Check for
Updates

Boosting Practical Control-Flow Integrity with Complete Field
Sensitivity and Origin Awareness

Hao Xiang
State Key Lab of ISN
School of Cyber Engineering
Xidian University
Xi’an, China

Jianfeng Ma
State Key Lab of ISN
School of Cyber Engineering
Xidian University
Xi’an, China

ABSTRACT

Control-flow integrity (CFI) is a strong and efficient defense mech-
anism against memory-corruption attacks. The practical versions
of CFL, which have been integrated into compilers, employ static
analysis to collect all possibly valid target functions of indirect
calls. They are however less effective because the static analysis is
imprecise. While more precise CFI techniques have been proposed,
such as dynamic CFI, they are not yet practical due to issues on
performance, compatibility, and deployability. We believe that to
be practical, CFI based on static analysis is still the promising di-
rection. However, these years have not seen much progress on the
effectiveness of such practical CFL

This paper aims to boost the effectiveness of practical CFI by
dramatically optimizing the target-function sets (aka equivalence
class or EC) of indirect calls. We first identify two fundamental lim-
itations that lead to the imprecision of static indirect-call analysis:
incomplete field sensitivity due to variable field indexes and the
unawareness of the origins of point-to targets. We then propose
two novel analysis techniques, complete field sensitivity and origin
awareness, which handle variable field indexes and distinguish tar-
get origins. The techniques dramatically reduce the size of target
functions. To enforce the origin awareness, we further employ Intel
Memory Protection Keys to safely store the origin information. We
implement our techniques as a system called ECCuT. The evalua-
tion results show that compared to the mainline LLVM CFI, ECCut
achieves a substantial reduction of 94.8% and 90.3% in the average
and the largest EC sizes. While compared to the state-of-the-art
origin-aware CFI (i.e., OS-CFI), ECCuT reduces the average and
the largest EC sizes by 90.2% and 89.3% respectively. Additionally,

*Corresponding author (email: jkli@xidian.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670308

Zehui Cheng
State Key Lab of ISN
School of Cyber Engineering
Xidian University
Xi’an, China

Jinku Li*

State Key Lab of ISN
School of Cyber Engineering
Xidian University
Xi’an, China

Kangjie Lu

University of Minnesota-Twins Cities

4524

Minneapolis, USA

ECCur introduces an acceptable performance overhead (7.2% on
average) observed across a comprehensive range of C/C++ bench-
mark tests in SPEC CPU2006, SPEC CPU2017, and six real-world
applications.

CCS CONCEPTS

« Security and privacy — Systems security; Software and
application security.

KEYWORDS

Control-flow integrity, Static analysis, Complete field sensitivity,
Origin awareness

ACM Reference Format:

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu. 2024.
Boosting Practical Control-Flow Integrity with Complete Field Sensitivity
and Origin Awareness. In Proceedings of the 2024 ACM SIGSAC Conference
on Computer and Communications Security (CCS "24), October 14-18, 2024,
Salt Lake City, UT, USA. ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3658644.3670308

1 INTRODUCTION

The direct memory-access capability of C and C++ programs pro-
vides excellent performance but also allows memory-corruption
attacks. For example, an attacker can tamper with function pointer
or return address data in memory through buffer overflow vulner-
abilities, thereby reversing the control flow of a program to an
illegitimate location. Such memory corruption has been considered
the most critical and common attack since 1980s [6].

To address this issue, various defense mechanisms have been
proposed, including NX bit [22], stack canary [11], memory ran-
domization [54], control-flow integrity (CFI) [2], memory safety [3],
etc. Among these mechanisms, CFI is a particularly promising one
because it provides a strong defense against memory-corruption
attacks, and more importantly, it is practical—claimed to be less
than 1% of runtime overhead [4], integrated into compilers [55],
and adopted by major software vendors such as Microsoft and
Google [41, 55].

The idea of CFI is to ensure that the control flow, which deter-
mines the order in which the instructions of a program are exe-
cuted, adheres to predefined rules and constraints, known as the

https://orcid.org/0009-0005-3598-6708
https://orcid.org/0009-0005-3330-6369
https://orcid.org/0000-0003-0709-7434
https://orcid.org/0000-0003-4251-1143
https://orcid.org/0000-0002-4763-7354
https://doi.org/10.1145/3658644.3670308
https://doi.org/10.1145/3658644.3670308
https://doi.org/10.1145/3658644.3670308
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670308&domain=pdf&date_stamp=2024-12-09

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

control-flow graph (CFG). Since the introduction of CFI, a stream
of CFI solutions have been designed [4-6, 12, 15-21, 23, 25, 28—
30, 35, 39, 40, 42—-45, 47, 55, 57, 60-63]. In the early stage, a num-
ber of CFI systems mainly use coarse-grained CFGs to enforce
protection [2, 55, 62, 63]. However, subsequent research shows
that coarse-grained CFIs can be bypassed by well-designed at-
tacks [7, 10, 17, 23]. In response, later researchers adopt flow-
sensitive and field-sensitive approaches to implement fine-grained
CFI protection [21, 35, 40, 47], which improves the security of pro-
grams. Unfortunately, the existence of multiple jump targets for an
indirect call is a common case in generic programs, which can be
exploited by advanced attackers to implement control flow “bend-
ing” between equivalence classes (ECs) [6, 36]. Note that an EC
is a set of targets for an indirect control transfer (ICT) ! that are
indistinguishable from each other. In other words, CFI is not able
to identify control-flow deviations inside an EC.

Overall, recent CFI techniques can be classified into two cate-
gories. The first category typically generates CFGs through static
analysis and verifies the legitimacy of the target when an ICT
occurs. The static analysis employs either point-to analysis or type-
based analysis to conservatively find all possible targets of indirect
calls. As this category of CFI has been integrated into compilers
and adopted by major software vendors, we refer to this category
as practical CFL The second category focuses on further reducing
the size of target functions by relying on dynamic analysis when
more information is available. We refer to this category as dynamic
CFIL In general, the dynamic CFI offers improved security, but its
practicality may be constrained by factors like performance, com-
patibility, and deployability. For instance, to achieve high-precision
CFG, uCFI [25] records an extensive amount of contextual infor-
mation with Intel process tracer (PT), causing PT to lose packets.
This leads to pCFI impractical for the programs with substantial
codebases. While PathAmror [57] utilizes Intel processor’s Last
Branch Record (LBR) to record program-specific execution paths
but is limited by the fact that LBR can only record the last sixteen
branches, which limits its ability to generate dynamic CFGs and
allows it to focus protection only on critical system calls.

We believe that to be practical, CFI based on static analysis is still
the promising direction. Existing compilers and software vendors
all adopt this kind of CFI [41, 55]. That said, a major concern with
practical CFI is its effectiveness resulting from the imprecise static
analysis which leads to large EC, i.e., an over-approximation of
control-flow transfers which allows more indirect call targets than
there should be [4]. Critically, these years have not seen much
progress on the effectiveness of such practical CFIL.

In this paper, we propose a new approach, called ECCut, which
boosts the effectiveness of practical CFI by greatly reducing the
average and the largest EC sizes with novel analysis techniques.
In particular, we first conduct an empirical analysis to identify the
major causes of the imprecision of static analysis. We found that
existing static analysis claims to be field-sensitive; in reality, their
field sensitivity is far from complete due to the common variable
indexes in struct accesses. We observe that even the state-of-the-art
pointer-to analysis tools (e.g., SVF [53]) and type-based analysis [40]
are field-insensitive in many cases—when there is a variable index

!In this paper, we use ICT to indicate forward-edge control-flow transfers.

4525

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

in struct access (which is very common), they downgrade to field-
insensitive analysis. This issue amplifies exponentially with a higher
number of variable indexes, leading to imprecise analysis results. In
addition, existing static analysis (both point-to analysis and type-
based analysis) is unaware of the origins (i.e., sources) of function
pointers and conservatively combines all possible targets regardless
of origins. Even worse, the origin tracking for ICTs is essentially a
taint analysis process. Although function addresses are usually not
as widespread as the regular data (e.g., a network packet) [51], it is
still a path explosion problem.

To address the problems, we propose complete field sensitivity
and origin awareness. Note that the concept of “completeness” here
means when a function pointer variable is located in an array or a
(nested) sub-field of a struct, ECCUT can analyze it to the ultimate
location to get its precise value, regardless of whether its index is a
constant or a variable. Thus, our complete field sensitivity supports
both constant and variable indexes. We develop an optimization
mechanism to properly integrate runtime acquisition of variable in-
dexes; the runtime acquisition is minimized and placed in a location
with the highest EC reduction, which refers to the specific index
location selected by us to achieve the optimal reduction in EC size.
On the other hand, our novel origin-awareness approach employs
static analysis to trace program path information backwardly from
the ICT and strives to identify paths containing function pointer
assignments. This approach helps circumvent the performance over-
head incurred by parsing a large volume of path information at
runtime and contributes to a reduction in average EC size.

To validate our approach, we develop a prototype of ECCuT
with LLVM [33] compiler and SVF [53]. In addition, as a complete
field-sensitive and origin-aware CFI, we leverage the Intel Memory
Protection Keys (MPK) [27, 46] to record the variable indexes in
struct accesses and protect the origin information. Our evaluation
with standard benchmarks, real-world applications, and real ex-
ploits shows a significant reduction in both the average and the
largest EC sizes, which can effectively defend against control-flow
hijacking attacks. In comparison to the mainline LLVM CFI [55],
ECCur achieves a remarkable 94.8% reduction in the average EC
(from 32.4 to 1.7 on average) and a 90.3% reduction in the largest EC
(from 154 to 15 on average). While compared to the state-of-the-art
origin-aware CFI system [30], ECCuUT reduces the average EC by
90.2% (from 17.3 to 1.7 on average) and the largest EC by 89.3%
(from 140.2 to 15 on average). In addition, our approach incurs
an acceptable performance overhead (7.2% on average) observed
across SPEC CPU2006, SPEC CPU2017, and six real-world applica-
tions. To engage the community, we will release the source code of
ECCur at https://github.com/XDU-SysSec/ECCut.

In summary, our paper makes the following contributions:

o We identify two fundamental limitations with existing prac-
tical CFI and propose two novel techniques to address them:
complete field sensitivity and origin awareness for signifi-
cantly reducing the EC size of indirect-call targets.

e We implement a prototype of ECCuTt, which constructs
highly accurate CFGs through static path-based origin anal-
ysis and complete field analysis. Additionally, we leverage
Intel MPK technology to safeguard the runtime origin infor-
mation.

https://github.com/XDU-SysSec/ECCut

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

e We thoroughly evaluate the security and performance of
ECCurt using standard benchmarks, real-world applications,
and real exploits. The results show that ECCuT significantly
reduces the average and the largest EC sizes with an accept-
able performance overhead.

