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Let X be a K3 surface over a number field. We prove that X has infinitely many specializations where
its Picard rank jumps, hence extending our previous work with Shankar, Shankar and Tang to the case
where X has bad reduction. We prove a similar result for generically ordinary nonisotrivial families
of K3 surfaces over curves over Fp which extends previous work of Maulik, Shankar and Tang. As a
consequence, we give a new proof of the ordinary Hecke orbit conjecture for orthogonal and unitary
Shimura varieties.
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1. Introduction

Let X be a K3 surface over a number field K . Let X → S be a smooth projective model, where

S ↪→ Spec(OK ) is an open subset of the spectrum of the ring of integers OK . For every place P of OK

with finite residual field k(P), we have an injective specialization map

Pic(X K ) ↪→ Pic(Xk(P)),

and both groups have finite rank, the Picard rank, denoted Ä(X K ) and Ä(Xk(P)) respectively.

Inspired by the classical density result of Noether–Lefschetz loci for weight-2 polarized variations

of Hodge structures, see [Voisin 2002; Oguiso 2003], Charles [2014] asked what can be said about the

arithmetic Noether–Lefschetz locus

NL = {P ∈ S | Ä(X K ) < Ä(Xk(P))}.

In a prior work [Shankar et al. 2022, Theorem 1.1], we proved that the set NL is infinite under the

additional assumption that X has potentially everywhere good reduction, i.e., up to taking a finite extension
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of K , we assumed that S = Spec(OK ). The first main result of this paper is the following unconditional

result.

Theorem 1.1. Let X be a K3 surface over a number field K . Then the set NL is infinite.

This theorem is a particular instance of Theorem 4.1 which is formulated for GSpin Shimura varieties

and which has many other applications. As a consequence, Theorems 1.4, 1.6, and Corollary 1.7 in

[Shankar et al. 2022] hold with no assumptions on the reduction type. In particular, we have the following

theorem.

Theorem 1.2. Let K be a number field and A an abelian surface over K . Then there exist infinitely many

places where A has good reduction, and the reduction is geometrically nonsimple.

1A. Picard rank jumps over function fields. Let p g 5 be a prime number. Let X → S be a family of

K3 surfaces over a curve S over Fp. Let ¸ be the generic point of S . For every s ∈ S (Fp), we have

similarly an inequality of Picard ranks

Ä(X¸) f Ä(Xs),

and one can introduce similarly the Noether–Lefschetz locus as the subset of S where the above inequality

is strict:

NL = {s ∈ S (Fp) | Ä(X¸) < Ä(Xs)}.

Maulik, Shankar and Tang [Maulik et al. 2022a, Theorem 1.1] proved that if S is proper and the family

X → S is generically ordinary and not isotrivial then the set NL is infinite. Our second main theorem

in this paper is to remove the properness assumption in their result.

Theorem 1.3. Let X → S be a generically ordinary nonisotrivial family of K3 surfaces over a smooth

curve S over Fp with p g 5. Suppose that the discriminant of the generic geometric Picard lattice is

prime to p. Then the locus NL is infinite.

The theorem is also a particular instance of Theorem 4.8 for GSpin Shimura varieties, which has

several other applications and also has an analogue for unitary Shimura varieties, see Theorem 6.1. In

particular, we have the following theorem which extends [Maulik et al. 2022b, Theorem 1(1)] to the

quasiprojective case.

Theorem 1.4. Let A be a nonisotrivial ordinary abelian surface over the function field of a curve over Fp.

Then A has infinitely many smooth and nonsimple specializations.

Both Theorem 1.1 and Theorem 1.3 are motivated by the density of Hodge loci in polarized variations

of Hodge structure of weight 2 of K3 type; see for example [Voisin 2002; Oguiso 2003; Tayou 2020].

Recent density results for general polarized variations of Hodge structures of level less than 2 as in [Tayou

and Tholozan 2023; Baldi et al. 2024] suggest that density of Hodge loci in arithmetic and function field

settings are natural problems to investigate, and we hope to address these questions in future work.
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1B. Hecke orbit conjecture. As an application of Theorem 1.3, we give a new proof of the Hecke

orbit conjecture for orthogonal and certain unitary Shimura varieties. We refer to [Maulik et al. 2022a,

Section 1.2] for the context and prior results on this conjecture.

Theorem 1.5. Let MFp be the reduction at p g 5 of the integral model of a Shimura variety of either:

(1) Orthogonal type associated to a lattice of signature (b, 2) having discriminant prime to p.

