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Abstract

Allele-specific expression quantification from RNA-seq reads provides opportunities to study the
control of gene regulatory networks by cis-acting and trans-acting genetic variants. Many exist-
ing methods performed a single-gene and single-SNP association analysis to identify expression
quantitative trait loci (eQTLs), and placed the eQTLs against known gene networks for functional
interpretation. Instead, we view eQTL data as a capture of the effects of perturbation of gene
regulatory system by a large number of genetic variants and reconstruct a gene network perturbed
by eQTLs. We introduce a statistical framework called CiTruss for simultaneously learning a
gene network and cis-acting and trans-acting eQTLs that perturb this network, given population
allele-specific expression and SNP data. CiTruss uses a multi-level conditional Gaussian graphical
model to model trans-acting eQTLs perturbing the expression of both alleles in gene network at
the top level and cis-acting eQTLs perturbing the expression of each allele at the bottom level.
We derive a transformation of this model that allows efficient learning for large-scale human data.
Our analysis of the GTEx and LGxSM advanced intercross line mouse data for multiple tissue
types with CiTruss provides new insights into genetics of gene regulation. CiTruss revealed that
gene networks consist of local subnetworks over proximally located genes and global subnetworks
over genes scattered across genome, and that several aspects of gene regulation by eQTLs such as
the impact of genetic diversity, pleiotropy, tissue-specific gene regulation, and local and long-range
linkage disequilibrium among eQTLs can be explained through these local and global subnetworks.

Introduction

To uncover unknown gene regulatory networks in an organism, it is necessary to perturb the biological system
and to observe the effects of the perturbation. Naturally-occurring perturbation captured in expression and
genetic variant data collected for a population has been considered as a powerful alternative to experimental
perturbation, as it offers advantages of being less costly and having the potential for more meaningful
discoveries that explain phenotypic variability found in nature!?3. However, most of the existing methods
were limited to expression quantitative trait locus (eQTL) mapping with total or allele-specific expression
data, which at their core considered association between a single SNP and single gene expression. Here, we
view eQTL data as a capture of the effects of perturbation of gene regulatory system by a large number of
genetic variants and reconstruct a gene network perturbed by eQTLs.

Gene networks and eQTLs that perturb these networks inform each other, and thus should be identified
simultaneously. Only the parts of networks that are not conserved but are perturbed by genetic variants can
be reconstructed from eQTL data. The reconstructed network can then be used to isolate eQTLs with direct
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effects from those with indirect effects on the downstream genes. Identifying eQTLs first*%%7 and placing

them on a known gene regulatory network has limitations, because the known network does not reflect the
genetic background of samples specific to a given data and cannot help us disentangle pleiotropy.

Here, we introduce a statistical framework called CiTruss for reconstructing a gene network perturbed
by cis-acting and trans-acting eQTLs given allele-specific expression and phased SNP data for a population
of individuals. CiTruss uses a new class of probabilistic graphical model®, called a multi-level conditional
Gaussian graphical model, that extends the single-level conditional Gaussian graphical model, which was
previously developed for learning gene networks perturbed by eQTLs?'°, to additionally determine whether
eQTLs are cis-acting or trans-acting. We describe two transformations of this multi-level model: a hybrid
model to handle genes with unobserved allele-specific expression due to lack of heterozygous loci in the coding
regions and a sum-difference model to allow for efficient learning with large-scale human data. While the
estimated multi-level model contains eQTLs with direct effects, eQTLs with indirect effects from pleiotropy
on gene network are obtained by performing inference on this model. In the special case of gene network
with no edges, our multi-level model reduces to a scaled multivariate linear regression model.

CiTruss can be used as a standalone method or can be paired with an existing statistical method for
eQTL mapping 1276, As a partner method, CiTruss takes eQTLs and the genes affected by eQTLs, called
eGenes, found by the existing method as well as the original eQTL data, and outputs a gene network and
eQTLs with direct effects acting in cis or trans, after eliminating eQTLs with indirect effects. We show that
CiTruss combined with Matrix eQTL is an effective and efficient approach to obtaining gene networks and
eQTLs with a measure of statistical significance.

Applying CiTruss to data from the unrelated individuals of the GTEx Project ' and from the LG xSM
advanced intercross line (AIL) mice in generations 50 to 564 shows that the difference in genetic diversity
between the two populations leads to different gene networks. The gene networks for mice were more compact
and focused due to fewer genetic variants that affect the difference in a narrower set of behavioral traits
between the two founder strains. The two populations also shared several similarities in gene networks
and eQTLs. First, gene networks consisted of local subnetworks over proximally located genes or global
subnetworks over genes scattered across genome. Second, the pleiotropic effects of eQTLs were organized
around these local and global subnetworks, which CiTruss disentangled into cis-acting and trans-acting
eQTLs with direct effects. Third, gene networks from the two GTEx tissue types, whole blood and muscle
skeletal, and the three mouse tissue types, prefrontal cortex (PFC), striatum (STR), and hippocampus (HIP),
had global subnetworks with tissue-specific genes and eQTLs, but local subnetworks that were often not
tissue-specific. Long-range linkage disequilibrium in eQTLs for global subnetworks was found only in the
GTEx data, and thus, may have played a role in shaping tissue-specific gene regulation during evolution. Our
results substantially elaborate the previous reports on the pleiotropic effects of eQTLs on clusters of locally
co-expressed genes'®, a hierarchy in gene expression and eQTL patterns across tissue types'®, and long-range

linkage disequilibrium that recent studies have begun to notice in genome-wide association studies'”-819,

Results

Method overview. CiTruss is a statistical framework that consists of three components: model, learning,
and inference. For model, CiTruss has a multi-level conditional Gaussian graphical model with two sets
of parameters, one for a gene network and the other for perturbation of this network by cis-acting and
trans-acting eQTLs (Fig. 1(a)). In this multi-level model, each allele of cis-acting eQTL affects the expression
of the gene allele on the same haplotype and each trans-acting eQTL affects the expression of both gene
alleles in the gene network. When allele-specific expression cannot be measured because of the absence of
heterozygous loci in the gene coding region, the multi-level model collapses to a hybrid model that consists of
multi-level and single-level models, each for genes with and without observed allele-specific expression (Figs.
1(b)-(c)). We show that both the multi-level model and hybrid model can be transformed to a sum-difference
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Figure 1: Overview of CiTruss. (a) Multi-level conditional Gaussian graphical model in CiTruss for a gene network
perturbed by cis-acting and trans-acting eQTLs. At cis-acting eQTL (red edges), the SNP allele on each haplotype
(z}, or zj, of SNP 1) affects the expression of the gene allele (y;, or y;, of gene 1) on the same haplotype. At
trans-acting eQTL (orange edges), the SNP alleles on both haplotypes (avf’11 and xi’L?) affect the expression of both gene
alleles (yf’Ll and y?LQ) In gene network (blue edges), the interaction between gene ¢ and gene j is represented as four
edges between the two alleles (y},, and yj,,) of gene i and the two alleles (y{;1 and yiz) of gene j. (b) Hybrid model
for sample 1. For genes 4 and 5 with unobserved allele-specific expression, the two nodes for two alleles collapse into a
single node. (c¢) Hybrid model for sample 2 with unobserved allele-specific expression for gene 1. (d) Sum-difference
model derived from the multi-level model in Panel (a). In the sum model (top), the sum of the expression of two alleles
Yl = yzl + yzz of gene 1 is perturbed by the genotype 27 = x{bl + x{w of SNP j. In the difference model (bottom),
the differential expression of the two alleles y5 = yil — yiz of gene ¢ is affected by the difference of SNP alleles
x) = xfll - acf12 for SNP j. (e) Sum-difference model derived from the hybrid model in Panel (b). (f) Sum-difference
model derived from the hybrid model in Panel (c).

model that factorizes to two single-level models: a sum model for the total expression of both alleles perturbed
by either cis-acting or trans-acting eQTLs and a difference model for the differential expression of two alleles
perturbed by cis-acting eQTLs (Figs. 1(d)-(f)). The sum-difference model is used for efficient learning, where
each of the two single-level models is estimated with the efficient learning algorithm Mega-sCGGM that was
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previously developed for single-level models'?. With inference, CiTruss infers the indirect effects of eQTLs,
as cis-acting or trans-acting eQTLs with direct effects in the multi-level model become trans-acting eQTLs
with indirect effects on the other genes in the network (Fig. S1).

Simulation. Using simulated data with known ground truth, we benchmarked CiTruss against TReCASE 2,
RASQUALS®, WASP7, and Matrix eQTL!''. We used small datasets, each with 100 SNPs, 40 genes, and 200
samples, because TReCASE and WASP required several hours of computation time even for a dataset of this
size. CiTruss outperformed all methods on the accuracy of eQTLs (Fig. S2). As the frequency of heterozygous
genotypes and the frequency of observed allele-specific expression increased, the information necessary to
detect cis-acting eQTLs increased, and the accuracy of cis-acting eQTLs improved for all methods, but the
accuracy of trans-acting eQTLs remained unaffected. Matrix eQTL almost always detected true cis-acting
and trans-acting eQTLs as eQTLs with higher accuracy than any of the existing methods for allele-specific
eQTL mapping. In re-analysis of the eQTLs (FDR < 0.05) from the existing methods with CiTruss, CiTruss
eliminated many of the indirect eQTLs from the existing methods, while improving power and reducing false
discovery rate (Figs. S3 and S4). On the accuracy of gene networks, CiTruss alone performed similarly or
slightly better than CiTruss combined with an existing method (Fig. S5).

Computation time. We compared the computation time of CiTruss and the existing methods, using
the simulated, GTEx, and LGxSM AIL mouse data (Fig. 2). For the simulated dataset, CiTruss took two
seconds, which was two, three, and four orders of magnitude faster than RASQUAL, TReCASE, and WASP,
respectively. On the GTEx data from whole blood with 1,175,808 SNPs, 10,636 genes, and 670 samples and
muscle skeletal with 1,172,754 SNPs, 12,475 genes, and 706 samples, only CiTruss and Matrix eQTL were
sufficiently fast, each requiring around three hours on a 128 core machine. CiTruss was nearly as fast as
Matrix eQTL on the GTEx data, as CiTruss takes advantage of the high level of sparsity in the parameters.
On the mouse data from PFC with 30,066 SNPs, 8,030 genes, and 208 samples, STR with 29,139 SNPs, 8,423
genes, and 189 samples, and HIP with 30,742 SNPs, 8,298 genes, and 239 samples, we applied TReCASE
to only those SNP-gene pairs with less than 1Mb apart due to high computational cost, and compared the
computation time per SNP-gene pair. CiTruss was five orders of magnitude faster than TReCASE, and
required around four hours for all SNPs and genes on a 8 core machine. Applying CiTruss to the results from
Matrix eQTL required nearly the same amount of time as running CiTruss alone.