2 BACKGROUD AND MOTIVATION
2.1 Practical CFI vs. Dynamic CFI

We define practical CFI as the ones that use static analysis to resolve
indirect-call targets, which have been integrated into compilers [55].
Such CFI does not require expensive dynamic analysis or heavy-
weight code instrumentation; therefore, they tend to be highly
efficient (e.g., as low as 1% of runtime overhead according to LLVM
CFI) and easily deployable. Note that such CFI might record some
(light) facts at runtime to assist in later verification [30].

We define dynamic CFI as the ones that rely on dynamic analysis
to precisely determine the correct target of indirect calls. The dy-
namic CFI has the following limitations that impede their practical
utility. First, dynamic CFIs [18, 25, 45] rely on a significant number
of contexts to generate dynamic CFGs, introducing additional per-
formance overhead to the system. Second, certain CFIs [18, 25, 57]
that employ dynamic methods may require specific hardware fea-
tures like LBR and PT support, which restrict their applicability to
systems without these features. Third, due to constraints in system
design, dynamic CFIs are often limited in their ability of protecting
specific objects or components. For example, PittyPat [18] utilizes
PT to record execution path and constraint data information that
is so voluminous as to lose packets, which prevents it from being
applied to large programs. The protections of PittyPat, PathAmror,
and pCFI only cover selected syscalls.

2.2 Field Insensitivity of Practical CFI

We observe that the primary reason for large EC sizes lies in the
presence of a large number of function pointer-typed fields within
nested structs. Consequently, a natural approach to address this
issue is to employ a field-sensitive policy. Nevertheless, the state-
of-the-art analysis tools (e.g., SVF [53] and MLTA [40]) with field
sensitivity do not adequately decompose the largest EC. The funda-
mental problem is that their analysis falls back to field insensitivity
whenever a variable index is encountered, which is common. We
demonstrate this issue with the example as shown in Figure 1.

Specifically, 458.sjeng is a benchmark program written in C
language from SPEC CPU2006, which is designed for playing chess
and various chess variants. It features only one ICT located at
lines 13-15. The function pointer within this ICT is composed of
array evalRoutines and variable piecet(i) as an offset. Array
evalRoutines hosts a total of seven targets from line 3 to line
9. However, since piecet(i) is a variable, certain tools like SVF
degrade to field insensitivity when analyzing this ICT, resulting in
an EC size of 7.

An even more concerning scenario arises when the function
pointer is located in a nested struct with multiple layers. In such
cases, the analysis results grow exponentially with an increase in the
number of variable offsets. To tackle this issue, we introduce a com-
plete field-sensitive policy. This approach records the variable offset
values (depicted as piecet (i) in Figure 1) at runtime and combines

4526

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

1 typedef int (*EVALFUNC)(int sq, int c);
2 static EVALFUNC evalRoutines[7]={

3 Errorlt,

4 Pawn,

5 Knight,

6 King,

7 Rook,

8 Queen,

9 Bishop

10 };

11 int std_eval(int alpha, int beta){

12 for(j=1, a=1; (a<=piece_count); j++){
13 score +=

14 (*(evalRoutines[piecet(i)]))

15 (i,pieceside(i)); //ICT

16 3}

17 3}

Figure 1: The indirect call and targets in 458.sjeng.

it with the CFG generated through static analysis, effectively seg-
menting the largest EC of the program. Our initial study shows that
it is able to break down the largest EC in 445. gobmk benchmark
from 1637 to 14 after introducing a complete field-sensitive policy
to the analysis, which significantly reduces the potential attack
surface (see details in Section 5.1). Among the two typical bench-
marks used for field-insensitive analysis, 400 . perlbench exhibits
the largest EC size of 349, while 445. gobmk has the largest EC size
of 1637. Our study indicates that the function pointers located in
nested structs of 445.gobmk are all affected by variable indexes;
and 22% of function pointers within structs in 400.perlbench are
affected by variable indexes, and more than half of these pointers
have 349 targets.

2.3 Origin Unawareness of Practical CFI

In the following, we illustrate the limitations of origin-unaware
CFIs using areal program (i.e., 400 . perlbench benchmark program
from SPEC CPU2006) as depicted in Figure 2. Within this figure,
there exists an ICT situated at line 2, and the function pointer
of this ICT is compare, which serves as an argument to function
S_gsortsvu. This ICT comprises multiple origins, and we only
present three representative ones in the figure: at lines 5, 8, and 24,
labeled as origin1, origin2, and origin3, respectively.

During program execution, the function pointer compare ac-
quires different values from distinct origins contingent upon the spe-
cific circumstances. For instance, it can receive the target cmpindi-
r_desc or cmpindir from originl depending on the value of
flags. Alternatively, compare can obtain the target cmp_desc from
origin2, which also includes just one direct call in line 9. In the
case of origin3, compare can take targets between sortcv_xsub,
sortcv_stacked, and sortcv, which is determined by the values
of is_xsub and hasargs.

The presence of these three origins puts origin unawareness CFIs
into an invalid state. For example, CFI-LB [29] is very weak against
this function pointer, which assumes that the function pointer can
take any value. OS-CFI [30], although somewhat origin-aware, can
only recognize origin2, and it is not aware of the existence of
originl and origin3. Consequently, it will lead to the reduction

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

1 STATIC void S_gsortsvu(..., SVCOMPARE_t compare) {

2 s = compare(...); //ICT

3%

4 STATIC void S_gsortsv(..., SVCOMPARE_t cmp, U32 flags) {
5 S_gsortsvu(..., flags ? cmpindir_desc : cmpindir); //origini
6 if (...) {

8 cmp = cmp_desc; //origin2

9 S_gsortsvu(..., cmp);

10} else {

11 S_gsortsvu(..., cmp);

12 }

13 3}

14 void Perl_sortsv(..., SVCOMPARE_t cmp) {

15 void (*sortsvp)(..., SVCOMPARE_t cmp, U32 flags) =

— S_mergesortsv;

16 if (...) {

17 sortsvp = S_qgsortsv;

18 else

19 sortsvp = S_mergesortsv;

20 sortsvp(..., cmp, 0);

21}

22 OP* Prel_pp_sort(){

23 void (*sortsvp)(..., SVCOMPARE_t cmp) = Perl_sortsv;
24 sortsvp(..., is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked
< @ sortcv); //origin3

25 3}

Figure 2: The indirect call and targets in 400.perlbench.

of EC size (from 6 to 2 on average) if being aware of originl and
origin3.

3 SYSTEM DESIGN
3.1 Overview

Threat Model and Assumptions. In this work, we assume non-
writable code (NWC) and non-executable data (NXD), as the original
CFI [2] does, thus attackers cannot modify code memory at runtime,
or execute data as if it were code. Meanwhile, we assume that
attackers have full access to the memory space and can tamper with
function pointer data in arbitrary writable areas. Also, our system
is designed to be open and transparent to attackers. Further, as we
leverage MPK to safeguard runtime context information, we assume
that MPK protection cannot be bypassed, e.g., by leveraging unsafe
WPKRU or XRSTOR instructions or OS abstractions demonstrated
by previous researches [9, 24, 48, 56, 59]. Thus, we assume that the
MPK protection is trustworthy and its security limitations are out
of scope. Moreover, side-channel attacks are also out of scope in
this work.

To achieve the goal of defending against control-flow hijacking
attacks within the threat model, the entire system is divided into
two distinct parts: static analysis and runtime verification. The
static analysis phase primarily employs complete field sensitivity
and origin awareness to create CFGs. Specifically, we first utilize
the practical origin-aware policy to analyze the IR and identify the
origins. Then, we employ SVF [53] to analyze the function pointers
from the identified origins and generate CFGs. Finally, we enhance
the CFGs with complete field sensitivity. The runtime verification
phase is responsible for using runtime origin information to validate
whether the jump targets of ICTs are within the CFG.

4527

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

Table 1: Target sets corresponding to all possible cases of
offsetl and offset2.

(offset1, offset2) | Target Set
(0, 0) setl
0,1) set2
(0, 2) set3
(1,0) set4
(1, 1) set5
(1,2) set6

3.2 Static analysis

3.2.1 Practical Origin-Aware Policy. Our practical origin-aware
policy aims to split the EC of an indirect call based on the origin
of the function pointer, which will reduce the EC size. Our key
observation here is from the intuition that the actual target of an
indirect call is based on the sources of the function pointer—what
values are assigned to it. A natural solution would be employing a
path-sensitive analysis, which is however impractical due to path
explosion.

To address this problem, we introduce a new origin-aware policy.
In particular, for the C-type indirect call, our practical origin-aware
policy analyzes the def-use chain of function pointers to identify
origins, which consist of assignments to function pointers or structs
containing function pointers. To the greatest extent, the policy en-
sures that these assignments are original assignments to function
pointers. An “original assignment” means that the value of the func-
tion pointer in the assignment instruction is an explicitly defined
function or an initialized global variable, allowing for the direct
identification of the jump target for the ICT passing through this
origin.

When handling the C++ virtual calls, we can directly determine
that the origins are in the constructor of the class in which the
virtual call pointer is located. This is because the virtual functions
in a class are stored in a virtual table. When a class object is allocated,
the virtual table is assigned to the member variables of the object
in the constructor. It is worth pointing out that some virtual calls
do not follow the assignment method described above, in which
case we can handle them as we do with indirect calls.

3.2.2 CFG Construction. Undoubtedly, the CFG plays a critical role
in the security of the CFI system. This is because any errors (e.g., a
false negative) within the CFG can potentially result in issues within
the CFI system, thus disrupting the execution of the entire program.
Consequently, the creation of accurate and highly precise CFGs is
very important. Ideally, if all the origins identified by the practical
origin-aware policy consist of original assignments, a flawless CFG
can be directly generated. However, factor considerations lead to
the situation that not all the origins are original assignments (see
detail in Section 4.3). This necessitates the use of a pointer analysis
tool to construct the CFG. As a result, we select SVF [53], a precise
static points analysis tool that claims to be context-, flow-, and
field-sensitive, to generate the CFG.

Although SVF only needs to generate CFGs for source points
that are not original assignments, there are still two problems.

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

First, SVF may encounter difficulties in analyzing certain bench-
marks(400.perlbench, 403.gcc, 445.gobmk, 447 .dealll, 450.s-
oplex, 453.porvray, 471.omnetpp, 483.xalancbmk) [30]. Specif-
ically, SVF may return wrong results in the points-to sets (e.g.,
functions with wrong signatures) and return empty results because
of language features it does not support (e.g., C++’s pointers to
member functions). Second, although the practical origin-aware
policy is looking for all origins as much as possible, there are still
some ICTs whose origins cannot be successfully obtained. In such
cases, we utilize type-based matching as a last resort to ensure that
the CFG has no false negatives, although this approach may result
in a larger EC size. Fortunately, the percentage of such ICTs is small
(see details in Section 5.1).

