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Abstract 
The common bed bug, Cimex lectularius, is a globally distributed pest insect of medical, veterinary, and economic importance. Previous refer-
ence genome assemblies for this species were generated from short-read sequencing data, resulting in a ~650 Mb composed of thousands of 
contigs. Here, we present a haplotype-resolved, chromosome-level reference genome, generated from an adult Harlen strain female specimen. 
Using PacBio long read and Omni-C proximity sequencing, we generated a 540 Mb genome with 15 chromosomes (13 autosomes and 2 sex 
chromosomes—X1X2) with an N50 > 30 Mb and BUSCO > 90%. Previous karyotyping efforts indicate an XY sex chromosome system, with 
2n = 26 and X1X1X2X2 females and X1X2Y males; however, significant fragmentation of the X chromosome has also been reported. We further 
use whole genome resequencing data from males and females to identify the X1 and X2 chromosomes based on sex biases in coverage. This 
highly contiguous reference genome assembly provides a much-improved resource for identifying chromosomal genome architecture, and for 
interpreting patterns of urban outbreaks and signatures of selection linked to insecticide resistance.
Keywords: Cimicidae, Hemiptera, indoor urban pest, Pac-Bio long read sequencing

Introduction
The common bed bug, Cimex lectularius (Fig. 1), is a hema-
tophagous pest insect of medical, veterinary, and economic 
signi!cance. It has a near-global distribution, primarily found 
infesting human dwellings in temperate regions above 30° 
North and South latitudes (Usinger 1966; Zorrilla-Vaca et 
al. 2015). In recent years, however, infestations have also 
been reported in tropical regions (Cambronero-Heinrichs et 
al. 2020; Akhoundi et al. 2022; Porras-Villamil and Olivera 
2023). Derived from a lineage that is an ectoparasite of bats, 
the human-associated lineage diverged from its bat-host 
ancestor approximately 245,000 YA (Balvín et al. 2012). 
Despite both bat- and human-associated lineages occurring 
sympatrically (Booth et al. 2015) and a lack of obvious repro-
ductive isolation mechanisms (DeVries et al. 2020; Sasínkova 
et al. 2023), gene "ow between these host-speci!c lineages has 
been shown to be negligible (Booth et al. 2015).

Cimex lectularius was a prominent household pest prior 
to World War II. With the introduction of DDT in the 1940s 

as an indoor pest control agent, the numbers of infestations 
rapidly declined. Within a few years of its use, bed bugs were 
believed to have been eradicated from industrialized countries 
(Potter 2011). Although populations exhibiting resistance to 
DDT were reported soon after its introduction (Johnson and 
Hill 1948; Busvine 1958), it was not until the late 1990s that 
the species experienced a resurgence in cosmopolitan areas on 
a near-global scale (Doggett et al. 2018). Factors contributing 
to this resurgence included an increase in national and in-
ternational travel and the frequent exchange of secondhand 
goods. However, the evolution of mechanisms conferring re-
sistance to an array of insecticides is likely to have also played 
a signi!cant role (Romero et al. 2007), and insecticide resist-
ance has been reported globally (Dang et al. 2017; Booth 
2024).

Several factors underscore the common bed bug as a species 
for which a haplotype-resolved chromosome-level reference 
genome would be bene!cial. These include a relatively re-
cent host-associated shift between bat- and human-associated 
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lineages that provides an ideal experimental design for un-
derstanding the genomic factors underlying host-speci!c 
associations. Bed bugs also represent a valuable model system 
for studying human-associated evolution and adaptive dy-
namics that accompany urbanization (Johnson and Munshi-
South 2017; Booth et al. 2018) that include high levels of 
inbreeding within populations, restricted gene "ow, and a 
propagule-pool model of spread (Booth et al. 2012, 2015, 
2018; Saenz et al. 2012; Fountain et al. 2014). A high-quality 
reference genome will also enhance inferences related to the 
evolutionary history of this important species, potentially 
illuminating the loci responsible for the successful shifts to 
human hosts and urban environments. Combined with recent 
evidence for rapid evolution in response to human-induced 

insecticidal pressures (Lewis et al. 2023), a chromosome-level 
genome is also particularly timely for ongoing studies of the 
mechanisms underlying insecticide resistance. A more contig-
uous genome assembly also substantially enhances inferences 
of gene-regulatory regions and inferences of complex repeat 
element structure (and polymorphism) that may be important 
for interpreting adaptive responses to insecticides. Although 
two prior draft genomes for the bed bug have been published 
(Benoit et al. 2016; Rosenfeld et al. 2016) and proven useful, 
neither are resolved to the chromosome scale or are associated 
with extremely long contiguous assemblies or haplotypes. 
Here, we present the !rst high-quality chromosome-level ge-
nome assembly based on Paci!c Biosciences (PacBio) HiFi 
long read sequences scaffolded with Dovetail Omni-C data.