GTEx gene networks with local and global subnetworks. We applied CiTruss to the GTEx data for
whole blood and muscle skeletal. Matrix eQTL was the only existing method that was sufficiently efficient
for analysis of all SNPs and genes, and CiTruss combined with Matrix eQTL and as a standalone method
led to qualitatively similar gene networks and eQTLs, indicating that Matrix eQTL is an effective tool for
screening for eQTLs with both direct and indirect effects prior to applying CiTruss. Below, we focus on the
results from applying CiTruss to eQTLs from Matrix eQTL (FDR < 0.05), and examine the gene network
and cis-acting and trans-acting eQTLs as well as undetermined eQTLs, for which we could not determine
whether they are acting in cis or trans due to a lack of samples with heterozygous genotypes.

In both tissue types, the gene networks from CiTruss consisted of isolated genes with no edges and
connected genes in either one of many small local subnetworks or one relatively large global subnetwork
(Fig. 3 whole blood; Fig. S6 muscle skeletal). The majority of the genes (74.6% whole blood; 68.0% muscle
skeletal) were connected genes. The majority of these connected genes (76.8% whole blood; 93.0% muscle
skeletal) belonged to one of the local subnetworks, each consisting of 2 to 249 genes located nearby on genome.
The rest were in a global subnetwork over genes scattered across genome that could be seen when genes
were clustered based on edges. A small portion of the connected genes (16.3% whole blood; 2.4% muscle
skeletal) served as bridges between the local and global subnetworks. While co-expression of local genes in
the GTEx data has been observed previously'®, CiTruss additionally learned a network over the co-expressed
local genes and revealed global subnetworks that were well separated from the local subnetworks.


https://doi.org/10.1101/2023.10.23.563661
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.23.563661; this version posted October 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

—
o
o
&

I Whole blood
[0 Skeletal muscle| |

I ASE Obs 1.0 RO
EASE Obs 0.7 .
| |IMMASE Obs 0.5| &%,

8 g
(2] ~
» 10%
2 3
C C
o) (0]
> o
& &
% 102} Z
n w
T ©
5 5
o 10°F [
£ E
= =
102 —= : : :
CiTruss Matrix eQTL TReCASE  WASP  RASQUAL CiTruss Matrix eQTL
c d
102 s
10
B PFC SR
. [ ISTR
107 IHIP 104

e
\CSCSCN

10’

Time per SNP-gene pair (sec)
Time for all SNPs/genes (sec)

108

10°
CiTruss Matrix eQTL TReCASE WHLBLD MSCLSK PFC STR  HIP

Figure 2: Computation time of CiTruss and other methods. (a) Simulated data. The frequency of heterozygous
genotypes 0.25 was used in simulation. Time averaged over five simulated datasets is shown. (b) GTEx data with
all SNPs and all genes. (c) LGxSM AIL mouse data. Time per SNP-gene pair is shown. (d) Computation time of
CiTruss in re-analysis of Matrix eQTL results from the GTEx and LGxSM AIL mouse data.

Across tissue types, almost all of the large local subnetworks were not tissue-specific, but the global
subnetworks were tissue-specific. The largest 31 local subnetworks L.1-1.31 had a large overlap in genes
between the two tissue types (Fig. 3(d); Table S1), whereas the global subnetworks Gwb for whole blood and
Gms for muscle skeletal had a small overlap in genes (128 between 1,848 in Gwb and 588 in Gms). For 22
of the 31 local subnetworks, the enriched gene ontology (GO) terms were not tissue specific, but the global
subnetworks were enriched for genes with tissue-specific GO terms (Table 1).

GTEx Type I and II blocks of eQTLs in local and long-range linkage disequilibrium for local
and global subnetworks. We placed the hotspot eQTLs with more than 10 eGenes from Matrix eQTL
against the CiTruss gene network to gain insights into the functional mechanisms underlying the pleiotropy.
These hotspot eQTLs appeared in one of two types of eQTL blocks: Type I block for eQTLs in linkage
disequilibrium that affect primarily a local subnetwork and a few genes in the global subnetwork; and Type
IT block for eQTLs in long-range linkage disequilibrium that affect primarily the global subnetwork and a few
genes in local subnetworks (Fig. 4 whole blood; Fig. S7 muscle skeletal).

Most of the hotspot eQTLs (820 out of 1,451 whole blood; 991 out of 1,596 muscle skeletal) appeared in
one of Type I blocks, each formed by one of hotspots el.1-eL.31 and local subnetworks L1-L31. In each block,
the position of the hotspot coincided with that of the corresponding local subnetwork (Table S1), which
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Figure 3: CiTruss gene network from whole blood GTEx data. (a) Gene network when genes are ordered according
to their genome locations. If genes i and j are connected with an edge, (¢,7) is marked with a dot (red for gene
pairs with local connections defined as less than 50 genes apart; blue for pairs with non-local connections). Isolated
genes with no edges are not shown. (b) Gene network when genes are reordered after clustering the network in Panel
(a). The upper-left block shows genes and edges in the local subnetworks, and the lower-right block shows those in
global subnetwork. (c¢) The number of genes and eGenes in different categories of network connectivity. Local-LG
(and Global-LG): genes in the local subnetworks (and global subnetwork) that are connected to genes in the global
subnetwork (and local subnetworks) with edges in the off-diagonal block in Panel (b). (d) Overlap in genes in the
largest local subnetworks L1-L31 (Table S1) between whole blood and muscle skeletal.
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Figure 4: Matrix eQTL hotspots against CiTruss gene networks perturbed by eQTLs in whole blood GTEx data. (a)
CiTruss gene network over eGenes of hotspot eQTLs (FDR<0.05, 10 or more eGenes) from Matrix eQTL. The local
subnetworks (L1, etc.) and global subnetwork (Gwb) are shown. (b) Type I and Type II eQTL hotspot blocks, and
CiTruss eQTLs with direct effects. Type I blocks are found from hotspot regions (eL1, etc.) and local subnetworks
(L1, etc.). The single Type II block is found from many hotspot eQTLs scattered across genome (eGwb) and the
global subnetwork (Gwb). See Table S1 for locations of hotspot regions and local subnetworks. (c) 72 for linkage
disequilibrium in the Type I blocks and long-range linkage disequilibrium in the Type II block in Panel (b).
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indicates these eQTLs are proximal to their eGenes. Although all local subnetworks L1-L.31 were shared
between the two tissue types, only 13 out of the 31 local subnetworks had hotspot eQTLs in both tissue types
and thus shared the corresponding Type I block. The other 18 local subnetworks had hotspot eQTLs in only
one of the two tissue types, several of which were enriched for genes with tissue-specific GO terms (Tables 1
and S1), suggesting that some local subnetworks may be involved in tissue-specific gene regulation through
different genetic control for different tissue types.

The rest of the hotspot eQTLs appeared in a single Type II block for the global subnetwork. These eQTLs
were in long-range linkage disequilibrium (eGwb, max r? = 0.93, median 72 = 0.52, whole blood; eGms, max
r?2 = 0.93, median 72 = 0.52, muscle skeletal). While Type I blocks have been previously reported as eQTLs
for co-expressed local genes'®, our analysis revealed previously unknown Type II blocks. Long-range linkage
disequilibrium among SNPs has been known to arise from epistatic selection or population structure, and to
be implicated in complex diseases'"1819 but little has been known about their roles in gene regulation. Our
results suggest that long-range linkage disequilibrium may have played a role in shaping tissue-specific gene
regulation in global subnetworks.

GTEx eQTLs with direct effects. CiTruss selected a small number of the eQTL-eGene pairs from
Matrix eQTL (10,308 out of 505,630 in whole blood; 12,562 out of 578,289 in muscle skeletal) as eQTLs with
direct effects (Fig. 5(a)-(b) whole blood; Fig. S8(a)-(b) muscle skeletal). The majority of the cis-acting and
trans-acting eQTLs were found in the local subnetworks, and a far smaller fraction in the global subnetwork.
Although undetermined eQTLs were only a small fraction of all eQTLs (14.2% whole blood; 16.5% muscle
skeletal), they represented the largest proportion of the eQTLs for the global subnetworks (49.3% whole blood;
79.1% muscle skeletal). Consistent with previous studies, CiTruss found nearly all cis-acting eQTLs proximal
to their eGenes within 10Mb (Fig. S9), even though it was not constrained to do so and instead considered
all eQTL-eGene pairs on the same chromosome from Matrix eQTL as candidate cis-acting eQTL-eGene pairs.
However, different from previous reports, a large fraction of trans-acting eQTLs (93.6% whole blood; 96.6%
muscle skeletal) were also located near their eGenes within 10Mb.

CiTruss disentangled Type I eQTL blocks to cis-acting and trans-acting eQTLs for the local subnetworks
and trans-acting eQTLs for the global subnetwork, and Type II blocks to primarily trans-acting and
undetermined eQTLs and few cis-acting eQTLs for the global and local subnetworks (Fig. 4 whole blood; Fig.
S7 muscle skeletal). Many of the CiTruss eQTLs for local subnetworks overlapped between the two tissue
types (Figs. 5(c) and S10), suggesting both tissue-specific and shared genetic control of local subnetworks.
Each cis-acting eQTL and the set of its eGenes and neighbors in the network overlapped well with an
enhancer and the set of tissue-specific enhancer targets from EnhancerAtlas 2.02°, compared to the eGenes
of the same eQTL found by Matrix eQTL (Fig. 5(d) whole blood; Fig. S8(c) muscle skeletal), providing
evidence that the CiTruss gene networks and cis-acting eQTLs accurately capture the known gene modules
controlled by cis-regulatory elements.

For the trans-acting eQTLs that CiTruss selected from the tissue-specific Type II blocks, we examined if
they harbor transcription factors (TFs) for tissue-specific gene regulation and if their eGenes overlap with
the known targets of TFs in hTFtarget?! for whole blood and in JASPAR?2:23 for muscle skeletal. While
in whole blood, the 23 trans-acting eQTLs and their eGenes did not have matching TF-target pairs, in
muscle skeletal, three out of 21 trans-acting eQTLs had a TF nearby, all of their eGenes were targets of
the given TF, and all of the three TFs and their eGenes were known skeletal-muscle genes (Table 3). Thus,
these trans-acting eQTLs with direct effects on the eGenes were well supported as harboring a tissue-specific
regulator by the known biology of muscle skeletal tissue.

