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ABSTRACT. We introduce two convolutional neural network (CNN) architec-
tures, inspired by the Merriman-Bence-Osher (MBO) algorithm and by cellular
automatons, to model and learn threshold dynamics for front evolution from
video data. The first model, termed the (single-dynamics) MBO network,
learns a specific kernel and threshold for each input video without adapting to
new dynamics, while the second, a meta-learning MBO network, generalizes
across diverse threshold dynamics by adapting its parameters per input. Both
models are evaluated on synthetic and real-world videos (ice melting and fire
front propagation), with performance metrics indicating effective reconstruc-
tion and extrapolation of evolving boundaries, even under noisy conditions.
Empirical results highlight the robustness of both networks across varied syn-
thetic and real-world dynamics.

1. Introduction. In 1992 Merriman, Bence, and Osher formulated in [23, 22] the
so called Merriman-Bence-Osher (MBO) algorithm. This algorithm provides a com-
putational method to track the time evolution of a set whose boundary moves with
a normal velocity equal to a dimensional constant times its mean curvature, i.e.,
motion by mean curvature. The algorithm is based on a time discrete threshold-
ing scheme in which a linear operation (heat diffusion) and a nonlinear operation
(thresholding) are applied iteratively. By thresholding a function f, with a given
threshold a, we indicate the operation of substituting f with the characteristic func-
tion of its super level set {f > a}. More specifically, if one denotes by H(s) the
Heaviside function
1 ifs>0

H =
=30 its<o’
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then starting from an connected open set ! C R”, and setting u® = yq : R” — R to
be its characteristic function, the MBO algorithm produces a sequence of functions

{U;JY}NZO given by

1
uf) =ul,  wl ::H{(Kh*uhN)—z}, (1)

where Ky (z) = (47h)~"/? exp (—%) denotes the heat kernel at time h > 0, with

h as a fixed parameter, and K, * uflv is the conwvolution between Kj and uflv, given
by

Knxuy (x) = | Kn(y)uy (@ - y)dy. (2)
R?L
The Heaviside function in Eq. (1) corresponds to applying a thresholding oper-
ation with a = %, and the resulting thresholded functions, u}ly , are characteristic
functions of sets C7¥. Evans [10] proved that for any ¢ > 0,

C? — M(t)C° as m — oo,

where M (t)CY represents the level set {x € R" | u(x,t) =0} at time ¢ > 0 of the
viscosity solution u(x,t) to the generalized mean curvature flow of CY, given by

n
_ oo Wty
Owu = Z (5” - |Vu|2>u” (3)
1,7=1
(see [6, 11] for the pertinent definitions and [3, 20, 14] for other proofs of this
convergence).

The paper [14] provides proofs of convergence for more general thresholding evo-
lutions of fronts, including the cellular automaton models described in [13]. As
outlined in [14, (0.2)-(0.4)], these models describe the evolution of a front through
the following scheme: Let ' C R™ denote an open bounded neighborhood of the ori-
gin with unit measure. Starting from a configuration A C R™ and fixing parameters
h>0and 0 < 6 < 1, one sets

Mp(A) = {z € R" such that |(z + hN) N A| > 0"} . (4)

In other words, quoting [14]: “If A is the occupied set at time t, the occupied set
My (A) at time t + h consists of those points for which the volume of the overlap
between x + hN and A exceeds the quantity 0)hN'|”. Observe that the measure of
the set (z 4+ hAN') N A can also be expressed as the convolution of the characteristic
function of A with the characteristic function of —hN, evaluated at z € R", i.e.,

[(z + hN) N A = xa * X—nn(2). (5)

We also note that in [23] the authors describe how, changing the kernel and
adjusting the threshold allows the MBO algorithm to effectively approximate the
dynamics of various types of evolving fronts. For instance, by choosing a kernel
K as the characteristic function of the unit ball and setting the threshold to zero
(instead of 1/2 in Eq. (1)), one recovers the motion of a front moving along its
normal at constant speed (as described in the flame propagation model in [25, 2]).

Since both the MBO algorithm (1) and the cellular automaton model (4) de-
scribe the evolution of fronts through alternating convolutions with a kernel and
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thresholding, we will refer to the evolutions of sets by either algorithm as threshold-
ing scheme evolutions or threshold dynamics throughout this paper. Both models,
along with their variants, will be included in our analysis.

1.1. Our contribution. The alternation of a linear operator (convolution with a
kernel) and a nonlinear operator (thresholding implemented through the Heaviside
function) in the MBO algorithm and the cellular automaton process is reminiscent
of the similar interplay between linear and nonlinear operations in artificial neural
networks. In this paper we pursue this analogy and implement variants of the MBO
algorithm and various cellular automaton models using convolution neural networks
(CNNs). Our primary motivation is to solve the following inverse problem:

Inverse problem. Given N consecutive frames in a video depicting an evolving
front, determine the kernel and threshold corresponding to a threshold dynamics that
best approximates the observed evolution.

We address this problem as an unsupervised learning task and propose two dif-
ferent but related approaches:

o In the first approach, the thresholding algorithm is implemented by associating
each time step with a layer in a recurrent CNN, which we refer to as the
MBO network. In this architecture, all layers of the network share a single
kernel and a single threshold, both of which are treated as trainable weights
and learned during training. For example, given a video consisting of four
frames, the input to the MBO network is the first frame of a video, and
the network outputs three predicted frames that represent the subsequent
evolution according to the MBO algorithm.

To solve the inverse problem, we use the mean squared error (MSE) between
the predicted frames and the actual frames in the video as the loss function.
Minimizing this loss function enables the network to learn the kernel and
threshold that best fit the observed evolution. This method, with its pros and
cons, is described more in detail in Section 2.1.

e In the second approach, we propose a meta-learning MBO network. This
network is trained to learn how to learn threshold dynamics in the form of
both kernels and thresholds, and is able to identify diverse, potentially unseen
evolutions. Specifically, consider a video of four frames depicting a mov-
ing front. The meta-learning MBO network takes the entire set of frames,
I,...,1I4, as input and outputs a kernel and a threshold. These outputs are
then transferred as weights to the MBO network, which predicts the subse-
quent evolution fQ, fg, Iy starting from an input consisting of the first frame
1.

The loss function measures the discrepancy between the predicted frames I §
and the original frames I; across a diverse dataset of videos featuring various
types of front evolutions. This approach is detailed in Section 2.2. Its key
advantage is its ability, once properly trained on videos of diverse thresholding
scheme evolutions, to generalize and infer the kernel and threshold parameters
for an arbitrary thresholding scheme evolution.

We train and test these two models on both synthetic and real data. The syn-
thetic data consists of videos generated from thresholding scheme evolutions using
a variety of kernels, ranging from Gaussian kernels to the grayscale functions cor-
responding to MNIST digits. The real data includes videos of ice melting (which
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roughly corresponds to mean curvature flow) and forest fires (which corresponds to
unit normal velocity of the front). To assess the models’ robustness under noisy
conditions, we solve the inverse problems for these videos with noise (Gaussian blur
and salt-and-pepper noise) as well as in noise-free scenarios. See Section 3.2 for
more details.

For both methods we used four-frame video sequences for training in order to
balance two competing objectives: minimizing data requirements and ensuring the
ability to capture the underlying dynamics of the front evolution. A key goal of
our work is to develop models that can infer governing threshold dynamics with
minimal supervision and limited data. Empirically, we found that using the initial
frame plus three subsequent frames provided a sufficient temporal window to observe
the characteristic behavior of the dynamics (e.g., expansion, contraction, shape
change), while keeping the training sequences short enough to reduce the need for
large datasets and long training times.

The accuracy of the models is evaluated using three metrics: mean squared
error (MSE), structural similarity index (SSIM), and Jaccard index. Since the size
of the kernel associated with a given thresholding scheme evolution video is not
known a priori, we also test the models for robustness with respect to varying
kernel dimensions.

The code and data for this work are available at https://github.com/enegrini/
MBO_network.git

1.2. Related work. Originally proposed as geometric front evolution models, thresh-
old dynamics have found applications in data science for partitioning and clustering
problems. In computer vision, threshold dynamics have been employed in tasks
like image segmentation [9] and shape reconstruction [7]. The MBO scheme, in
particular, has been adapted for graph-based approaches to solve semi-supervised
data clustering problems [4, 12, 21, 19]. Variants of MBO schemes, such as the
Volume-Constrained MBO [15] and Poisson MBO [5], have further extended its
utility to clustering with volume constraints or at very low label rates. Recent
theoretical analyses have examined the large-data limit of the MBO scheme for
clustering [17, 16]. We also note that our methodology bears some resemblance to
algorithm unrolling [24]. Our algorithm can be seen as part of the broader cate-
gory of blind deconvolution methods see for instance [18]. Despite the extensive
literature on applying threshold dynamics to machine learning tasks, to the best
of our knowledge, no studies address the inverse problem: identifying (unknown)
threshold dynamics from available data.

