P

.�p.k/ � 1/ � deg.gk/
ˇ

ˇfp 2 P W gk.Y / completely split over Fpg
ˇ

ˇ

�
ˇ

ˇfp 2 P W pOFk
splits completely in Fkg

ˇ

ˇ�
ˇ

ˇfp 2 P W p j ŒOFk
W ZŒ˛k ��g

ˇ

ˇ: (3-5)

Let

�k.Q/ D
ˇ

ˇfp � Q W pOFk
splits completely in Fkg

ˇ

ˇ

and N.k/ D jfp j ŒOFk
W ZŒ˛k ��gj. The Chebotarev density theorem, in the unconditional form of [34,

Theorem 1.3], shows that

ˇ

ˇ

ˇ

ˇ

�k.Q/ �
1

jGkj

Q

log Q

ˇ

ˇ

ˇ

ˇ

D
1

jGkj

Qˇ0

log Qˇ0
C OD;A.Q.log Q/�A/ (3-6)
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for every A � 2, as long as Q � exp.10 deg Fk.log jD.Fk/j/2/. Here Gk is the Galois group Gal.Fk=Q/,

D.Fk/ is the discriminant of the splitting field Fk=Q, and deg Fk D deg jFk=Qj is the degree of the

extension. The implicit constant in the error term depends only on A and deg Fk D jGkj � .D �1/!. The

real number 1=2 < ˇ0 < 1, if it exists, is the (real, simple) exceptional zero of the associated Dedekind

zeta function �Fk
; if no exceptional zero exists, that term does not appear in the result.

In particular, under the assumption of GRH for �Fk
, Lagarias and Odlyzko’s Theorem 1.1 in [34] (in

the refined form of Serre [44, Theorem 4]) shows that for any Q > 2, the entire right-hand side of (3-6)

may be replaced by

O.jGkj�1Q1=2 log.jD.Fk/jQdeg Fk // D OD.Q1=2 log Q/ C OD.Q1=2 log jD.Fk/j/;

in which the implied constant is absolute and effectively computable. There exists a constant Q0.D/

depending only on D such that the first term is � 1
4

1
.D�1/!

Q.log Q/�1 for all Q � Q0.D/. The second

term is also � 1
4

1
.D�1/!

Q.log Q/�1 if for example Q � Q1.D/.log D.Fk//˛0 for a constant Q1.D/ and

some fixed ˛0 > 2. This shows that under GRH, for all Q �D .log D.Fk//˛0 some fixed ˛0 > 2,

�k.Q/ � �k.Q=2/ �D Q= log Q �D jPj: (3-7)

Two tasks remain in order to complete a lower bound for (3-5): (i) to bound D.Fk/ from above, so

that the lower bound Q �D .log D.Fk//˛0 can be made uniform over k, and (ii) to count

N.k/ D jfpjŒOFk
W ZŒ˛k ��gj D !.ŒOFk

W ZŒ˛k ��/ � logŒOFk
W ZŒ˛k ��= log logŒOFk

W ZŒ˛k ��:

We note the relation

D.Fk/ŒOFk
W ZŒ˛k ��2 D Disc.gk/; (3-8)

which holds by [38, Remark 2.25 and equation (8) on p. 38]. (Since gk was assumed to be irreducible

and we are in characteristic zero, then gk is separable and Disc.gk/ ¤ 0:) Thus for both remaining tasks,

it suffices to bound Disc.gk/ from above, since by (3-8) both

N.k/ � log Disc .gk/; log D.Fk/ � log Disc .gk/:

Now Disc .gk/ (the resultant of gk.Y / and g0
k

.Y /, as defined in [21, Chapter 13, Proposition 1.1]) is

a polynomial in the coefficients of gk with degree bounded in terms of D. The coefficients of gk are

polynomials in k and the coefficients of G.Y; X/ with degree at most D. Since we only consider k in

the support of W , jkj � B, and the coefficients of gk are � kGkBD . Thus

log Disc .gk/ �D log kGk C log B:

In combination with (3-7), we can conclude in (3-5) that for some constant CD ,

X

p2P

.�p.k/ � 1/ �D Q= log Q � CD.log kGk C log B/;
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for all Q � C 0
D

maxf.log kGk/˛0 ; .log B/˛0g for some ˛0 > 2. By taking C 0
D

sufficiently large, we

achieve
P

p2P
.�p.k/ � 1/ � jPj D P . This shows that, conditional on GRH,

P2
X

k2ZnW
fD.k/¤0

G.y;k/D0 solvable

W .k/ �
X

kWfD.k/¤0

W .k/

�

X

p2P

.�p.k/ � 1/

�2

�
X

k

W .k/

�

X

p2P

.�p.k/ � 1/

�2

:

From here, the remainder of the proof used above for Lemma 1.2 can be repeated, and this completes the

proof of the claim in Remark 1.3.

3.3. Associated variety in unweighted projective space. It is a hypothesis of Theorem 1.1 that the

weighted hypersurface V .F.Y; X// � P.e; 1; : : : ; 1/, defined by F.Y; X/ D 0, is nonsingular over C. It

is convenient to relate V .F.Y; X// to a variety in unweighted projective space. We claim that for

F.Y; X/ D Y dm C Y .d�1/mf1.X/ C � � � C fd .X/;

then V .F.Y; X// � P.e; 1; : : : ; 1/ is nonsingular if and only if V .F.Ze; X// � Pn is nonsingular. Here,

we again apply the assumption m � 2. Indeed the weighted projective variety is nonsingular if and only

if the only solution of

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

F.Y; X/ D 0;

@F

@Y
.Y; X/ D

d�1
P

iD0

fi.X/ � m.d � i/Y m.d�i/�1 D 0;

@F

@Xj
.Y; X/ D 0; j D 1; : : : ; n;

(3-9)

on AnC1 is the point P D 0. (By convention we set f0.X/ D 1:) Similarly, the projective variety

V .F.Ze; X// is nonsingular if and only if the only solution of

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

F.Ze; X/ D 0;

@F

@Z
.Ze; X/ D

d�1
P

iD0

fi.X/ � me.d � i/Zem.d�i/�1 D 0;

@F

@Xj
.Ze; X/ D 0; j D 1; : : : ; n;

(3-10)

on AnC1 is the point P D 0. Moreover, note that

@F

@Y
.Y; X/ D mY m�1

d�1
X

iD0

fi.X/.d � i/Y m.d�i�1/;

@F

@Z
.Ze; X/ D emZem�1

d�1
X

iD0

fi.X/.d � i/Zem.d�i�1/:

(3-11)
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We will momentarily use this to confirm that if m � 2, a nonzero solution (say P D .y; x/ 2 AnC1) to

(3-9) exists if and only if a solution (namely Q D .y1=e; x/ 2 AnC1) to (3-10) exists.

To clarify the role of the assumption m � 2, let us briefly make a general observation. In general, let a

polynomial G.Y; X/ be given as in (1-20) and assume V .G.Y; X// � P.e; 1; : : : ; 1/ is nonsingular; we

may assume e � 2 (since otherwise the variety is already unweighted). Then we claim V .G.Ze; X//

is nonsingular (as a projective variety) if and only if V .G.Y; X// \ V .Y / is nonsingular (as a weighted

projective variety). By the chain rule,

@G

@Z
.Ze; X/ D eZe�1

�

@G

@Y

�

.Ze; X/:

Observe that

Sing.V .G.Ze; X/// D f.z; x/ 2 P
n W rZ;X G.ze; x/ D 0g

D f.0; x/ 2 P
n W rX G.0; x/ D 0g [ f.z; x/ 2 P

n W rY;X G.ze; x/ D 0g

D f.0; x/ 2 P
n W rX G.0; x/ D 0g [∅ (3-12)

under the assumption that V .G.Y; X// is nonsingular. On the other hand, by the Jacobian criterion,

Sing.V .G.Y; X// \ V .Y // D f.0; x/ 2 P
n W rX G.0; x/ D 0g:

(Here we have used that G.0; X/ is itself homogeneous in X , so that rX G.0; X/ D 0 implies G.0; X/ D 0

by Euler’s identity.) Since the singular sets are identical, this proves the claim.

Let us apply this in our case with G taken to be the polynomial F.Y; X/, with V .F.Y; X// assumed

to be nonsingular. We consider whether there are any .0; x/ 2 Pn such that rX F.0; x/ D 0. Supposing

such .0; x/ exists, it must be the case that .@F=@Y /.0; x/ ¤ 0, since otherwise .0; x/ would be a singular

point on V .F.Y; X//. If m � 2, then due to the leading factor Y m�1 in (3-11), any point .0; x/ 2 Pn must

lead to .@F=@Y /.0; x/ D 0. Consequently there can be no such .0; x), and Sing.V .F.Y; X// \ V .Y //

must be empty. Hence by the general argument above, so is Sing.V .F.Ze; X///. In conclusion, if m � 2,

V .F.Y; X// being nonsingular implies V .F.Ze; X// is nonsingular.

However if m D 1, there is no leading factor of Y in (3-11), and indeed at .0; x/, (3-11) evaluates to

fd�1.x/. Thus points .0; x/ for which fd�1.x/ ¤ 0 and rX F.0; x/ D 0 can lead to singular points on

V .F.Y; X// \ V .Y / and hence to singular points on F.F.Ze; X//. (Nevertheless, there cannot be too

many singular points, as we will observe in (4-1) below that the singular locus has at most dimension 0.)