Fig. 1. An adult common bed bug, Cimex lectularius. Photo credit—Giles San Martin.
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Methods
Biological materials
A single virgin female specimen that originated from a Harlan 
strain colony maintained in the laboratory of Dr. Coby Schal 
(North Carolina State University) was used to generate the 
reference genome. The Harlan strain has been in culture be-
cause of collection from an infestation sampled at the Fort 
Dix US Army barracks, NJ, USA, in 1973. Specimens were 
starved to eliminate host blood from their digestive system, 
then "ash frozen and sent to Dovetail Genomics (Cantata Bio, 
LLC.) for DNA extraction and library preparation.

Nucleic acid library preparation
DNA extraction and both PacBio and Omni-C libraries were 
prepared and sequenced by Dovetail Genomics, LLC (Scotts 
Valley, CA, now Cantana Bio). For the Dovetail Omni-C li-
brary, formaldehyde was used to !x chromatin in place in the 
nucleus prior to extraction, and DNAse I was used to digest 
the !xed chromatin. Chromatin ends were then repaired and 
ligated to a biotinylated bridge adapter, followed by prox-
imity ligation of adapter containing ends. Crosslinks were 
subsequently reversed, and the DNA was puri!ed. Biotin 
that was not internal to ligated fragments was removed from 
the puri!ed DNA. NEBNext Ultra enzymes and Illumina-
compatible adapters were used to generate the sequencing 
libraries. Prior to PCR enrichment of each library, streptavidin 
beads were used to isolate biotin-containing fragments.

DNA sequencing and genome assembly
The PacBio library was sequenced on the PacBio SEQUEL 
II system using CCS (circular Consensus Sequencing) chem-
istry with SMRT cells, and the Omni-C library was sequenced 
on an Illumina HiSeqX platform. PacBio CCS (Circular 
Consensus Sequencing) reads were used as an input to Hi!asm 
v0.15.4-r347 (Cheng et al. 2021) using default parameters. 
Blast results of the Hi!asm output assembly against the “nt” 
database were used as input for blobtools v1.1.1 (Laetsch and 
Blaxter 2017). Scaffolds identi!ed as possible contamination 
(e.g. bacterial) were removed from the assembly. Speci!cally, 
any scaffolds that were not identi!ed as non-Arthropoda (e.g. 
Protobacteria or mammalian likely resulting from undigested 
blood in the gut of the sequenced individual), from the “nt” 
database were removed. Finally, purge_dups v1.2.5 (Guan et 
al. 2020) was used to remove haplotigs and contig overlaps.

Assembly and scaffolding were performed using default 
software parameters (see Supplementary Table S1), unless oth-
erwise noted. The input de novo assembly from a previously 
published genome build Clec_2.1 (NCBI GCF_000648675.2, 
Benoit et al. 2016) and Dovetail OmniC library reads with 
MQ > 50 reads were used as input data for HiRise (Putnam 
et al. 2016). BWA (Li and Durbin 2009) was used to align 
Dovetail OmniC library sequences to the draft input assembly. 
HiRise was used to analyze the separations of Dovetail 
OmniC read pairs mapped within draft scaffolds, producing 
a likelihood model for genomic distance between read pairs. 
This was then used to identify and break putative misjoins, to 
score prospective joins, and construct joins above a threshold.

To compare the assembly completeness, we used BUSCO 
v4.0.5 (Manni et al. 2021) using the eukaryota_odb10 gene 
set on both the current and Clec_2.1 genomes. Additionally, 
the previous draft Clec_2.1 genome was aligned to the 
current genome using minimap2 (Li 2018) with default 

parameters. The Clec_2.1 contigs with > 1Mbp were !ltered 
(n = 193) and visualized on our chromosome-level genome 
using the R package circlize (Sun et al. 2020). Finally, species-
speci!c repeats were identi!ed using a de novo search with 
RepeatModeler v2.0.2 (Flynn et al. 2020). RepeatMasker 
v4.1.4 (Smit et al. 2013) was run sequentially on both the cur-
rent assembly and on the previous bed bug assembly Clec_2.1 
to annotate repeats using elements from Insecta from Repbase 
(Jurka et al. 2005; Bao et al. 2015) and our de novo library 
from RepeatModeler. Plots were visualized in R v. 4.2.3 (R 
Core Team 2021).