LG xSM AIL mouse gene networks and genetic diversity. We applied CiTruss combined with Matrix
eQTL to the data from three brain tissue types, HIP, PFC, and STR, of the LG xSM AIL mice'4. The mouse
and human gene networks shared similarities in the overall structure, but had several major differences (Figs.
6(a)-(b) PFC; Figs. S13(a)-(b) STR; Figs. S14(a)-(b) HIP). The mouse gene networks had substantially fewer
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Figure 5: CiTruss eQTLs from whole blood GTEx data. (a) Locations of eQTLs vs eGenes, after grouping genes
according to local and global subnetworks. (b) The number of eQTL-eGene pairs in different categories of network
connectivity. (c) The overlap of eQTLs for local subnetworks between whole blood and muscle skeletal. Cis-acting
eQTLs (top), trans-acting eQTLs (middle), and undetermined eQTLs (bottom). (d) Overlap between eQTL-eGene
pairs and enhancer-target pairs. Each boxplot shows the distribution of hypergeometric test p-values over eQTL-eGene
pairs. For CiTruss, the pair of each cis-acting eQTL and the set of the corresponding eGene and its 1, 2, 3, and 4 step
network neighbors was used. For Matrix eQTL, the eQTLs selected as cis-acting by CiTruss were used.

connected genes (31.8% PFC; 30.8% STR; 31.9% HIP; Fig. S11), compared to the human gene networks
(76.6% whole blood; 68.0% muscle skeletal), which led to fewer local subnetworks. The mouse gene network
had a set of many global subnetworks that were extensively connected to local subnetworks, unlike the human
gene networks with a single global subnetwork separated from local subnetworks. These differences arise
from the difference in genetic diversity between the two populations. With fewer genetic variants and with
differences in fewer phenotypes in behavior that originated from the two founders, the mouse gene network is
more compact with fewer connections and as we discuss below, is more focused on brain function that is
likely to explain the behavior differences in mice.

LGxSM AIL mouse tissue-specific gene networks and pleiotropy. As with the human global
subnetworks, nearly all mouse global subnetworks were enriched for genes annotated with tissue-specific
brain GO terms (Table 2). However, unlike the two unrelated GTEx tissue types, the three related brain
tissue types in mice shared a large number of genes in the sets of global subnetworks (1,613 between PFC
and STR, 1,806 between PFC and HIP, and 1,738 between HIP and STR, out of 2,555 PFC, 2,593 STR,
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Figure 6: CiTruss gene network and eQTLs from LGxSM AIL mouse data for PFC tissue. (a) CiTruss gene network
when genes are ordered with genome positions. Local subnetworks are shown as L1, etc. Isolated genes are not shown.
(b) CiTruss gene network when genes are re-ordered after clustering. Global subnetworks are shown as Gpl, etc. (c)
Hotspot eQTLs from Matrix eQTL (more than 5 eGenes) against the gene network in Panel (a). Type I blocks from
hotspot regions (eL1, etc.) and local subnetworks (L1, etc.) are shown. (d) Hotspot eQTLs from Matrix eQTL against
the gene network in Panel (b). Type II blocks (top) from hotspot eQTLs (eG1, etc.) and global subnetworks (Gpl,
etc.), and Type I blocks (bottom). In Panels (c¢) and (d), cis-acting, trans-acting, and undetermined eQTLs from
CiTruss are overlaid. See Tables S2 and S3 for locations of hotspot regions and subnetworks.
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and 2,651 HIP), but these genes were organized into different global subnetworks in each tissue type. These
observations from the GTEx human and AIL mouse gene networks suggest a hierarchical organization of
global subnetworks across tissue types: at a higher level, unrelated tissue types do not share genes, whereas
at a lower level, related tissue types share genes that are wired as different global subnetworks.

Examining hotspot eQTLs with more than five eGenes from Matrix eQTL against CiTruss gene networks
revealed that tissue-specific pleiotropy is organized around the local and global subnetworks: different tissue
types often shared hotspot eQTLs for local subnetworks but not for global subnetworks. As with the GTEx
eQTLs, the mouse hotspot eQTLs appeared as Type I or Type II blocks, but in a slightly different form
(Figs. 6(c)-(d) PFC; Figs. S13(c)-(d) STR; Figs. S14(c)-(d) HIP). The three tissue types often had Type I
blocks with the same hotspot regions and local subnetworks (Fig. S15(a), Table S2), but with different global
subnetworks. Multiple Type II blocks were found in mice, each with 2 to 27 eQTLs in linkage disequilibrium
(Table S3) and each affecting different global subnetworks, compared to a single block in humans. Long-range
linkage disequilibrium was not observed in the mouse Type II blocks, suggesting that the mice did not undergo
selection during the 56 generations of intercross.

LGxSM AIL mouse eQTLs with direct effects. Nearly all of cis-acting eQTLs and the large portion
of trans-acting eQTLs were found within 10Mb of their eGenes (Fig. S12), although distances to their
eGenes tended to be larger in mice than in humans because of longer linked regions. Similar to the GTEx
eQTLs, CiTruss disentangled Type I and II blocks to mostly cis-acting and trans-acting eQTLs for the
local subnetworks, where many eQTLs overlapped across tissue types (Figs. S15(b)-(d)), and trans-acting
and undetermined eQTLs for the global subnetworks (Fig. 6 PFC; Fig. S13 STR; Fig. S14 HIP). For the
trans-acting eQTLs from Type II blocks, we looked for TFs in the genome neighborhood and the targets of
the TF in the TFLink database?* that overlap with the eGenes. We focused on Type II blocks, as these
eQTLs were in relatively small linked regions. Across all tissue types, 15 out of 57 trans-acting eQTLs were
located within 500Kb from a TF, five of these 15 eQTLs had eGenes overlapping with the TF targets, and
four of these five eQTLs had a TF and targets that are known to be involved in brain function (Table 3).

Discussion

We introduced CiTruss, a statistical framework for reconstructing gene networks perturbed by cis-acting and
trans-acting eQTLs from allele-specific expression and SNP genotype data. Our analysis of the GTEx and
AIL mouse data with CiTruss showed that gene networks and eQTLs should be identified in a single statistical
analysis, since the genetic diversity in data determines the diversity in gene network modules that can be
recovered from the data. The GTEx population had a large number of SNPs that perturbed the expression
of many genes to cause variability in a broad range of phenotypes. CiTruss leveraged this high expression
variability to reveal gene networks with a large number of local subnetworks. In contrast, the mouse gene
networks from CiTruss had fewer connected genes and local subnetworks, but many global subnetworks with
mostly brain-related genes that likely explain the behavioral differences between the two founder strains.

In addition, our results showed that identifying eQTLs along with gene networks allows us to gain new
insights into various aspects of gene regulation controlled by eQTLs. CiTruss revealed that the pleiotropic
effects of eQTLs, a hierarchy in tissue-specific gene regulation, and local and long-range linkage disequilibrium
among eQTLs are structured around local and global subnetworks, and disentangled pleiotropic effects into
cis-acting and trans-acting eQTLs for local subnetworks and trans-acting and undetermined eQTLs for global
subnetworks. One future direction would be to determine a high-resolution map of hierarchical organization
of the global subnetworks across tissue types, by applying CiTruss to eQTL data for a wide variety of tissue
types from humans!3, farm animals'®, and rats2°. To further investigate the role of local and long-range
linkage disequilibrium of eQTLs in gene regulation, we could compare these eQTLs with Hi-C data?® to see if
long-range chromatin interactions overlap with eQTLs in long-range linkage disequilibrium and if topologically
associating domains overlap with the regions of linked eQTLs that contain local subnetworks.
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The CiTruss framework could be extended in several ways. As population structure is a well-known
confounding factor in eQTL mapping?”2®, to account for sample relatedness, we could extend the gene
network parameter in the CiTruss model to the Cartesian product of two networks??, one over genes and
the other over samples. Another future direction is to combine SNP and expression data with trait data, to
model a cascade of perturbation from genetic variants to gene expression to traits'?, by stacking a single-level
conditional Gaussian graphical model for the probability distribution of traits given expression, on top
of the multi-level model of CiTruss for the probability distribution of expression given genetic variants.
Finally, CiTruss could be adopted to reconstruct gene networks from expression data obtained from single-cell
RNA-seq after CRISPR genome editing’:3!, replacing SNP perturbation with CRISPR. perturbation.

Material and Methods

We describe the probability model, learning algorithm, and inference method of our statistical framework
CiTruss, and provide the details of the experimental set-up.

Multi-level conditional Gaussian graphical models. We introduce our multi-level conditional Gaussian
graphical model for modeling a gene network perturbed by cis-acting and trans-acting eQTLs. We extend the
existing single-level conditional Gaussian graphical model for learning a gene network perturbed by eQTLs to
a multi-level model with a two-level hierarchical structure. In the top level, both alleles of a gene interact
with both alleles of a neighboring gene in the network and are affected by both alleles of SNPs or trans-acting
eQTLs. In the bottom level, the two alleles of each gene act independently in allele-specific manner and are
affected by SNP allele on the same haplotype in cis.

Let x = | ™ ] , where xp,,Xp, € {0,1}? with two alleles 0 and 1 denote alleles at p SNP loci on two
Xho
haplotypes h; and hy. Let y = Yha , where yn,,¥n, € R? represent the expression levels of the two alleles
ha

of ¢ genes from haplotypes h; and ho. Then, the multi-level conditional Gaussian graphical model for a gene
network perturbed by cis-acting and trans-acting eQTLs (Fig. 1(a)) is

1
p(y | x; A, ©) =exp (—ZyTAy — yT(-')x> /Z(x; A, ©), (1)

where the 2¢ x 2¢q positive definite matrix A is a parameter representing a network over 2¢q gene alleles,
© € R?1%?P is a parameter representing the perturbation of this network by eQTLs, and Z(x; A, @) =
(2m)24/2|A|~1/2 exp (—1xTOT A~1Ox) is a normalization factor, known as a partition function, that ensures
the probability density function integrates to 1. Both A and ® have a multi-level structure defined as the
sum of two component matrices:

Q Q

A:
Q Q

diag(4) 0
* [ 0 diag(4) ]

e = [ Htr Htr ]+[ Hcis 0 1
Htr Htr 0 Hcis ’
where €2 is a ¢ X g positive-semidefinite matrix with zeros in the diagonal representing a gene network over
q genes, diag(d) is a diagonal matrix with ¢ x 1 vector § of positive values that models the variability in
the expression of two alleles, and II;,. and II.;; € R9*P represent trans-acting and cis-acting eQTL effects,
respectively. A non-zero value in the (i, j)th element of € represents an edge between gene ¢ and gene j, and

a non-zero value in the (4, j)th element of II.;s and Iy, represents SNP j affecting the expression of gene i in
cis and trans, respectively.
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The first component matrices of A and © correspond to the top-level model, where the expression of
both alleles of each gene is influenced by the expression of both alleles of neighboring genes in the network €
and by trans-acting eQTLs in Il;.. The four blocks of € force the expression of both alleles of each gene
to be the same, and the four blocks of Il;,. model trans-acting eQTL effects of x5, and x5, on both yp,
and yp,. The second component matrices of A and © correspond to the bottom-level model, where the
expression of the two alleles of each gene varies independently in an allele-specific manner and is affected by
cis-acting eQTLs. The two diagonal blocks of diag(d) model the allele-specific expression variability and the
two diagonal blocks of Il ;s model cis-acting eQTL effects of xp, on yp,, and xp, on yn,.