2. Methodology. We propose two methods that combine convolutional neural
networks (CNNs) and Merriman-Bence-Osher (MBO) scheme to model and learn
threshold dynamics for front evolution from video data.

2.1. Method 1: MBO network. The first method directly implements the MBO
scheme by successively applying a convolutional layer followed by thresholding at
each layer. All layers share the same kernel and threshold, both of which are learned
during training.

Since the backpropagation and gradient descent methods that are used in the
training of the neural network involve derivatives of the network with respect to the
parameters, in our setting we need to substitute the Heaviside thresholding function
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with a smooth analogue, the sigmoid
_ 1
Cl4e =
We will also modify this function according to two parameters a = threshold €
(0,1) and s = steepness > 0, setting

o(x)

- 1 (6)
1 +exp(—s(z—a))

In the case of Gaussian kernel and threshold equal to 1/2, this substitution gives
rise to a new thresholding scheme defined as

0s,0()

aN =0y, {Kh * ahN} . (7)

During testing, the Heaviside function is reinstated. This architecture, essen-
tially a recurrent CNN with a specialized nonlinearity, is referred to as the MBO
network.

In this approach, the model learns a single kernel and threshold for each video,
meaning that a unique MBO network must be trained for each individual video.
While this method is capable of accurately capturing the dynamics for a specific
video, its generalization capacity is limited, since the kernel and threshold are tai-
lored only to the given video sequence. A representation of this architecture is
shown in Figure 1.

Output: N-frames video

W

frame 2 frame 3 frame N

Input: frame 1

SRISHEEES
WL’—

N-layers MBO Network
(learnable shared kernel and threshold)

FIGURE 1. MBO network architecture

Training and testing procedure
Assume, for example, that we are given a collection of K short videos, each

consisting of four frames and sharing the same underlying threshold dynamics (i.e.,
the same threshold and kernel). During training, the network receives as input the
first frame of a video, and the target consists of the next three consecutive frames.
The network itself is composed of three layers, each sharing the same learnable
kernel and threshold. Each layer of the network produces one frame, and the three
frames generated by the three layers are then combined to form a predicted video.
The loss is computed by comparing these generated frames with the actual frames
from the video using mean squared error (MSE). Specifically, for video j, the input
frame is I{, the network predicts frames Iz , I g, I Z, and the true frames are Ig , g, I Z.
The total loss is then computed as:

2

)

1 &1 &
LOSSZK;<M;‘

where K is the number of training videos, and M is the number of pixels per frame.
The network learns by updating the kernel and threshold to minimize this loss.

-1
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It is worth emphasizing that the training is entirely unsupervised: the true kernel
and threshold are not known or used in the loss function; only frames IE, I 7, I 31 are
used. For our loss function we decided to use MSE as we observed a fast conver-
gence during training. However, as explained in Section 2.4, other metrics may be
more appropriate than MSE to capture image discrepancies. The exploration of
alternative, problem-specific metrics is deferred to future work.

During testing, the learned kernel and threshold remain fixed. The first frame
of a new video (sharing the same dynamics as the training examples) is provided
as input to the network, and the trained MBO network generates a video of length
N. Notably, this approach allows for training and testing on videos of different
lengths, where N can exceed the number of layers used during training (e.g., three
layers). In our experiments, we set N = 7 to evaluate whether the learned kernel
and threshold can effectively be used to extrapolate future frames.

Pros and cons

The MBO network has the advantage of directly learning dynamics specific to
the input video, allowing it to accurately capture the governing law of the observed
dynamics. This approach is particularly effective when applied to a set of videos
likely to share similar dynamics, as it enables fast training and can perform well
even with a short, four-frame video (see Section 4.1.2). Furthermore, the model’s
simplicity—using a single kernel and threshold across layers—reduces the number of
parameters, resulting in a compact and efficient network that is easier to optimize.

This method is especially useful when prior knowledge suggests that the same
kernel and threshold can be shared across multiple videos, leveraging fast training
while maintaining good predictive performance in such scenarios. However, if mul-
tiple videos with different underlying dynamics (i.e., kernels and thresholds) are
used for training, the learned kernel and threshold may converge to an “average”
of the true values for the individual videos. This averaging effect can compromise
the network’s ability to accurately predict the dynamics of any specific video, as it
loses the capacity to capture the unique characteristics of each video’s evolution.
Our second method addresses this limitation.

Algorithm 1: MBO Network (Single-Dynamics)

Training Phase:
Input: Initial frame I; of a 4-frame video
Output: Predicted frames I, I3, I

o Initialize kernel Kj; € R*** and threshold a € (0,1) as trainable pa-
rameters.

e For each training video:

— Input: I

— For t =2 to 4:

* Iy = 05 q(Kp % Ii—1) (smoothed sigmoid thresholding)

e Compute loss between predicted and true frames Is, I, Iy using MSE.
e Update K} and a using gradient descent.

Testing Phase:
e Input: I, learned Kp, a
e For ¢t = 2 to desired N:
— L =H(Kp*IL;_1 —a) (Heaviside thresholding)
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2.2. Method 2: Meta-learning MBO network. To overcome the limitations of
the first method and improve generalization, we propose the meta-learning MBO
network, an architecture that combines a trainable convolutional neural network
with an MBO network with frozen weights. In this approach, the trainable CNN
learns how to learn kernels and thresholds based on training with a broad range of
threshold dynamics input videos. These generated kernels and thresholds are then
frozen and used by the subsequent MBO network to produce the video prediction.
This effectively forms a hypernetwork, where the trainable CNN determines the
weights (kernels and thresholds) of the MBO network.

This method provides significant flexibility, as the convolutional network can
adaptively generate unique kernels and thresholds for each input video. It enables
the use of a single network to process a variety of input data without requiring
retraining for each new video. A representation of the meta-learning MBO archi-
tecture can be found in Figure 2.

Output: N-frames video

Input: 4-frames video
Predicted Kernel

N-layers
MBO Network

Trainable
Convolutional
Neural Network

(frozen kernel
and threshold)

Predicted

Threshold
5 0.201

true frame 1

_

FIGURE 2. Meta-learning MBO network architecture. During
training multiple videos with different underlying kernels and
thresholds will be used.

Training and Testing Procedure

In the training phase, the input consists of a four-frame video (instead of only the
first frame in Method 1). This video is passed as an input to the trainable CNN,
which outputs the kernel and threshold corresponding to the video’s dynamics.
These parameters then become the weights of the subsequent MBO network, which,
along with the input of the first frame, generates as outputs frames 2, 3, and 4. See
Figure 2. The MBO network in this setup has three layers, each sharing the same
kernel and threshold that were produced by the trainable CNN. Again, to avoid
singularities in backpropagation, during training, we use a smoothed thresholding
through a sigmoid function as in (6).

The loss is computed by comparing the predicted frames 2, 3, and 4 with the
corresponding true frames from the input video, enabling the network to optimize
the kernel and threshold generation in the CNN block. Specifically, for a video
j given with input frames If,[g ,Ig,[i , the meta-learning MBO network predicts
frames fg, f;, fi, and the loss is calculated as:

2
2) ’

1 &1 ¢
Loss = X Z (M Z
Jj=1 1=2

-1
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where K is the total number of training videos and M is the number of pixels
per frame. This loss trains the CNN block to effectively generate the kernel and
threshold for each training video sequence I7.

During testing, the trained CNN block produces a kernel and threshold based on
a new four-frame video, potentially with a different underlying dynamics. These
parameters are then passed as weights to the MBO network, which is now extended
to N layers (where N can be greater than 3) to generate an output video of N
frames. This setup allows the network to predict frames further into the future.
During testing, the Heaviside function is reinstated in thresholding step. In our
experiments, we set N = 7 to evaluate whether the learned kernel and thresh-
old could effectively generalize and extrapolate additional frames beyond the three
frames used during training.

Pros and cons

The meta-learning MBO network offers several notable advantages. First, it
enables the use of a single network to generate videos across a wide variety of inputs
that may come from different domains or possess different threshold dynamics (i.e.
having different kernels and thresholds). This provides a significantly higher level
of generalization and adaptability compared to the first method, as the CNN can
learn to generate different kernel-threshold combinations tailored to each video.
Furthermore, once trained, the model can learn new threshold dynamics without
requiring retraining, making it an efficient and flexible solution for applications
involving large datasets or diverse video dynamics.

The main drawback of this technique is its increased complexity, which demands
more training time compared to the first method. The meta-learning approach
involves training not only the convolutional network but also optimizing the entire
system to ensure that the generated kernel and threshold work effectively within
the MBO framework. This can result in longer training times and requires more
hyperparameter tuning.