In the other direction, suppose that V .F.Ze; X// is nonsingular, so that as computed in (3-12),

Sing.V .F.Ze; X/// D f.0; x/ 2 P
n W rX F.0; x/ D 0g [ f.z; x/ 2 P

n W rY;X F.ze; x/ D 0g

is empty. If there were a point .y; x/ in Sing.V .Y; X// then if y D 0 this would produce an element in

the first set on the right-hand side, while if y ¤ 0 then taking z D y1=e (working over C) would produce

a point in the second set on the right-hand side. Thus V .F.Y; X// must be nonsingular (and here we did

not need to apply m � 2).
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Remark 3.2. In the special case that d D 1, then F.Y; X/ D Y m C f1.X/. Thus V .F.Y; X// �

P.e; 1; : : : ; 1/ is nonsingular if and only if V .Zem C f1.X// � Pn is nonsingular, with f1 6� 0 homoge-

neous of degree em. This occurs if and only if V .f1.X// � Pn�1 is nonsingular; in this special case,

the problem we consider falls in the scope of the work in [2, Theorem 1.1], which proves this case of

Theorem 1.1. Our method of proof works regardless, so we allow d D 1 as we continue.

Remark 3.3. Recall the affine hypersurface V � A
nC1
C

defined in (1-2) according to the polyno-

mial F.Y; X/. We note that V is irreducible under the conditions of Theorem 1.1. Suppose it is

reducible, so that F.Y; X/ D G.Y; X/H.Y; X/ for some nonconstant polynomials. Then F.Ze; X/ D

G.Ze; X/H.Ze; X/ so that the projective variety V .F.Ze; X// is reducible. Consequently, by [13,

Lemma 11.1], V .F.Ze; X// is singular, which is a contradiction because by the discussion above,

V .F.Y; X// is nonsingular if and only if V .F.Ze; X// is nonsingular.

3.4. Initial considerations of the sieving set. We suppose that Q D B� for some 0 < � � 1 to be chosen

later (see (7-4)). We will choose a sieving set

P � ŒQ; 2Q�

comprised of primes with certain properties. In the special case that .e; m/ D 1, it is sensible to restrict

our attention to a set P0 of primes in ŒQ; 2Q� such that

(i) p � 1 .mod m/ (recalling m � 2) and

(ii) p � 2 mod e, and

(iii) the reduction of V .F.Y; X// as a weighted variety over Fp is nonsingular.

The first criterion (i) we have used in the proof of the sieve lemma (Lemma 1.2). The second criterion

(ii) ensures that .e; p �1/ D 1 so that every y 2 Fp satisfies y D ze for some z 2 Fp . Then for each p 2 P ,

we can simply consider the reduction V .F.Ze; X// � Pn
Fp

in place of the weighted variety, so that (iii)

is equivalent to

(iii0) the reduction of V .F.Ze; X// � Pn
Fp

is nonsingular.

By the Chinese remainder theorem and the Siegel–Walfisz theorem on primes in arithmetic progressions,

under the assumption that .e; m/ D 1, there are �m;e Q= log Q primes that satisfy (i) and (ii) in any

dyadic region ŒQ; 2Q�, for all Q sufficiently large. We could then choose the sieving set P0 to be the

subset of such primes for which (iii0) holds; the remaining task is to show there are sufficiently few primes

that violate (iii0).

Recall from Section 3.3 that V .F.Y; X// is nonsingular over C (as a weighted projective variety) if

and only if V .F.Ze; X// � Pn is nonsingular over C. Thus under the hypothesis of Theorem 1.1, the

latter is nonsingular, and consequently there are no nontrivial simultaneous solutions of the system (3-10),

and thus the resultant

r WD Res

�

F;
@F

@Z
;

@F

@X1

; : : : ;
@F

@Xn

�
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of those n C 2 polynomials in n C 1 variables is a nonzero integer. Moreover, by [21, Chapter 13,

Proposition 1.1], r is a polynomial in the coefficients of F with degree bounded in terms of m; e; d . By

[15, Section IV], the reduction Vp.F.Ze; X// of V .F.Ze; X// modulo p is singular precisely when

pjr , which can only occur for at most !.r/ primes, where

!.r/ � log r= log log r �m;e;d log kFk: (3-13)

(Notice that the argument in this paragraph made no assumption on the relative primality of e and m.)

In particular, if .e; m/ D 1, then as long as Q is sufficiently large, say Q �m;e;d .log kFk/1Cı0 for

any fixed ı0 > 0 or even Q �m;e;d .log kFk/.log log kFk/, we can conclude that jP0j �m;e;d Q= log Q.

After we choose Q to be a certain power of B (see (7-4)), this will only require a lower bound on B that

is on the order of a power of log kFk, which we will see can be accommodated by the bound on the

right-hand side of our claim in Theorem 1.1.

These remarks all apply in the case that .e; m/ D 1. However, we can also argue more generally

without this assumption, as we demonstrate in the next section, by working not with V .F.Ze; X// as

above, but with a finite collection of varieties Wi , defined according to F.
 ize; X/ D 0 in Fp, for a

certain primitive root 
 2 F�
p (see Lemma 4.3). Thus we postpone our definition of the sieving set, in

general, until the end of the next section.

4. Estimates for exponential sums

In this section we apply the Weil bound to prove an upper bound for the exponential sum g.u; p/ (see

(1-24)) in the case that u is each of three types: type zero, good, or bad modulo p (Definition 4.1). At the

end, in Section 4.2 we then define the sieving set P .

We note the multiplicativity condition

g.u; pq/ WD
X

a mod pq

.�p.a/ � 1/.�q.a/ � 1/epq.ha; ui/ D g. Nqu; p/g. Npu; q/;

where q Nq � 1 mod p, and p Np � 1 mod q. This leads us to study the key exponential sums with prime

modulus:

g.u; p/ WD
X

a2F
n
p

.�p.a/ � 1/ep.ha; ui/:

Let p be a fixed prime of good reduction for F.Ze; X/, so that V .F.Ze; X// � Pn
Fp

is a nonsingular

projective hypersurface. For any point P 2 V .F.Ze; X//, let TP � Pn
Fp

denote the projective tangent

space to V .F.Ze; X// at P . A linear space L is tangent to V .F.Ze; X// at P if TP � L; if L is a

hyperplane, this is equivalent to P being a singular point of V .F.Ze; X// \ L (see [20, p. 57]).

Given u 2 Zn with u 6� 0 .mod p/, if V .hX ; ui/ � Pn
Fp

is not tangent to V .F.Ze; X// at any point

(i.e., they intersect transversely), we simply say V .hX ; ui/ is not tangent to V .F.Ze; X//; otherwise,

we will say they are tangent (and as we will discuss below in (4-1), there are at most finitely many points

at which they are tangent).
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Using this terminology, we will classify u 2 Zn in terms of three cases:

Definition 4.1. For u 2 Zn and p 2 P we say that:

(i) u is of type zero mod p if u � 0 .mod p/,

(ii) u is good mod p if u 6� 0 .mod p/ and V .hX ; ui/ � Pn
Fp

is not tangent to V .F.Ze; X// � Pn
Fp

,

(iii) u is bad mod p if u 6� 0 .mod p/, and V .hX ; ui/ � Pn
Fp

is tangent to V .F.Ze; X// � Pn
Fp

.

(The fact that we define these types in relation to V .F.Ze; X//, is justified by Lemma 4.4, below.) The

main result of this section is the following:

Proposition 4.2. Assume that p > 2 is a prime of good reduction for F.Ze; X/, that is V .F.Ze; X// �

Pn
Fp

is nonsingular.

(i) If u is type zero modulo p then g.u; p/ � pn�1=2;

(ii) If u is good modulo p then g.u; p/ � pn=2;

(iii) If u is bad modulo p then g.u; p/ � p.nC1/=2.

The implied constants can depend on n; m; e; d , but are independent of kFk; u; p.

In a final step of the proof, we will apply the property that if V .F.Ze; X// � Pn is nonsingular, any

hyperplane L has

dimfP 2 V .F.Ze; X// W TP � Lg D dim.Sing.V .F.Ze; X// \ L// � 0: (4-1)

Here, by dim.Sing.V // we mean the dimension of the singular locus of a variety V � Pn. We will apply

this in (4-3) over Fp for p a prime of good reduction for F.Ze; X/. The result (4-1) is a special case of

Zak’s theorem on tangencies as in [20, Theorem 7.1, Remark 7.5], valid over any algebraically closed

field, or [33, Lemma 3], valid over any perfect field. More simply, in our setting (4-1) can be shown

directly, and we do so in Remark 4.5.

As preparation for proving Proposition 4.2, we transform g.u; p/ into an exponential sum over solutions

to F.y; a/ D 0 by writing

g.u; p/ D
X

a2F
n
p

�p.a/ep.ha; ui/ �
X

a2F
n
p

ep.ha; ui/

D �ıuD0 � pn C
X

a2F
n
p

ep.ha; ui/
X

y2Fp

F.y;a/D0

1

D �ıuD0 � pn C
X

.y;a/2F
nC1
p

F.y;a/D0

ep.ha; ui/;



Application of a polynomial sieve: beyond separation of variables 1537

where ıuD0 D 1 if u � 0 .mod p/ and is 0 otherwise. The task now is to estimate the sum

g.u; p/ C ıuD0 � pn D
X

.y;a/2F
nC1
p

F.y;a/D0

ep.ha; ui/:

A barrier to doing this efficiently is that the polynomial F.Y; X/ is not homogeneous (see Remark 4.6).