Hybrid model for partially observed allele-specific expression. If the coding region of a gene has
no heterozygous loci, the two alleles of the gene are indistinguishable, and only the total expression of both
alleles can be measured. When allele-specific expression is measured only for a subset of genes, the multi-level
model in Eq. (1) collapses to a hybrid model that consists of a single-level model for genes with only total
expression and a multi-level model for genes with observed allele-specific expression. The multi-level model
collapses differently for different individuals, since each individual has a unique genome sequence with its
own set of heterozygous loci. The following theorem states that this hybrid model for a given individual is
also a conditional Gaussian graphical model (illustration in Figs. 1(b)-(c); proof in Appendix).

Theorem 1. (Hybrid model) For a given individual, let H C {1,...,q} and S = {1,...,q} — H be
the subsets of genes with observed and unobserved allele-specific expression, respectively. Let y7 denote a
subvector of y for genes in H and y3 a subvector of total expression ys = yn, + Yn, for genes in S. Let x;
= Xp, + Xp, represent genotypes. Then, the multi-level model in Eq. (1) for this individual collapses to a
hybrid of multi-level model for y* and single-level model for yS. The resulting hybrid model is a conditional

vy x
Gaussian graphical model for y = s |, given x =
y

s Xs
- - 1 - -
1 5:4.0) =exp (~337Ry - §76%) /2(5A.6), )
where

[ Qf  qf |qQfS [ diag(6H) 0 0

A=| Qf Qf | Qfs + 0 diag(6™) 0
st oisT | qf 0 0 | 0.5diag(s)

(2 mH | o [mH, o 0

©e=| o al| o +| o I 0
0o o |Ij 0 0 |0.5II,

are the network and perturbation parameters. In A, Q. QS| and QS are the submatrices of Q2 that consist
of the (i,j)th element of Q for alli,j € S, 4,5 € H, andi € H, j € S, respectively. In o, 2, and I3, are
the submatrices of Il that consist of the ith row of I for alli € H and i € S, respectively. diag(6),
diag(6°), I, and TI;. are defined similarly.

tr>

In the hybrid model above, the network and eQTLs for the multi-level model are in the upper-left blocks
of A and ©, and those for the single-level model are in the lower-right blocks of A and ©. For each gene in
S with only total expression, the two nodes in the network A for its two alleles collapse into a single node in
A, and the edges between the given gene and its neighbors in the network also collapse (collapse from Fig.
1(b) to Fig. 1(e) for one individual, and from Fig. 1(c) to Fig. 1(f) for another individual). The cis-acting
and trans-acting eQTLs in © that affect the genes in S collapse to eQTLs in ©. In the extreme case where
allele-specific expression is unobserved for all genes, the multi-level model collapses to a single-level model for
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Ys given Xg:
S 1 - -
p(Ys | Xq; A, @) = €exp <_2y§XYS - ysT@Xs> /Z(Xs;Av 9)7 (3)

where A = Q + 0.5 diag(d) and © =1II,, + 0.5I1,;,. Even when allele-specific expression levels are available,
only heterozygous variants contain information to determine whether a variant is affecting gene expression in
cis or trans. If all variants are homozygous, even when allele-specific expression is measured for all genes, the
multi-level model for the given individual collapses to Eq. (3).

Sum-difference model for total and differential expression of two alleles. Estimating the multi-level
model parameters is prohibitively expensive, since the model has a large network parameter and collapses
differently for each individual. Here, for efficient parameter estimation, we apply a linear transformation
to the random variables of the multi-level model to obtain a sum-difference model that factorizes into two
single-level models: a sum model for the total expression perturbed by eQTLs and a difference model for
the differential expression of two alleles controlled by cis-acting eQTLs. The following theorem shows the
sum-difference model and its factorization (illustration in Fig. 1(d); proof in Appendix).

Theorem 2. (From multi-level model to sum-difference model) In addition to sum variables ys
and X5, we define difference variables yq = yn, — Yn, and Xq = Xp, — Xn,. We apply the transformation of
Yha to Ys

Yhs Yd
distribution is a sum-difference model that factorizes as follows:

random variables from [ to the multi-level model in Eq. (1). Then, the resulting probability

p(ys; yd | x87 Xd; A7 6) = p(yS | XS; A87 es)p(}’d | Xd; Ad7 8(1)7 (4)

where the first probability factor is a sum model for sum variables

1
p(Ys | Xs; AS7 G)s) = exp <_2y?ASYS - yzgsxs) /Z(xs§ Asa 98) (5)

1 1
As =0+ §diag(5)7 O, =1L + §Hcis

and the second probability factor is a difference model for difference variables

1 .
P(Yd | Xa; Ad, Oq) = exp <_2Y§dlag(>\d)}’d - ydT@dXd> /Z(x4; A, Oq) (6)
1 1
=35 = 7Hcis-
Ad 25, CF} 5

The difference model in Eq. (6) further factorizes into q single-gene difference models for q genes as follows:

P(¥a | Xda3 Mg, Og) = HGXP <_;[Yd]i[>\d]i[§’d]i - [Yd]ZT[@d]i,:Xd> /Z(%a; [Adlis [Odli.:), (7)

where [a]; represents the ith element of vector a and [C); . represents the ith row of matriz C.

)

In the sum-difference model above, only the difference model contains information on allele-specific
expression, and the sum model is defined entirely in terms of the total expression of two alleles. It is
straightforward to show that the sum-difference model achieves maximum likelihood at the same parameter
value as the multi-level model. The following corollary of Theorem 2 shows that the same transformation can
be used to obtain a sum-difference model and its factorization from the hybrid model (illustration in Figs.
1(e)-(f); proof in Appendix).
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Corollary 1. (From hybrid model to sum-difference model) Applying the same transformation of
random variables as in Theorem 2 to the hybrid model in Eq. (2), we obtain a sum-difference model that
factorizes as

p(y87 yg‘ Xsy Xd; [\w (:)) = p(}’s| Xs; As, es)p(yf‘ Xd; Ad, ®d)7 (8)

where the sum and difference models are given as the following single-level models:

p(Ys | Xs; As, 68) = exp (—;YZAsys - yz@sxs) /Z(Xs§ A, 63) (9)
pyH%ai Aa, ©a) = [ ] exp (_;[yd]i[)\d]i[}’d]i - [Yd]i[@d]u:xd) /Z(xa; [Aalis [©adli:)- (10)
i€H

The corollary above shows that in sum-difference model, only the difference model changes with unobserved
allele-specific expression. In other words, the sum models derived from the multi-level and hybrid models
are identical. The difference model from the hybrid model is a reduced form of the difference model from
the multi-level model in that it contains the single-gene probability factors only for genes with allele-specific
expression.

Parameter estimation using sum-difference model. We estimate the model parameters based on
sum-difference model (see Appendix for detail). With its factorization, we estimate each of the sum and
difference model parameters efficiently for a large number of SNPs and genes, using Mega-CGGM 3210, the
existing efficient optimization method for single-level model. Parameter estimation is significantly more
efficient with the sum-difference model than with the multi-level model, owing to the local changes to the
difference model with unobserved allele-specific expression. In the sum-difference model, the evaluation of the
partition function, which involves computing the matrix inverse and determinant with cost O(g?), needs to be
performed only once to be reused for all individuals in each iteration of the optimization. In the multi-level
model, this computation needs to be performed separately for each individual in each iteration of optimization
for a larger matrix of up to size 2¢ x 2¢. This reduction in per-iteration time cost from O(n(2¢)3) to O(¢?)
leads to orders-of-magnitude speed-up empirically.

Inferring downstream effects of eQTLs in gene network. While the perturbation parameter ®
represents eQTLs with direct effects on gene expression, such direct perturbation effects can propagate
through the gene network A to affect the expression of other genes indirectly. To infer such indirect eQTL
effects, we re-write Eq. (1) as a Gaussian distribution

Py | x;A,©) = N(y; Bx, A7"), (11)
where the 2g x 2p matrix
B =B, + By
with
II.; 0 II II
A1 cLs _ Al tr tr
BC%S A 0 Hcis 1 and BtT A Htr Htr 1

represents the aggregate effects of SNPs on gene expression that include both direct and indirect effects. A
non-zero value in the (i, j)th element of B but a zero in the (i, 7)th element of ® indicates the ith gene is not
perturbed directly by the jth SNP but is indirectly perturbed due to the downstream effects of the jth SNP
directly perturbing other genes in the network. The overall indirect effects B can be decomposed into two
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parts B.;s and By, each induced by cis-acting eQTLs and by trans-acting eQTLs. If the gene network has
no edges and is a diagonal matrix A = Aly,, then Eq. (11) reduces to a scaled multivariate regression model.

Re-analysis of eQTLs from the existing methods with CiTruss. CiTruss can be combined with the
existing methods such as Matrix eQTL, TReCASE, WASP, and RASQUAL that identify SNP-gene pairs
with statistically significant association. The pleiotropic effects of an eQTL on many genes with correlated
expression found by these existing methods could indicate few eQTLs that perturb few genes directly and
affect downstream genes in the pathway indirectly. Given such pleiotropic effects, our approach can be used to
identify a network over these genes and eQTLs with direct effects on genes in the network. In such re-analysis,
during parameter estimation, the sum model is constrained so that eQTLs are a subset of the eQTLs found
by the existing methods and then the difference model is constrained such that cis-acting eQTLs are a subset
of the eQTLs from the sum model. This is implemented by modifying Mega-CGGM such that an active set
is always a subset of the eQTLs from the existing method.

Generating simulated data. To evaluate the various methods on datasets with known ground truth, we
simulated data from known eQTLs and gene networks. We generated SNP genotype data at each of p = 100
loci for n = 200 individuals by sampling genotypes from a multinoulli distribution over the number of minor
alleles {0, 1,2} with probabilities {1_7”, , 1_7"}, where 7 is the frequency of heterozygous genotypes in the
population at a given locus. We simulated three sets of genotype data, each with = 0.05, 0.25, and 0.45,
and set the alleles on the haplotypes to be consistent with these genotypes. We then simulated allele-specific
expression data from our model with known ground-truth gene network and cis-acting/trans-acting eQTLs
set as follows. We generated a gene network € over ¢ = 40 genes, assuming four gene modules each with 10
genes and assuming 40% non-zero elements within each module and 2% non-zero elements between modules.
The values of the non-zero elements were randomly generated from Uniform[—4, 4] for edges within modules
and Uniform[—1, 1] for edges between modules. The diagonal elements of € were set such that the minimum
eigenvalue is 0.1 and the maximum diagonal element is not 70% larger than the maximum off-diagonal
element. For II.;, and Il;,., we selected 5% of all pairs of genes and SNPs to have non-zero elements in either
II.;s or IT;,. with equal probability and set their values to random samples from Uniform[—8, §].