Algorithm 2: Meta-Learning MBO Network

Training Phase:
Input: Entire 4-frame video Iy, I3, I3, 14
Output: Predicted frames T, fg, b
e Pass I, I, I3, Iy through a CNN to generate:
— kernel K} € R**% and threshold a € (0,1)
e Freeze K, and a; use them in the MBO network:
— Input: I,
— For t =2 to 4:
* I = Us,a(Kh * It—l)
e Compute loss between predicted and true frames Is, I, Iy using MSE.
e Backpropagate loss to update CNN parameters.

Testing Phase:

e Input: New 4-frame video Iy, ..., 14
e Use trained CNN to generate Kj and a
e For ¢t = 2 to desired N:

— L =H(Kp*Il;_1—a)
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2.3. Comparison of the two methods. The MBO network (Method 1) is well-
suited for scenarios where training time is limited, and the videos are relatively
homogeneous. It allows for quick and efficient training for a small group of similar
videos that share the same underlying dynamics. However, it lacks the flexibility
needed to generalize across multiple videos with differing dynamics, making it less
suitable for diverse datasets.

On the other hand, the meta-learning MBO network (Method 2) is ideal for ap-
plications involving diverse datasets with varying dynamics. Its ability to adapt
flexibly to different inputs without requiring retraining offers superior generaliza-
tion and adaptability. However, this comes at the expense of longer training times
due to the increased complexity of the network. This approach is particularly ad-
vantageous when the objective is to handle videos with different underlying kernels
and thresholds, especially when the model needs to be applied across a wide variety
of inputs.

2.4. Comparison metrics. To evaluate the accuracy of the reconstructed video
sequence, we use three metrics: Structural Similarity Index (SSIM), Jaccard Index
(Jac. idx), and Relative Mean Squared Error (Relative MSE).

SSIM quantifies the structural similarity between two images, taking into account
luminance, contrast, and structure. SSIM provides a value between -1 and 1, where
1 indicates perfect similarity. For two images = and y, their SSIM is defined as:

(21 1y + C1)(204y + Ca)
(12 4 p2 + C1)(02 + 02+ Ca)’

where p, and i, are the means of z and y, o2 and 05 are their variances, o, is the
covariance between = and y, and C7,Cy > 0 are constants to avoid division by zero.
In our experiments, we compute the SSIM for each frame and average the values
across all frames in a video to obtain a video-level SSIM.

The Jaccard Index (Jac. idx), also known as Intersection over Union (IoU),
measures the similarity between two sets by calculating the ratio of the intersection
to the union. In the context of binary images, it quantifies the overlap between
foreground pixels, giving a value between 0 (no overlap) and 1 (perfect overlap).
For binary images = and y, the Jaccard Index is defined as:

SSIM(z, y) =

~Jznyl

Jaccard(x, y) PSP

As with SSIM, we compute the Jaccard Index for each frame and average across
all frames in a video to obtain the video-level Jaccard Index.

Finally, the Relative Mean Squared Error (Relative MSE) measures the difference
between the predicted video and the true video, normalized by the true video. For
predicted video frames x; and ground truth frames y;, the Relative MSE is given
by:
iy e = wil?

Sy il + €

where N is the number of video frames, || - ||* denotes the squared Frobenius norm,
and € is a small number added for stability. Note that Relative MSE may not be
the best metric for comparing binary images, especially in scenarios where the true
frame is empty or has very few non-zero pixels (this happens often for thresholds
greater than 0.5 where the subject shrinks in time). In such cases, the MSE can be
disproportionately influenced by the presence of a few non-zero values, leading to

Relative MSE(z,y) =
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misleading interpretations of similarity. This is because a small change in a sparse
area can yield a high MSE despite the overall structural similarity being maintained.

For each test video sequence, we compute SSIM, Jaccard Index, and Relative
MSE by comparing the true test video with the reconstructed video generated using
the learned kernel and threshold. We then average these metrics across all test
videos to evaluate overall performance.

3. Data generation.

3.1. Synthetic data. The synthetic dataset is generated using variants of the
MBO scheme with different kernels and thresholds, as described in the introduction.
Starting with an MNIST digit as the initial frame, we iteratively apply a convo-
lution with a kernel followed by thresholding using the Heaviside function. This
process generates a video sequence of threshold dynamics over N frames, where N
corresponds to the number of convolution-thresholding operations performed.

In order to increase the variability of our dataset, we generate data using a variety
of kernels, including variants of the Gaussian kernel, indicator functions of disk, and
MNIST digits. A general 2D Gaussian kernel is defined as:

(x—pe)?  (y— ﬂy)z)

1
K = — - _
(z9) 2700y P < 202 202

where p, and p,, are the means, and o, and o, are the standard deviations along the
x- and y-axes, respectively. The types of kernels used in our experiments include:

(8)

1. Standard Gaussian kernel, where p, = u, and o, = oy, resulting in a sym-
metric Gaussian spread.

2. Skewed Gaussian kernel, where o, # o0y, introducing asymmetry into the
kernel shape.

3. Double Gaussian kernel, a mixture of two Gaussian distributions centered at
different locations, possibly with different variances.

4. A randomly picked MNIST digit.

5. Indicator function of a disk with variable center and radius.

Examples of these kernels are shown in Figure 3.

F1GURE 3. Example of kernels used for dataset generation. From
left to right: standard Gaussian kernel, skewed Gaussian kernel,
double Gaussian kernel, MNIST digit, and the indicator function
of a disk.

For the thresholds, we use values ranging from 0.2 to 0.7. When the threshold
is below 0.5, the object in the video expands over time, while thresholds above 0.5
cause the object to shrink as the dynamics progress. This combination of kernels
and thresholds produces a diverse range of behaviors in the generated dataset. An
example of the dynamics produced with a standard Gaussian kernel using thresholds
of 0.2 and 0.5 is shown in Figure 4.
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Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

B EKNEHELE L]

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

MMNMHHHEHAB

FIGURE 4. Example of dynamics obtained using the MBO scheme
with standard Gaussian kernel and threshold 0.2 (top) and 0.5 (bot-
tom).

Finally, in our experiments, we generate video sequences under three different
noise conditions: without noise, with Gaussian blur, and with salt-and-pepper noise.
Gaussian blur is applied by convolving the image with a Gaussian kernel, defined
as:

Iblurred(xvy) = Z[(ﬂ? - Zay _.7) : K(Z7])a
0,J

where I(x,y) is the original image and K (4, j) is the 2D standard Gaussian kernel.
Salt-and-pepper noise is defined by randomly setting a fraction of the pixels to either
0 (black) or 1 (white), introducing high-contrast noise into the image. Specifically,
for each pixel I(x,y), with probability pheise = 0.3, the pixel value is replaced by
either 0 or 1. An example of the dynamics under the different noise conditions can
be seen in Figure 5.

We observe that salt-and-pepper noise is the most challenging to handle, as
the abrupt, random changes in pixel values make it difficult for the method to
identify meaningful structures in the image. In contrast, Gaussian blur poses less
difficulty, as the smoothing effect of the blur aligns with the behavior of the sigmoid
thresholding used during training, enabling the method to adapt and effectively
learn the underlying dynamics.

3.2. Real data. This section outlines the data collection and preprocessing meth-
ods for real-world data, specifically focusing on fire front and ice-melting dynamics.
Fire fronts dataset. The initial data was collected from NASA-FIRMS (NASA-
Fire Information for Resource Management System). This dataset provides inter-
active browsing of “the full archive of global active fire detections from MODIS
and VIIRS. Near real-time fire data are available within approximately 3 hours of
satellite overpass and imagery within 4-5 hours,” [1]. When recording images from
NASA-FIRMS, we focus on sections where the fire boundary expands approximately
uniformly in order to optimize performance in the MBO algorithm. In fact, natural
fire expansion is often influenced by external factors such as wind and geographical
obstacles like rivers, leading to non-uniform growth. The datasets are collected such
that they represent the cumulative burnt area at each daily time step. For example,
the second frame in Figure 6 represents the combined area from the first and second
day of the fire. The sequence of images is stopped when there is no significant fire
expansion across its boundary.



12 E. NEGRINI, A. J. GAO, A. BOWERING, W. ZHU AND L. CAPOGNA

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

slslslslsls]s

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

slslslslsls]s

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

FI1GURE 5. Example noise conditions on threshold dynamics gen-
erated with standard Gaussian kernel and threshold 0.5. Top: No
noise. Middle: Gaussian blur. Bottom: Salt-and-pepper noise.

The images are pre-processed in Python to extract seven suitable images cap-
turing the fire front dynamics. First, as the NASA-FIRMS data are pixelated at a
resolution of 375m, we apply a Gaussian blur to smooth boundaries. The images
are then converted into HSV color space to more easily distinguish the active fire
regions. Then, we convert the images to binary black-and-white images. The re-
sulting images are used as input data for the MBO networks. Figure 6 provides an
example of the raw and processed fire front expansion data.

Raw Inputs

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

Black & White Outputs

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

* DD DH»BPP

FIGURE 6. Example of one fire front expansion video. Top: Raw
inputs. Bottom: Processed data.