The sex chromosome system in C. lectularius is X1X2Y 
for males and X1X1X2X2 for females (Ueshima 1967). 
Based on the difference in copy number of both X1 and 
X2 chromosomes between sexes, we expect that genome 
resequencing data from males will have approximately ½ 
coverage on both X chromosomes compared with females, 
and also compared with autosomes in male samples. To iden-
tify the sex chromosomes in our assembly, we sequenced 4 
additional adult samples, including 2 males and 2 females (see 
Supplementary Methods), using Illumina 250 bp paired-end 
reads at a coverage of ~10× each. These data were aligned 
to our genome using bowtie2.4.1 (Langmead and Salzberg 
2012) and sequence coverage depth was estimated for 100 kb 
genomic windows using bedtools (Quinlan and Hall 2010). 
Coverage estimates were then normalized across samples 
by dividing 100 kb window coverage estimates by the me-
dian genomic coverage per individual. Additionally, syn-
teny between C. lectularius and C. hemipterus (BioProject 
PRJNA713496) sex chromosomes was estimated using 
CoGe SynMap2 (https://genomevolution.org/coge/). The C. 
hemipterus sex chromosomes were previously identi!ed via 
gene expression differences in males vs. females, then the dif-
ferentially expressed genes were mapped back to their respec-
tive chromosomes (Law et al. 2024).

Results
The PacBio HiFi and Omni-C sequencing libraries generated 
4.9 M reads with two haplotypes of 537 Mb and 540 Mb 
post !ltering resolved. Each haplotype was sequenced to 
~30× PacBio HiFi coverage based on the genome size of 650–
697 Mb, estimated from previous sequencing efforts (Benoit 
et al. 2016; Rosenfeld et al. 2016). Contaminants identi!ed 
were removed prior to genome assembly (Supplementary Fig. 
1) and the overall GC content was 34.9% (range: 26.5% to 
54.2%) (Fig. 2a). The assembly of this genome consists of 
3,691 and 2,443 contigs spanning 835.77 and 698.24 Mb 
with an N50 of 27.82 Mb and 37.25 Mb, respectively (Table 
1). This assembly shows enhanced contiguity compared 
with the previous reference genomes (Table 1, Fig. 2b). The 
resulting assembly was deposited in the GenBank (BioProject 
ID PRJNA1165749). Fifteen large scaffolds, ranging in 
size from 23.5 Mb to 53.5 Mb were identi!ed (Fig. 2b), 
which corresponds precisely to the expected number of 
chromosomes: 13 autosomes + X1X 2 sex chromosomes 
(Ueshima 1967). Based on our analysis of resequencing data 
for males and females, we identi!ed two chromosomes that 
show approximately half coverage compared with other 
autosomes in males, and half coverage in males versus 
females (Fig. 3a). These predictions are precisely what we ex-
pect for X chromosomes, and we accordingly identify these 
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Fig. 2. a) Circos plot of 15 chromosomes (13 autosomes and 2 sex chromosomes—X1X2). Outer and middle tracks represent GC and repeat content 
for 100 kb windows, respectively, with orange dots highlighting windows in the top 5% highest values. The inner track shows gene density for 100 kb 
windows, with low density shown in white and high density shown in red. b) Omni-C Contact maps that translate the proximity of genomic regions in 
3D space to contiguous linear organization. Each cell represents sequence data supporting the joining between two regions. The darker red clustering 
represents the 15 chromosomes.
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two chromosomes as X1 and X 2. Synteny analysis revealed 
a match between the X1 and X 2 sex chromosomes identi!ed 
here and sex chromosomes 2 and 3 of the C. hemipterus ge-
nome (Supplementary Fig. 2) (Law et al. 2024).

Compared with the previously available C. lectularius ge-
nome (Clec_2.1), our new genome assembly has a higher 
percentage (93.65% vs. 87.7%) of BUSCO’s ortholog genes, 
suggesting it is more complete than prior reference genomes 
for this species (Fig. 3b). This increase in completeness is due 
to fewer missing BUSCO genes and an increase in complete 
and duplicated genes compared with the previous draft ge-
nome. Our de novo identi!cation of repeat elements using 
RepeatModeler identi!ed a total of 1,170 known and 1,202 
unknown repeat element consensus sequences. Our analysis 
of repeat element content (integrating this consensus library 

with Repbase) suggests that LINE retroelements represent 
the most abundant class of repeat elements (by total bases; 
Fig. 3c), consistent with inferences from the previous draft 
genome.