Given the SNP data and ground-truth parameters, we generated allele-specific expression data from our
multi-level model. To mimic partially observed allele-specific expression, we kept the allele-specific expression
for a given gene in the population at frequency ¢ (¢ = 1.0, 0.9, 0.7, and 0.5 in each dataset) and replaced
the allele-specific expression levels for the rest of the individuals with the total expression levels of the two
alleles. For each combination of 1 and (, we generated five datasets and report results averaged over these
datasets. For methods such as TReCASE, RASQUAL, and WASP that require allele-specific read counts, we
transformed the simulated data above to count data through inverse log normalization, while ensuring the
minimum and maximum of the read counts for each gene across individuals match those of log, of transcripts
per million (TPM) in the GTEx whole blood samples.

Comparison of methods on simulated data. In simulated data analysis, for TReCASE and Matrix
eQTL, as the authors of TReCASE suggested, we included seven covariates for each sample: log of total
expression in TPM, top three principal components of expression data in TPMs, and top three principal
components of expression data in log of TPM. We excluded covariates with variance less than 10~* across
samples. For WASP, we ran the combined haplotype test, using the overdispersion parameters estimated
from data for both association and allele-specific tests.

In re-analysis of the eQTLs identified by the existing methods with CiTruss, the sum model was constrained
to select eQTLs from cis-acting and trans-acting eQTLs identified by TReCASE, from cis-acting eQTLs
identified by RASQUAL or WASP, and from eQTLs identified by Matrix eQTL. Then, the difference model
was constrained to select cis-acting eQTLs from the eQTLs selected by the sum model. The ground-truth
eQTLs with indirect effects were obtained from Eq. (11) with the ground-truth parameters.
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Preprocessing GTEx data. We downloaded phased genotype data for 46,526,292 SNPs and allele-specific
expression data for 56,200 genes from the whole blood of 670 individuals and from the muscle skeletal of 706
samples from the GTEx v8 repository 3. We analyzed 1,175,808 SNPs for whole blood and 1,172,754 SNPs
for muscle skeletal, after excluding indels and SNPs with missing genotype calls and with MAF< 0.05, and
removing SNPs with 72 > 0.8 using PLINK 1.932 with a 1000kb sliding window. For the total expression of
both alleles, we included in our analysis 10,636 genes for whole blood and 12,475 genes for muscle skeletal
with sample variance of the total expression of two alleles in TPM > 100. For allele-specific expression,
we included 9,240 genes for whole blood and 10,513 genes for muscle skeletal whose sample variance of
the differences in the expression of two alleles is at least 10 and whose frequency of observed allele-specific
expression is at least 0.02. In the fully processed data, the minimum frequency of heterozygous genotypes
was 0.024 for whole blood and 0.026 for muscle skeletal.

Preprocessing LGxSM AIL mouse data. We prepared phased genotype and allele-specific expression
data from the raw genotyping-by-sequencing data and RNA-seq reads from HIP, PFC, and STR tissues of
the LGxSM AIL mice'*. We called and phased genotypes for 1,084 mice as follows. We removed SNPs with
MAF<0.005 and with reads in fewer than 20% of the samples using bcftools®*. Then, we called genotypes
from the genotype likelihoods and filled in missing genotypes using Beagle 4.13% (window size 300bp, step
size 50bp for sliding windows, tolerance 0.04 for convergence, and the maximum number of iterations 10)
with the mouse genetic map. We phased and imputed the resulting 50,568 SNPs with MAF> 0.1, using
Beagle 4.135 (window size 70kb, step size 32kb for sliding window, tolerance 0.03 for convergence, and the
maximum number of iterations 10) with the LG and SM founder genomes as a reference panel. We excluded
SNPs deviating from Hardy-Weinberg equilibrium (p-value < 7.62 x 1079).

We performed allele-specific expression quantification from RNA-seq reads as follows. For each sample,
we aligned reads to the personalized diploid transcriptome constructed from the phased genotypes and mouse
transcript sequences (M25 GRCm38.p6) using Bowtie. Bowtie was run with options to report only the
alignments in the best stratum with at most three mismatches and to suppress reads with more than 100
valid alignments. We then quantified allele-specific expression using EMASE-Zero Model 2 (tolerance 10~8
for convergence). Following the preprocessing steps of the original mouse study, we removed 7 samples from
HIP, 5 from PFC, and 23 from STR with more than 1.5 standard deviation from the mean number of reads
or the mean alignment rates, dropped 21 samples as contaminated outliers, based on clustering of samples
with the top two principal components of total expression of two alleles from all tissue types, and corrected
the labels of 18 HIP samples that were mislabeled as PFC or STR.

Then, for each tissue type, we selected samples that have both phased genotype and allele-specific
expression data. For 239 such samples for HIP, 208 for PFC, and 189 for STR, we further processed the data
as follows. After removing SNPs with 7% > 0.9999 in 3,000kb windows using PLINK 1.933 and SNPs with
MAF< 0.05, we obtained genotypes for 30,742 SNPs for HIP, 30,066 SNPs for PFC, and 29,139 SNPs for
STR. For total expression of both alleles, we retained genes whose sample variance in the total expression
measured as TPM is at least 5.0 in each tissue type, which led to total expression data for 8,298 genes for HIP,
8,030 genes for PFC, and 8,423 genes for STR. For allele-specific expression, we retained genes whose sample
variance in the differences in the expression of two alleles is at least 5.0 and whose frequency of observed
allele-specific expression in the population is at least 0.1. This led to allele-specific expression for 3,604 genes
for HIP, 3,503 genes for PFC, and 3,571 genes for STR for a subset of the samples, and for the rest of the
genes, allele-specific expression was assumed unobserved. In the fully processed data, the minimum frequency
of heterozygous genotypes was 0.0084 for HIP, 0.0096 for PFC, and 0.0053 for STR, and all SNPs, except for
two SNPs in each tissue type, had the frequency of heterozygous genotypes > 0.02.

Comparison of methods on mouse and GTEx data. In our analysis of the GTEx data with Matrix

eQTL, we included the seven covariates from the GTEx v8 repository: top five PEER factors'® and top two
principal components from genotype data. For the mouse data, we included seven covariates: log of total

17


https://doi.org/10.1101/2023.10.23.563661
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.23.563661; this version posted October 24, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

read counts, top three principal components of read counts, and top three principal components of log of
read counts. We excluded covariates with variance < 107%.

The total expression was used to estimate the sum model and the allele-specific expression was used to
estimate the difference model. Genes that did not meet the criteria of the minimum frequency of observed
allele-specific expression and the minimum sample variance were included in the sum-model estimation but
not in the difference-model estimation. The eQTLs for these genes were called undetermined eQTLs, since it
is not possible to determine whether they are cis-acting or trans-acting. In re-analysis of the eQTLs from
Matrix eQTL with our approach, we constrained the sum model to identify eQTLs as a subset of the eQTLs
from Matrix eQTL, and constrained the difference model to identify cis-acting eQTLs as a subset of the
eQTLs selected in the sum model. We selected the regularization hyperparameters using BIC.

Comparison of computation time. We implemented CiTruss as a C++ wrapper for Mega-sCGGM32. We
used the R implementation of TReCASE'? and Matrix eQTL!!, the C implementation of RASQUALS, and
the Python implementation of WASP combined haplotype test” provided by the authors. The experiments
on the GTEx data were run on 128 cores of two AMD EPYC 7742 CPUs. The experiments on the simulated
and mouse data were run on 8 cores of Intel(R) Xeon(R) Gold 6230.

Comparison of cis-acting eQTLs with enhancer database. We downloaded the tissue-specific
enhancer-gene interaction database from EnhancerAtlas 2.02°. We used the enhancer-gene interactions in
human GM12878 lymphoblastoid cell line and skeletal muscle tissues. These interactions are computational
predictions made by EAGLE?” based on the information such as genomic locations and correlation between
enhancer activity and gene expression levels?°. All interactions were between an enhancer and its target gene
that are at most 1Mb apart. The database contained 78,796 enhancer-gene interactions (7,364 enhancers
and up to 72 target genes per enhancer) for GM12878 lymphoblastoid cell line, and 39,708 enhancer-gene
interactions (4,334 enhancers and up to 47 genes per enhancer) for human skeletal muscle. In each GTEx
tissue type, we mapped each cis-acting eQTL to enhancers located within 100Kb, and the set of eGenes to
the set of enhancer targets (hypergeometric test p-value < 0.05).

Comparison of trans-acting eQTLs and eGenes with TFs and targets. We compared the pairs of
trans-acting eQTLs and their eGenes with the pairs of TFs near the eQTLs and their targets from TF-target
databases. We used hTFtarget?! with tissue-specific TF-target relationship for the GTEx whole blood, and
JASPAR database?? curated by Harmonizome?? for the GTEx skeletal muscle. For the AIL mice, we used
TFLink database?*.

Identifying local and global subnetworks in gene networks. To identify local and global subnetworks
in gene networks estimated by CiTruss from the GTEx data, we applied hierarchical clustering with complete-
linkage to the estimated gene networks. During clustering, we excluded the edges for gene pairs with less than
50 genes apart on the genome, to ensure the orderings of the genes in the local subnetworks are preserved. For
the mouse gene networks, we applied hierarchical clustering with complete linkage to the sample correlation
of log gene expression data, excluding the correlation between genes within 10Mb. The ordering of the genes
given by hierarchical clustering was used to find the local and global subnetworks.