Recall the definition of F.Y; X/ in (1-1), and recall the integer e � 1 fixed in that definition. As a first

step, we prove:

Lemma 4.3. Fix a prime p > 2. Let f D .e; p �1/, and let 
 2 F�
p be a primitive f-th root of unity. Then

X

(y;a/2W

ep.ha; ui/ D
1

f

f �1
X

iD0

X

(z;a/2Wi

ep.ha; ui/;

where

W D f.y; a/ 2 F
nC1
p W F.y; a/ D 0g;

Wi D f.z; a/ 2 F
nC1
p W F.
 ize; a/ D 0g; for i D 0; : : : ; f � 1:

(This lemma replaces the remarks in Section 3.4 that applied in the special case .e; p � 1/ D 1.)

Proof. We start by claiming that for any y 2 F�
p there exists an unique i 2 f0; : : : ; f �1g and some z 2 F�

p

such that y D 
 ize: we write e D `k where

.`; q/ D 1 for any q j.p � 1/; k D
e

`
:

Note that then f jk and also there exists some integer N such that kj.f N /. Since 
 is a generator for

the group F�
p =F

�f
p , then for any y 2 F�

p there exists an unique i 2 f0; : : : ; f � 1g and z1 2 F�
p such that

y D 
 iz
f
1

. On the other hand, we can apply the same principle to z1, finding an unique j 2 f0; : : : ; f �1g

and z2 2 F�
p such that z1 D 
 j z

f
2

. Thus, y D 
 iz
f
1

D 
 i.
 j z
f
2

/f D 
 iz
f 2

2
. Iterating this process N

times, we can find zN 2 F�
p such that y D 
 iz

f N

N
with kjf N . Then, y D 
 i.z

f N =k
N

/k . On the other

hand, since .`; p �1/ D 1, we have that z
f N =k
N

D z` for some z 2 F�
p , so that y D 
 iz`k D 
 ize and this

proves the claim. Moreover, note that once we have obtained z such that y D 
 ize then we can multiply

z by any f-th root of unity, so that there are f such values z.

Next, for any i 2 f0; : : : ; f � 1g we can consider the map

'i W Wi �! W .z; a/ 7! .
 ize; a/:

From this, we deduce that if .y; a/ is in the image of 'i then

j'�1
i .y; a/j D

�

f if y ¤ 0;

1 if y D 0:

On the other hand, if .0; a/ 2 W , then .0; a/ 2 Wi for each of i D 0; : : : ; f � 1. The result follows. �
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When we apply Lemma 4.3 it will be convenient to treat all cases analogously as i varies; to do so we

will employ the following lemma.

Lemma 4.4. Fix e � 1 and recall F.Y; X/ from (1-1). Let p be a prime, and let u 2 F
n

p. Then for any

˛ 2 F
�

p the variety V .F.˛Ze; X//\V .hX ; ui/ � Pn
Fp

is isomorphic to V .F.Ze; X//\V .hX ; ui/ � Pn
Fp

.

In particular, for u D 0, we conclude V .F.˛Ze; X// � Pn
Fp

is isomorphic to V .F.Ze; X// � Pn
Fp

.

Proof. Let ˇ 2 F
�

p be such that ˇe D ˛. Then the change of variables .Z; X/ 7! .ˇZ; X/ induces an

isomorphism between V .F.Ze; X// \ V .hX ; ui/ and V .F.˛Ze; X// \ V .hX ; ui/. �

4.1. Proof of Proposition 4.2. We are now ready to prove our main result of this section, Proposition 4.2.

In the following, we denote f D .e; p � 1/. An application of Lemma 4.3 leads to

g.u; p/ D �ıuD0pn C
1

f

f �1
X

iD0

X

.z;a/2Wi

ep.ha; ui/: (4-2)

4.1.1. Type zero case. Assume u � 0 .mod p/. The right-hand side of (4-2) becomes

g.0; p/ D �pn C
1

f

f �1
X

iD0

X

.z;a/2Wi

1 D �pn C
1

f

f �1
X

iD0

jWi j:

By definition, for any i D 0; : : : ; f � 1 the set Wi is the set of the Fp-points on the affine variety

V .F.
 iZe; X// � A
nC1
Fp

. By hypothesis, p is of good reduction for V .F.Ze; X//, so V .F.Ze; X// �

Pn
Fp

is nonsingular. Then by Lemma 4.4, we have that V .F.
 iZe; X// � Pn
Fp

is a nonsingular variety for

each i D 0; : : : ; f � 1 (and in particular is absolutely irreducible over Fp), and certainly V .F.
 iZe; X//

is defined over Fp. Thus the Lang-Weil bound [35] implies that (counting projectively)

jV .F.
 iZe; X//.Fp/j D pn�1 C Om;e;d .pn�1�1=2/ for each i D 0; : : : ; f � 1;

so that jWi j D pn C Om;e;d;.p
n�1=2/ for each i D 0; : : : ; f � 1. Thus we may conclude that g.0; p/ �

pn�1=2.

4.1.2. Good/bad case. Assume u ¤ 0 .mod p/; we may initially argue the good and the bad cases

together. The right hand side of (4-2) becomes

g.u; p/ D
1

f

f �1
X

iD0

X

.z;a/2Wi

ep.ha; ui/:

In either the good or the bad case, it suffices to estimate each sum

gi.u; p/ D
X

.z;a/2Wi

ep.ha; ui/; for i D 0; ::; f � 1:
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First we prove that for any ˛ 2 F�
p , gi.u; p/ D gi.˛u; p/. Indeed

gi.˛u; p/ D
X

.z;a/2Wi

ep.ha; ˛ui/ D
X

.z;a/2F
nC1
p

F.
 i ze;a/D0

ep.ha; ˛ui/

D
X

.z;a/2F
nC1
p

F.
 i ze;a/D0

ep.h˛a; ui/ D
X

.t;b/2F
nC1
p

˛med F.
 i te;b/D0

ep.hb; ui/

D
X

.t;b/2F
nC1
p

F.
 i te;b/D0

ep.hb; ui/ D gi.u; p/;

where in the fourth step we use the change of variables .z; a/ D .˛t; ˛b/, for ˛˛ � 1 .mod p/. Hence

.p�1/gi.u; p/ D
X

˛2F
�
p

gi.˛u; p/

D
X

˛2F
�
p

X

.z;a/2F
nC1
p

F.
 i ze;a/D0

ep.ha; ˛ui/

D
X

.z;a/2F
nC1
p

F.
 i ze;a/D0

X

˛2F
�
p

ep.˛ha; ui/ D
X

.z;a/2F
nC1
p

F.
 i ze;a/D0

X

˛2Fp

ep.˛ha; ui/ �
X

.z;a/2F
nC1
p

F.
 i ze;a/D0

1

Dp.p�1/
ˇ

ˇ.V .F.
 iZe;X//\V .hu; Xi//.Fp/
ˇ

ˇ� .p�1/
ˇ

ˇV .F.
 iZe;X/.Fp/
ˇ

ˇC .p�1/;

where in the last step we have passed to counting points over Fp in the projective sense. Applying [32,

Appendix by N. Katz, Theorem 1], we have that

jV .F.
 iZe; X//.Fp/j D

n�1
X

jD0

pj C On;m;e;d .p
nCıi

2 /;

j.V .F.
 iZe; X// \ V .hu; Xi//.Fp/j D

n�2
X

jD0

pj C On;m;e;d .p
n�1Cıi;u

2 /;

where ıi D dim.Sing.V .F.
 iZe; X//// and ıi;u D dim.Sing.V .F.
 iZe; X// \ V .hu; Xi///.

On the other hand, Lemma 4.4 implies that ıi D ı0 and ıi;u D ı0;u for each i . Moreover, ı0 D �1

since we are assuming that p is of good reduction for V .F.Ze; X//. Thus, we obtain

gi.u; p/ D O.p
nC1Cı0;u

2 /; (4-3)

with an implicit constant depending only on n; m; e; d . Finally, by (4-1),

ı0;u D

�

0 if V .hu; Xi/ is tangent to V .F.Ze; X//;

�1 otherwise;
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and this completes the proof of the good and bad cases in Proposition 4.2.

Remark 4.5. This remark justifies (4-1). Let V D V .H.X// � Pn be a nonsingular hypersurface and

L D V .ha; Xi/ be a hyperplane. We may suppose without loss of generality that a1 ¤ 0. By the Jacobian

criterion, Sing.V \ L/ is the set of points on the intersection V \ L for which the .n C 1/ � 2 matrix

with columns rH and a has rank 1. Consequently, Sing.V \ L/ � W where

W D V \ V .g2/ \ � � � \ V .gn/;

in which for each i D 2; : : : ; n,

gi.X/ D a1

@H

@Xi
.X/ � ai

@H

@X1

.X/:

On the other hand, W \ V .@H=@X1/ D Sing.V / D ∅ under the hypothesis that V is nonsingular.

Consequently, dim W � 0, implying dim.Sing.V \ L// � 0, as desired.