Next, we give the composition of CFG tuples. Due to the intro-
duction of type-based matching, in total, we have three forms of
CFG tuples:

e (ICT_id, Path_id, Target): This tuple is for the practical
origin-aware policy. ICT_id denotes the marker of the indi-
rect call. Path_id denotes the marker of the origin informa-
tion. And Target denotes the value of the function pointer.
(ICT_id, Path_id, Target, Offset): This tuple is for complete
field-sensitive policy as described in Section 3.2.3. ICT_id,
Path_id, and Target denote the same as the practical origin-
aware policy. And Offset denotes the variable offset.
(ICT_id, Target): This tuple is for the CFG of the ICT that
uses type-based matching.

3.2.3 Complete Field-Sensitive Policy. As the state-of-the-art point-
to analysis tool, SVF [53] claims to be field sensitive. However, its
field sensitivity will degrade to field insensitivity when it encounters
function pointers whose values are determined by the variable
offsets of the struct. This leads to a great largest EC (e.g., 1637 in
445 . gobmk) in the CFGs generated by SVF, so we need to enhance
the generated CFGs by introducing a complete field-sensitive policy.

We assume the presence of a function pointer within a struct,
characterized by two variable offsets: of fset1 which ranges from
0 to 1, and of fset2 which ranges from 0 to 2. Table 1 shows the
set of targets corresponding to all their possible values. This in-
formation can also be derived through static analysis of the global
variable housing the function pointer. An ideal scenario would in-
volve recording the values of offset1 and of fset2 separately at
runtime, then matching these values to their respective target sets
and verifying if the function target belongs to the set before an
indirect call. However, this solution comes with a considerable per-
formance cost, particularly when the number of offsets increases:
the overhead of storing the offsets at runtime grows linearly, and
the overhead of looking up the corresponding target sets escalates
exponentially.

To achieve a balance between performance overhead and secu-
rity, our complete field-sensitive policy selects an offset that mini-
mizes the largest EC during the static analysis phase. We only record
the value of this offset at runtime. It is worth pointing out that the
removed contexts are not redundant and it reduces the security
without that. However, we believe it is an optimal choice for com-
bined consideration of security and performance. For of fset1, its
largest EC is equal to max({set1, set2, set3}, {set4, set5, set6}).For
of fset2, its largest EC is equal to max({set1, set4}, {set2, set5},

4528

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

{set3, set6}).If of fsetl has the smaller largest EC, we change the
CFG of this ICT from (ICT_id, Path_id, {set1, set2, set3, set4, set5,
set6}) to (ICT_id, Path_id, {set1, set2, set3}, 0) and (ICT_id,
Path_id, {set4, set5, set6}, 1). Otherwise, if of fset2 has the smaller
largest EC, we change the CFG of this ICT from (ICT_id, Path_id,
{set1, set2, set3, setd, set5, set6})to (ICT_id, Path_id, {set1, set4},
0) and (ICT_id, Path_id, {set2, set5}, 1), Path_id, {set3, set6}, 2).
When the program executes, we can leverage the recorded value
of offset1 or offset2 to determine which CFG tuples should be
compared to the jump targets of this ICT.

When there is only one variable offset, we directly select it as the
context information for runtime recording; when there are multiple
offsets, we can use the above method to select an appropriate offset
as the context information for runtime recording. By employing the
field-sensitive policy, we significantly break down the largest EC.
For instance, we have decomposed the EC of 1637 in 445. gobmk
into 14 (see details in Section 5.1).

3.3 Runtime Verification

Runtime validation is a critical step to ensure that the jump targets
of ICTs have not been tampered with. It leverages the collected
runtime information in conjunction with the CFG to ascertain
the legitimacy of the targets. ECCuT employs a hash table named
runtime table to store runtime context information. Entries in this
table are indexed by the hash of the function pointer address, which
is computed by the variant xxhash algorithm.

The validation process consists of two steps. First, the system
verifies whether the function pointer address and the target match
within the runtime table. This step ensures that the function pointer
has not been tampered with from the origin to the indirect callsite.
Second, the Path_id and Of f'set (if exists) values are retrieved from
the runtime table. For practical origin-aware policy, this includes
origin information, while complete field-sensitive policy involves
the offset and origin information. These pieces of data are combined
to create a tuple, which is then one-to-one correspondence within
the CFGs to confirm its existence. This process effectively identifies
tampering of function pointer values that may have occurred before
origins. However, note that this approach cannot detect tampering
of jump targets within an EC [36].

3.4 Metadata Storage

Throughout the ECCuT system design, two types of data need to be
protected: CFGs generated by static analysis and runtime contextual
information stored in the runtime table. For CFG data, we can just
keep it in read-only memory as the previous CFI systems have
done to ensure security. But this does not work for the runtime
context information, because we have to update those data in real-
time while the program executes. Protecting data that is readable
and writable at runtime is always a challenge. To achieve that, we
use the Intel MPK [27, 46] feature to protect runtime contextual
information in the runtime table.

Specifically, MPK [27] can protect memory by setting access
rights to memory pages. The runtime information of the program
is stored in the runtime table, storing the tuple (Ptr_addr, Target,
Path_id, Offset). When the program executes, we request a large
enough piece of memory and set it as access-disabled; when we

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

need to record context information, we set it as write-disabled, and
check the corresponding hash indexes to avoid the hash collision.
While it is possible to access the corresponding entry for Ptr_addr
based on its hash value, the challenge lies in distinguishing whether
this hash corresponds to Ptr_addr or is the result of a hash collision
caused by some other address, so we keep the function pointer in
the runtime table. If the hash value comes from the other address,
we save it to the next tuple where Ptr_addr is empty or to the same
location as its function pointer address. When we insert the runtime
table, we set the memory as writable, update the tuple information,
and reset the memory as access-disabled. When performing the
first step of verification, we set the memory to write-disabled, read
the information, and reset the memory to access-disabled at the
end of the first step of verification.

Note that in the above process, frequent modification for the
memory page access permission has been involved, which aims to
minimize the exposure of context information within the runtime
tables. This precaution is taken because the attacker can potentially
access any unprotected memory. Such access allows the attacker to
retrieve the CFGs stored in read-only memory; if they acquire the
path_id from the runtime table, they can manipulate the control
flow within the EC without being detected. Although this requires
frequent memory page state changes, the performance consumption
is not significant, because RDPKRU and WRPKRU instructions that
read and write PKRU (protection key rights for user pages) are not
privileged and thus can be executed in user space without context
switching.

4 IMPLEMENTATION

4.1 Static Analysis for Origin Awareness

Our static analysis process is a depth-first traversal along the def-use
chain of function pointers at indirect calls, to find all assignments of
function pointers and structs where function pointers are located.
These assignments are origins. We illustrate our practical origin-
aware policy with a simple example. Figure 3a is a sample of a
C source code file named example.c. Lines 1-2 show two callee
functions, i.e., calleei and calleej. The indirect call in line 10
uses the function pointer fp, which can take its value through two
origins. The first origin is line 8 with the value calleei. The second
origin is line 17 with the value calleej.

The situation becomes more complicated when we analyze the
function pointer fp in IR with the practical origin-aware policy.
This is because the def-use chain of function pointers resembles
a tree structure, with the function pointer at the end leaf node
and the alloca instruction being the root node of the tree, as
determined by the static single assignment nature of IR. We need to
first backtrack from the function pointer to the alloca instruction,
and then recursively traverse all the uses of the alloca instruction
and find all assignment nodes related to the function pointer.

We next demonstrate this process with Figure 3b. The variable %7
is the function pointer of ICT in line 12. The root node of %7 is the
variable %2. There are three uses of %2: the store instruction in line
3, the store instruction in line 8, and the load instruction in line
11. Line 11 is the incoming site and does not need to be analyzed.
Line 8 is the origin of %2 within the function caller. Once we have
acquired an origin, we determine whether it dominates the ICT to

4529

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

determine the subsequent analysis process. For our analysis, the
fact that the origin dominates the ICT means that all paths to the
ICT must pass through the origin. In this case, the traversal for
the other uses of alloca can be finished. But this does not mean
the end of the analysis if the origin is not the original assignment.
We apply a practical origin-aware policy to the value of the origin
until the original assignment is found. It is obvious that line 8 is an
original assignment and does not dominate line 12. The remaining
use of %2 is in line 2, which assigns the argument %0 to %2 and leads
us to look for call instructions to caller in other functions. Notice
that there are only two call instructions for caller: lines 16 and
17, which assign %0 with the values null and calleej, respectively.
The origin of line 16 will be overwritten by the origin of line 8 at
runtime as the two origins are on the same path.

The above process is mainly the practical origin-aware analysis
within one function. Then we discuss the cross-functional pro-
cess. In our study, we identified cyclic calls across functions as the
primary challenge encountered during the analysis process. Next,
we show the analysis process of the cross-function process with
Figure 4. In the function calleel, there is an ICT with the func-
tion pointer %2, which value comes from the argument %0. So we
find that function callee2 calls function calleel with argument
%x2 (step 1). We call this type of cross-functional call-style. And
the value of %2 comes from the call instruction %x1. So we find
the called function callee3 in instruction %x1 and get its return
instructon ret %y1 (step 2). We call this type of cross-function
ret-style.

One difficulty in cross-functional analysis, which is shown in
Figure 4, is the inter-call between two functions. In the above analy-
sis, we go through a call-style and a ret-style cross-functions. In the
function callee3, we start from the ret instruction to a ret-style
cross-function for callee? (step 3). When entering callee2 again,
we start from the ret instruction for the repeated ret-style cross-
function for callee3 (step 2). Then we have a chain of infinite
loops:1 =2 —3 — 2 — 3 — ..., which is impossible to analyze
completely.

To solve this problem, we give an assertion based on the flow of
intra-functional backtracking: any analysis starting from the same
position in the same function is equivalent. Thus, we only need
to determine whether an analysis of that function was previously
performed at the same position before a new cross-function to solve
any loop. And even in the worst case, we only need to perform a
finite number of analyses for all functions in the IR. The case of
direct calls is discussed previously, while for an indirect call, we
type-match the indirect call and backtrack through all matched
functions.

4.2 Path Explosion for Origin Awareness

Solving the looping calls problem can alleviate but not solve the
path-explosion problem. As we increase the number of layers of
backtracking, the path-explosion problem still occurs.

We investigated the path explosion problem on SPEC CPU2006
benchmark programs, Httpd, Lighttpd, Nginx, and Redis during our
practical origin-aware analysis. The results are shown in Table 2.
In the table, the ICTs column indicates the number of ICTs that can
be origin-aware analyzed (note that some ICTs may lack an origin).