Discussion
We present the !rst haplotype-resolved chromosome-scale 
genome assembly for the global human pest C. lectularius. 
The total length of our Dovetail HiRise assembly was 
835.77 Mb, consistent with the 864.5 Mb total estimated 
through comparison with other insects by propidium io-
dide analyses (Benoit et al. 2016). The total size of scaffolds 
assigned to chromosome-sized contigs (<1Mb), post!ltering 
and scaffolding, was 540 Mb and represents a coverage 

Table 1. Assembly quality comparisons among this and previous draft Cimex lectularius genomes.

Total sequence Total Contigs Contig N50 Total scaffolds Scaffold N50

This assembly haplotype 1 537.87 Mb 3,691 37.25 Mb 15 671 kb

This assembly haplotype 2 540.74 Mb 2,443 27.82 Mb 15 967 kb

Benoit et al. (2016) 650.47 Mb 1,402 7.17 Mb 45,073 23.5 kb

Rosenfeld et al. (2016) 697.87 Mb 13,151 947 kb 77,082 12.6 kb

Fig. 3. a) Distribution of normalized sequencing coverage for 100kb windows across chromosomes for four re-sequenced individuals (outlier values not 
shown). b) BUSCO percentages for this assembly (darker bar) are comparable or higher than the previous draft genome (lighter bar). c) Repeat content 
across the previous draft genome and this assembly. Repeat proportions are similar between the two assemblies, however the new build produced 
more unknown repeats. Both assemblies have the greatest proportion of repeats belonging to LINEs.
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depth of 30×. This is somewhat smaller than previous ge-
nome draft assemblies of 650 Mb (Benoit et al. 2016) and 
697 Mb (Rosenfeld et al. 2016) but shows an increase in 
the overall completeness and N50 (Table 1). The unplaced 
and shorter-length scaffolds appear to account for the dif-
ference in expected genome size. Our assembly constructed 
two distinct haplotypes of similar size. The proportion 
of single-copy orthologs (eukaryota_odb10 BUSCO lin-
eage) improved in this assembly, compared with previous 
references, and is similar to that of the core eukaryotic genes 
(CEGs) in the Rosenfeld et al. (2016) study. Thus, our as-
sembly did not lose signi!cantly conserved gene orthologs 
during the process of genome scaffolding, suggesting our 
chromosome-level scaffolds are remarkably complete in 
terms of genes.

Repetitive elements often comprise major components of 
eukaryotic genomes, and the proportions of these elements 
within the genome can vary widely across organisms 
(Chalopin et al. 2015). Repetitive elements may in"uence 
genome architecture and evolution, contribute to rewiring 
gene-regulatory networks (Feschotte 2023), and may even 
be involved in insecticide resistance (e.g. Gahan et al. 2001; 
Rostant et al. 2012). Here, we found that the most abundant 
class of repetitive elements (by bases occupied) were LINE 
Non-LTR retroelements, which is consistent with inferences 
from prior genome assemblies of this species (Petersen et al. 
2019). There is considerable variation in repetitive element 
content across Hemiptera (Petersen et al. 2019), and it is un-
clear if the relatively large abundance and diversity of LINEs 
is speci!c to Cimex. The recent chromosome-level genome of 
the tropical bed bug, Cimex hemipterus, identi!ed genomic 
repeat elements and found similar levels of LINEs in that 
species (Law et al. 2024). The lineages to which these two 
species belong split from their most recent common ancestor 
~50 MYA (Roth et al. 2019). As such, these !ndings suggest 
that this high LINE density may be a characteristic common 
to Cimex. However, additional genome sequences of other 
Cimicid species will be needed to resolve this question.

This study identi!ed two chromosomes with character-
istics consistent with being sex chromosomes (X1X2) (i.e. 
sequencing coverage in male specimens approximately half 
of that of females). This was con!rmed through synteny anal-
ysis that revealed a syntenic match to chromosomes 2 and 3 
of the C. hemipterus genome (Supplementary Fig. 2) (Law 
et al. 2024). Although the genome of C. lectularius consists 
of 13 pairs of autosomes, the sex chromosomes have proven 
complex, with X fragmentation resulting in over 20 distinct 
fragments (Sadílek et al. 2013). Intraspeci!c variation in 
the number of sex chromosomes has been reported in other 
members of the Cimicidae, to which C. lectularius phyloge-
netically belongs (Ueshima 1968).

This genome provides a new valuable resource for enhancing 
investigations of a broad range of questions of this medically 
and economically signi!cant resurging pest insect. With this, 
the common bed bug now represents a promising emerging 
model for which to study patterns of human-associated evo-
lution and adaptation that accompanies urbanization.

Supplementary material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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