(2) Unitary type associated to an imaginary quadratic field K split at p and to a Hermitian lattice over

OK of signature (n, 1) with discriminant prime to p.

Then the prime-to-p Hecke orbit of an ordinary point is Zariski dense in MFp .

The density of Hecke orbits in characteristic zero is a consequence of the work of Clozel and Ullmo

[2005], see also [Eskin and Oh 2006] for a dynamical approach using Ratner theory. Chai [1995] first

proved the Hecke orbit conjecture for the ordinary locus of the moduli space of principally polarized

abelian varieties. For orthogonal and some unitary Shimura varieties, a first proof of the Hecke orbit

conjecture in the ordinary case has been obtained by Maulik, Shankar and Tang [2022a] and our approach

is inspired from theirs. Very recently, Pol Van Hoften [2024] proved this conjecture for the ordinary locus

of Shimura varieties of abelian type under certain conditions on the reflex field and using completely

different methods.

1C. Strategy of the proof. Theorem 1.1 and Theorem 1.3 are proved using a strategy initiated by Chai

and Oort [2006] and Charles [2018] for the product of two modular curves and subsequently used in

[Maulik et al. 2022b; Shankar and Tang 2020] for Hilbert modular surfaces over number fields and Siegel

threefolds over Fp. Here we follow the set-up in [Shankar et al. 2022] and [Maulik et al. 2022a] to which

we refer for more details. For Theorem 1.1, we first translate it into an intersection-theory-type statement

between a curve and a sequence of divisors in the integral model of a toroidal compactification of a

Shimura variety of GSpin type. For this matter, we use the Arakelov intersection theory with prelog

forms developed in [Bruinier et al. 2007]. We follow a similar approach for Theorem 1.3, using the usual

intersection theory on the reduction modulo p of the aforementioned compactification of the integral

model of a GSpin Shimura variety. The new ingredients which were missing in both [Shankar et al. 2022]

and [Maulik et al. 2022a] are the local estimates on multiplicities of intersection with special divisors at

points of bad reduction and the estimates of extra terms coming from the boundary divisors in the global

intersection numbers coming from the work of [Bruinier and Zemel 2022]; see also [Engel et al. 2023] for

a recent approach. These are the main contributions of this paper. To obtain the first estimates, we use an

explicit description of the special divisors in the formal completions along toroidal boundary components.

This allows us to define in each case a decreasing sequence of positive definite lattices (Ln, Q) which

computes the local intersection number. We give an estimate on the growth of the successive minima of

these lattices, then a geometry-of-numbers-type argument allows us to derive the desired estimates. To

obtain the bounds on the extra terms in the global intersection number, we use the explicit expressions
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from [Bruinier and Zemel 2022] and [Bruinier 2002] combined with an equidistribution result from [Duke

1988; Eskin and Oh 2006].

1D. Organization of the paper. The key input of this paper is the description of the special divisors

in terms of local coordinates of integral models of toroidal compactifications of Shimura varieties of

GSpin type. In Section 2, we explain these constructions following [Howard and Madapusi Pera 2020]

and [Madapusi Pera 2016], and the section culminates with a description of the special divisors in

formal completions along locally closed boundary divisors. In Section 3, we recall briefly Arakelov

arithmetic intersection theory with prelog forms following [Bruinier et al. 2007], and we assemble

different ingredients from the literature [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;

Borcherds 1999] to state the modularity of the generating series of special divisors in the integral models

of toroidal compactifications of Shimura varieties of GSpin type. In Section 4, we state the archimedean

and finite place estimates needed to prove our main theorems, and then we prove the archimedean

estimates. Section 5 is devoted to estimating contributions from bad reduction places. Finally, we prove

the application to Hecke orbit conjecture in Section 6.

2. GSpin Shimura varieties: integral models and their compactifications

This section summarizes the construction of the GSpin Shimura variety, its toroidal compactifications

and their integral models following [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;

Madapusi Pera 2019; Andreatta et al. 2018], see also [Kisin 2010; Madapusi Pera 2016; Pink 1989] for

earlier work. The ultimate goal is to describe the special divisors in formal completions along the toroidal

boundary strata. The familiar reader may wish to skip directly to Section 2D for these results.

2A. The GSpin Shimura variety. Let (L , Q) be an even quadratic lattice of signature (b, 2) with b g 1

and with associated even bilinear form

( . ) : L × L → Z

such that Q(x) = (x .x)/2 ∈ Z for all x ∈ L .