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

1 void calleei(int i) {...}; 1 define dso_local void @caller(void (i32)*) #0 {

2 void calleej(int j) {...}; 2 %2 = alloca void (i32)*, align 8

3 3 store void (i32)* %0, void (i32)#** %2, align 8
4 void caller(void (*fp)(int)) 4 %3 = load void (i32)*, void (i32)*x %2, align 8
5 5 %4 = icmp eq void (i32)* %3, null

6 if (fp==NULL) 6 br i1 %4, label %5, label %6

7 7 ; <label>:5: ; preds = %1

8 fp=calleei; 8 store void (i32)* @calleei, void (i32)** %2, align 8
9 } 9 br label %6

10 fp(o); 10 ; <label>:6: ; preds = %5, %1

11 return 0; 11 %7 = load void (i32)*, void (i32)*x %2, align 8
12} 12 call void %7(i32 0)

13 13 ret void

14 void main() 14 3

15 { 15 define dso_local void @main() #0 {

16 caller(NULL); 16 call void @caller(void (i32)x null)

17 caller(calleej); 17 call void @caller(void (i32)* Qcalleej)

18 return 0; 18 ret void

19 3} 19 3}

(a) example.c

(b) the LLVM IR of example.c

Figure 3: An example for practical origin-aware policy.

Table 2: Path information during practical origin-aware analysis.

Benchmark | ICTs | 1st-layer | Original | Percent | Avg EC | 2nd-layer | Path growth
400.perlbench 136 545 185 33.9% 2.8 34601 96.1X
401.bzip2 20 29 9 31.0% 1 2810 140.5X
403.gcc 425 1136 715 62.9% 2.9 1010 2.4X
433.milc 4 8 8 100.0% 1 0 -
444 namd 12 30 30 100.0% 1 0 -
445.gobmk 44 652 604 92.6% 1.7 1412 29.4X
447.dealll 165 344 335 97.4% 1 9 1.0X
450.soplex 512 1255 1234 98.3% 1 21 1.0X
453.porvray 165 11496 440 3.8% 2.8 153688 13.9X
456. hmmer 9 46 8 17.4% 1 2048 53.9X
458.sjeng 1 1 1 100.0% 1 0 -
464.h264ref 367 2243 1875 83.6% 1.1 366281 995.3X
471.omnetpp 673 15112 1802 11.9% 1.2 12401 0.9X
473.astar 1 1 1 100.0% 1 0 -
482.sphinx3 2 10 10 100.0% 1 0 -
483.xalancbmk | 7480 394363 392849 99.6% 1.0 6351 4.2X
Httpd 194 589 34 5.8% 2.2 8134 14.7X
Lighttpd 109 400 391 97.8% 1.0 33 3.7X
Nginx 313 3077 2159 70.2% 1.7 3705 4.0X
Redis 554 6830 2991 43.8% 1.9 4842 1.3X
Average 559 21908.4 20289.1 92.6% 1.5 29867.3 90.8X

The I1st-layer column indicates the assignment number of the func-
tion pointer (or the struct containing the function pointer) closest
to the ICTs. The Original column indicates the number of original
assignments, with their percentage of the 1st-layer column’s num-
ber shown in the Percent column. Note that an original assignment
of a function pointer means that the value of the function pointer
in the assignment instruction is an explicitly defined function or
an initialized global variable. The Avg EC column indicates the
average EC size of these ICTs when only the 1st-layer analysis is
performed. The 2nd-layer column shows the number of paths if we
continue the analysis after eliminating all the original assignments,

and the Path growth column indicates the expansion multiplier of
the path number. In the result, we see that the average EC decreases
to less than 3 with just the 1st-layer analysis, which is undoubt-
edly a positive outcome. One reasonable explanation is that the
origins analyzed by the 1st-layer already correspond to the original
assignments. Further analysis indicates that when employing just
the 1st-layer analysis, approximately 92.6% of the assignments are
the original assignments. In contrast, the average number of paths
inflates by more than 90 times when ECCuT performs the 2nd-layer
analysis. The worst case occurs in 464 . h264ref, which experiences

4530

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

/

calleel

store %00, %1
%02=load %]l
call %2(...)

callee2

%x 1=call caller3(...)

Yox2=gep %x1, ...
call calleel(%x2

callee3

/1
\2

if ...
|_%vy1=call caller2(...)

XE %yl

Figure 4: Conceptual diagram of a cross-functional loop.

ret %ox1 -~

w

1 %6 = call i32 @make_gather(void (i32, i32, i32, i32, i32x, i32,
i32%, i32%, i32%, i32%)* @third_neighbor, i32% %1, i32 1, i32
< 0, i32 1)

—

2 %816 = select i1 %814, 132 (%struct.sv*, %struct.svx)*

< @sortcv_stacked, i32 (%struct.sv*, %struct.svx)* @sortcv

3 br label %817

4 ; <label>:817: ; preds = %811, %810

5 %818 = phi i32 (%struct.svx, %struct.svx)* [@sortcv_xsub, %810
— 1, [%816, %811]

6 sortsvp(aTHX_ start, max, is_xsub ? sortcv_xsub :
sortcv_stacked : sortcv);

hasargs ?

—

Figure 5: Path without function pointer address.

an inflated number of paths by 995.3 times. As a result, we decide
to analyze only the 1st-layer to avoid the path explosion problem.

4.3 Origin Awareness Context

The origin awareness context consists of the tuple (Ptr_addr, Tar-
get, Path_id). Specifically, Ptr_addr represents the address of the
function pointer, and Target is the value of the function pointer in
this tuple. These two values are closely related, and we can extract
them from the IR and retrieve them at runtime. Path_id serves as
the marker for the origin, which is for distinguishing from other
origins. Since instructions with the same by string may exist in
different functions within the IR, we derive the hash value of all
strings within this origin and the name of the function as it is in
the Path_id.

The above description is for the ideal case of instrumentation,
but in practice, we face many challenges because of the wide variety
of paths. Specifically, not all paths happen to be assignments to
function pointers. There are a lot of assignments to structs or even
nested structs where function pointers are located in the paths we
backtrack. To solve this problem, we need to get the real function
pointer address and function pointer value. This is possible because
the LLVM IR supports modifications to the source code and the
compiler provides several functions to allow us to modify the IR.
We can record all the instructions on the path during backtracking,

4531

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

and rebuild the function pointer corresponding to the ICT by these
instructions.

Figure 5 shows the special cases where we cannot find the corre-
sponding function pointer address with IR. This happens mainly
when the program passes the function name as a real parameter as
shown in line 1. This is a real-world example from 433.milc bench-
mark program. The function name third_neighbor is passed as a
function parameter, which prevents us from creating a variable that
can access the stack during static analysis. In this case, we have to
replace the Ptr_addr with the Path_id. If this path is a common
path for multiple ICTs, then we need to perform instrumentation
several times before the call instruction, which increases the per-
formance overhead.

The other two cases without function pointer addresses are
caused by the select (line 2) and phi (line 5) instructions in IR,
but these instructions are still for fundamental parameter passing
during function calls. Line 6 shows a real-world function call in
400 .perlbench benchmark program, which is the prototype of the
instructions in lines 2-5. The phi and select instructions are the
nested conditional expressions in IR. We handle these two cases
in the same way as the previous ones; the only difference is that
the instrumenting place is after the instruction. The reason we do
not continue to analysis is that it is impossible to get the function
pointer address here; and if we continue to use Path_id instead of
Ptr_addr, it will bring a big impact on performance since this path
corresponds to more than one ICT.

4.4 Complete Field-Sensitive Context

The field context is (Ptr_addr, Target, Path_id, Offset). The
Ptr_addr, Target, and Path_id are processed in the same way
with the origin-aware context. The field context has Path_id be-
cause the combination of complete field sensitivity and practical
origin awareness has a better EC reduction (see Section 5.1).

Staking Offset becomes a challenge because the block where the
offset is located is not the same as the block where the assignment
is located. Since the offset is a variable, we have to deal with compli-
cations. If the offset and the origin are in the same function, we can
reproduce the value of the offset after the origin; if not, we have to
make a trade-off between the origin awareness and field sensitivity,
since cross-function assignment of variables is almost impossible at
the IR level. Finally, we drop the origin and use the GEP instruction
where the offset is located as the new origin, which may increase
EC size if multiple paths are traced back after the GEP instruction.
However, this does not affect the existence of Path_id because
an ICT can have both the origin context and the field context in
different paths. So we put the origin and the field context validation
in one verification function and the runtime table only needs to
hold one form of tuple.

5 EVALUATION

5.1 EC Reduction

Our evaluation dataset includes C/C++ benchmarks of the SPEC
CPU2006 and SPEC CPU2017 suites, and six real-world applications,
namely Httpd (the Apache HTTP server, v.2.4.58), Lighttpd (a
lightweight web server, v.1.4.60), Nginx (a web server, usable also as
areverse proxy, load balancer, mail proxy, and HTTP cache, v.1.20.2),

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 3: The overall statistics of ECCuT in all evaluation programs.