Ice-melting dataset. The data for ice-melting dynamics were collected via ex-
periments conducted in a controlled lab environment. Ice cubes were placed on a
piece of kraft paper on a flat surface. Their melting was time-lapse video recorded
from above using a camera on a tripod to capture a straight-on overhead view of



NEURAL NETWORKS FOR THRESHOLD DYNAMICS RECONSTRUCTION 13

the process. Frames were captured at two-minute intervals, and the boundary of
the solid phase ice was manually marked with red outlines, as seen in the top panel
of Figure 7. To obtain spatially aligned data, we selected only the videos in which
the center of the ice remained fixed without rotation.

The annotated figures were then processed in Python, aiming to convert the ice
and non-ice areas (which includes both the paper background and the water) into
seven binary frames. The red outline was used to create binary images in which
white and black correspond to ice and non-ice regions, respectively, shown in the
bottom panel of Figure 7. The resulting binary frames, depicting the ice-shrinking
process, were used as input data for the MBO networks.

Raw Inputs

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
Black & White Outputs

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

FIGURE 7. Example of one ice melting video. Top: Raw inputs.
Bottom: Processed data.

4. Results and discussion. In this section we present the results for synthetic
and real data. We analyze the robustness of our models to noise, inaccurate kernel
size estimation and dependence on the training dataset size.

4.1. MBO network results on synthetic data. We present results for two dy-
namics: one generated by a standard Gaussian kernel with a threshold value of 0.2,
and another by an MNIST kernel with a threshold of 0.5. These experiments are
conducted under three conditions: no noise, Gaussian blur, and salt-and-pepper
(SP) noise. Recall that this method requires training a separate MBO network for
each combination of kernel, threshold, and noise condition. Therefore, for brevity,
we only show here these two examples, although similar results are observed for
the other kernels and thresholds described in Section 3.1. The MNIST kernels are
particularly challenging due to their complex and diverse shapes, which make them
harder to recover.

For each scenario, we use 100 videos for training and 10 videos for testing. We
trained the networks for 500 epochs using a smoothed thresholding function (sig-
moid) with a steepness parameter of 100 as in equation (6) to avoid exploding
gradients. We use the Heaviside function for testing.
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All 100 training videos share the same kernel, threshold, and noise condition.
During training, the network is provided with the first frame and trained to accu-
rately reconstruct the subsequent three frames (frames 2, 3, and 4). During testing,
the first frame of an unseen video is given as input, and the MBO network is tasked
with predicting the next six frames. The test error is computed based on the pre-
dicted six frames, assessing both the network’s ability to generalize to new videos
and to extrapolate the dynamics over future time steps (as the network is trained on
three frames, but tested on six). In the case of noisy conditions, both the input and
target frames during training are noisy. At testing, the network is provided with a
noisy first frame, and a Heaviside thresholding function is used to predict the next
six frames. These predicted frames are then compared with the true, non-noisy
frames to assess performance.

Figure 8 illustrates the true and reconstructed kernels and thresholds for the
standard Gaussian kernel with a threshold of 0.2 under three different conditions:
no noise, Gaussian blur, and salt-and-pepper noise. In all cases, the location of
the kernel’s support is correctly identified; however, the support is slightly overesti-
mated. This behavior is particularly noticeable in the Gaussian blur case, where the
blurring effect tends to widen the perceived area of support. This overestimation is
expected because Gaussian blur introduces smooth transitions, causing the model
to interpret a wider range of values as part of the subject. As anticipated, the worst
kernel reconstruction is observed in the salt-and-pepper noise case. This is due to
the highly localized, extreme noise inherent in salt-and-pepper conditions, which
introduces sharp, random disturbances. These disruptions make it difficult for the
network to capture the precise kernel structure, leading to a more corrupted recon-
struction. The threshold is accurately recovered in both the no-noise and Gaussian
blur cases but is overestimated under salt-and-pepper noise. This overestimation
likely occurs because the random pixel corruption forces the network to increase
the threshold to account for the irregularities introduced by the noise.

True kernel No noise kernel Gaussian blur kernel Salt and pepper kernel

True threshold No noise threshold Gaussian blur threshold Salt and pepper threshold
0.2 0.220 0.231 0.360

FIGURE 8. Reconstructed and true standard Gaussian kernel and
threshold when using the MBO network. From left to right: the
true kernel and threshold, the approximated kernel and threshold
for the cases of no noise, Gaussian blur and salt-and-pepper noise.

In Figure 9, we compare the ground truth and reconstructed videos across the
three noise conditions. In both the no-noise and Gaussian blur scenarios, the video
reconstructions are nearly perfect, with only minimal visible differences. How-
ever, some corruption is evident in the salt-and-pepper noise case, as expected.
In the Gaussian blur case, while some smooth distortion is introduced, much of
the underlying structure and dynamics of the subject is still retained. In contrast,
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salt-and-pepper noise creates high-frequency distortions that are much harder for
the model to handle as they introduces artificial non-zero pixels that may be far
from the original subject support (this is in contrast with the Gaussian blur case
in which artificial non-zero pixels stay close the the original front). Nevertheless, in
all cases, the overall dynamics is correctly reconstructed, particularly the location
of the digit in the frame is always correctly determined even in extrapolated frames
(frames 5,6,7).

Finally, in Table 1 we report the relative MSE, the SSIM value and the Jaccard
index on the test data. The test data is made of 10 previously unseen 7-frames
videos. The results show that the no-noise condition achieves the best reconstruc-
tion, with a very low Relative MSE (0.293%) and high SSIM (0.991) and Jaccard
Index (99.707%). Gaussian blur slightly degrades performance, reflected by a higher
relative MSE (0.685%) and a small decrease in SSIM (0.979) and Jaccard Index
(99.318%). The salt-and-pepper noise condition significantly worsens the perfor-
mance, with a much larger relative MSE (9.557%) and a noticeable drop in SSIM
(0.743) and Jaccard Index (90.719%). These results are consistent with the previous
figures of reconstructed kernel, thresholds and videos. It is important to note that
since Relative MSE calculates pointwise differences between images, it tends to be
large for binary images. If a pixel that should be 1 is instead 0, or vice versa, it has
a significant impact on the result, especially when the frame contains only a few
non-zero pixels.

Ground Truth

True Frame 2 True Frame 3 True Frame 4  True Frame 5 True Frame 6 True Frame 7

1810102012112

No Noise
Predicted Predicted Predicted Predicted Predicted Predicted
Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

HEHANNNnN

Gaussian Blur

HEAHNNNnN

Salt and pepper noise

1010170102012

FIGURE 9. Reconstruction obtained using the MBO network on
test data generated using standard Gaussian kernel and threshold
0.2. From left to right we show frames 1 through 7. From top
to bottom we show the ground truth video and the reconstructed
videos respectively in the case of no noise, Gaussian blur and salt-
and-pepper noise.
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TABLE 1. Performance metrics for MBO network on test data gen-
erated using a Gaussian kernel with threshold 0.2 under different
noise conditions.

Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 0.293% 0.991 99.707%
Gaussian Blur 0.685% 0.979 99.318%
Salt-and-Pepper Noise 9.557% 0.743 90.719%

In the case of the MNIST digit kernel with a threshold of 0.5, shown in Figure 10,
the location of the kernel’s support is correctly identified across all noise conditions.
However, the kernel is accurately reconstructed only in the no-noise and Gaussian
blur cases. Similar to previous results, the threshold is accurately recovered in
these two conditions but is overestimated in the salt-and-pepper noise scenario. In

True kernel No noise kernel Gaussian blur kernel Salt and pepper kernel

True threshold No noise threshold Gaussian blur threshold Salt and pepper threshold
0.5 0.499 0.499 0.599

FiGURE 10. Reconstructed and true MNIST kernel and threshold
when using MBO network. From left to right: the true kernel and
threshold, the approximated kernel and threshold for the cases of
no noise, Gaussian blur and salt-and-pepper noise.

Figure 11, we also display the reconstruction of a test video across all noise settings.
Both the no-noise and Gaussian blur cases show near-perfect reconstruction, while
artifacts appear in the salt-and-pepper noise case. Notably, in this case the last
two predicted frames are almost empty, even though the ground truth still contains
part of the digit, indicating the difficulty of handling salt-and-pepper noise.

In Table 2 we report the relative MSE, SSIM value, and Jaccard index on the test
data. The results show that the no-noise condition yields the best performance, with
a low relative MSE (1.669%) and high SSIM (0.989) and Jaccard Index (98.351%).
The Gaussian blur condition results in slightly worse performance, with a higher
relative MSE (3.295%) and slight reductions in SSIM (0.980) and Jaccard Index
(96.790%). In the salt-and-pepper noise case, the performance declines significantly,
with a large relative MSE (31.966%) and noticeable drops in SSIM (0.823) and
Jaccard Index (70.811%). This decrease in accuracy is due to the fact that the
last few predicted frames in the salt-and-pepper noise case often underestimate the
amount of non-zero pixels present, as evident in Figure 11.