Let G = GSpin(LQ) be the algebraic group over Q of spinor similitudes defined as in [Madapusi Pera

2016, Section 1.2]. The group G(R) acts on the Hermitian symmetric space

D =: {z ∈ P(LC) | (z.z) = 0, (z.z̄) < 0}.

The pair (G,D) is the GSpin Shimura datum. Its reflex field is Q by [Madapusi Pera 2016, Section 3.1].

For K ¢ G(A f ) a compact open subgroup, the GSpin Shimura variety

M(C) = G(Q)\D× G(A f )/K

is the set of complex points of a Deligne–Mumford stack M defined over Q. In what follows, we

choose the compact open group K ¢ G(A f ) as in [Andreatta et al. 2018, Equation (4.1.2)]. Its image in
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SO(LQ)(A f ) stabilizes L ¹ Ẑ ¦ L ¹ A f and is equal to the subgroup that acts trivially on the quotient

L̂(/L̂ = L(/L , where the dual lattice L( is defined as

L( = {x ∈ LQ | ∀y ∈ L , (x .y) ∈ Z}.

The Shimura variety M carries a line bundle of weight-1 modular forms that we denote by LQ and we

refer to [Andreatta et al. 2018, Section 4.1] for a definition. The Shimura datum (G,D) is of Hodge type

by [Andreatta et al. 2017, Section 2.2]: there exists a Shimura datum of Siegel type (GSg,DSg) and a

compact open subgroup K sg ¢ Gsg(A f ) such that we have an embedding of Shimura varieties over Q

M ↪→ MSg.

This is the Kuga–Satake embedding. The pull-back of the universal abelian scheme on MSg yields the

Kuga–Satake abelian scheme A → M .

2B. Toroidal compactifications over C. In this section, we describe the toroidal compactifications of M

as well as the structure of the boundary components following [Bruinier and Zemel 2022] and [Howard

and Madapusi Pera 2020]. See also [Ash et al. 1975] for the general theory of toroidal compactifications

over C.

Recall from [Howard and Madapusi Pera 2020, Section 2.2] that an admissible parabolic subgroup

P ¦ G is either a maximal proper parabolic subgroup of G or G itself.1 A cusp label representative

8 = (P,D◦, h) is a triple constituted from an admissible parabolic subgroup P , a connected component

D◦ ¢ D and an element h ∈ G(A f ).

Attached to a cusp label representative 8 = (P,D◦, h), there exists a mixed Shimura variety that we

now describe. Let U8 be the unipotent radical of P and let W8 be the center of U8.2 Let Q8 be the

normal subgroup of P defined as in [Pink 1989, Sectoin 4.7], see also [Howard and Madapusi Pera 2020,

2.2]. Define as in [loc. cit.] D8 = Q8(R)W8(C)D◦ and let K8 = hK h−1 ∩ Q8(A f ). We define then the

mixed Shimura variety

M8(C) = Q8(Q)\D8 × Q8(A f )/K8. (2B.1)

By [Pink 1989, Proposition 12.1], M8(C) has a canonical model M8 also defined over Q. Let Q8 =
Q8/W8 and D8 = W8(C)\D8. Let K 8 be the image of K8 under the quotient map Q8(A f )→ Q8(A f ).

Then from the data (Q8,D8, K 8) we define similarly to (2B.1) a mixed Shimura variety MÆ and we

have a canonical morphism

M8 → M8. (2B.2)

This map has a torsor structure that we now describe. Let 08 = K8 ∩ W8(Q). It is a Z-lattice in W8(Q).

By [Howard and Madapusi Pera 2020, Proposition 2.3.1], the map (2B.2) is canonically a torsor under

the torus T8,Q whose cocharacter group is 08.

1Gad is simple in our case.
2We follow the notation of [Madapusi Pera 2019] which differs from other references.
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The mixed Shimura variety M8 has itself a fibration structure over a pure Shimura variety constructed

as follows; see [Madapusi Pera 2019, 2.1.7] for more details.

Let Gh
8 = Q8/U8 be the Levi quotient of Q8, V8 = U8/W8 the unipotent radical of Q8 and let

Dh
8 = V8(R)\D8. Then the pair (Gh

8,Dh
8) is a pure Shimura datum with reflex field equal to Q. Let

K h
8 ¢ Gh

8(A f ) be the image of K8. Then the quotient

Mh
8(C) = Gh

8(Q)\(Dh
8 × Gh

8(A f ))/K h
8

is the set of complex points of a Shimura variety which admits a canonical model Mh
8 defined over Q

and we have a canonical map

M8 → Mh
8. (2B.3)

By [Madapusi Pera 2019, 2.1.12], there exists a natural abelian scheme AK (8) → Mh
8 such that the map

(2B.3) is a torsor under AK (8).