Remark 4.6. It is worth remarking what we have gained from the arguments in this section. Briefly,

suppose u 6� 0 .mod p/ and consider

g.u; p/ D
X

.y;a/2F
nC1
p

F.y;a/D0

ep.ha; ui/:

To work directly with this sum rather than passing through the dissection into the components Wi as

we did above, we would first need to homogenize the polynomial F.Y; x/, say defining a homogeneous

polynomial

QF .T; Y; X/ D T md.e�1/Y md C � � � C T m.e�1/Y mfd�1.X/ C fd .X/:

(Here we suppose that e � 2 for this example.) Then observe that Œ1 W 0 W � � � W 0� is a singular point on

V . QF .T; Y; X// � PnC1. Consequently, if one proceeded to estimate g.u; p/, roughly analogous to the

approach in (4-3), by counting points on the complete intersection described by

V . QF .T; Y; X// \ V .hu; Xi/ \ V .T D 1/;

the role of ı0;u in the exponent is now played by a dimension that is always at least 0, ultimately leading

to a result that is larger by a factor of p1=2 than the results we obtain in Proposition 4.2.

4.2. Choice of the sieving set. We can now continue the discussion initiated in Section 3.4, and choose

the sieving set. We suppose that Q D B� for some 1=2 � � � 1 to be chosen later (see (7-4)). We choose

the sieving set

P � ŒQ; 2Q�

comprised of all primes in this range such that (i) p � 1 .mod m/ (recalling m � 2), and (iii0) the reduction

V .F.Ze; X// � Pn
Fp

is nonsingular.
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By the Siegel–Walfisz theorem on primes in arithmetic progressions, there are �m Q= log Q primes

such that p � 1 .mod m/ in any dyadic region ŒQ; 2Q�, for all Q �m 1 sufficiently large, which we

assume is a condition met henceforward. We recall from (3-13) that at most Om;e;d .log kFk/ primes fail

(iii0). We henceforward assume that

Q �m;e;d .log kFk/.log log kFk/ (4-4)

for an appropriately large implied constant, so that consequently

P D jPj �m Q= log Q � Cm;e;d .log kFk/ �m;e;d Q= log Q: (4-5)

When we finally choose Q as a power of B, (4-4) will impose a lower bound on B; we defer this to (7-4).

5. Estimating the main sieve term: the bad-bad case

This section is the technical heart of the paper. We show how to bound the most difficult contribution to

the sieve, which occurs when u is bad with respect to two primes p ¤ q 2 P . (We reserve the treatment

of all other cases, when u is either type zero, or good with respect to at least one of these primes, to

Section 7; these remaining cases are significantly easier.)

We recall from the sieve lemma, Lemma 1.2, that S.F; B/ is bounded above by a sum of three terms.

The first two terms can be bounded simply:

X

kWfd .k/D0

W .k/ C
1

P

X

k

W .k/ � Bn�1 C BnP�1: (5-1)

Here the first term follows from the Schwartz-Zippel trivial bound �n;e;d Bn�1 for the number of zeroes

of fd with k 2 supp.W /, since fd 6� 0 (see, e.g., [27, Theorem 1], which as mentioned before has a

method of proof that applies even if fd is not absolutely irreducible). We will call the remaining, third,

term on the right-hand side of the sieve lemma the main sieve term.

Now we are ready to estimate the main sieve term, which after an application of Poisson summation

inside the definition (1-23) of T .p; q/ is

1

P2

X

p;q2P

p¤q

jT .p; q/j D
1

P2

X

p;q2P

p¤q

�

1

pq

�n ˇ
ˇ

ˇ

ˇ

X

u

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
1

P2Q2n

X

p;q2P

p¤q

X

u

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

: (5-2)

We will apply Proposition 4.2 to bound g.u; pq/, according to the “type” of u modulo p and q, respectively;

this leads to cases we can abbreviate as zero-zero, zero-good, zero-bad, good-good, good-bad, and bad-bad.

Unsurprisingly, the greatest difficulty is to bound the contribution of the bad-bad case, and we focus on

this first, returning to the other cases in Section 7.
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Recall that W is a nonnegative function with W .u/ D w.u=B/ for an infinitely differentiable, non-

negative function w that is � 1 on Œ�1; 1� and vanishes outside of Œ�2; 2�. Thus OW .u/ D Bn Ow.Bu/ and

Ow.u/ has rapid decay in u, so that

j OW .u/j � Bn
n
Y

iD1

.1 C jui jB/�M (5-3)

for any M � 1; we will for example specify a lower bound on M at (5-22) and can certainly always

assume M � 2n. In particular, we will later apply the fact that for any B; L � 1,

X

u2Zn

j OW .u=L/j � maxfBn; Lng: (5-4)

5.1. The dual variety. To consider any bad case, it is useful to consider certain facts about the dual

variety. Recall that m � 2 and d; e � 1, and

F.Y; X/ D Y md C Y m.d�1/f1.X/ C � � � C fd .X/; (5-5)

in which for each 1 � i � d , fi is a polynomial in ZŒX1; : : : ; Xn� with deg fi D m � e � i . By hypothesis,

the variety defined by F.Y; X/ D 0 in weighted projective space, denoted V .F.Y; X// � PC.e; 1; : : : ; 1/,

is nonsingular. Recall from Section 3.3 that V .F.Y; X// � PC.e; 1; : : : ; 1/ is nonsingular if and only if

V .F.Ze; X// � Pn
C

is nonsingular. The dual variety V � D V .F.Ze; X//� � Pn
C

of a hypersurface is a

hypersurface. We denote by

G.UY ; U1; : : : ; Un/ (5-6)

the irreducible homogeneous polynomial such that V .G/ D V � (see, e.g., [13, Proposition 11.2, Appen-

dix]). Recall that deg F.Ze; X/ D mde; by [19, Proposition 2.9],

deg G D mde.mde � 1/n�1 � 2:

In our analysis of the bad-bad case in Section 5.2, our strategy is to divide our analysis depending on

whether u has the property G.0; u/ ¤ 0 or G.0; u/ D 0. In the first case, we now show via an explicit

constructive argument that

jfp W u is bad modulo pgj �n;m;e;d log.kFkkuk/: (5-7)

Let us prove this. A given u has the property G.0; u/ ¤ 0 if and only if the hyperplane V .hu; Xi/ � Pn
C

is not tangent to V .F.Ze; X// � Pn
C

; that is, if and only if for any Œz W x� 2 V .F.Ze; X// \ V .hX ; ui/,

the matrix
0

B

B

B

B

@

@F
@Z

.ze; x/ 0

@F
@X1

.ze; x/ u1

:::
@F
@Xn

.ze; x/ un

1

C

C

C

C

A

(5-8)
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has maximal rank (i.e., at least one 2 � 2 minor is nonvanishing). Now define n C 2 polynomials in

Z; X1; : : : ; Xn, with integral coefficients (depending on u) as follows: set

H0;u.Z; X/ D F.Ze; X/; HnC1;u.Z; X/ D hX ; ui;

and for 1 � i � n set

Hi;u.Z; X/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

det

 

@F
@Z

.ze; x/ 0
@F
@X1

.ze; x/ u1

!

for i D 1;

det

 

@F
@Xi�1

.ze; x/ ui�1

@F
@Xi

.ze; x/ ui

!

for 2 � i � n:

Then define the resultant (see [21, Chapter 13])

R.u/ D Res.H0;u; H1;u; : : : ; HnC1;u/: (5-9)

The following are all equivalent:

(1) u has the property that V .hu; Xi/ is tangent to V .F.Ze; X//.

(2) For some Œz W x� 2 V .F.Ze; X// \ V .hX ; ui/, (5-8) has rank < 2.

(3) The polynomials Hi;u.Z; X/ (for 0 � i � n C 1) share a common (nonzero) root.

(4) R.u/ D 0.

Now we consider the analogues of these statements for each p. Fix a prime p. For a polynomial

L 2 ZŒU �, let L denote its reduction modulo p. By definition, u is bad modulo p precisely when H i;u (for

0 � i � nC1) have a common nontrivial root modulo p, that is if and only if pjRes.H 0;u; : : : ; H nC1;u/.

By [15, Section IV], as a polynomial in U ,

Res.H 0;U ; : : : ; H nC1;U / D R.U /;

where R is defined as in (5-9). (That is, the resultant of the reductions modulo p is the reduction modulo

p of the resultant.) Thus for each u such that G.0; u/ ¤ 0 so that R.u/ ¤ 0, we can conclude that

ˇ

ˇfp W u is bad modulo pg
ˇ

ˇD !.Res.H0;u; : : : ; HnC1;u//;

where !.r/ indicates the number of distinct prime divisors of an integer r ; we recall in particular

that !.r/ � .log r/=.log log r/. By [21, Chapter 13, Proposition 1.1], the resultant is a homogeneous

polynomial in the coefficients of the forms H0;u; : : : ; HnC1;u (with degree bounded in terms of n; m; e; d ).

Thus, for every value of u such that G.0; u/ ¤ 0 so that Res.H0;u; : : : ; HnC1;u/ is a nonzero integer,

!.Res.H0;u; : : : ; HnC1;u// �n;m;e;d log.kFkkuk/: (5-10)

Finally, if G.0; u/ D 0, then the hyperplane V .hu; Xi/ � Pn
C

is tangent to V .F.Ze; X// � Pn
C

so that

(5-8) has rank 1 over C; consequently u is bad for all primes p. Thus in this latter case, we will instead

focus on showing there are sufficiently few solutions to G.0; u/ D 0.
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Remark 5.1. It is a common occurrence that one requires the fact that there are “quite few” primes of

bad reduction for a variety of the form V \ fu0X0 C � � � unXn D 0g for some variety V and parameter

.u0; u1; : : : ; un/ of interest, in this case V .G/ with G describing the dual of F , and u0 D 0. The fact

that our result (5-7) depends only logarithmically on kFk is important for our ultimate deduction that

the implicit constant in Theorem 1.1 is independent of kFk; see the application in Section 5.2.1. This

motivated the explicit argument we gave above. Alternatively, we thank Per Salberger for pointing out

that the useful references [17, pp. 95–98] and [18] also provide similar constructions leading to explicit

results of the form (5-10) and hence (5-7). We remark that if we did not require logarithmic dependence

on kFk, one could apply a result such as [13, Proposition 11.5(3), Appendix] to conclude immediately

that for all sufficiently large primes (in an inexplicit sense), u is bad modulo p precisely when pjG.0; u/

(so that jfp W u is bad modulo pgj �G log kuk when G.0; u/ ¤ 0), but with dependence on G and hence

on F that has not been made explicit, and so does not immediately suffice for our application.