Origin awareness and Field sensitivity Type-base Overall
Benchmark | ICTs ICTs Only origin | Only field | Field and origin ICTs | Avg | Lg | Avg | Lg
Avg Lg | Avg | Lg | Avg Lg
400.perlbench 137 128 10.6 349 7.0 42 2.8 42 9 0.8 7 2.8 | 42
401.bzip2 20 20 1 1 1 1 1 1 0 0 0 1 1
403.gcc 442 404 5.8 218 3.5 40 2.9 40 38 7.8 | 43 | 34 | 43
433.milc 4 4 1 1 2 2 1 1 0 0 0 1 1
444 namd 12 12 1 1 2.5 3 1 1 0 0 0 1 1
445.gobmk 44 35 250.2 | 590 7.3 14 1.7 14 9 0.9 8 1.9 | 14
447 .dealll 167 160 1 2 1 2 1 2 7 2.6 15 1.1 15
450.soplex 513 507 1 1 1 1 1 6 3.2 5 1.0 5
453.porvray 173 151 2.8 5 3.0 30 2.8 5 22 43 | 15| 32 | 15
456.hmmer 9 9 1 1 2.8 10 1 1 0 0 0 1 1
458.sjeng 1 1 7 7 1 1 1 1 0 0 0 1 1
464.h264ref 367 367 1.1 2 1.1 12 1.1 2 0 0 0 1.1 2
471.omnetpp 709 615 1.5 168 1.2 43 1.2 43 94 0.3 9 1.2 | 43
473.astar 1 1 1 1 1 1 1 1 0 0 0 1 1
482.sphinx3 2 2 1 1 5 5 1 1 0 0 0 1 1
483.xalancbmk | 8135 | 7113 1.0 29 1.0 29 1.0 29 1022 | 09 | 29 | 1.1 | 29
500.perlbench 239 206 3.8 47 1.9 11 1.3 11 33 73 | 60 | 2.1 | 60
502.gcc 3150 | 2734 | 20.6 506 2.6 28 2.6 28 416 | 304 | 49 | 6.3 | 49
505.mcf 14 14 1 1 1.6 2 1 1 0 0 0 1 1
508.namd 12 12 1 1 4.3 6 1 1 0 0 0 1 1
510.parest 1126 | 1048 1.3 6 1.9 47 1.3 6 78 43 | 27 | 15 | 27
520.omnetpp 6416 | 5742 1.2 1 1.3 274 1 1 674 29 | 13| 13 | 13
523.xalancbmk | 9276 | 8235 1.3 31 6.2 87 1.3 10 1041 1.8 120 | 1.3 | 20
525.x264 154 113 1.6 2 2.1 16 1.6 2 41 1.7 | 25| 1.6 | 25
526.blender 10310 | 9625 2.7 16 3.8 | 1324 | 2.7 16 685 | 246 | 48 | 4.2 | 48
538.imagick 80 71 1.2 3 5.8 16 1.2 3 9 6.1 7 1.8 7
544.nab 3 3 1 1 1 1 1 1 0 0 0 1 1
557.xz 44 36 14 4 5.3 12 1.3 4 8 2.6 6 1.6 6
Httpd 208 158 3.7 78 4.0 66 2.2 6 50 94 | 22 | 39 | 22
Lighttpd 133 72 1.0 2 2.3 5 1.0 2 61 1.1 5 1.0 5
Nginx 356 293 3.0 73 5.8 33 1.7 6 63 24 | 19| 1.8 | 19
Redis 607 525 2.1 91 2.1 19 1.9 9 82 12.2 | 46 | 3.8 | 46
Edbrowse 32 31 1.8 2 1.8 2 1.8 2 1 1 1 1.7 2
Firefox 1056 912 1.4 7 1.4 7 1.4 7 144 7.7 | 21| 23 | 21

Redis (a memory-based data storage system, v.7.0.0), Edbrowse (a
combination editor, browser, and mail client, v.3.8.9), and Firefox
(an open source web browser, v.126.0a1). All the experiments were
conducted on a server with a Xeon Gold 6130 processor and 256
GB of memory, running a 64-bit Ubuntu 22.04 LTS Server system.

Note that the CFG is the basis of CFI system security, and an
EC represents mutually indistinguishable targets of an ICT. So the
average EC size can reflect the security of the whole CFI system to
some extent, and the largest EC size represents the attack surface
size of attackers.

Table 3 shows the overall statistics of ECCuT when applied to
all the evaluation programs. Note that for SPEC CPU2006 bench-
marks, we excluded benchmarks 429 .mcf, 462.1ibquantum, and
470.1bm as they do not have an ICT in their main programs. Sim-
ilarly, for SPEC CPU2017 benchmarks, we only evaluated the 12

4532

benchmarks that have ICTs in their main programs. The second and
third columns from the left of the table (with the same name: ICTs)
show the total number of ICTs in each program and the number of
ICTs that employ complete field sensitivity and origin awareness
policy. The columns labeled Avg and Lg show the average and the
largest EC sizes respectively. Further, we calculated the average
and the largest ECs using only complete field sensitivity (Only field),
only practical origin-awareness (Only origin), and both of them
(Field and origin), respectively. The results indicate that complete
field sensitivity significantly reduces the size of the largest EC, and
the average EC in 445.gobmk benchmark. And the origin aware-
ness significantly reduces the size of the largest EC in 526 . blender
(from 1324 to 16). With the combined effect of complete field sen-
sitivity and origin awareness, we obtain the better average and
largest ECs. For comparison, on average for all of its benchmarks,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

Table 4: The effectiveness of ECCuT compared to LLVM CFI and OS-CFI.

ECCut LLVM CFI 0S-CFI
Benchmark Avg | Lg Avg Lg Avg Lg
Size | Reduce by | Size | Reduce by | Size | Reduce by | Size | Reduce by

400.perlbench 28 | 42 | 153 81.5% 349 87.9% 11.4 75.2% 349 88.0%
401.bzip2 1 1 1.0 0.0% 1 0.0% 1 0.0% 1 0.0%
403.gcc 34 | 43 | 353 90.4% 218 80.3% 3.4 0.0% 218 80.3%
433.milc 1 1 2.0 50.0% 2 50.0% 1 0.0% 1 0.0%
444.namd 1 1 40.0 97.5% 40 97.5% 1 0.0% 1 0.0%
445.gobmk 1.9 | 14 | 524.9 99.6% 1637 99.1% 246.3 99.2% 1637 99.1%
447 .dealll 1.1 15 1.2 8.5% 37 59.5% 6.7 83.7% 37 59.5%
450.soplex 1.0 5 5.4 81.0% 24 79.2% 1.2 14.2% 11 54.5%
453.porvray 3.2 15 4.2 23.6% 79 81.0% 7.5 57.5% 79 81.0%
456.hmmer 1 1 2.8 64.0% 10 90.0% 1 0.0% 1 0.0%
458.sjeng 1 1 7.0 85.7% 7 85.7% 7 85.7% 7 85.7%
464.h264ref 1.1 2 2.0 46.0% 12 83.3% 1.1 0.0% 2 0.0%
471.omnetpp 1.2 | 43 | 2.7 55.6% 244 82.4% 9.2 86.7% 44 2.3%
473.astar 1 1 1.0 0.0% 1 0.0% 1 0.0% 1 0.0%
482.sphinx3 1 1 5.0 80.0% 5 80.0% 1 0.0% 1 0.0%
483.xalancbmk | 1.1 | 29 8.7 87.1% 201 85.6% 3.5 68.0% 29 0.0%

Httpd 39 | 22 | 141 72.3% 83 73.5% - - - -

Lighttpd 1.0 5 2.8 64.3% 14 64.3% - - - -
Nginx 1.8 | 19 7.5 76.0% 78 75.6% 6.6 72.7% 102 81.4%

Redis 38 | 46 | 15.0 74.7% 259 82.2% - - - -
Edbrowse 1.7 2 9.2 81.5% 24 91.7% 1.9 12.4% 3 33.3%

Firefox 23 | 21| 45 48.9% 63 66.7% - - - -
Average 1.7 15 | 324 94.8% 154 90.3% 17.3 90.2% 140.2 89.3%

the average and largest EC sizes for SPEC CPU2006 are 1.5 and 13.4,
while the average and largest EC sizes for SPEC CPU2017 are 2.1
and 21.5, respectively.

For those ICTs that have no origin or whose origins cannot be
analyzed by SVF, we use type-based matching to get their CFG,
which necessarily biases the average and largest EC. For C programs,
most indirect calls have origins and can be analyzed by SVF; for
C++ programs, some have more indirect calls using type-based
matching (the number of such cases in 483.xalancbmk is even
more than 1/8). This is because SVF cannot analyze C++ virtual
calls well, while ECCUT avoids this problem by utilizing complete
field sensitivity and origin awareness to analyze many original
assignments in the C++ programs. It is worth pointing out that the
partial type-based matching has an average EC value of less than 1,
which means the partial ICTs do not have any targets, as mentioned
in other work [31].

To further demonstrate the effectiveness of our system, we com-
pared ECCuTt with the mainline LLVM CFI (with cfi-icall and cfi-
mfcall schemes enabled) [55] and OS-CFI [30], which is the state-
of-the-art origin-aware (or context-sensitive) CFIL Table 4 shows
the results and it indicates that ECCUT can significantly reduce
the average and largest sizes of EC. Note that we use the overall
average EC and largest EC for comparison. As a result, ECCUT can
reduce the largest EC size of 445.gobmk from 1637 to 14, which is
a 99.1% reduction; and its average EC size is reduced from 524.9 to
1.9, which is a 99.6% reduction. Overall, compared to LLVM CFJ,

ECCur reduces the average and the largest EC sizes by 94.8% (from
32.4 to 1.7 on average) and 90.3% (from 154 to 15 on average). While
compared to OS-CFIL, ECCuT reduces the average and the largest
EC sizes by 90.2% (from 17.3 to 1.7 on average) and 89.3% (from
140.2 to 15 on average) respectively.

5.1.1 Case Studies. The EC in 458.sjeng: As shown in Figure 1,
this benchmark only has one indirect call (line 14), and the function
pointer is calculated from a static function array with its offset.
OS-CFI [30] fails to provide the context for the indirect call due
to SVF’s [53] failure to field insensitivity. However, for ECCuT, it
leverages complete field sensitivity by adding the offset (piecet(i))
as origin at runtime to reduce the largest EC from 7 to 1.

The EC in 400.perlbench: This benchmark has two large func-
tion pointer arrays, PL_check and PL_ppaddr, which contain 348
and 349 function pointers respectively. ECCuT employs complete
field-sensitive policy to reduce the EC of the indirect call instruc-
tions corresponding to these two arrays to 1.

The EC in 445.gobmk: There are many pointers of indirect
call instructions in this benchmark that can be associated with
14 nested arrays of structs. These arrays contain a total of 1637
function targets that SVF cannot analyze. When ECCuT takes a
path-based origin analysis of IR, it can analyze the assignment of
fourteen global variables; the largest one has 590 targets, which is
the largest EC for only origin-aware analysis. However, due to the
variable offsets, we have to stake the node after the GEP instruction,

4533

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

int eight_byte_size_ready (unsigned char const *read_from_)
{

const uint64_t msg_size = get_uint64 (_tmpbuf);

return size_ready (msg_size, read_from_);

1

2

3

4

5 3
6 int size_ready (uint64_t msg_size, unsigned char const
N
7

8

*read_pos)
{
9 if (unlikely (!_zero_copy
10 || ((unsigned char *) read_pos + msg_size
11 > (allocator.data () + allocator.size ())))) {...}
12 .
13 %
14 struct content_t{
15 void xdata;
16 size_t size;
17 msg_free_fn xffn; //function pointer
18 void *hint;
19 zmq: :atomic_counter_t refcnt;
20 3
21 int close () {
22 -
23 u.lmsg.content->ffn (u.lmsg.content->data,
24 u.lmsg.content->hint);
25 %}

Figure 6: Sketch of the vulnerable code in libzmq v.4.2.x.

thus losing path information, which makes the largest EC for the
field-only analysis as 14.