Appendix

Proofs of Theorems

We provide the proofs of the theorems and corollaries presented in the Material and Methods section.
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Proof of Theorem 1

Proof. We define a (2|H| + |S|) x 2¢ matrix C = , with the 2|H| x 2¢ matrix C and the |S| x 2¢

CH
CS
matrix C°. We define CH as a submatrix of Iy4x24, taking rows corresponding to the alleles of genes in H,
such that y = CHy. We define C° as a submatrix of Iyxq Ijxgl, taking rows corresponding to genes in S,
cH !
0.5C%
We re-write Eq. (1) in the form of Gaussian distribution and from this, we obtain the distribution of y,

such that y¥ = C%y. Let Ct = denote the Moore-Penrose inverse of C.

which is also Gaussian
p(¥ | x;A,0) ~ N(-~CA™'O@x,CA~'CT). (12)

To prove the theorem, it is sufficient to show that Eq. (12) can be re-written as

Py | %A,0)=N(-A"'Ox,A7), (13)

since expanding the quadratic term in Eq. (13) leads to the model in Eq. (2). Below, from Eq. (12), we
derive the forms of A, ®, and X in Eq. (13). To obtain A given in the theorem, we re-write the covariance
matrix in Eq. (12) as follows:

=[cQD D :QTCT]"'  from eigendecomposition A = QDQ”
=D :QTCT]T[CQD 2]" since (ATA)"' = AT(AT)" for a non-square matrix A>3
= [QTCT}+D%D%[CQ]+ since D is full rank3®

= [cT]T"QDQ*C* since Q is full rank?®

=CTTACT = A.

[CAflcT]fl

To obtain © and x given in the theorem, we re-write the mean in Eq. (12) as follows.

~CA'@x=-CC"CA'Ox from C = CC*C
= -CA'CcTCceoex since CTCA™! = A~1C*C, from symmetric CTCA ™!
and commuting matrices CtC and A~}
=-CA'cTctToex from CTC = CTC*7T since C*C is symmetric
=-A"'ctTex
ITg, 0 L8 FER § 7

=-A! 0 e |+ | of o | [x

0.5 Hf’is 0.5 Hfis Htsr Hf,,

- mZ. o nz nZ
= _A! [ 613 Hgs + H% Hf{i x + (Hf’; + 0.5 HCSiS)XS
= -A'ex
Thus, we have Eq. (13) with A = C*TAC*, ® = C*7©, and % = [ ;‘ ] . 0

The following corollary of Theorem 1 is a property of the hybrid model.
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Corollary 2. The likelihood of the partially observed allele-specific expression data 'y given the collapsed
H
y
model in Eq. (2) can be written in terms of the imputed datay = Cty = | 0.5y |, where the expression

0.5y%

levels y2 are split evenly between the two alleles in the imputed data.

Proof. We re-write the model in Eq. (2) as

DO | = l\D\H I\D\H [N
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>t
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Thus, the likelihood p(y | X; A, (:)) can be written in terms of the imputed data

Proof of Theorem 2

We prove the following lemma and use this lemma to prove Theorem 2.

Lemma 1. Lety = l s ] and X = l Xs | Applying the change of random variables y = Py, where
Xd

Ya
I, I, . . )
P= I L | to the multi-level model in Eq. (1), we obtain
a g
L 1 . . L.
o [x:4.0) —oxp ( - 337Ay - 7Ox) /Z(x:A.O), (1)
where
A Q0 0.5 diag(d) 0
10 o0 0 0.5 diag(d)
. [m, o 05, 0
©= [ 0o ol" 0 0.5I1;5 ]

I I
Xx=Qx with Q=| " 7 |.
Ip _Ip

Proof. We apply the standard procedure for change of random variables as follows. Since y = P~'y and
P! = 1P, we substitute y with 2Py in Eq. (1) and multiply this with the Jacobian determinant of the
inverse of the transformation |3P|:

iy 1xa.0) = [ (- 357 [3] A 3P|y -7 [Jp]ex) zxn @) 2] (15)

We visit each term in Eq. (15) to derive Eq. (14). For the first term in Eq. (15), it is straightforward to
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verify {éP} A [%P} = A. For the second term, we have

-;P] 0Q 'Qx
:1 1 . 1
= QP] @iQQx since Q7 = =-Q

- _iPGQ] Qx]

= Ox.

For the remaining terms in Eq. (15), we have

—1 —1
Z(x;A7®)‘;P = (2m)29/2|A|71/2 %P exp <;XT@TA1®X)
2q/2 1 i —-1/2 1 e 1 TaT 1 —1 —1 —1 1
= (2m)“*|-P |A| -P exp | —=x'O@" |=P|2P ' ]AT' 2P| | =P |Ox
2 2 2 2 2
—1/2
_ 2q/2 1 1 / _lvT“T'fl'v
= (2m) 2P A 2P exp | —5% O'ATOx

. 1 C s N
= (2m)29/2| A7 2 exp (25(T®TA1®5<>

=Z(%x;A,0).

Combining the results above, we obtain Eq. (14). O

The block-diagonal structure of the network matrix A in Eq. (14) indicates that after the change of
random variables, ys; and y; become conditionally independent given x. Below, we use this conditional

independence to prove Theorem 2.

Proof. To obtain Eq. (4), we factor Eq. (14) in Lemma 1 into two probability models, each for y; and yg.
We first factor the numerator of Eq. (14) as follows:

1 . 1 . 1 1

= exp <_ysT (Q + dlag(é)) Ys — EY§dlag(6)yd - ysT (QHcis + Htr) Xs — 2ngcist>
1 1 .

=exp <2ysTAsys — yf®sxs> exp <2y§dlag(>\d)yd - ydT®dxd> .

We then factor the denominator in Eq. (14) as

.. . 1 Co e .
Z(x; A, 0) = (2m)%/2|A| 72 exp <—2'T®TA1®5<>

—-1/2 1 T 1 1 . -1 1
exp | —5X; §Hcis + 1L | | 2+ §d1ag(5) §Hcis + e ) Xs
—1/2 -1
1 1
exp <—2XdTHc¢s <2diag(5)> Hcisxd)

= Z(Xs§ AS7 @s)Z(Xd; Ad, ®d)

1
= (2m)1? |Q + §diag(6)

(2m)9/? %diag(é)
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Combining the results on the numerator and denominator above, we have the decomposition in Eq. (4).
The difference model is further factorized into ¢ single-gene models due to its diagonal inverse covariance
matrix diag(Aq):

1 .
P(ya | Xa; Ag, ©®q) = exp <—2ygdlag(>\d)}’d - ydT@dXd> /Z(x4; A, Oq)

= 1;[1 exp <_;[yd]ip‘d]i[Yd]i - [Yd]i[gd]i,;xgz) / ((QW)1/2[)\d],-_1/2 exp (—;XdT[Gd]Z: [Ad]il[(ad]i,:xd>>

[Teww (- 3lvalindivil - brab©ddxa ) /2xi il 0]

O

Notice that the transformation in Theorem 2 is an orthogonal transformation that involves rotation and
reflection of the original random variable y.

Proof of Corollary 1

yd Ly L O
Proof. Applying the transformation | y¥ | = Ry, where R = Ly —Lizy O |, to the random
S 0 0 I
Ys S|
v y
variable y of the hybrid model and reordering the random variables in yf to ;I lead to the
y
ys I
decomposition in Eq. (8). O

Parameter estimation with sum-difference model

We fit sum and difference models using sum and difference data derived from the original phased SNP
data and allele-specific or total expression data. Given SNP allele data Xy, , Xy, € {0,1}"*? and allele-
specific expression data Yj,, Yy, € R"*? for n individuals, we derive sum data, Xy = X, + X}, and
Y. =Y, + Yy, and difference data, X; = X, — Xy, and Yg = Y5, — Yp,. The (4,5)th element of
Y, for gene j and individual ¢ is available, only if the (i,j)th element of Y}, and Yy, is available. We
estimate the sum-difference model parameters A;, @4, Ay, and 4 by minimizing the L;-regularized negative
log-likelihood of the sum and difference data:

AS’G)M)\;%I; s.t.AS>ORS(AS’ ®s§Y57Xs) + Rd<Ad> G)d;Yd7Xd)7 (16)

where

Rs(As, O, Y, X,) = —log|As| +tr(A,Sy, +20,Sx.y. + A;'©,Sx.07)
+ A A+ re, [1Os]]4 (17a)

q

Ra(Ad, 04 Y4, Xa) = {— log[Adli + Adlispy,). +2[©dlissx, v, + Ay [©diSx,[©dl]

i=1

+2e.@adlly (17b)

with covariance matrices Sy, = Y!'Y,, Sx. = XTX,, Sx.y. = XY, S[Ya). = [Yd]Ti [Yd]w SXu[Yali =

9

)_(g [Yd]:,i, and Sx, = )_(g)_(d with mean-centered data Y, X,, Y4, and X4. The L; penalty || -|| encourages
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the estimates to be sparse with many zeros in the parameter matrices, and has the property of selecting
few SNPs with the most relevance to gene expression among many correlated SNPs in linked regions of
genome. The regularization hyperparameters Aa,, Ae., and Ag, control the level of sparsity in the estimated
parameters. We select the regularization hyperparameters with the Bayesian information criterion (BIC).

We solve Eq. (16) by sequentially minimizing Eq. (17a) and Eq. (17b) with Mega-CGGM. This amounts
to first finding a gene network and eQTLs perturbing this network in the sum model and then determining
whether these eQTLs are acting in cis in the difference model. When estimating the difference-model
parameters, we constrain the set of non-zero elements in ®, to be a subset of the non-zero elements in
the estimated ®, of the sum model, by constraining the active set to be this subset in each iteration in
Mega-CGGM. This ensures that cis-acting eQTLs in the difference model are also eQTLs in the sum model.
From the estimated A;, O, A4, and ©4 and from Egs. (5) and (6), we recover the multi-level model
parameters as Q@ = A; — diag(Ag), 6 = 2y, I = 204, and II;,. = ©; — O4. Then, we determine cis-acting
eQTLs based on the non-zero elements of Il ;s and trans-acting eQTLs based on the non-zero elements of
I1;, that are not cis-acting eQTLs. While the multi-level and sum-difference models give identical maximum
likelihood estimates, the L; regularization in Eq. (17a) and Eq. (17b) introduce bias that shrinks the
estimates towards zero to induce sparsity. To account for this shrinkage effect, the non-zero elements of @,
that are cis-acting eQTLs are ruled out as trans-acting eQTLs, even though they may have both cis and
trans effects.
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Table 1: GO terms enriched in CiTruss subnetworks from GTEx data