These results reflect the increased complexity of the MNIST kernel compared
to the simpler Gaussian kernel, as the MNIST digit has a more intricate support
structure and a varied pixel intensity distribution. Additionally, since the subject
in these videos shrinks over time because of the 0.5 threshold, many frames con-
tain very few non-zero pixels, which as explained in the previous example, tend to
increase the error. In particular, the relatve MSE tends to be higher in such cases
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due to the significant impact of pointwise differences between 1s and 0Os, especially
when the true frames have sparse non-zero pixels.

Ground Truth

True Frame 2 True Frame 3 True Frame4  True Frame 5 True Frame 6 True Frame 7

ORURUNCR R

No Noise
Predicted Predicted Predicted Predicted Predicted Predicted
Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7

ORURURCECR

Gaussian Blur

ORURCECE R

Salt and pepper noise

OBONuR Rl 0

FIGURE 11. Reconstruction obtained using the MBO network on
test data generated using MNIST kernel and threshold 0.5. From
left to right we show frames 1 through 7. From top to bottom we
show the ground truth video and the reconstructed videos respec-
tively in the case of no noise, Gaussian blur and salt-and-pepper
noise.

TABLE 2. Performance metrics for MBO network on test data gen-
erated using an MNIST kernel with threshold 0.5 under different
noise conditions.

Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 1.669% 0.989 98.351%
Gaussian Blur 3.295% 0.980 96.790%
Salt-and-Pepper Noise 31.966% 0.823 70.811%

4.1.1. Robustness to inaccurate kernel dimension. In practice, the true kernel and
thresholds used to generate a threshold dynamic video are not known. As a result,
during training, we must estimate the kernel size, which often differs from the
actual size underlying the ground truth dynamics. In this section, we examine the
robustness of our method to variations in the assumed kernel size. Specifically, we
generate data using a standard 31x31 Gaussian kernel. However, during training
and testing, we experiment with kernels of different sizes: 15x15 (underestimated
kernel size) and 51x51 (overestimated kernel size). For brevity, we present results in
the case of the standard Gaussian kernel used in Section 4.1 with threshold 0.2. In
the following we show that the model is robust to inaccuracies in the assumed kernel
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size and that overestimating the kernel size yields results comparable in accuracy
to those obtained with the exact kernel size.

When using an underestimated 15x15 kernel, we observe from Figure 12) that
the reconstructed kernel resembles a zoomed-in version of the original 31x31 kernel,
particularly around its central 15x15 block (see the 15x15 central block of the true
kernel in the second frame of Figure 12). This result is intuitive because the video
frames are produced by convolution, and when learning a smaller kernel, the network
tends to focus on capturing the central part of the kernel. This occurs because
the central region of the kernel often contains the most significant information for
convolution, influencing the dynamics of the video more strongly than the outer
regions.

15x15 kernel (underestimated kernel size)
True kernel:

True kernel 15x15 Zoom-in No noise kernel Gaussian blur kernel Salt and pepper kernel
True threshold No noise threshold Gaussian blur threshold Salt and pepper threshold
0.2 0.208 0.210 0.355

FI1GURE 12. Reconstructed and true kernel and threshold using
MBO network when the kernel size is underestimated during train-
ing and testing to be 15x15 instead of the true size 31x31. From
left to right: the true 31X31 kernel and threshold, the zoom-in
version of the true kernel around the 15x15 central block, the ap-
proximated 15x15 kernels and thresholds for the cases of no noise,
Gaussian blur and salt-and-pepper noise.

The threshold approximations remain fairly accurate, but the approximations
of the kernels are not as precise as in the case where the exact kernel size was
used. Consequently, the performance metrics deteriorate slightly, as reflected in
the results shown in Table 3. In the no-noise condition, the relative MSE is higher
(0.606%) compared to the exact kernel size case in Section 4.1, and both the SSIM
(0.982) and Jaccard Index (99.396%) are marginally lower. Similarly, in the Gauss-
ian blur condition, the relative MSE increases (0.796%), while the SSIM (0.976) and
Jaccard Index (99.207%) also decline slightly. As in previous cases, the salt-and-
pepper noise condition leads to the largest drop in performance, with a significantly
higher relative MSE (11.461%) and noticeably lower SSIM (0.708) and Jaccard
Index (88.896%). These results indicate that while the network can still capture
the core dynamics of the kernel and thresholds, using a smaller estimated kernel
introduces some inaccuracies, particularly in noisier conditions.

When the kernel size is overestimated to be 51x51, the reconstructed kernels
appear as zoomed-out versions of the original 31x31 kernel as seen in Figure 13 (see
the 51x51 zoom-out version of the true kernel in the second frame of the figure).
The kernel reconstructions capture the full support of the original kernel, and the
pixel intensity distribution across the kernel is visually accurate. The location of
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TABLE 3. Performance metrics on test data for MBO network
when using an underestimated 15x15 kernel size under different
noise conditions.

Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 0.606% 0.982 99.396%
Gaussian Blur 0.796% 0.976 99.207%
Salt-and-Pepper Noise 11.461% 0.708 88.896%

the kernel’s support is consistently recovered in all conditions, similar to the case
of the smaller kernel. Notably, the thresholds are also accurately approximated,
matching the performance observed with the exact 31x31 kernel case.

The metrics in Table 4 also reflect that this overestimation of the kernel size
does not significantly degrade performance. In the no-noise condition, the relative
MSE remains low (0.394%), with high SSIM (0.987) and Jaccard Index (99.607%),
indicating good reconstruction quality. For the Gaussian blur case, there is a slight
increase in relative MSE (0.978%) and a minor reduction in SSIM (0.969) and
Jaccard Index (99.027%), but the overall performance remains strong. The salt-
and-pepper noise condition, as usual, results in the largest performance drop, but
still comparable with the 31x31 kernel case, with a relative MSE of 9.834%, SSIM
of 0.738, and Jaccard Index of 90.479%. In all noise conditions the results when
using a 51x51 kernel are as accurate, or slightly less accurate, than the 31x31 kernel
case. This is expected because overestimating the kernel size allows for the network
to recover a kernel that is structurally more similar to the original 31x31 one, in
contrast with the 15x15 case.

Is it worth noting that overestimating the kernel size may require additional
training time due to the increased number of parameters. However, this approach
can be advantageous when the true kernel dimension is unknown, as it allows the
network to fully capture the kernel’s support.

51x51 kernel (overestimated kernel size)

True kernel:
True kernel 51x51 Zoom-out No noise kernel Gaussian blur kernel Salt and pepper kernel
. i . im
True threshold No noise threshold Gaussian blur threshold  Salt and pepper threshold
0.2 0.226 0.235 0.357

FIGURE 13. Reconstructed and true kernel and threshold using
MBO network when the kernel size is overestimated to be 51x51
during training and testing instead of the true size 31x31. From
left to right: the true 31X31 kernel and threshold, the 51x51 zoom-
out version of the true kernel the approximated 51x51 kernels and
thresholds for the cases of no noise, Gaussian blur and salt-and-
pepper noise.
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TABLE 4. Performance metrics on test data for MBO network
when using an overestimated 51x51 kernel size under different noise

conditions.
Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 0.394% 0.987 99.607%
Gaussian Blur 0.978% 0.969 99.027%
Salt-and-Pepper Noise 9.834% 0.738 90.479%

4.1.2. Learning with one short video. In practical scenarios, access to multiple
videos generated by the same kernel and threshold may not be feasible. However,
since the primary goal of the network is to learn just two elements—a threshold
value and a 31x31 kernel—it may not require a large number of training videos
(e.g., the 100 videos used for training in the previous sections). In this section,
we explore this intuition by investigating the network’s performance when trained
using only one video with 4 frames. With limited training data, we observed that
for the loss to plateau a larger number of epochs was needed. In this experiment
we train for 2000 epochs instead of 500. Notably, since only one video is used for
training, the overall training time is shorter than in the previous example.

During testing, the network is given the first frame from 10 different videos
(generated using the same kernel and threshold as the training video ones) and
tasked with predicting the subsequent 6 frames. The test error is then evaluated to
assess the effectiveness of training with limited data. Again for brevity, we present
results only for the Gaussian kernel with a threshold of 0.2, although similar results
can be obtained with other kernels and thresholds.

Compared to the results for the standard Gaussian kernel with threshold 0.2,
where 100 training videos were used, we observe (see Table 5) an expected increase
in errors across all noise conditions when only one video is used for training. The
relative MSE is significantly larger, especially in the salt-and-pepper noise case,
and both SSIM and Jaccard Index values show a noticeable drop. This discrepancy
is due to the reduced amount of data—training with only one video provides less
information for the network to generalize effectively. Nonetheless, the network still
performs well, particularly in the no-noise and Gaussian blur conditions. The error
remains quite low, which is impressive given that the network is predicting unseen
frames and extrapolating up to frame 7.