5.2. Bad-bad case. We use the above facts to control the contribution of the bad-bad case to the sieve,

which by Proposition 4.2 is bounded by

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
QnC1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�
ˇ

ˇ

ˇ

ˇ

:
(5-11)

We start by exchanging the order of summation between u and the primes p; q, and then splitting the

sum as
X

u2Zn

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�
ˇ

ˇ

ˇ

ˇ

D
X

u2Zn

G.0;u/D0

X

p;q2P

p¤q
u bad mod p
u bad mod q

C
X

u2Zn

G.0;u/¤0

X

p;q2P

p¤q
u bad mod p
u bad mod q

:

In this section, we will prove that the contribution from G.0; u/ ¤ 0 is

X

u2Zn

G.0;u/¤0

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�
ˇ

ˇ

ˇ

ˇ

�n;m;e;d Q2n.log B/2: (5-12)

On the other hand, we will prove that the contribution from G.0; u/ D 0 is

X

u2Zn

G.0;u/D0

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�ˇ

ˇ

ˇ

ˇ

�" P2

�

Q2nB�˛.M�1/ C Bn

�

Q2

B1�˛

�n�2C 1
3

C"�

; (5-13)

for a small 0 < ˛ < 1 of our choice, and any " > 0. Once we have proved these two inequalities, we will

wrap up the contribution of the bad-bad case in Section 5.2.3.
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5.2.1. The case G.0; u/ ¤ 0. Proving (5-12) is quite simple; by the decay (5-3) for OW and the bound

(5-10) for counting p; q,

X

u2Zn

G.0;u/¤0

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�ˇ

ˇ

ˇ

ˇ

� Bn
X

u2Zn

G.0;u/¤0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

!.R.u//2

� Bn
X

u2Zn

n
Y

iD1

�

1 C
Bjui j

Q2

��M

.log.kFkkuk//2

�n;m;e;d Q2n.log B/2:

Here we have used the fact that Q D B� with 1=2 � � � 1 (so that Q2n � Bn), and the fact from

Lemma 2.1 that in the only case we need to consider, log kFk �m;e;d log B. This proves (5-12) with an

implied constant independent of kFk.

5.2.2. The case G.0; u/ D 0. Proving (5-13) is a key novel aspect of our proof. Note that if G.0; u/ D 0,

then u is bad mod p for all p 2 P . Then

X

u2Zn

G.0;u/D0

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�ˇ

ˇ

ˇ

ˇ

� BnP2
X

u2Zn

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

: (5-14)

Let 0 < ˛ < 1 be a parameter to be chosen later and consider the cube

C˛ D Œ�Q2=B1�˛; Q2=B1�˛ �n � R
n:

This is slightly larger than the “essential support” of the sum over u, so that outside this box we can

exploit decay more efficiently. We will ultimately prove that

X

u2Zn

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

�" Q2nB�nB�˛.M �1/ C

�

Q2

B1�˛

�n�2C1=3C"

; (5-15)

for any " > 0. We split the sum as

X

u2C˛\Zn

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

C
X

u…C˛\Zn

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

: (5-16)

In the second sum in (5-16), we can exploit decay:

X

u…C˛

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

�

n
X

jD1

X

u2Zn

G.0;u/D0

juj j>Q2=B1�˛

n
Y

iD1

�

1 C
Bjui j

Q2

��M

�

�

Q2

B

�n
1

B˛.M�1/
:
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The contribution of these u to (5-14) is thus � Q2nP2B�˛.M�1/ for 0 < ˛ < 1 and any M � 2n; this

contributes the first term in (5-13).

It remains to deal with the first sum appearing on the right-hand side of (5-16), summing over u 2 C˛

such that G.0; u/ D 0. Here we show that there are few solutions to G.0; u/ D 0. Recall the definition

of the form G from Section 5.1. Consider V .G.0; U // � Pn�1 defined by G.0; U / D 0 as a function

of U . (First notice that G.0; U / is not identically zero; indeed, if it were then we would conclude that

fUY D 0g � fG.UY ; U1; : : : ; Un/ D 0g. Recalling that G.UY ; U / is irreducible, both these projective

varieties have dimension n � 1 so that in fact we must have fG D 0g D fUY D 0g. But this is impossible,

since G has degree > 1.) Thus V .G.0; U // � Pn�1
C

is a projective variety of dimension n � 2 and

deg G.0; U / D deg G.UY ; U / � 2. Moreover, let us decompose G.0; U / into irreducible components,

i.e., by writing

G.0; U / D

L
Y

`D1

G`.U /; (5-17)

where G`.U / is an irreducible polynomial for each ` � L (and L �n;m;e;d 1). Set d` WD deg G`. We

have
X

u2C˛\Zn

G.0;u/D0

n
Y

iD1

�

1 C
Bjui j

Q2

��M

�
X

u2C˛\Zn

G.0;u/D0

1 �

L
X

`D1

X

u2C˛\Zn

G`.u/D0

1:

In the next section, we shall prove:

Proposition 5.2. Let n � 3. For the homogeneous polynomial G.UY ; U1; : : : ; Un/ 2 CŒUY ; U1; : : : ; Un�

defined in (5-6), G.0; U1; : : : ; Un/ contains no linear factor, that is, we cannot write G.0; U / D

L.U / QH .U / for any linear form L.U / 2 CŒU1; : : : ; Un�.

Remark 5.3. As a consequence of Proposition 5.2, G.0; U1; : : : ; Un/ contains no factor in one or two

variables. For suppose that in the notation of (5-17) some factor G`.U / (after an appropriate GLn.C/

change of variables) can be written as a polynomial g1.U1/ or g2.U1; U2/. Then g1.U1/ is a monomial,

hence a product of linear factors, contradicting the proposition. Alternatively, any form g2.U1; U2/

factors over C into homogeneous linear factors in U1; U2, as a consequence of the fundamental theorem

of algebra applied to g2.1; t/ 2 CŒt �, followed by noting g2.U1; U2/ D U
deg g2

1
g2.1; U2=U1/. This again

would contradict the proposition. (Since the statement of Proposition 5.2 is false if n D 2, see Remark 5.4

for an alternative approach for n D 2.)

The crucial point is that Proposition 5.2 implies that for each ` D 1; : : : ; L the degree d` � 2 (and G`

depends on at least 3 variables). By [27, Theorem 2] and [41, Theorem A], we have, for any " > 0,

X

u2C˛\Zn

G`.u/D0

1 �"

(

.Q2=B1�˛/n�2C" if d` D 2;

.Q2=B1�˛/
n�2C 1

d`
C"

if d` > 2:
(5-18)

Within these results, the implied constant is independent of kFk in each case. In particular, we may
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conclude that for each ` D 1; : : : ; L,

X

u2C˛\Zn

G`.0;u/D0

1 �"

�

Q2

B1�˛

�n�2C 1
3

C"

:

Thus the total contribution of these terms to (5-14) is

�" BnP2

�

Q2

B1�˛

�n�2C 1
3

C"

:

This contributes the second term in (5-13), and hence (5-13) is proved.

5.2.3. Conclusion of the bad-bad sieve term. From (5-12) and (5-13) we conclude that the total contribu-

tion of the bad-bad case (5-11) to the sieve is

QnC1

P2Q2n

�

Q2n.log B/2 C Q2nP2B�˛.M�1/ C BnP2

�

Q2

B1�˛

�n�2C 1
3

C"�

�"0 Qn

�

QP�2.log B/2 C QB�˛.M �1/ C

�

B
5
3

Cg.˛/C"0

Q
7
3

C"0

��

; (5-19)

where g.˛/ D ˛
�

n � 5
3

C "0
�

, for any "0 > 0. To simplify the third term above, henceforward we assume

Q D B� with

3
4

� � � 1: (5-20)

Then the above is

�"0 Qn.QP�2.log B/2 C QB�˛.M �1/ C B� 1
12

Cg.˛/C"0

/; (5-21)

for any "0 > 0. In the first term on the right-hand side, we observe by (4-5) that P � Q= log Q so that

QP�2.log B/2 � Q�1.log B/4 � B�3=4.log B/4:

In the second term, we can choose ˛ D 1
24

.n � 5
3

C "0/�1 so g.˛/ D 1
24

, and set M � maxf2n; ˛�1 C 1g.

Regarding the third term, so far this is true for any "0 > 0; let us take "0 D 1=100, say. We conclude that

QnC1

P2Q2n

X

u2Zn

G.0;u/D0

X

p;q2P

p¤q
u bad mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�
ˇ

ˇ

ˇ

ˇ

� Qn
�

B�3=4.log B/4 C QB�1 C B� 1
24

C 1
100

�

� Qn; (5-22)

since B � Q. The implied constant is independent of kFk. (Here we could even obtain a term that

is o.Qn/, but this will not change our main theorem, since the good-good contribution to the sieve is

O.Qn/.) This completes the treatment of the bad-bad contribution to the sieve, except for the proof of

Proposition 5.2, which we provide in the next section. Then in Section 7 we show that the contributions
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of all the other types to the sieve are also dominated by � Qn, and then conclude the proof of our main

theorem.