Whole blood Muscle skeletal |GO
Net|Over p-val|Net|Over p-val

ID | Size| lap [FDR]|Size| lap [FDR]| Term Size
L1 19 2 1.8x1073% 29 2 2.7x1073| BP Tumor necrosis factor-med. signaling pathway o7
L2 19; 10 1.6x1073| 26| 17 9.4x107°| BP Cellular metabolic process 5828
L3 27 2 9.3x107° 34 2 2.3x107%| BP Golgi vesicle budding 10
L4 17| 2 7.1x107% 14| 2 2.8x10 5 BP Neg. reg. of thymocyte apoptotic process’ 10
L5 25/ 23 1.0x107%°| 6| 6 1.1x10 '3 BP Immunoglobulin production’ 141
L6 10 1 1.8x1073| 11 1 1.6x1073|BP Lipid droplet fusion 3
L7 49 3 1.8x107% 58 4 3.1x10~8MF Hyalurononglucosaminidase activity 8
L8 | 204| 28 2.8x1036[159| 22 1.3x102°|BP Presentation of peptide antigen’ 71
L9 18 2 95x107%4 18 2 6.2x107%| BP Glycosyl compound metabolic process 85
L10| 18 1 2.9x1073 33| 1 5.6x10 3|BP Reg. of smooth muscle cell-matrix adhesion* 4
L11 13| 2 6.7x107?%| 17| 2 8.7x107°BP Pos. reg. of ruffle assembly 15
L12 13) 1 1.9x1073| 21 1 3.1x1073|BP Neg. reg. of protein K48-linked deubiquitination 2
L13 17 2 1.5x1073| 16 2  1.3x1073| BP Reg. of osteoclast differentiation 72
Li14 | 31| 2 7.8x107% 35 2 8.9x107 % BP Neg. reg. of relaxation of muscle* 7
L15 | 21| 1 1.3x107% 26/ 2 1.4x10~%BP Muscle filament sliding* 11
L16 | 10, 1 2.6x1073| 15| 2 1.0x10 5 BP Reg. of protein localization to microtubule* 5
L17 17/ 1  1.3x1073 16| 1 1.2x1073BP Pos. reg. chaperone-med. protein complex assembly 1
L18 12 1 1.0x1072| 20 2 1.2x107%| BP Resolution of meiotic recombination intermediates 17
L19 27 1 2.6x1073| 22 1 2.1x1073|BP Neg. reg. of macropinocytosis 1
L.20 38 2 4.4x107% 35 2 3.7x107%|MF Reg. of gene expression by genomic imprinting 17
L21 13 1 24x1073| 17| 1 3.4x1073|BP Traversing start control point of mitotic cell cycle 4
L22 27| 4 7.2x107% 29| 4 1.2x103|BP Activation of immune response' 370
L23 18] 3 1.8x107% 23| 3 4.1x10~* BP Regulation of DNA recombination 135
L24 24| 3 8.7x1077| 28/ 3 1.9x10-% CC Gamma-tubulin complex* 16
L.25 21 3 2.5x107% 23] 2 3.9x1073|BP Protein acylation 160
L26 8 1 8.7x1074| 10 1 8.7x107*|BP Very long-chain fatty acid beta-oxidation 1
L27 11 1 1.9x1072| 11 2 2.0x107%| BP Release of sequestered calcium ion into cytosol 63
L28 12| 11  1.2x107'0| 19| 15 4.7x107!3|BP Reg. of transcription by RNA polymerase II 2594
L29 13] 1 1.6x1073 20 1 2.9x1073|BP Acetyl-CoA biosynthetic process from acetate 2
L30 13 1 1.2x1073| 12| 1 1.0x1073|BP Nuclear migration along microfilament 2
L31 14 1 9.7x107%| 16 1 1.4x1073| BP Peptidyl-lysine butyrylation 1
Gwb[1847| 357 [1.4x10~27] BP Immune system process’ 2256
277 [7.3x10725] BP Immune response! 1625
135[2.1x10716] BP Adaptive immune response! 654
226 [1.4x10714] BP Reg. of immune system process' 1480
161 [2.2x10712] BP Pos. reg. of immune system process’ 972
140[9.6x10~ 10] BP Reg. of immune response’ 876
105 [3.6x1079] BP Reg. of leukocyte activation’ 595
92 [1.3x1078] BP Reg. of lymphocyte activation® 503
34 [4.2x1077] MF Antigen binding’ 124
49 [2.3x1077] CC Immunoglobulin complex! 169
31 [1.0x1073] CC T cell receptor complex' 149
Gms 590 47 [2.7x10~3]|CC Supramolecular polymer* 1050
45 [4.3x1073]|CC Supramolecular fiber* 1042
11[9.4x10-3]|CC Keratin filament* 102
52 [2.5x1072]| CC Supramolecular complex* 1414
15 [2.8x1072]|CC Sarcomere* 217
15 [4.8x10~2]| CC Myofibril* 238

TBlood GO terms
*Muscle GO terms
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Table 2: GO terms enriched in CiTruss global subnetworks from LGxSM AIL mouse data

Subnet |Over FDR |GO
ID|Size| lap Term Size
PFC
Gpl][ 109] 10 9.1x10~% | BP Amino acid transport 127
Gp2| 179| 34 3.1x1072 Nervous system development 2068
Gp3| 619| 70 4.1x1071'° Regulation of trans-synaptic signaling 597
Gp4| 420 44 1.9x10710 Regulation of trans-synaptic signaling 597
Gpb5| 105 4 9.1x1073 Dendritic spine morphogenesis 21
Gp6| 180 8 1.7x1073 Axon ensheathment 125
Gp7| 493| 100 4.5x10710 Nervous system development 2068
Gp8| 80 5 4.4x1072 Circadian regulation of gene expression 74
Gp9| 325| 32 4.3x10°° Regulation of trans-synaptic signaling 597
Gpl0| 44 8 4.1x10710 Translation at synapse 48
STR
Gsl| 102 9 2.6x10~2 | BP Regulation of synapse organization 304
Gs2| 57| 10 7.6x1078 Synaptic vesicle cycle 156
Gs3| 365 10 1.2x1073 Regulation of neuronal synaptic plasticity 74
Gs4| 93 7 2.2x1073 Axon ensheathment 125
Gs5| 658| 52 1.1x1077 Regulation of trans-synaptic signaling 597
Gs6| 226 24 1.2x1077 Synaptic signaling 437
Gs7| 164| 20 2.5x1078 Anterograde trans-synaptic signaling 365
Gs8| 173 48 9.5x107* Regulation of multicellular organismal process 3264
Gs9| 40 9 1.4x107* Anterograde trans-synaptic signaling 365
Gs10| 148| 20 4.5x107* Protein modification by small protein conjugation/removal 705
Gsll| 107| 20 1.2x1077 Regulation of trans-synaptic signaling 597
Gs12| 347| 27 2.1x107° Synaptic signaling 437
Gsl13| 94 - - -
HIP
Ghl| 97 7 1.1x10~2 | BP Cytoplasmic translation 113
Gh2| 68 8 1.3x107° Oxidative phosphorylation 113
Gh3| 74 - - -
Gh4[1027| 95 1.0x107'° Regulation of trans-synaptic signaling 597
Gh5| 542 50 4.4x10715 Synaptic signaling 437
Gh6| 57 - - -
Gh7|232| 12 1.5x1074 Synaptic vesicle cycle 156
Gh8| 200| 56 1.1x1072 Transport 3582
Gho| 112 17 7.3x107% Monoatomic cation transport 714
Gh10| 245| 12 4.7x10° Axon ensheathment 125
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Table 3: Overlap between trans-acting eQTL-eGenes and TF-targets.

Tissue eQTL TF eGenes Target TF /target function, GO term, PANTHER Pathway
Muscle rs77070948 MAZ INOSOE vy MAZ a transcriptional regulator of muscle-specific genes>"
skeletal (197Kb) ALDOA y INOSOE, ALDOA, PPP/C in muscle-related processes*0:41:42:43

PPP4C vy Muscle cell cellular homeostasis (p-val = 3.1x1072)
Muscle contraction (p-val = 3.2x1072)
1s6860615 TAF7 PCDHGB6y TAF7 in skeletal-muscle development /function %%

(162KDb) Cadherin signaling pathway (FDR = 1.75x1071?)
rs56106727 YY1 TMEM134 y YY1 skeletal-muscle regeneration and myogenesis 20-¥7-849
(216KDb) TMEM13/ associated with muscle activities®°

Neg. reg. of striated muscle contraction (p-val = 6.1x1073)
Neg. reg. of relaxation of smooth muscle (p-val = 1.4x1073)
Neg. reg. of smooth muscle cell chemotaxis (p-val = 2.7x1073)

STR 1529923332 TEAD HDGF13 y TEADJ, HDGFLS3 in neural cell development®T:>2
rs30263672 SPPL2A vy
rs215254472 SMC5 ELAVL) 'y SMC5, ELAVL/ in neuronal development 3%
HIP  rs224461134 HAND1 HIF1a y  HIFla is a regulator of oxygen sensing in brain®®
KCND2 y KCND2, HAND change expression under hypoxia 657
PPP3CA 'y PPP3CA down-regulates HIF transcriptional activity®®
16 others n
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Supplemental Figures
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Figure S1: Illustration of inference in CiTruss. The estimated multi-level model contains eQTLs with direct effects
(solid arrows). CiTruss infers eQTLs with indirect effects (dashed arrows) on the downstream genes in the gene
network.
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Figure S2: Comparison of CiTruss and other methods on the accuracy of cis-acting and trans-acting eQTLs in
simulation. Accuracy of cis-acting eQTLs when the frequency of heterozygous genotypes is (a) 0.05, (b) 0.25, and (c)
0.45. Accuracy of trans-acting eQTLs when the frequency of heterozygous genotype is (d) 0.05, (e) 0.25, and (f) 0.45.
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Figure S3: Performance of CiTruss partnered with the existing methods in simulation with the frequency of
heterozygous genotypes 0.25. Statistically significant eQTLs (5% FDR) from TReCASE, RASQUAL, WASP, and
Matrix eQTL were re-analyzed with CiTruss to select eQTLs with direct effects. The results from each of the existing
methods were compared against those from re-analysis with CiTruss. (a) TReCASE on the accruacy of cis-acting
eQTLs (left) and trans-acting eQTLs (right). Power at different FDR (top) and the number of true indirect eQTLs
detected as eQTLs (bottom) are shown for datasets with the frequency of observed allele-specific expression levels 1.0,
0.7, and 0.5 from top to bottom. (b) RASQUAL on the accuracy of cis-acting eQTLs. (c) WASP on the accuracy of
cis-acting eQTLs. (d) Matrix eQTL on the accuracy of eQTLs.
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Figure S4: Performance of CiTruss partnered with the existing methods in simulation with frequency of heterozygous
genotypes 0.45. Statistically significant eQTLs (5% FDR) from TReCASE, RASQUAL, WASP, and Matrix eQTLs
were re-analyzed with CiTruss to select eQTLs with direct effects. The results from each of the existing methods were
compared against those from re-analysis with CiTruss. (a) TReCASE on the accruacy of cis-acting eQTLs (left) and
trans-acting eQTLs (right). Power at different FDR (top) and the number of true indirect eQTLs detected as eQTLs
(bottom) are shown for datasets with the frequency of observed allele-specific expression levels 1.0, 0.7, and 0.5 from
top to bottom. (b) RASQUAL on the accuracy of cis-acting eQTLs. (c¢) WASP on the accuracy of cis-acting eQTLs.
(d) Matrix eQTL on the accuracy of eQTLs.
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Figure S5: Accuracy of gene networks estimated by CiTruss in simulation. The gene networks estimated by CiTruss
as a standalone method were compared with the networks from CiTruss re-analysis of statistically significant eQTLs