The impact of using only one training video is also evident in the kernel and
threshold reconstructions in Figure 14. The support of the reconstructed kernel is
more spread out compared to the case with a large training dataset, and in the salt-
and-pepper noise condition, the pixel intensity distribution is visibly inaccurate.
For an example of the test video reconstruction corresponding to these kernels we
refer to Appendix A.1.

TABLE 5. Performance metrics on test data for MBO network
when only one video is used for training.

Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 1.560% 0.958 98.454%
Gaussian Blur 2.842% 0.925 97.198%
Salt-and-Pepper Noise 12.474% 0.673 88.071%




NEURAL NETWORKS FOR THRESHOLD DYNAMICS RECONSTRUCTION 21

True kernel No noise kernel Gaussian blur kernel

Salt and pepper kernel

True threshold No noise threshold Gaussian blur threshold  Salt and pepper threshold
0.2 0.230 0.239 0.358

FIGURE 14. Reconstructed and true standard Gaussian kernel and
threshold using MBO network when only one video is used for
training. From left to right the true kernel and threshold, the ap-
proximated kernel and threshold for the cases of no noise, Gaussian
blur and salt-and-pepper noise. Training was done using only one
4 frames video.

4.1.3. Comparison with autoregressive CNN. In this section, we compare the MBO
network’s reconstruction with the dynamics reconstruction produced by a generic
6-layer autoregressive convolutional neural network (CNN). During training, the au-
toregressive CNN takes the first four frames of a video as input and learns to predict
the fifth frame. At test time, the autoregressive CNN is applied autoregressively
to generate future frames—specifically frames 5, 6, and 7—by feeding each newly
predicted frame back into the model as input. We chose to use an autoregressive
CNN for dynamics reconstruction because alternative approaches in the literature,
such as blind deconvolution methods, typically only recover the kernel and possi-
bly a threshold. However, these methods do not directly yield the dynamics; the
recovered kernel would still need to be combined with a thresholding scheme, such
as the MBO algorithm, to produce the dynamics. In contrast, the autoregressive
CNN learns to model the full dynamics directly.

The training data for both methods is composed of 100 synthetic videos gener-
ated using a standard gaussian kernel and threshold of 0.5. The test data contains
10 videos unseen during training but generated using the same kernel and threshold.
In Table 6 we show the results of both methods on test data, where performance
metrics are averaged across all test videos and over frames 5, 6, 7. These results
show that the autoregressive CNN, while capable of learning the dynamics to some
extent, performs worse than the MBO network across all metrics, even when trained
and tested on data generated using a single kernel and threshold. Moreover the au-
toregressive CNN is significantly larger in size and more computationally expensive.
For this reason, we did not compare the autoregressive CNN with the more advanced
metalearning MBO method Section 4.2, as the autoregressive CNN already under-
performs relative to the standard MBO network. We expect the autoregressive
CNN’s accuracy to degrade further when applied to data generated from varying
kernels and thresholds, where generalization becomes even more challenging.

TABLE 6. Comparison of performance metrics on test data for
MBO network and autoregressive CNN.
Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
MBO Network 3.002% 0.989 97.043%
Autoregressive CNN 6.478% 0.971 92.350%
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4.2. Meta-learning MBO results on synthetic data. In this section, we present
the results for the meta-learning MBO network. The data used is generated by
choosing the threshold values among 0.2, 0.3, 0.5, and 0.6. For each fixed thresh-
old, a kernel is sampled from the five classes introduced in Section 3.1. This process
is repeated five times, resulting in 100 distinct combinations of kernels and thresh-
olds. For each combination, 30 videos are generated, leading to a total of 3000
videos. The 3000 videos are split into 90% for training and 10% for testing. In each
noise condition (no noise, Gaussian blur, and salt-and-pepper noise), we train the
network using only the first four frames of each video, while for testing, we generate
predictions up to frame 7. Training is performed for 500 epochs with a smoothed
thresholding function (sigmoid) with a steepness parameter of 100 as in equation
(6) to avoid exploding gradients.

Table 7 presents the performance metrics on the test data for each noise condition.
Note that the test videos were never seen during training, and while training is done
using four frames, seven frames are predicted for testing. As seen from the table,
the no-noise condition achieves the best performance, with a low relative MSE
(4.31%), high SSIM (0.961), and a strong Jaccard Index (94.1%). The Gaussian
blur condition leads to slightly degraded performance, with a higher relative MSE
(8.53%) and a decrease in both SSIM (0.915) and Jaccard Index (89.6%). The
salt-and-pepper noise condition shows the largest drop in performance, reflected in
the significantly higher relative MSE (37.61%) and lower SSIM (0.774) and Jaccard
Index (58.2%). These results align with our expectations, given the increasing
difficulty in reconstructing the test frames under the various noise conditions.

TABLE 7. Performance metrics on test data for meta-learning
MBO network for different noise conditions.

Noise Type Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 4.31% 0.961 94.1%
Gaussian Blur 8.53% 0.915 89.6%
Salt-and-pepper Noise 36.0% 0.779 59.9%

We also explicitly note the main difference between this approach and the pre-
viously presented one. In the MBO network from Section 4.1, the results appear to
be more accurate compared to those obtained here. However, in that previous case,
the network learned only one combination of kernel and threshold. In contrast, the
current approach involves training a single architecture on videos generated from
100 different combinations of kernels and thresholds. If we had used the same MBO
network as before, we would have required 100 independent networks to obtain the
same results shown here.

Figure 15 and Table 8 show respectively true and reconstructed kernels and
thresholds for three randomly picked test videos. In all cases we can see that
the kernel location is correctly identified, while the pixel intensity of the kernel
is often underestimated, especially in presence of noise. Similarly, the threshold
reconstruction is less accurate when noise is present in the data. Notably, the fact
that the meta-leraning MBO network has access to multiple videos generated from
a variety of kernels results in more accurate kernel reconstruction at testing time
compared with the results obtained by the MBO network when trained and tested
on one video (see Section 4.1.2). Comparing Figure 15 and Figure 14 we can see
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that in both cases the support of the kernel is accurately recovered, but the intensity
(especially of the background) is much more accurate when using the meta-learning
MBO.

In Figure 16, we show the reconstruction of a test video corresponding to the
first kernel (MNIST 0 digit) and threshold 0.6 across noise conditions. Despite the
inaccuracy in the pixel intensity of the reconstructed kernel, the resulting videos
in the case of no noise and Gaussian blur are very similar to the ground truth.
Conversely, in the salt-and-pepper noise condition, the inaccurately reconstructed
threshold (0.8285 instead of 0.6) leads to a dynamic that shrinks faster than it is
supposed to, resulting in empty final frames. Again this confirms what observed
in previous examples that salt-and-pepper noise is a challenging setting for this
technique.

No noise kernel 1
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0.005

Gaussian blur kernel 2 Salt and pepper kernel 2
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FiGURE 15. Reconstructed and true kernels when using meta-
learning MBO network on three test videos. From left to right:
the true kernels, the approximated kernels for the cases of no noise,
Gaussian blur and salt-and-pepper noise.
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TABLE 8. True and learned thresholds for three test videos when
using meta-learning MBO network in different noise conditions.

No noise | Gaussian Blur | Salt-and-Pepper noise
True Threshold threshold threshold threshold
0.6 0.6036 0.5960 0.8285
0.3 0.3043 0.1605 0.4813
0.6 0.6033 0.5847 0.8220
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Ground Truth
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FIGURE 16. Reconstructed and true test video using meta-learning
MBO. These dynamics were generated the kernel 1 (MNIST 0 digit)
from the previous figure and threshold 0.6. From left to right we
show frames 1 through 7. From top to bottom we show the ground
truth video and the reconstructed video respectively in the case of
no noise, Gaussian blur and salt-and-pepper noise. This is a test
video never seen during training.

4.2.1. Robustness to inaccurate kernel dimension. Similar to the MBO network, to
train the meta-learning MBO network, an a priori estimation of the kernel size is
necessary. The true kernel used to generate the synthetic data is 31x31 pixels. In
this section, we investigate the impact of using an underestimated kernel size of
15x15 and an overestimated kernel size of 51x51 during training. We analyze how
these choices influence the reconstructed kernel and the accuracy of the generated
dynamics. We show here results only for the cases of no noise and Gaussian Blur
noise since in the case of salt-and-pepper noise we obtained large reconstruction
errors even for the exact kernel size (see Table 7).

When using the 15x15 kernel, the reconstructed kernel resembles the true kernel
but appears as a zoomed-in version, similar to what we observed for the MBO
network in Section 4.1.1. For brevity, we omit the images of the kernels. This effect
occurs because the smaller kernel cannot fully capture the true kernel’s support
within the 15x15 domain. Consequently, parts of the kernel are lost, leading to an
incomplete representation of the dynamics. As a result, the error increases in this
case (see Table 9) compared to the 31x31 kernel case (see Table 7). This outcome
aligns with the finding for the MBO network in Section 4.1.1, where underestimating
the kernel size also produced higher errors due to the inability to capture the full
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extent of the kernel’s support. Table 9 shows the error in the reconstruction of test
videos for the 15x15 kernel case.