5.2 Real World Security

We experimented ECCuT with three real-world vulnerabilities
(CVE-2019-6250, CVE-2020-24349, and CVE-2021-43527) and a con-
structed COOP attack. Among them, CVE-2019-6250 and the COOP
attack can be prevented by ECCut and OS-CFI [30], CVE-2020-
24349 can be prevented by ECCuT, PathArmor [57], and OS-CFI,
while CVE-2021-43527 can only be prevented by ECCuT. To assess
the effectiveness of ECCUT in mitigating these vulnerabilities, we
use an existing proof-of-concept (PoC) exploit to manipulate a func-
tion pointer and perform control-flow hijacking. Initially, we verify
the successful exploitation of these vulnerabilities in their unpro-
tected state to establish a baseline. Subsequently, we repeat the tests
with the vulnerabilities being protected by ECCuT. By comparing
the results before and after applying ECCuT protection, we can
assess the effectiveness of the proposed approach in mitigating the
vulnerabilities and preserving control-flow integrity. Note that this
experiment does not prove that ECCUT prevents the exploitation
of the vulnerability, as such vulnerability can be exploited using
other techniques or the set of legal targets. It only shows that using
this specific exploit, the vulnerability cannot be exploited.
CVE-2019-6250: This is an integer overflow vulnerability in
libzmq. As shown in Figure 6, in function eight_byte_size_ready,
the attacker can provide an uint64_t of his choosing (line 3). In
function size_ready, a comparison is performed to check if this
peer-supplied msg_size is within the bounds of the currently al-
located block of memory (lines 9-11). When the msg_size bytes
do not fit in the currently allocated block, this comparison will
compute as false, causing a very large msg_size to overflow the
pointer read_pos. As it turns out, the space that the attacker is
writing to is immediately followed by a struct content_t block

4534

static njs_int_t njs_json_parse_iterator_call(...) {

1

2 .

3 if (njs_fast_path(njs_is_fast_array(&state->value) && ...)) {
4 if (njs_is_undefined(&parse->retval)) {

5 njs_set_invalid(value);

6 } else {

7 *value = parse->retval;

8 }

9 break;

10 3

11}

12 njs_int_t njs_value_property(...) {

13 .

14 prop = pq.lhg.value;

15 case NJS_PROPERTY_HANDLER:

16 prop = &pq.scratch;

17 ret = prop->value.data.u.prop_handler(...)
18

19 %

Figure 7: Sketch of the vulnerable code in njs v.0.4.3.

(lines 14-20). And in the struct content_t, ffn is a function pointer
field (line 17), which is called with two parameters, i.e., data (line
15) and hint (line 16). This means the attacker can call an arbitrary
function/address with two arbitrary parameters.

The function pointer fnn is called in function close (lines 23-24)
to release the message data when the message object is destroyed.
ECCur finds that its value is initialized by the user when creating
a message object, which is a typical function pointer that can be
protected using the origin-awareness policy. Thus, the attack will
be detected and prevented by ECCuT.

CVE-2020-24349: This vulnerability is a use-after-free (UAF)
vulnerability in njs through v.0.4.3 (used in Nginx). Figure 7 shows
the vulnerable pointer prop value.data.u.prop_handler (line
17) that can be overwritten by an attacker to achieve arbitrary code
execution. Initially, the function wrongly assumes that the value
(line 7) pointer is still valid when njs_is_fast_array (&state-
>value) (line 3) is true and the pointer can be used in the njs_fast
_path. This is not the case when the array object is resized.

The indirect call present in line 17 is safeguarded against control-
flow hijacking through the implementation of ECCuTt. When EC-
Cur is enabled, we discover two distinct origins for prop (lines
14 and 16). During the runtime, the environment provides us with
valuable contextual information that allows us to identify the only
target. Consequently, attempts by an attacker to hijack the control
flow are detected.

COOP Attack: We leverage the example code in Figure 8 to
illustrate how ECCuUT can protect against COOP attacks [50]. There
is a virtual call (line 39) and a vulnerable function getID (lines
20-31). The getID function contains a heap-based overflow vulner-
ability (line 28), which allows the attacker to compromise the vPtr
pointer of the returned object, for example, to overwrite the vPtr
of Student to the vtable of Teacher.

ECCuT can get two origins of this virtual call, i.e., origin1 and
origin2, which locate in lines 24 and 26 respectively. Accordingly,
their CFG tuples are (1ine 39, originl, Teacher::score) and
(line 39, origin2, Student::score). When the program exe-
cutes, it only passes through one origin at a time. The legal target of
the program that has passed origin1 can only be Teacher: :score,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

1 class Person {
2 public:
3 virtual void score() const = 0;
4 virtual ~Person() = default;
5 %
6
7 class Student: public Person {
8 public:
9 std::string ID;
10 Student(const std::string& id) : studentID(id) {3}
11 void score() const override {/#get student scorex/}
12}
13 class Teacher: public Person {
14 public:
15 std::string ID;
16 Teacher(const std::string& id) : ID(id) {3}
17 void score() const override {/*get all students scorex*/}
18 3
19
20 Personx getID(const string ID) {
21 char *name = (char*)malloc(10);
22 Person *P;
23 if (isTeacher(ID)) {
24 P = new Teacher(ID); //originl
25 } else {
26 P = new Student(ID); //origin2
27 b
28 gets(name);
29 -
30 return P;
31 3
32
33 bool isTeacher(const string ID) {...}
34
35 int main() {
36 L
37 Personx personl = isTeacher(ID);
38 if (isTeacher(P->ID)) {
39 personl->score(); //only allow teacher get score
40 3
41 return 0;
42 3}
Figure 8: A program vulnerable to COOP attack.
1 static VFYContext *vfy_CreateContext
2 (const SECKEYPublicKey xkey, const SECItem xsig,...){
3 .
4 cx = (VFYContext *)PORT_ZAlloc(sizeof(VFYContext));
5 ..
6 PORT_Memcpy (cx->u.buffer, sig->data, siglen);
7%
8 struct VFYContext {
9 S
10 const SECHashObject *hashobj;
11 ..
12 3}
13 const SECHashObject
14 *HASH_GetHashObjectByOidTag(SECOidTag hashOid){
15 HASH_HashType ht = HASH_GetHashTypeByOidTag(hash0Oid);
16 return (ht == HASH_AlgNULL) ? NULL : &SECHashObjects[ht];
17 3}

Figure 9: Sketch of the vulnerable code in NSS.

and the legal target of the program that has passed origin2 can
only be Student: : score. Even if the vptr of the origin is tampered

with, ECCuT can detect the attack before the virtual call executes.
CVE-2021-43527: This is an NSS cache overflow vulnerability.

Figure 9 shows the vulnerability exploitation process. An attacker

4535

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

can utilize the copy function PORT_Memcpy in line 6 to manipu-
late the variable sig to overwrite cx. The variable cx is of struct
VFYContext type (line 4) and it contains a pointer hashobj with
type of struct SECHashObject array. The SECHashObject struct
contains a large number of function pointers. Hence the attacker
can exploit this vulnerability to execute function calls.

Line 16 is a possible assignment for hashobj. Its specific value
consists of the array SECHashObjects and the variable index ht.
Thus other CFIs such as LLVM CFI [55], PathArmor [57], and OS-
CFI [30] will degenerate into field insensitivity here, while ECCuT
utilizes the complete field-sensitive policy, which can protect the
control flow from tampering very well.

5.3 Performance Evaluation

To demonstrate the performance overhead introduced by our sys-
tem, we evaluated the performance of ECCUT on all the C/C++
benchmarks in SPEC CPU2006 and SPEC CPU2017, as well as the
six real-world applications.

The results are shown in Figure 10. On average, ECCUT intro-
duces an acceptable performance overhead of 7.2%. The program
with the lowest performance consumption is the 444.namd bench-
mark, with an overhead of only 0.3%. It has 12 ICTs with average
and largest EC sizes of 1. The program that exhibits the highest
performance impact is the 526 . blender benchmark, with an over-
head of 16.4%. This result is not surprising as 526.blender has
over 10, 000 indirect calls, and to protect the program at runtime,
we inserted much checking code. For comparison, the average over-
heads introduced by ECCuT on SPEC CPU2006 and SPEC CPU2017
are 6.1% and 7.7% respectively.

Further, we compare the overhead of ECCuT with LLVM CFI [55],
PathArmor [57], and OS-CFI [30]. When compared with LLVM CFI,
the datasets include all SPEC CPU2006 benchmarks, Httpd, Lighttpd,
Nginx, Redis, and Edbrowse (We exclude Firefox as it introduces
so many false positives for LLVM CFI). Note that for LLVM CFI,
we enable all 7 schemes on twelve benchmarks, but only enable
some schemes on other benchmarks and applications to avoid false
positives. The overheads of LLVM CFI and ECCuT are 4.7% and 6.7%
respectively. When compared with PathArmor, as PathArmor does
not support C++ exceptions, we select all the C programs in both
SPEC CPU2006 benchmarks and our real-world applications for
comparison. Thus, the datasets include 9 benchmark programs and
five real-world applications, i.e., Httpd, Lighttpd, Nginx, Redis, and
Edbrowse (we exclude Firefox as it is a C++ program). In the results,
the average overheads introduced by PathArmor and ECCuT are
6.1% and 7.0% respectively. Although PathArmor only has one SPEC
CPU2006 benchmark with an overhead bigger than 10%, it has a
large performance consumption on applications, e.g., it introduces
27.3% performance consumption on Lighttpd. When compared
with OS-CFI, due to its severe compatibility issues [36], we use the
performance data from the OS-CFI paper. Accordingly, the datasets
include all SPEC CPU2006 benchmarks and Nginx. In the results,
the overheads of ECCuT and OS-CFI are 6.8% and 7.1% respectively.

6 DISCUSSION

First, to achieve complete field sensitivity and origin awareness
for practical CFI protection, ECCUT requires performing static

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

18.0%
16.0%
14.0%
12.0%
10.0%
8.0%
6.0%
4.0% I I
2.0% I I I
0.0% | | i . i = I [| I I [|
S & .\\e&b NP z.‘\%‘& LELFSS S Q& L& Q‘&' & L Qb_‘:r &8
soé‘\?v&-g%ﬂ& °°v‘:°£;"§ °‘é‘¢°¢:“°"’\z\§"®<§iﬁi’% @Q«\@\&%“%&.:“'i&:@&@\\@ﬂfﬁe\e\ ‘%99“’4\ ‘2&4’3\\ < T &
& WD L SN CAR PR RN R AT PSS\ BN R AT WV > hod
o BRSPS TS 9 N
& el

Figure 10: The performance overhead results of ECCuT. Average is the average of the performance overhead percentage.

analysis on the IR code compiled from the source code of pro-
grams to construct the CFG. This indicates that our approach needs
access to the source code. As a result, ECCuT does not support
pre-compiled executables or third-party drivers. To provide CFI
protection for binaries, a number of solutions have been proposed
by researchers [32, 37, 38, 58, 63]. However, without source code,
it is hard to enforce fine-grained and practical CFI protection for
programs.