Remark 5.4 (the case n D 2). The method of this paper applies for n D 2 up until Proposition 5.2; arguing

as in Remark 5.3 shows that G.0; U1; U2/ factors over C into homogeneous linear factors in U1; U2, so

that proposition is false for n D 2. Thus in the nomenclature of (5-17), each degree d` D 1, and the

estimate (5-18) is replaced by .Q2=B1�˛/n�1. Thus (5-19) is replaced by

Qn
�

QP�2.log B/2 C QB�˛.M �1/ C B.n�1/˛C1Q�1
�

� QnC1;

upon taking ˛ D 0 and using Q � B1=2. Ultimately, arguing in this way for n D 2 leads to the choice

Q D B1=2.log B/1=2 and the outcome S.F; B/ � Bn�1C1=2.log B/1=2, which is essentially no better

than (1-16), aside from the fact that we can remove the dependence on kFk in the implicit constant. In

any case, Broberg’s results (1-14) and (1-15) supersede the outcome of the methods of this paper for

n D 2; 3.

6. Proof of Proposition 5.2

In this section we prove the critical Proposition 5.2 that allows us to deduce all factors in G.0; U / have at

least degree 2, so that we can apply the nontrivial bounds of Heath-Brown and Pila in (5-18). We thank

Per Salberger for suggesting the following strategy to prove the proposition.

Let n � 3. Suppose to the contrary that G.0; U / contains a linear factor, that is,

G.0; U / D L.U / QH .U / (6-1)

for some linear form L. Then by a linear change of variables we can reduce to the case in which we may

assume that L.U / D U1, and conclude that

G.0; U / D U1H.U /

for some homogeneous polynomial H . Then any point .0; 0; u2; : : : ; un/ 2 fUY D U1 D 0g � Pn satisfies

G.0; U / D 0 and thus defines a tangent hyperplane to V .F.Ze; X// � Pn, given by

u2X2 C � � � C unXn D 0:

In particular, for all Œu2 W � � � W un� 2 Pn�2, this hyperplane contains the line ` given by X2 D � � � D Xn D 0

in Pn. We note that this line ` is not contained in V .F.Ze; X//, since for example in the coordinates

ŒUY W U1 W U2 W � � � W Un� we see that the point Œ1 W 0 W 0 W � � � W 0� 2 ` but Œ1 W 0 W 0 W � � � W 0� 62 V , since in

the definition of F the coefficient of Zmde is 1. Thus under the assumption (6-1) we have shown that

the generic hyperplane through ` is tangent to V .F.Ze; X//. We will see this is impossible, and our

assumption (6-1) is false (so that Proposition 5.2 is verified), by the following proposition.

Proposition 6.1. Let n � 3. Let X � Pn be a nonsingular hypersurface and let ` be a line not contained

in X . Then the generic hyperplane in Pn containing ` is not tangent to X .
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Let X be given as in the proposition. Without loss of generality we can make a change of coordinates

so that

` D fX2 D � � � D Xn D 0g:

Let F 2 CŒX0; X1; : : : ; Xn� be such that X D fF D 0g, and let D denote the degree of F . Our strategy is

to construct the blow-up of X along the zero-dimensional subvariety Z � X , where we define

Z D ` \ X � P
n:

Under the hypothesis that ` is not contained in X , then deg Z � D. We also define the open set

U WD X n Z:

To prove the proposition, we first notice that we can parametrize the hyperplanes containing ` in Pn by

points in Pn�2 using the map

P
n�2 ! fH � P

n W deg H D 1; ` � H g; Œv2 W � � � W vn� 7! fv2X2 C � � � C vnXn D 0g:

Thus, it will suffice to show that there exists an open set V � Pn�2 such that for all v D Œv2 W � � � W vn� 2 V ,

X \ fv2X2 C � � � C vnXn D 0g

is smooth, so that in particular the hyperplane fv2X2 C� � �CvnXn D 0g � Pn is not tangent to X . We will

prove this in two steps, first focusing on the intersection of the hyperplane with the open set U D X n Z,

and then focusing on the intersection of the hyperplane with the finite set of points in Z. In agreement

with the citations we apply in what follows, from now on we will use the terminology “regular” for a

scheme instead of “smooth.” For a nonsingular hypersurface such as X , these notions are identical by

the Jacobian criterion [36, Chapter 4, Theorem 2.19 and Example 2.10]; more generally, the notions are

equivalent for any algebraic variety over a perfect field, and in particular over C [36, Chapter 4, Corollary

3.33].

Define a rational map ' W X Ü Pn�2 given by

' W ŒX0 W X1 W X2 W � � � W Xn� 7! ŒX2 W � � � W Xn�:

This is a regular map on U . We claim that there exists a projective variety QY and two morphisms

� W QY ! X , and Q' W QY ! Pn�2 such that:

(i) The diagram
QY

X Pn�2

Q'
�

'

is commutative.

(ii) The morphism � restricts to an isomorphism � W ��1.U / ! U .

(iii) The projective variety QY is regular.
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Let us assume this claim for now and see how to conclude the proof of the proposition. Since QY is regular,

we can apply Kleiman’s Bertini theorem [23, Chapter III, Corollary 10.9] to the morphism Q' W QY ! Pn�2,

and deduce that given a generic hyperplane H � Pn�2, Q'�1.H / � QY is regular. Let us fix one of these

generic hyperplanes, and call it

H D fu2X2 C � � � C unXn D 0g � P
n�2:

By the choice of H , Q'�1.H / \ ��1.U / is nonsingular. Recall that � is an isomorphism when restricted

to the open set ��1.U /. Thus we also learn that

�. Q'�1.H / \ ��1.U // D �. Q'�1.H // \ U D '�1.H / \ U

D fŒx0 W x1 W x2 W � � � W xn� 2 U W u2x2 C � � � C unxn D 0g

is regular. Since such H are generic in Pn�2, we conclude that there is an open set V1 � Pn�2 such that

for all v D Œv2 W � � � W vn� 2 V1, the intersection

U \ fv2X2 C � � � C vnXn D 0g

is regular.

Let us next focus on the intersection of the hyperplane with the set Z. For any P 2 Z, a hyperplane

fv2X2 C � � � C vnXn D 0g with Œv2 W � � � W vn� 2 Pn�2 is tangent to X at P if the Jacobian matrix at P ,

Jv.P / D

0

B

B

B

B

B

B

B

@

@F
@X0

.P / 0

@F
@X1

.P / 0

@F
@X2

.P / v2

:::
:::

@F
@Xn

.P / vn

1

C

C

C

C

C

C

C

A

;

has rank � 1. From this it is clear that if either @F
@X0

.P / ¤ 0 or @F
@X1

.P / ¤ 0 then rank Jv.P / D 2

for any v 2 Pn�2. On the other hand, if @F
@X0

.P / D @F
@X1

.P / D 0 then rankv.P / � 1 if and only if

v D
�

@F
@X2

.P / W � � � W @F
@Xn

.P /
�

since we are assuming that X is a nonsingular hypersurface. For each P 2 Z

we define

CP D

(

˚�

@F
@X2

.P / W � � � W @F
@Xn

.P /
�	

if @F
@X0

.P / D @F
@X1

.P / D 0,

∅ otherwise:

If we define VP D Pn�2 n CP , it follows that for any v 2 VP the intersection

X \ fv2X2 C � � � C vnXn D 0g

is regular at P .

Finally consider the set

V D V1 \
T

P2Z

VP :
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Since deg Z � D, then V is a nonempty open subset of Pn�2. For each v 2 V , the hyperplane

v2x2 C � � � C vnxn D 0 contains `, and

fv2X2 C � � � C vnXn D 0g \ .U [ Z/ D fv2X2 C � � � C vnXn D 0g \ X

is regular, or equivalently, nonsingular; thus fv2X2 C� � �CvnXn D 0g is not tangent to X . This completes

the proof of Proposition 6.1, except for the proof of properties (i), (ii), and (iii) in the claim.

We now prove the claim of properties (i), (ii) and (iii). From the rational map ' W X Ü Pn�2 given by

' W ŒX0 W X1 W X2 W � � � W Xn� 7! ŒX2 W � � � W Xn�;

we consider the graph � D �' of the map ',

� D f.x; '.x// W x 2 U g � X � P
n�2:

Define the Zariski closure QX D � � X � Pn�2. Define the projection map � 0 W QX ! X acting by

.x; '.x// ! .x/. Then the blow-up is QX along with a morphism '0 such that

QX

X Pn�2

'0

� 0

'

is a commutative diagram (see, e.g., [22, Chapter 7, p. 82]). Moreover, from the definition of the blow-up

it follows that � 0 restricts to an isomorphism � 0 W .� 0/�1.U / ! U , i.e., QX satisfies properties (i) and (ii),

but it might be singular. To resolve this, we apply Hironaka’s resolution of singularities: as a consequence

of [30, Theorem 1] (see also [30, p. 112]), there is a projective variety QY and a morphism f W QY ! QX

such that f is an isomorphism when restricted to the inverse image f �1.V / of the open set V of the

regular points of QX , and such that QY is regular. Then the claim follows by taking � D � 0 ı f , Q' D '0 ı f

and observing that .� 0/�1.U / � V .