TABLE 9. Performance metric on test data of meta-learning MBO
network when using a kernel of size 15x15 (underestimated).

Noise Type | Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 5.60% 0.958 92.2%
Gaussian Blur 9.81% 0.908 88.0%

On the other hand, when using the 51x51 kernel, the reconstructed kernel resem-
bles a zoomed-out version of the true kernel. The entire support of the true kernel
is contained within the 51x51 domain. However, the additional pixels surrounding
the kernel are close to zero, which creates a “padding” effect. This padding slightly
dilutes the signal, causing some inaccuracies in the generated dynamics. Despite
this, the error remains comparable to the correct 31x31 case because the full sup-
port of the kernel is preserved. Table 10 shows the error in the reconstruction of
test videos for the 51x51 kernel case.

TABLE 10. Performance metric on test data of meta-learning MBO
network when using a kernel of size 51x51 (overestimated).

Noise Type | Relative MSE | | SSIM Value 1 | Jaccard Index 1
No Noise 5.31% 0.952 92.8%
Gaussian Blur 9.21% 0.909 88.7%

In summary, these results demonstrate that underestimating the kernel size
(15x15) leads to a increase in error, as the truncated kernel fails to represent the
full dynamics. In contrast, overestimating the kernel size (51x51) results in only a
marginal increase in error, since the extra near-zero pixels around the kernel have
less influence on the dynamics than losing part of the kernel’s support. These trends
are consistent with the behavior observed in Section 4.1.1, showing that, if no in-
formation is known about the true kernel, a larger kernel size would result in better
reconstruction.

4.3. Learning from real data. In this section, we present the results of our
method on the real-world datasets introduced in Section 3.2. More specifically, we
evaluate performance of our methods on two datasets: one containing 5 videos of
the expansion of fire fronts and another containing 5 videos of melting ice. For the
ice-melting videos, we expect the dynamics to be produced by a Gaussian kernel
with a threshold of 0.5, while for the fire videos, we anticipate a kernel represented
by the indicator function of a disc and a threshold smaller than 0.5. It is important
to note that we expect higher accuracy on the ice-melting videos compared to the
fire videos; this is because the ice-melting videos were recorded under controlled
lab conditions (see Section 3.2), while the fire videos were sourced from real-world
footage. Consequently, the fire dynamics may have been affected by external factors
such as wind, weather, or physical barriers (e.g., lakes or mountains), none of which
are taken into account by the model.

We compare the MBO network and the meta-learning MBO network results on
real data in terms of generalization and extrapolation. For generalization we test
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the ability of the two networks to reconstruct videos never seen during training and
possibly generated with unseen kernels. For extrapolation we test the ability of the
networks to generate accurate future frames (i.e., we train with frames 1-4 and test
on frames 5-7).

4.3.1. Ice dataset. Generalization. For the MBO network, we trained the model
using one ice-melting video to learn kernel and threshold. These learned parameters
were then used, given the first frame, to predict the remaining frames for the other
4 test videos. The error was calculated by comparing the true and predicted frames
of these test videos. This tests the ability of the MBO network to generalize to
unseen videos since only one video was used for training. Note that since the MBO
network is trained with only one ice-meting video, its success in generalization
strongly depends on the assumption that all ice-melting videos were generated with
the same kernel and threshold. While in theory this is the case, in practice kernels
and threshold may vary slightly across videos because of noise, experimental setup
etc. We expect this to strongly impact reconstruction for this case.

For the meta-learning MBO network, we directly used the pre-trained model
from Section 4.2 without any fine-tuning on the real data. Since the pre-trained
model was trained on videos corresponding to a variety of kernel and threshold
combinations, including the Gaussian kernel with threshold 0.5, we expect it to be
able to approximately reconstruct the dynamics of the ice-melting videos. We show
test results when using the model pre-trained on noiseless data and on blurry data.
Since in presence of salt-and-pepper noise the method did not provide good results
on synthetic data we omit its application to real data. Note that the meta-learning
MBO-network was never shown any ice-melting videos during training so it has to
generalize to completely unseen dynamics.

To ensure a fair comparison, we evaluated both the meta-learning architectures
on the same 4 test ice-melting videos used in testing for the MBO network. The
results are shown in Table 11.

TABLE 11. Performance comparison of the MBO network and
the meta-learning MBO in the reconstruction of the 7-frames ice-
melting videos.

Model Relative MSE | | SSIM Value 1 | Jaccard Index 1
MBO Network 48.306% 0.859 52.440%
Meta-learning MBO (No Noise) 19.9% 0.936 79.6%
Meta-learning MBO (Gaussian Blur) 18.65% 0.933 80.33%

For the ice-melting dataset, the results show that the meta-learning MBO net-
work trained on videos with Gaussian blur outperforms in terms of generalization
both the MBO network and the meta-learning MBO trained on noiseless data.
Specifically, the blurred model achieves the lowest relative MSE of 18.65% and
the highest Jaccard Index of 80.33%. This result is reasonable because real-world
ice-melting videos likely contain inherent noise from environmental factors such as
lighting, camera quality, or slight inconsistencies in the experimental setup. Conse-
quently, the Meta-learning MBO trained with blurred (noisy) data is more robust
to these real-world imperfections, enabling it to produce more accurate reconstruc-
tions. It is also expected that the MBO network would not perform as well in
this scenario since it assumes that all videos share the same kernel and threshold,
leading to a more rigid framework. In contrast, the meta-learning MBO'’s flexibility



NEURAL NETWORKS FOR THRESHOLD DYNAMICS RECONSTRUCTION 27

Learned kernel

001 Learned Threshold
so10 0.553

Ground Truth

Predicted video

FIGURE 17. Results for one ice-melting test video when using
meta-learning MBO trained on Gaussian blur data. Top: pre-
dicted kernel and threshold. Bottom: reconstructed and true dy-
namics.

given by its training across multiple combinations of kernels and thresholds make
it better suited for handling the complexities of real-world data.

Figure 17 shows the results of the meta-learning MBO network trained on Gauss-

ian blur data on a specific test video. We can see that the reconstructed kernel
resembles a skewed Gaussian kernel and the threshold is close to 0.5 as we expect
from the theory. We can also see from the reconstructed video that the ice-melting
dynamic is well captured by the model. However, some small differences between
the reconstruction and the ground truth can be seen, for example the ground truth
shows sharp edges that are not captured in the reconstruction. These differences
are due to the nature of the real data, which does not strictly adhere to the theoret-
ical dynamics. For instance, variations in ice thickness can lead to differing melting
rates across the surface, which introduces variations in the dynamics that the model
may not fully account for.
Extrapolation. In this section we test the ability of the two networks to extrapo-
late future dynamics. In this setting, given one video, we train one MBO-network
using only the initial 4 frames to produce the kernel and threshold for that specific
video. We repeat this procedure on each of the 5 videos in our dataset to get 5
trained MBO networks. For each trained network, we use the learned kernels and
thresholds to predict the next three frames (frames 5, 6, and 7) and calculate the
prediction error. By averaging these errors across the five networks, we obtain an
overall measure of extrapolation accuracy, which assesses the MBO architecture’s
ability to predict future dynamics on the ice-melting dataset. For the meta-learning
MBO-network we use the same pre-trained architecture as in the previous section,
but we only compute the prediction error on the last 3 frames of the ice-melting
videos. Results are shown in Table 12.
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TABLE 12. Performance comparison of the MBO network and the
meta-learning MBO in the extrapolation of the last 3 frames of the
ice-melting videos.

Model Relative MSE | | SSIM Value 1 | Jaccard Index 1
MBO Network 48.42% 0.917 61.15%
Meta-learning MBO (No Noise) 37.1% 0.926 70.1%
Meta-learning MBO (Gaussian Blur) 29.1% 0.930 73.3%

The MBO network results are improved compared the the previous section (es-
pecially SSIM, from 0.859 to 0.917, and Jaccard index from 52.4% to 61.15%). This
is expected since we trained one MBO network per video. The meta-learning MBO
results are generally worse or comparable to the previous case. This happens be-
cause the error in the prediction accumulates in time as past predicted frames are
used to produce future ones. The best results for extrapolation are given by the
meta-learning MBO network trained on blurry data.

4.3.2. Fire fronts dataset. Generalization. For the fire fronts dataset, we con-
ducted a similar experiment to that of the ice-melting dataset. Using the MBO
network, we trained on one fire video to learn the corresponding kernel and thresh-
old, and used them to compute the model’s prediction for the other 4 test videos.
Given the challenges of modeling real-world fire dynamics, we expect the models to
perform less accurately on this dataset compared to the ice-melting data.