(FDR 5%) from TReCASE, RASQUAL, WASP, and Matrix eQTL, when the frequency of heterozygous genotypes in
samples is (a) 0.05, (b) 0.25, and (c) 0.45.
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Figure S6: CiTruss gene network from whole blood GTEx data. The same results as in Figure 3 are shown for muscle
skeletal.
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Figure S7: Matrix eQTL hotspots against CiTruss gene networks perturbed by eQTLs in muscle skeletal GTEx data.
The same results as in Figure 4 are shown for muscle skeletal.
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Figure S8: CiTruss eQTLs from whole blood GTEx data. The same results as in Figure 5 are shown for muscle
skeletal.
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Figure S9: Distance between CiTruss eQTLs and their eGenes in GTEx data. (a) Whole blood and (b) muscle
skeletal. Cis-acting eQTLs (left), trans-acting eQTLs (middle), and undetermined eQTLs (right).
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Figure S10: Comparison of CiTruss eQTLs for local subnetworks between whole blood and muscle skeletal in GTEx
data. (a) Cis-acting eQTLs, (b) trans-acting eQTLs, and (c) undetermined eQTLs in whole blood, muscle skeletal,
and the overlap between the two tissue types. The overlap shows the exact match in eQTLs between the two tissue
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Figure S12: Distance between CiTruss eQTLs and their eGenes in LG xSM AIL mouse data. (a) PFC, (b) STR, and
(c) HIP. Cis-acting eQTLs (left), trans-acting eQTLs (middle), and undetermined eQTLs (right).
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Figure S13: CiTruss gene network and eQTLs from LGxSM AIL mouse data for STR tissue. The same results as in
Figure 6 are shown for STR.
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Figure S14: CiTruss gene network and eQTLs from LGxSM AIL mouse data for HIP tissue. The same results as in
Figure 6 are shown for HIP.
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Figure S15: Comparison of CiTruss local subnetworks and eQTLs for local subnetworks across tissue types from
LGxSM AIL mouse data. (a) Local subnetworks, (b) cis-acting eQTLs, (c¢) trans-acting eQTLs, and (d) undetermined
eQTLs. PFC vs STR (left), PFC vs HIP (middle), and STR vs HIP (right). The overlap in eQTLs shows the eQTLs
within 500kb distance.
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Supplemental Tables

Table S1: Genome regions for CiTruss subnetworks and Matrix eQTL hotspots in GTEx data

Subnetworks (CiTruss)

eQTL Hotspots (Matrix eQTL)

Subnet Whole Muscle Hotspot Whole Muscle

Chr ID | blood (Mb) | skeletal (Mb) ID | blood (Mb) | skeletal (Mb)

1 L1 1.2- 1.5 1.2—- 1.6 elll 1.2- 14 1.2—- 1.5

1 L2 | 448- 464 | 44.8—- 46.4 el.2 — | 454- 46.1

1 L3 | 149.8—151.2 | 149.8— 151.3 elL3 | 150.4-151.2 | 149.6—- 151.2

1 L4 | 155.1-156.1 | 155.1— 156.1 ell4 | 155.2—156.0 -

2 L5 | 88.9- 90.2 | 83.9- 89.2 elLb | 88.9- 95.3 -

3 L6 9.9- 10.2 9.9- 10.2 eL6 9.9- 10.1 -

3 L7 | 484- 51.7 | 479- 51.7 eL7 | 484- 50.5 | 48.2— 51.1

6 L8 | 26.0- 332 | 26.0- 33.0 eL8 | 259- 329 | 259- 329

7 L9 | 66.0- 673 | 66.0— 67.3 elL9 | 65.6— 66.9 -
10 L10 | 73.0- 739 | 722- 739 eL10 | 734- 739 | 729- 739
11 L11 0.4- 0.7 04- 0.7 eL11 - 0.5- 0.7
11 L12 | 62.6- 62.7 | 62.6— 62.9 eL12 | 625- 62.7 | 62.5—- 629
11 L13 | 64.2— 644 | 64.2— 644 elL13 | 64.1- 64.3 | 64.1- 64.2
11 L14 | 66.3—- 676 | 66.3— 67.6 eL14 - | 66.4- 66.7
12 L15 | 55.7— 564 | 55.7— 56.4 el.15 — | 55.7— 56.2
15 L16 42.7— 43.8 42.7— 438 elL16 - 43.1—- 44.0
16 L17 0.6- 0.7 0.6- 0.7 eL17 06— 0.7 06— 0.7
16 L18 1.5- 1.8 1.5- 20 eL18 | 1.753-1.800 1.5- 1.9
16 L19 | 30.7- 315 | 30.7— 31.2 eL19 - 30.8- 31.2
16 L20 | 66.5— 684 | 66.7— 684 elL20 | 66.9—- 684 | 66.9— 684
16 L21 | 89.6— 90.0 | 89.6— 90.0 el.21 -1 90.0- 90.0
17 L22 48— 5.5 48— 5.6 el.22 | 4.838-5.049 4.8- 54
17 L23 74— 1.7 74— 77 el.23 - 75— 7.6
17 L24 | 42.5—- 434 | 425- 434 el.24 — | 43.0- 434
17 L25 | 45.0— 46.7 | 45.0— 46.7 el25 | 452- 649 | 45.3- 64.9
17 L26 | 75.8— 76.0 | 75.8— 76.0 el.26 - | 75.9- 759
19 L27 | 164- 166 | 16.5— 16.7 ell27 | 164- 16.7 | 16.4— 16.6
19 L28 | 57.6— 58.0 | 57.5— 58.0 el.28 - | 57.7— 58.0
20 L29 | 349- 36.1 | 34.5- 36.1 el.29 - | 354- 36.1
22 L30 | 38.5- 38.8 | 385- 387 eL30 | 38.6- 38.8 | 38.5- 388
22 L31 41.1- 41.7 41.1—- 417 el.31 - 41.3— 41.8
All Gwb | Everywhere - eGwb | Everywhere -
All Gms - Everywhere eGms - Everywhere
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Table S2: Genome regions of CiTruss local subnetworks and the corresponding Matrix eQTL hotspots in LG xSM
AIL mouse data

Local Subnetworks (CiTruss) eQTL Hotspots (Matrix eQTL)
Subnet PFC STR HIP Hotspot PFC STR HIP
Chr| ID|  (Mb) (Mb) (Mb) ID|  (Mb) (Mb) (Mb)
2 L1|113.8— 129.1{118.5-127.0{102.3— 129.1 elL1/103.5—-128.9{114.8-127.21101.9-128.9
2 L2|154.7-156.4*|155.3 - 158.6|155.3 — 156.6* elL2|148.9-158.6{154.3 - 157.6|154.3 - 158.6
3 L3 - —1122.0—- 127.8 el.3 - —|118.8-128.5
5 L4]144.7— 147.0 - - ell4]144.3-147.2 - -
7 L5 —| 28.5—- 344 - elL5 - 30.1- 36.3 -
7 L6 — —| 81.6—-114.7* elL6 — —| 81.9-115.0
7 L7|109.5—- 114.7{105.7—114.7 - el.7|105.7—-115.0{105.7—115.0 —
8 L8| 11.3— 13.7| 11.5—- 14.0 - elL8| 11.2— 12.3| 11.2— 14.5 -
8 L9| 82.9- 85.7| 83.3— 85.1| 82.9—- 85.8 el9| 799- 86.9| 79.9- 86.9| 79.9- 87.9
9 L10| 95.6—- 97.1 —| 89.7— 101.0 eLL10] 93.2— 975 —| 83.9-100.2
9 L11(119.3- 120.6 —(119.3-120.6* ell11|119.1-121.3 —(119.1-124.2
10 L12 —1127.0-128.5* ell12 —1127.2-129.9

11 L13| 68.9- 70.7] 68.9-78.3"| 68.9~ 783 eL13| 64.7— 76.3] 68.1- 76.3| 58.9— 79.9
11 L14 - -1 94.0- 95.0 eL14 - -1 92.3— 96.5

12 L15 - - 179—- 17.9 elL15 - - 16.0— 25.0
13 L16| 23.4— 25.3] 24.0—- 25.3| 24.8— 253 eL16| 20.2— 29.6] 22.8— 29.6| 20.2— 29.6
13 L17 - —(103.8— 103.9 eLl17 - —1103.4-104.2
15 L18| 81.7— 83.5*| 82.0-83.9"| 81.9— 82.0* eL18| 81.9- 84.4| 82.0- 86.6| 81.7— 85.4
16 L19| 31.3- 32.0* - 32.0- 38.2 eL19] 29.6 - 334 - 29.6- 479

17 L20| 32.8— 41.0| 32.8— 35.8

eL20] 9.2- 43.0| 30.8—- 43.0 -
17 L21 -

—| 32.8— 35.8 el21 —| 324 35.5

*No edges in the local cluster, but edges to the global cluster.
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Table S3: Genome regions of Matrix eQTL hotspots for CiTruss global subnetworks in LGxSM AIL mouse data

Hotspot PFC STR HIP
Chr ID (Mb) (Mb) (Mb)
1 eG1 - 71.0- 71.1 -
1 eG2 - —| 785- 79.9
1 eG3 - —|175.6—-178.8
4 eG4 -1 36.2— 36.3 -
4 eG5| 40.3- 41.7 - -
4 eG6| 53.2—- 534 - -
4 eG7 - —|155.3-155.3
5 eG8(113.2-114.1 —| 90.3-1144
) eG9 —1125.0—-125.1 -
6/ eGl10 - 28.6— 32.3 -
6] eG11|127.2-128.3|124.8—128.1|123.6—133.9
6| eG12|144.9-147.5 - -
8 eGl3 - —| 11.6— 14.0
9 eGl4 - 31.3— 36.5 -
10 eG15|115.5-115.5 - -
10| eG1l6 - —1117.6-119.0
10|  eG17 - -1121.6 -122.1
11|  eG18| 58.7— 58.8 —| 56.8— 58.9
11| eG19 - —|1105.2—106.8
12|  eG20{100.6—-100.8 - -
12|  eG21 -1107.5-107.7 -
13| eG22 - -1 99.1- 99.1
14| eG23| 54.4— 54.5 - -
17)  eG24 - —| 28.9- 29.3
18| eG25 - 23.5— 23.5 -
18| eG26 —| 57.7— 57.8 -
19|  eG27 - 22.7- 23.3 -
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