7. Concluding arguments

In Section 5 we proved that the contribution of the bad-bad terms to the sieve is � Qn. We now turn to

analyzing the contributions of the other types, as defined in Definition 4.1. We will treat these in three

sections; in each case we apply the relevant bound for jg.u; pq/j from Proposition 4.2 and the bound

(5-4) for OW . Once we have treated these cases, we proceed in Section 7.4 to choose the parameter Q,

and conclude the proof of Theorem 1.1.

7.1. Zero-type cases. We first consider any case in which u is zero-type modulo p, divided into cases

according to whether u is zero-type, good, or bad modulo q. The contribution of the first case (upon
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setting u D pqv and applying (5-4)) is

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u zero mod p
u zero mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
Q2n�1

P2Q2n

X

p;q2P

p¤q

X

v2Zn

ˇ

ˇ

ˇ

OW .v/
ˇ

ˇ

ˇ
� BnQ�1:

The contribution of the second case (upon setting u D pv, applying (5-4) with L D Q < B) is

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u zero mod p
u good mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
Qn�1=2Qn=2P2

P2Q2n

X

v2Zn

ˇ

ˇ

ˇ

ˇ

OW

�

v

Q

�
ˇ

ˇ

ˇ

ˇ

� BnQ�n=2�1=2:

The contribution of the third case (upon setting u D pv, applying (5-4) with L D Q < B) is

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u zero mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
Qn�1=2Qn=2C1=2P2

P2Q2n

X

v2Zn

ˇ

ˇ

ˇ

ˇ

OW

�

v

Q

�
ˇ

ˇ

ˇ

ˇ

� BnQ�n=2:

As long as n � 2, all these cases contribute at most � BnQ�1 to the sieve, which is acceptable.

7.2. Good-good case. The contribution to the sieve from the good-good case is:

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u good mod p
u good mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
QnP2

P2Q2n

X

u2Zn

ˇ

ˇ

ˇ

ˇ

OW

�

u

Q2

�
ˇ

ˇ

ˇ

ˇ

� Qn;

after applying (5-4) with L D Q2 > B, since under the assumption (5-20), � � 1=2.

7.3. Good-bad case. The contribution to the sieve from the good-bad case is

1

P2Q2n

X

p;q2P

p¤q

X

u2Zn

u good mod p
u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�

g.u; pq/

ˇ

ˇ

ˇ

ˇ

�
QnC1=2

P2Q2n

X

p2P

X

q¤p2P

X

u2Zn

u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�ˇ

ˇ

ˇ

ˇ

: (7-1)

Here we proceed by imitating the key step from Section 5 for the bad-bad case, and sum over q before

summing over u. We again define G.UY ; U / as in (5-6), and let R.u/ denote the resultant (5-9), so that

X

p2P

X

u2Zn

G.0;u/¤0

X

q¤p2P

u bad mod q

ˇ

ˇ

ˇ

ˇ

OW

�

u

pq

�
ˇ

ˇ

ˇ

ˇ

� P
X

u2Zn

G.0;u/¤0

ˇ

ˇ

ˇ

ˇ

OW

�

u

Q2

�
ˇ

ˇ

ˇ

ˇ

!.R.u// �n;m;e;d PQ2n log B;

with an implied constant independent of kFk (in the first case of Lemma 2.1), by arguing as in the proof

of (5-12).

Notice that in the good-bad case, we do not need to consider a possible contribution from those u

for which G.0; u/ D 0: when G.0; u/ D 0, then all q have the property that u is bad for q, whereas by
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definition in the good-bad case, u is good for at least one prime. In total, the contribution to the sieve

from the good-bad case is thus

QnC1=2

P2Q2n
� PQ2n.log B/ � QnC1=2P�1.log B/ � Qn;

since Q D B� for some 1=2 � � � 1 and under our acting assumption (4-4), by (4-5), P � Q= log Q.

Thus we can conclude that the total contribution of the good-bad case (7-1) of the sieve is � Qn, with an

implied constant independent of kFk (in the first case of Lemma 2.1).

7.4. Final conclusion of the sieve and choice of parameters. We now assemble all the terms of the main

sieve term in (5-2): we can conclude that

1

P2

X

p;q2P

p¤q

jT .p; q/j � BnQ�1 C Qn: (7-2)

The first term is from all zero-type cases, and the last term includes the good-good, good-bad, and bad-bad

cases. We apply this in the sieve lemma, along with the bound (5-1) for the two simple terms in the sieve,

to conclude that (in the first case of Lemma 2.1) our counting function admits the bound

S.F; B/ �n;m;e;d .Bn�1 C BnP�1 C BnQ�1 C Qn/ � .BnP�1 C Qn/: (7-3)

Choose

Q D Bn=.nC1/.log B/1=.nC1/: (7-4)

The requirement (5-20) is met for all n � 3. (If n D 2, then this argument leads to the choice Q � B2=3,

which does not suffice to prove sufficient decay in the bad-bad case; see Remark 5.4.) Recall from (4-4)

and (4-5) that

P D jPj �m;e;d Q.log Q/�1 �n;m;e;d B
n

nC1 .log B/� n
nC1

as long as

Q �m;e;d .log kFk/.log log kFk/: (7-5)

Recall also that we require P �m;e;d maxflog kfdk; log Bg in Lemma 1.2. Certainly the first condition

is satisfied under the assumption (7-5). The second condition is satisfied for Q as in (7-4) for all B �n 1.

To meet the requirement (7-5) for Q as chosen in (7-4), it suffices to require that

B �m;e;d .log kFk log log kFk/
nC1

n :

For such B, the conclusion of the sieve process in (7-3) shows that

S.F; B/ �n;m;e;d Bn�1C 1
nC1 .log B/

n
nC1 ;
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where the implicit constant is independent of kFk. This suffices for Theorem 1.1. Finally, for all

B �m;e;d .log kFk log log kFk/
nC1

n , we apply the trivial bound

S.F; B/ �n Bn �n;m;e;d .log kFk log log kFk/nC1 � .log kFk/nC2

�n;m;d;e .log B/nC2 �n Bn�1C 1
nC1 .log B/

n
nC1 :

Here we applied the fact from Lemma 2.1 that in the case it remains to prove Theorem 1.1, kFk �

B.mde/nC2

so that log kFk �n;m;d;e log B. This completes the proof of Theorem 1.1.

Acknowledgements

The authors thank T. Browning for suggesting the application of the polynomial sieve to smooth coverings

and for useful discussions, and J. Lyczak for many helpful remarks. In addition, the authors thank P.

Salberger for suggesting a strategy to prove Proposition 5.2, and both Salberger and an anonymous referee

for helpful remarks on an earlier version of this manuscript. The authors credit ChatGPT with expository

edits to the last two paragraphs of Section 1.2.4.

Bonolis has been supported by FWF grant P 32428-N35. Pierce has been partially supported by

NSF DMS-2200470 and NSF CAREER grant DMS-1652173, a Sloan Research Fellowship, and a Joan

and Joseph Birman Fellowship. The authors thank the Hausdorff Center for Mathematics for hosting a

productive collaboration visit and the RTG DMS-2231514. Pierce thanks HCM for hosting a visit as a

Bonn Research Chair.

References

[1] E. Bombieri and J. Pila, “The number of integral points on arcs and ovals”, Duke Math. J. 59:2 (1989), 337–357. MR Zbl

[2] D. Bonolis, “A polynomial sieve and sums of Deligne type”, Int. Math. Res. Not. 2021:2 (2021), 1096–1137. MR Zbl

[3] D. Bonolis and T. Browning, “Uniform bounds for rational points on hyperelliptic fibrations”, Ann. Sc. Norm. Super. Pisa
Cl. Sci. .5/ 24:1 (2023), 173–204. Correction in 24:4 (2023), 2501–2504. MR Zbl

[4] J. Brandes, “Sums and differences of power-free numbers”, Acta Arith. 169:2 (2015), 169–180. MR Zbl

[5] N. Broberg, “Rational points on finite covers of P1 and P2”, J. Number Theory 101:1 (2003), 195–207. MR Zbl

[6] T. D. Browning, “A note on the distribution of rational points in threefolds”, Quart. J. Math. 54 (2003), 33–39.

[7] T. D. Browning, Quantitative arithmetic of projective varieties, Progr. Math. 277, Birkhäuser, Basel, 2009. MR Zbl

[8] T. D. Browning, “The polynomial sieve and equal sums of like polynomials”, Int. Math. Res. Not. 2015:7 (2015), 1987–2019.