Second, our system primarily defends against forward-edge ICTs
and does not encompass protection for return addresses. Note that
various methods have been designed for safeguarding return ad-
dresses, such as shadow stack [13], ALSR [52], Intel CET [26], and
so on. It is not difficult to integrate such methods into our system
if additional protection is required. We leave it as one of our future
work.

Third, in this paper we aim to provide CFI protection instead
of preventing all kinds of attacks on programs. Particularly, non-
control data attacks [8] and data-only attacks [14] are out of our
scope. However, we propose a practical CFI with complete field
sensitivity and origin awareness for programs, which raises the bar
against certain attacks.

Fourth, our prototype of ECCUT is built on top of SVF [53], which
indicates the requirement for such a state-of-the-art point-to analy-
sis tool. Fortunately, such a tool is available and free for deployment.
Further, ECCuT uses MPXK to store runtime information for later
verification, which limits its deployment on other platforms with-
out MPK. Fortunately, ECCuT only uses MPK to protect a single
memory region at runtime. As alternative solutions in case MPK is
unavailable, we can achieve the protection using other in-process
isolation techniques [24, 34, 48, 49] to support various platforms.

7 RELATED WORK

A range of CFI systems have been proposed ever since the first
CFI work was introduced [2]. Specifically, these systems can be
categorized into two main groups based on the way CFGs are gener-
ated: dynamic CFI [15, 18, 25, 45, 57, 62] and practical CFI [2, 29, 30,
35, 40]. Dynamic CFI systems typically incur notable performance
overhead as they generate dynamic CFGs during program execu-
tion and offer the advantage of potentially higher security. On the

4536

other hand, practical CFI systems rely primarily on static analysis
to construct CFGs. While practical CFI is often more compatible
with existing programs, it may not have a fine-grained CFG. Next,
we discuss several representative and close-related systems and
make a comparison to our approach.

As a dynamic CFL, PathArmor [57] leverages the recent execu-
tion history as the context to ensure that the path before a sensitive
function call has not been diverted, while ECCuT records function
pointer assignments and later uses this data to verify whether the
jump target is legal before an ICT. To be more specific, there are
three differences between the two systems. First, PathArmor uti-
lizes Intel LBR to record branch information taken by the process
for later verification, which requires changes to the OS kernel as
LBR is privileged and only accessible by the kernel. This impedes
the deployment of PathArmor. In contrast, ECCuT uses MPK to
store runtime information for verification, which can be directly
accessed in the user space. Second, as the transition into and out
of the kernel is expensive, PathArmor only protects selected sys-
tem calls in programs. Thus, the big concern for PathArmor is to
protect the remaining part of the system from attacks. In contrast,
ECCurt provides protection for all wide-spread ICTs, which greatly
enhances the security of the whole program. Third, as PathArmor
does not support C++ exceptions, its current prototypes can only
work for C programs. In contrast, ECCUT protects all indirect and
virtual calls in C and C++ programs.

As another dynamic CFI, uCFl [25] enhances security by enforc-
ing the unique code target (UCT) property, which ensures that an
ICT has only one valid target at one time of execution. However,
ensuring UCT requires the analysis of a large amount of runtime
information, recorded by the PT. Unfortunately, the sheer volume
of this information leads to packet drops in PT, posing a significant
constraint on the deployment of zCFlI in large programs. In contrast,
ECCur utilizes the practical origin awareness policy to selectively
identify and safeguard crucial origin information, resulting in a
reduction in runtime consumption.

As a practical CFI, MLTA [40] involves matching multi-layer
types of function pointers and functions to optimize the EC of
ICTs. By carefully examining the types and relationships between
function pointers and functions, MLTA can effectively reduce the

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

EC, leading to improved security for the program. However, MLTA
does face a limitation when it encounters variable field indexes.
In such situations, it tends to degrade into a field-insensitive CFI,
meaning it cannot maintain the same level of fine-grained con-
trol over control flow as it does in other cases. In contrast, ECCuT
takes a different approach to address this limitation. It utilizes a
complete field-sensitive policy, which can efficiently handle cases
involving variable field indexes. By embracing complete field sensi-
tivity, ECCUT aims to maintain a high level of precision in control
flow protection, even when it faces variable offsets in complex pro-
gram structures. Further, MLTA is origin-unaware, which becomes
over-approximation when analyzing function pointers that are not
in structs. In contrast, ECCUT can analyze all function pointers,
whether they are inside structs or not.

CFI-LB [29] utilizes function call stack information to partition
the EC of an ICT. However, since CFI-LB is origin unaware, the call
stack information it records may not be fully effective for dividing
the EC. It fails when the chain of function pointer passes in a
program is too long. In contrast, thanks to the implementation of a
practical origin-aware policy, ECCUT can recognize specific origins
and thus effectively reduce the size of the average EC.

As an origin-aware CFI, OS-CFI [30] also leverages the origin of
ICTs to reduce the average and largest EC. However, unlike ECCuT,
which employs practical origin awareness, the origin of OS-CFI is
restricted to explicit assignments to function pointers, resulting in a
mere 48.5% coverage of the origin policy. This significantly impacts
the security of the system. OS-CFI relies on SVF [53] to generate its
CFG, which encounters the issue of field-sensitive degradation into
field insensitivity. On the other hand, ECCuT utilizes a complete
field-sensitive policy to significantly reduce the size of the largest
EC (see details in Section 5.1). Additionally, OS-CFI uses MPX’s
bound table to store metadata, which affects the normal usage of
MPX [1]. In contrast, ECCuT utilizes the memory access control
feature of MPK [27] to protect runtime data without interfering
with other MPK functions.

8 CONCLUSION

Practical CFI that employs static analysis to compute the EC of
indirect calls have been integrated into compilers. We identify two
fundamental problems with existing static analysis for CFI, i.e.,
incomplete field sensitivity and origin unawareness. To address the
problems, we propose a complete field-sensitive and origin-aware
CFI system. The new techniques significantly improve the security
of CFI by reducing the largest and average EC sizes. By optimizing
the instrumenting code and the verification process, our system
incurs an acceptable overhead.

ACKNOWLEDGEMENT

We would like to thank all the anonymous reviewers sincerely
for their valuable comments. Those comments helped us improve
our paper. This work was partially supported by the Foundation
for Innovative Research Groups of the National Natural Science
Foundation of China (Grant No. 62121001), by the ‘111 Center’
(B16037), by the National Natural Science Foundation of China
(Key Program Grant No. 62232013), and by the NSF awards (Grant
No. CNS2045478, CNS-2106771, CNS-2154989, and CNS-2247434).

4537

Hao Xiang, Zehui Cheng, Jinku Li, Jianfeng Ma, and Kangjie Lu

Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF.

REFERENCES

[1] [n.d.]. Design of Intel MPX. https://intel-mpx.github.io/design/.

[2] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In Proceedings of the 12th ACM Conference on Computer and Communi-
cations Security (Alexandria, VA, USA) (CCS '05). Association for Computing Ma-
chinery, New York, NY, USA, 340-353. https://doi.org/10.1145/1102120.1102165
Starr Andersen and Vincent Abella. 2004. Data execution prevention. Changes to
functionality in microsoft windows xp service pack 2 (2004).

Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. ACM Comput. Surv. 50, 1, Article 16 (apr 2017), 33 pages.
https://doi.org/10.1145/3054924

Nathan Burow, Derrick McKee, Scott A Carr, and Mathias Payer. 2018. Cfixx:
Object type integrity for c++ virtual dispatch. In Symposium on Network and
Distributed System Security (NDSS).

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T.R. Gross. 2015. Control-flow
bending: On the effectiveness of control-flow integrity. 24Th USENIX Security
Symposium (USENIX Security 15) (01 2015), 161-176.

Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the 23rd USENIX Conference on Security
Symposium (San Diego, CA) (SEC’14). USENIX Association, USA, 385-399.
Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. 2005.
Non-control-data attacks are realistic threats.. In USENIX security symposium,
Vol. 5. 146.

R. Joseph Connor, Tyler McDaniel, Jared M. Smith, and Max Schuchard. 2020.
PKU Pitfalls: Attacks on PKU-based Memory Isolation Systems. In 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association, 1409-1426. https:
//www.usenix.org/conference/usenixsecurity20/presentation/connor

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-Flow Integrity under Stack
Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (Denver, Colorado, USA) (CCS ’15). Association for
Computing Machinery, New York, NY, USA, 952-963. https://doi.org/10.1145/
2810103.2813671

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. 1998. Stack-
guard: automatic adaptive detection and prevention of buffer-overflow attacks..
In USENIX security symposium, Vol. 98. San Antonio, TX, 63-78.

John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. KCoFI: Complete
Control-Flow Integrity for Commodity Operating System Kernels. In 2014 IEEE
Symposium on Security and Privacy. 292-307. https://doi.org/10.1109/SP.2014.26
Thurston HY. Dang, Petros Maniatis, and David Wagner. 2015. The Performance
Cost of Shadow Stacks and Stack Canaries. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security (Singapore,
Republic of Singapore) (ASIA CCS ’15). Association for Computing Machinery,
New York, NY, USA, 555-566. https://doi.org/10.1145/2714576.2714635

Lucas Davi, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi. 2017.
PT-Rand: Practical Mitigation of Data-only Attacks against Page Tables.. In NDSS.
Lucas Davi, Patrick Koeberl, and Ahmad-Reza Sadeghi. 2014. Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation. In 2014 51st ACM/EDAC/IEEE Design Au-
tomation Conference (DAC). 1-6. https://doi.org/10.1109/DAC.2014.6881460
Lucas Davi and Ahmad-Reza Sadeghi. 2015. Building Control-Flow Integrity
Defenses. In Building Secure Defenses Against Code-Reuse Attacks. Springer Inter-
national Publishing, Cham, 27-54. https://doi.org/10.1007/978-3-319-25546-0_3
Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In Proceedings of the 23rd USENIX Conference on Security
Symposium (San Diego, CA) (SEC’14). USENIX Association, USA, 401-416.

Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim, and Wenke
Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In USENIX
Security Symposium. 131-148.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security (Denver,
Colorado, USA) (CCS ’15). Association for Computing Machinery, New York, NY,
USA, 901-913. https://doi.org/10.1145/2810103.2813646

Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control
Flows Using Intel Processor Trace. In Proceedings of the Twenty-Second Inter-
national Conference on Architectural Support for Programming Languages and

(10]

—_
o

(12]

[13

[14

[16]

(17

(18]

=
L

)
=

https://intel-mpx.github.io/design/
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3054924
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://doi.org/10.1145/2810103.2813671
https://doi.org/10.1145/2810103.2813671
https://doi.org/10.1109/SP.2014.26
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1109/DAC.2014.6881460
https://doi.org/10.1007/978-3-319-25546-0_3
https://doi.org/10.1145/2810103.2813646

Boosting Practical Control-Flow Integrity with Complete Field Sensitivity and Origin Awareness

[21]

[22]

[23]

[24]

[25]

[26

[27]
[28]

[29]

[30]

[34]

[35]

[36]

[37]

[38]

[40

[41]

Operating Systems (Xi’an, China) (ASPLOS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 585-598. https://doi.org/10.1145/3037697.3037716
Xinyang Ge, Nirupama Talele, Mathias Payer, and Trent Jaeger. 2016. Fine-
Grained Control-Flow Integrity for Kernel Software. In 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P). 179-194. https://doi.org/10.1109/
EuroSP.2016.24

Eric Grevstad. 2004. CPU-based security: The NX bit. Earthweb: Hardware (2004).
Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In 2014 IEEE Symposium on
Security and Privacy. 575-589. https://doi.org/10.1109/SP.2014.43

Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John Criswell,
Michael L Scott, Kai Shen, and Mike Marty. 2019. Hodor:{Intra-Process} isolation
for {High-Throughput} data plane libraries. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 489-504.

Hong Hu, Chenxiong Qian, Carter Yagemann, Simon Chung, William Harris,
Taesoo Kim, and Wenke Lee. 2018. Enforcing Unique Code Target Property for
Control-Flow Integrity. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1470-1486. https://doi.org/10.1145/
3243734.3243797

Intel. 2018. Control-flow Enforcement. https://software.intel.com/sites/default/
files/managed/4d/2a/control-flow-enforcement- technology-preview.pdf

Intel. 2018. Intel® 64 and IA-32 Architectures Software Developer’s Manual.
Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin Jang, and
Changwoo Min. 2021. VIP: Safeguard Value Invariant Property for Thwarting
Critical Memory Corruption Attacks. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (Virtual Event, Republic
of Korea) (CCS "21). Association for Computing Machinery, New York, NY, USA,
1612-1626. https://doi.org/10.1145/3460120.3485376

Mustakimur Khandaker, Abu Naser, Wenqing Liu, Zhi Wang, Yajin Zhou, and
Yueqiang Cheng. 2019. Adaptive Call-Site Sensitive Control Flow Integrity.
In 2019 IEEE European Symposium on Security and Privacy (EuroS&P). 95-110.
https://doi.org/10.1109/EuroSP.2019.00017

Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie
Yang. 2019. Origin-Sensitive Control Flow Integrity. In Proceedings of the 28th
USENIX Conference on Security Symposium (Santa Clara, CA, USA) (SEC’19).
USENIX Association, USA, 195-211.

Sun Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining Indirect
Call Targets at the Binary Level. In Network and Distributed System Security
Symposium. https://doi.org/10.14722/ndss.2021.24386

Sun Hyoung Kim, Cong Sun, Dongrui Zeng, and Gang Tan. 2021. Refining
Indirect Call Targets at the Binary Level.. In NDSS.

C. Lattner and V. Adve. 2004. LLVM: a compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004. 75-86. https://doi.org/10.1109/CGO.2004.
1281665

Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. 2018. Lord of the
x86 rings: A portable user mode privilege separation architecture on x86. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 1441-1454.

Jinku Li, Xiaomeng Tong, Fengwei Zhang, and Jianfeng Ma. 2018. Fine-CFI: Fine-
Grained Control-Flow Integrity for Operating System Kernels. IEEE Transactions
on Information Forensics and Security 13, 6 (June 2018), 1535-1550. https://doi.
org/10.1109/TIFS.2018.2797932

Yuan Li, Mingzhe Wang, Chao Zhang, Xingman Chen, Songtao Yang, and Ying
Liu. 2020. Finding Cracks in Shields: On the Security of Control Flow Integrity
Mechanisms. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS °20). Association for
Computing Machinery, New York, NY, USA, 1821-1835. https://doi.org/10.1145/
3372297.3417867

Yan Lin and Debin Gao. 2021. When Function Signature Recovery Meets Compiler
Optimization. In 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021. IEEE, 36-52. https://doi.org/10.1109/SP40001.
2021.00006

Ziyi Lin, Jinku Li, Bowen Li, Haoyu Ma, Debin Gao, and Jianfeng Ma. 2023. Type-
Squeezer: When Static Recovery of Function Signatures for Binary Executables
Meets Dynamic Analysis. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security.

Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing Guan.
2017. Transparent and Efficient CFI Enforcement with Intel Processor Trace. In
2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 529-540. https://doi.org/10.1109/HPCA.2017.18

Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1867-1881.
https://doi.org/10.1145/3319535.3354244

M.D.Network. [n.d.]. Control flow guard, 2015, [online]. https://msdn.microsoft.
com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx.

4538

[42

[43]

[44]

[45

=
&

[47

(48

[49

o
=

[51]

(52

o
&

o
2

o
2

[57

[58

[59

=
=

[61

[62

[63

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin Hamlen, and Michael
Franz. 2015. Opaque Control-Flow Integrity. In NDSS, Vol. 26. 27-30. https:
//doi.org/10.14722/ndss.2015.23271

Ben Niu and Gang Tan. 2014. Modular Control-Flow Integrity. ACM SIGPLAN
Notices 49 (06 2014). https://doi.org/10.1145/2594291.2594295

Ben Niu and Gang Tan. 2014. Rock]IT: Securing Just-In-Time compilation using
modular Control-Flow Integrity. Proceedings of the ACM Conference on Computer
and Communications Security (11 2014), 1317-1328. https://doi.org/10.1145/
2660267.2660281

Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
914-926. https://doi.org/10.1145/2810103.2813644

Soyeon Park, Sangho Lee, Wen Xu, HyunGon Moon, and Taesoo Kim. 2019.
libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,
Renton, WA, 241-254.

Aravind Prakash, Xunchao Hu, and Heng Yin. 2015. vfGuard: Strict Protection
for Virtual Function Calls in COTS C++ Binaries.. In NDSS.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Mangard. 2022.
Jenny: Securing Syscalls for {PKU-based} Memory Isolation Systems. In 31st
USENIX Security Symposium (USENIX Security 22). 936-952.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl, Michael
Schwarz, Stefan Mangard, and Daniel Gruss. 2020. Donky: Domain Keys-Efficient
{In-Process} Isolation for {RISC-V} and x86. In 29th USENIX Security Symposium
(USENIX Security 20). 1677-1694.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming: On
the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In 2015 IEEE
Symposium on Security and Privacy. 745-762. https://doi.org/10.1109/SP.2015.51
E.]. Schwartz, T. Avgerinos, and D. Brumley. 2010. All You Ever Wanted to Know
about Dynamic Taint Analysis and Forward Symbolic Execution (but Might Have
Been Afraid to Ask). In 2010 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 317-331. https://doi.org/10.1109/SP.
2010.26

Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. 2004. On the Effectiveness of Address-Space Randomization.
In Proceedings of the 11th ACM Conference on Computer and Communications
Security (Washington DC, USA) (CCS "04). Association for Computing Machinery,
New York, NY, USA, 298-307. https://doi.org/10.1145/1030083.1030124

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-Flow Analysis
in LLVM (CC 2016). Association for Computing Machinery, New York, NY, USA,
265-266. https://doi.org/10.1145/2892208.2892235

PaX Team. 2003. PaX address space layout randomization (ASLR). http:/pax.
grsecurity. net/docs/aslr. txt (2003).

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In 23rd USENIX Security Symposium (USENIX
Security 14). USENIX Association, San Diego, CA, 941-955.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael Sammler,
Peter Druschel, and Deepak Garg. 2019. {ERIM}: Secure, Efficient In-process
Isolation with Protection Keys ({{{{{MPK}}}}}). In 28th USENIX Security
Symposium (USENIX Security 19). 1221-1238.

Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFI. 927-940. https://doi.org/10.1145/2810103.2813673

Victor Van Der Veen, Enes Goktas, Moritz Contag, Andre Pawoloski, Xi Chen,
Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias Athanasopoulos, and Cristiano
Giuffrida. 2016. A tough call: Mitigating advanced code-reuse attacks at the
binary level. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 934-953.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Volckaert. 2022.
You shall not (by) pass! practical, secure, and fast PKU-based sandboxing. In
Proceedings of the Seventeenth European Conference on Computer Systems. 266—
282.

Zhi Wang and Xuxian Jiang. 2010. HyperSafe: A Lightweight Approach to Provide
Lifetime Hypervisor Control-Flow Integrity. In 2010 IEEE Symposium on Security
and Privacy. 380-395. https://doi.org/10.1109/SP.2010.30

Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. 2012. CFIMon: Detecting
violation of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2012). 1-12.
https://doi.org/10.1109/DSN.2012.6263958

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszl6 Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity and
Randomization for Binary Executables. In 2013 IEEE Symposium on Security and
Privacy. 559-573. https://doi.org/10.1109/SP.2013.44

Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.
In 22nd USENIX Security Symposium (USENIX Security 13). USENIX Association,
Washington, D.C., 337-352.

https://doi.org/10.1145/3037697.3037716
https://doi.org/10.1109/EuroSP.2016.24
https://doi.org/10.1109/EuroSP.2016.24
https://doi.org/10.1109/SP.2014.43
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/3243734.3243797
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://doi.org/10.1145/3460120.3485376
https://doi.org/10.1109/EuroSP.2019.00017
https://doi.org/10.14722/ndss.2021.24386
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/TIFS.2018.2797932
https://doi.org/10.1109/TIFS.2018.2797932
https://doi.org/10.1145/3372297.3417867
https://doi.org/10.1145/3372297.3417867
https://doi.org/10.1109/SP40001.2021.00006
https://doi.org/10.1109/SP40001.2021.00006
https://doi.org/10.1109/HPCA.2017.18
https://doi.org/10.1145/3319535.3354244
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.1145/2594291.2594295
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/2810103.2813644
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1109/DSN.2012.6263958
https://doi.org/10.1109/SP.2013.44

	Abstract
	1 Introduction
	2 Backgroud and Motivation
	2.1 Practical CFI vs. Dynamic CFI
	2.2 Field Insensitivity of Practical CFI
	2.3 Origin Unawareness of Practical CFI

	3 System Design
	3.1 Overview
	3.2 Static analysis
	3.3 Runtime Verification
	3.4 Metadata Storage

	4 Implementation
	4.1 Static Analysis for Origin Awareness
	4.2 Path Explosion for Origin Awareness
	4.3 Origin Awareness Context
	4.4 Complete Field-Sensitive Context

	5 Evaluation
	5.1 EC Reduction
	5.2 Real World Security
	5.3 Performance Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	References