For the meta-learning MBO network, we again used the pre-trained model from
Section 4.2, without any fine-tuning. Although the fire dynamics may differ from the
synthetic data used in training, we expect the meta-learning model to approximate
the kernel and threshold to a reasonable degree. We present results on the 4 test fire
videos using both the noiseless and blurry pre-trained architectures for comparison.
The results of these experiments can be found in Table 13. In the case of the fire
dataset, we see a similar trend as in the ice-melting example: the meta-learning
MBO network trained with Gaussian blur produces the best results, with a relative
MSE of 21.63% and a Jaccard Index of 80.52%, outperforming both the noiseless
meta-learning MBO and the MBO network. As with the ice-melting data, this
can be attributed to the fact that the real-world fire videos also inherently contain
noise and variability that the blurred model can better account for during testing.
Notably, the errors for fire videos are larger than for ice-melting, which aligns with
expectations. Fire dynamics are harder to model due to the influence on our data
of external, unpredictable factors like wind, weather, or physical barriers (such as
lakes or mountains) that are not included in the threshold dynamics model.

TABLE 13. Performance comparison of the MBO network and the
Meta-learning MBO in the reconstruction of fire front test videos.

Model Relative MSE | | SSIM Value 1 | Jaccard Index 1
MBO Network 31.519% 0.536 73.429%
Meta-learning MBO (No Noise) 25.56% 0.736 75.60%
Meta-learning MBO (Gaussian Blur) 21.63% 0.757 80.52%

Figure 18 shows the results of the meta-learning MBO network trained on Gauss-
ian blur data on a test video. We can see that the reconstructed threshold is 0.136
which is, as expected from the theory, smaller than 0.5. The reconstructed kernel
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FIGURE 18. Results for one fire front test video when using meta-
learning MBO trained on Gaussian blur data. Top: predicted
kernel and threshold. Bottom: true and reconstructed dynamics.

resembles the indicator function of a one-pixel disc. From the reconstructed video
we can see that the fire dynamics are quite hard to reconstruct in contrast with
the ice ones. The ground truth dynamic in this case does not evolve closely to the
theoretical expected dynamics. In particular from the ground truth video we can
see how different parts of the boundary expand at different speeds. This behav-
ior is not accounted for in our model which justifies the discrepancy between the
prediction and the ground truth. In particular, the true kernel for this observed
dynamic may be more complicated than the indicator function of a disc or of any of
the Gaussian and MNIST kernels used during training of the meta-learning MBO.
In the video frames the yellow pixels represent the area of the ground that has been
burnt or that contains an active fire. Note that, while our reconstruction cannot
determine the boundary of such area exactly, it can still determine quite accurately
an approximate area containing an active fire (lower left corner of the frame) which
can still be useful in practice.

Extrapolation. In this section we analyze the ability of the network to extrapolate
future fire fronts dynamics. Again, given one video, we use the first 4 frames to
train the MBO network and produce a kernel and threshold for that video. We
repeat this procedure on each of the 5 videos in our dataset and obtain 5 trained
MBO networks. Finally, we use the learned kernels and thresholds for each video
to produce the future 3 frames (frames 5, 6, 7) and compute the average error.
For the meta-learning MBO network, we use the pre-trained architecture, but only
compute the error for frames 5, 6, 7. The results are shown in Table 14.

In this case the best results are obtained by the MBO network. A possible
explanation is that in this case we train one MBO network per video, so each
network can generate a specialized, possibly very complicated, kernel to match
each video’s unique dynamics. In contrast, the meta-learning MBO network is
pre-trained on synthetic kernels so it is constrained to produce kernels similar to
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TABLE 14. Performance comparison of the MBO network and the
meta-learning MBO in the extrapolation of the last 3 frames of the
fire front videos.

Model Relative MSE | | SSIM Value 1 | Jaccard Index 1
MBO Network 17.3% 0.760 84.3%
Meta-learning MBO (No Noise) 27.0% 0.701 74.1%
Meta-learning MBO (Gaussian Blur) 21.2% 0.751 81.3%

Ground Truth video

Predictions MBO network
Kernel Threshold Predicted video

i - N

Predictions meta-learning network
Kernel Threshold Predicted video

YN

FiGURE 19. Comparison of extrapolation abilities of the MBO net-
work and of meta-learning MBO on one fire front video. From
left to right: predicted kernel, predicted threshold and predicted
frames 4,5,6. From top to bottom: ground truth video, predictions
by MBO network, predictions by meta-learning MBO network.

those in its training set. This may be limiting its flexibility to adapt to the fire-
front data. In fact, while the theoretical evolution of fire fronts is generated by
disc-like kernels, accurate reconstruction of this dataset may require much more
complicated kernels. An example of this can be seen in Figure 19 which compares
reconstructed kernel, threshold and frames for one fire front video. The figure shows
that the kernel reconstructed by the MBO network is much more complicated than
the kernel estimated by the meta-learning MBO network and extremely different
from the theoretical kernel (indicator function of a disc).

We note explicitly that this limitation of the meta-learning architecture could be
easily overcome by improving the training dataset, for example by adding real-data
videos or fine-tuning for each specific real-data case. Since we only had access to
very few real world videos we did not explore this direction and leave this for future
work.
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From these experiments on real data we can draw a few conclusions on the best
settings for each method:

e For low-noise data (for example data collected in a controlled lab setup, like
the ice-melting dataset) using the meta-learning MBO-network pre-trained on
synthetic data may be the best choice as is can be directly and quickly used
for predictions. This method will provide accurate results even on completely
unseen dynamics as long as the kernels and threshold seen during training
resemble the real data ones.

e For high-noise data (for example, the fire-fronts videos which were impacted
by wind, physical barriers and noise that distorted the expected dynamics) the
best choice may be to independently train one MBO network for each video
and use it to produce future frames. While this may be more computationally
expensive than using a pre-trained model, in practice training takes only a few
seconds per network as the only learnable parameters are one kernel matrix
(in the experiments 31x31 matrix) and one numeric threshold. Moreover, this
specialized training allows the networks to produce complicated kernels which
can possibly better capture noisy dynamics. Another possibility would be to
fine-tune the meta-learning MBO model for the specific application.

5. Conclusion and future work. This work introduced two CNN architectures,
the MBO network and the meta-learning MBO network, to learn threshold dynamics
from video data. The MBO network excels in accurately capturing specific dynam-
ics, while the meta-learning MBO network generalizes effectively across diverse and
unseen dynamics. Experiments on synthetic and real-world datasets demonstrated
the robustness and adaptability of both approaches. Future work could focus on
exploring the following aspects:

1. Convergence. We note a new theoretical question raised by our methods,
which we hope to address in a future work. To the best of our knowledge, given
the new thresholding scheme (7) based on a sigmoid thresholding function it
is an open question whether the convergence

a — M(t)u°

m

as m — +o0 holds, where M(#)u® denotes a viscosity solution to the mean
curvature flow PDE (3).

2. Improving interpretability of the network by learning the PDE. In
the paper [14], Ishii, Pires and Souganidis prove that the threshold dynamics
schemes studied in the present paper converge to the evolution of level sets of
weak solutions u(x,t) of a degenerate parabolic, fully nonlinear PDE of the
form

Opu = |Vl (Trace [E(ﬁ)Dﬁ} + u(ﬁ)> ;

where 77 = Vu/|Vu| denotes the unit normal to the level sets, and the functions
E, v can be recovered from the convolution kernel and the threshold associated
to the thresholding scheme. In a future work we plan to implement this
derivation and recover the threshold dynamics limiting PDE from data.

3. Esodoglu-Otto (multiple junctions) In the paper [8] Esedoglu and Otto
introduce a new algorithm to approximate the mean curvature motion for an
arbitrary set of (isotropic) surface tensions. This algorithm is a variant of
the MBO scheme and is based on minimizing interfacial energy. In a future
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work we aim at implementing this energy minimization approach through loss
functions.
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Appendix A. Appendix.

A.1. MBO network: Learning with one short video. We show here a test
video reconstruction for the case of training the MBO network with one short video.
The corresponding kernel and threshold are shown in Section 4.1.2, Figure 14. The
effects of using less data for training (in this case only one video) are visible in
Figure 20: accurate results are obtained for no noise and blur conditions, while the
salt-and-pepper noise case exhibits an incorrect support for the digit, especially in
the later predicted frames.

Ground Truth

True Frame 2 True Frame 3 True Frame4  True Frame 5 True Frame 6 True Frame 7

CRGRGEGIGEG

No Noise
Predicted Predicted Predicted Predicted Predicted Predicted
Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7
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FIGURE 20. Reconstructed and true test video for standard Gauss-
ian kernel and threshold 0.2. From left to right we show frames 1
through 7. From top to bottom we show the ground truth video
and the reconstructed video respectively in the case of no noise,
Gaussian blur and salt-and-pepper noise. Training was done using
only one 4 frames video.
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