MR Zbl

[9] T. D. Browning and D. R. Heath-Brown, “The density of rational points on non-singular hypersurfaces, I”, Bull. Lond.
Math. Soc. 38:3 (2006), 401–410. MR Zbl

[10] T. D. Browning and D. R. Heath-Brown, “The density of rational points on non-singular hypersurfaces, II”, Proc. Lond.
Math. Soc. .3/ 93:2 (2006), 273–303. MR Zbl

[11] T. D. Browning and P. Vishe, “Rational points on cubic hypersurfaces over Fq.t/”, Geom. Funct. Anal. 25:3 (2015),

671–732. MR Zbl

[12] T. D. Browning, D. R. Heath-Brown, and P. Salberger, “Counting rational points on algebraic varieties”, Duke Math. J.
132:3 (2006), 545–578. MR Zbl



Application of a polynomial sieve: beyond separation of variables 1555

[13] A. Bucur, A. C. Cojocaru, M. N. Lalín, and L. B. Pierce, “Geometric generalizations of the square sieve, with an application

to cyclic covers”, Mathematika 69:1 (2023), 106–154. MR Zbl

[14] W. Castryck, R. Cluckers, P. Dittmann, and K. H. Nguyen, “The dimension growth conjecture, polynomial in the degree

and without logarithmic factors”, Algebra Number Theory 14:8 (2020), 2261–2294. MR Zbl

[15] M. Chardin, “The resultant via a Koszul complex”, pp. 29–39 in Computational algebraic geometry (Nice, Italy, 1992),

edited by F. Eyssette and A. Galligo, Progr. Math. 109, Birkhäuser, Boston, MA, 1993. MR Zbl

[16] S. D. Cohen, “The distribution of Galois groups and Hilbert’s irreducibility theorem”, Proc. Lond. Math. Soc. .3/ 43:2

(1981), 227–250. MR Zbl

[17] D. A. Cox, J. Little, and D. O’Shea, Using algebraic geometry, 2nd ed., Grad. Texts in Math. 185, Springer, 2005. MR Zbl

[18] M. Demazure, “Résultant, discriminant”, Enseign. Math. .2/ 58:3-4 (2012), 333–373. MR Zbl

[19] D. Eisenbud and J. Harris, 3264 and all that: a second course in algebraic geometry, Cambridge Univ. Press, 2016. MR

Zbl

[20] W. Fulton and R. Lazarsfeld, “Connectivity and its applications in algebraic geometry”, pp. 26–92 in Algebraic geometry
(Chicago, IL, 1980), edited by A. Libgober and P. Wagreich, Lecture Notes in Math. 862, Springer, 1981. MR Zbl

[21] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants,

Birkhäuser, Boston, MA, 1994. MR Zbl

[22] J. Harris, Algebraic geometry: a first course, Grad. Texts in Math. 133, Springer, 1992. MR Zbl

[23] R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, 1977. MR Zbl

[24] D. R. Heath-Brown, “Cubic forms in ten variables”, Proc. Lond. Math. Soc. .3/ 47:2 (1983), 225–257. MR Zbl

[25] D. R. Heath-Brown, “The square sieve and consecutive square-free numbers”, Math. Ann. 266:3 (1984), 251–259. MR Zbl

[26] D. R. Heath-Brown, “The density of rational points on nonsingular hypersurfaces”, Proc. Indian Acad. Sci. Math. Sci. 104:1

(1994), 13–29. MR Zbl

[27] D. R. Heath-Brown, “The density of rational points on curves and surfaces”, Ann. of Math. .2/ 155:2 (2002), 553–595. MR

Zbl

[28] D. R. Heath-Brown, “Imaginary quadratic fields with class group exponent 5”, Forum Math. 20:2 (2008), 275–283. MR

Zbl

[29] D. R. Heath-Brown and L. B. Pierce, “Counting rational points on smooth cyclic covers”, J. Number Theory 132:8 (2012),

1741–1757. MR Zbl

[30] H. Hironaka, “Resolution of singularities of an algebraic variety over a field of characteristic zero, I”, Ann. of Math. .2/

79:1 (1964), 109–203. MR Zbl

[31] C. Hooley, “On the representations of a number as the sum of four cubes, I”, Proc. Lond. Math. Soc. .3/ 36:1 (1978),

117–140. MR Zbl

[32] C. Hooley, “On the number of points on a complete intersection over a finite field”, J. Number Theory 38:3 (1991), 338–358.

MR Zbl

[33] N. M. Katz, “Estimates for ‘singular’ exponential sums”, Int. Math. Res. Not. 1999:16 (1999), 875–899. MR Zbl

[34] J. C. Lagarias and A. M. Odlyzko, “Effective versions of the Chebotarev density theorem”, pp. 409–464 in Algebraic
number fields: L-functions and Galois properties (Durham, 1975), edited by A. Fröhlich, Academic Press, London, 1977.

MR Zbl

[35] S. Lang and A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math. 76 (1954), 819–827. MR Zbl

[36] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Grad. Texts in Math. 6, Oxford Univ. Press, 2002. MR Zbl

[37] D. A. Marcus, Number fields, Springer, 1977. MR Zbl

[38] J. S. Milne, “Algebraic number theory”, preprint, version 3.08, 2020, available at https://www.jmilne.org/math/CourseNotes/

ant.html.

[39] R. Munshi, “Density of rational points on cyclic covers of Pn”, J. Théor. Nombres Bordeaux 21:2 (2009), 335–341. MR

Zbl



1556 Dante Bonolis and Lillian B. Pierce

[40] L. B. Pierce, “A bound for the 3-part of class numbers of quadratic fields by means of the square sieve”, Forum Math. 18:4

(2006), 677–698. MR Zbl

[41] J. Pila, “Density of integral and rational points on varieties”, pp. 183–187 in Columbia University Number Theory Seminar
(New York, 1992), Astérisque 228, Soc. Math. France, Paris, 1995. MR Zbl

[42] P. Salberger, “On the density of rational and integral points on algebraic varieties”, J. Reine Angew. Math. 606 (2007),

123–147. MR Zbl

[43] P. Salberger, “Counting rational points on projective varieties”, Proc. Lond. Math. Soc. .3/ 126:4 (2023), 1092–1133. MR

Zbl

[44] J.-P. Serre, “Quelques applications du théorème de densité de Chebotarev”, Inst. Hautes Études Sci. Publ. Math. 54 (1981),

323–401. MR Zbl

[45] J.-P. Serre, Topics in Galois theory, Res. Notes in Math. 1, Jones & Bartlett, Boston, MA, 1992. MR Zbl

[46] J.-P. Serre, Lectures on the Mordell–Weil theorem, 3rd ed., Vieweg & Sohn, Braunschweig, Germany, 1997. MR Zbl

Communicated by Philippe Michel

Received 2022-09-06 Revised 2023-06-19 Accepted 2023-10-31

dante.bonolis@duke.edu Mathematics Department, Duke University, Durham, NC 27708, United States

pierce@math.duke.edu Mathematics Department, Duke University, Durham, NC 27708, United States

mathematical sciences publishers msp



Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Jason P. Bell University of Waterloo, Canada

Bhargav Bhatt University of Michigan, USA

Frank Calegari University of Chicago, USA

J-L. Colliot-Thélène CNRS, Université Paris-Saclay, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta Duke University, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Christopher Hacon University of Utah, USA

Roger Heath-Brown Oxford University, UK

János Kollár Princeton University, USA

Michael J. Larsen Indiana University Bloomington, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Martin Olsson University of California, Berkeley, USA

Irena Peeva Cornell University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Bjorn Poonen Massachusetts Institute of Technology, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas SUNY Buffalo, USA

Shunsuke Takagi University of Tokyo, Japan

Pham Huu Tiep Rutgers University, USA

Ravi Vakil Stanford University, USA

Akshay Venkatesh Institute for Advanced Study, USA

Melanie Matchett Wood Harvard University, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION

production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2024 is US $525/year for the electronic version, and $770/year (+$65, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University
of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2024 Mathematical Sciences Publishers



Algebra & Number Theory

Volume 18 No. 8 2024

1403The strong maximal rank conjecture and moduli spaces of curves

FU LIU, BRIAN OSSERMAN, MONTSERRAT TEIXIDOR I BIGAS and NAIZHEN ZHANG

1465Unramifiedness of weight 1 Hilbert Hecke algebras

SHAUNAK V. DEO, MLADEN DIMITROV and GABOR WIESE

1497Failure of the local-global principle for isotropy of quadratic forms over function fields

ASHER AUEL and V. SURESH

1515Application of a polynomial sieve: beyond separation of variables

DANTE BONOLIS and LILLIAN B. PIERCE

1557Functorial embedded resolution via weighted blowings up

DAN ABRAMOVICH, MICHAEL TEMKIN and JAROSŁAW WŁODARCZYK


	1. Introduction
	1.1. Context of 0=thm.31=Theorem 1.1x within the study of Serre's question on thin sets
	1.1.1. Results for thin sets of type I
	1.1.2. Results for thin sets of type II

	1.2. Context of 0=thm.31=Theorem 1.1x within sieve methods
	1.2.1. Square sieve
	1.2.2. Power sieve
	1.2.3. Polynomial sieve: with separation of variables
	1.2.4. Polynomial sieve: without separation of variables

	1.3. Overview of the method
	1.4. Notation

	2. Reduction to remove dependence on F
	3. Preliminaries on the sieve lemma
	3.1. Proof of the polynomial sieve lemma
	3.2. Alternative proof when m=1, conditional on GRH
	3.3. Associated variety in unweighted projective space
	3.4. Initial considerations of the sieving set

	4. Estimates for exponential sums
	4.1. Proof of 0=thm.781=Proposition 4.2x
	4.1.1. Type zero case
	4.1.2. Good/bad case

	4.2. Choice of the sieving set

	5. Estimating the main sieve term: the bad-bad case
	5.1. The dual variety
	5.2. Bad-bad case
	5.2.1. The case G(0,u) 0
	5.2.2. The case G(0,u)=0
	5.2.3. Conclusion of the bad-bad sieve term


	6. Proof of 0=thm.1221=Proposition 5.2x
	7. Concluding arguments
	7.1. Zero-type cases
	7.2. Good-good case
	7.3. Good-bad case
	7.4. Final conclusion of the sieve and choice of parameters

	Acknowledgements
	References
	
	