In what follows, we will describe the above data for the GSpin Shimura variety introduced in Section 2A

following [Howard and Madapusi Pera 2020, Section 4] and [Bruinier and Zemel 2022, Section 3]. Let 8

be a cusp label representative. The admissible parabolic subgroup P is the stabilizer of a totally isotropic

subspace I8 of LQ of dimension at most 2. The dimension-0 case corresponds to P = G. If P is the

stabilizer of a primitive isotropic line IQ ¢ LQ, then the cusp label representative is said to be of type III.

If P is the stabilizer of a primitive isotropic plane JQ ¢ LQ, then 8 is said to be of type III. We will

follow the notation of [Bruinier and Zemel 2022] and denote by ϒ , resp. 4, a cusp label representative of

type II, resp. of type III.

Given two cusp label representatives 81 and 82, there is a notion of a K -morphism 81
(µ,q2)K−−−→ 82

given by µ ∈ G(Q) and q2 ∈ Q82(A f ) which we don’t define here and refer to [Madapusi Pera 2019,

2.1.14] for the definition, see also [Howard and Madapusi Pera 2020, Definition 2.4.1].

Let 8 be a cusp label representative. By the general theory of toroidal compactifications, see [Pink

1989, 4.15] or [Ash et al. 1975, Chapter II, Section 1.1] for the definitions, there exists a canonical open

nondegenerate self-adjoint convex cone C8 ¢ W8(R) homogeneous under P(R) and which allows to

realize D◦ as a tube domain inside an affine space, see [Madapusi Pera 2019, 2.1.5]. We define the

extended cone C∗
8 as in [Madapusi Pera 2019, 2.1.22]: for any map 8′ (µ,q)K−−−→ 8, the conjugation by µ −1

induces an embedding

int(µ −1) : W8′(R) ↪→ W8(R)

and we define then

C∗
8 =

⋃

8′→8

int(C8′).

This cone lies between C8 and its topological closure in W8(R) but in general, it is neither open nor

closed. See also [Pink 1989, Definition-Proposition 4.22] for more details.

Recall from [Howard and Madapusi Pera 2020, Definition 2.4.3] that a rational polyhedral cone

decomposition (rpcd for short) of C∗
8 is a collection 68 = {Ã } of rational polyhedral cones Ã ¢ W8(R)
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satisfying natural compatibility conditions (we don’t recall these conditions here and invite the reader to

consult the reference above for more information). The rpcd 68 is said to be smooth if it is smooth in

the sense of [Pink 1989, Section 5.2] with respect to the lattice 08. It is complete if

C∗
8 =

⋃

Ã∈68

Ã.

2B1. Boundary components of type II. Let ϒ be a cusp label representative of type II. Then P is the

stabilizer of a primitive isotropic plane JQ ¦ LQ and let J = JQ ∩ h.L , where h ∈ G(A f ) acts on L via

the map G(A f ) → SO(LQ)(A f ). Then by [Howard and Madapusi Pera 2020, page 31], the group Wϒ is

identified with
∧2 JQ; hence it is one-dimensional. The lattice 0ϒ ¢ Wϒ is also of rank 1. The open

convex cone Cϒ is given by a half line R+\{0} and the extended cone is C∗
ϒ = {0} ∪ Cϒ .

Let Mϒ and Mϒ be the mixed Shimura varieties associated to ϒ . Then Mϒ → Mϒ is a torsor under

the one-dimensional torus Tϒ with cocharacter group 0ϒ . The group Gh
ϒ is equal to SL2 and Dh

ϒ is equal

to the Poincaré upper half-plane. The Shimura variety Mh
ϒ is a modular curve and the abelian scheme

Aϒ is equal to the Kuga–Sato variety D ¹ E where E → Mh
ϒ is the universal elliptic curve over Mh

ϒ and

D is the positive definite plane J§/J ; see [Bruinier and Zemel 2022, Corollary 3.17] and [Zemel 2020,

Proposition 4.3] for details and proofs. Notice that our choice for the compact open subgroup K gives

exactly the stable orthogonal group used in [Bruinier and Zemel 2022] and [Zemel 2020].

The only possible cone decomposition of C∗
ϒ in this situation is 6ϒ ={{0}, Cϒ∪{0}} and this determines

a partial compactification Mϒ ↪→ Mϒ,6 which is a fibration by A1
C

over Mϒ . Finally, there is only one

boundary divisor denoted by Bϒ associated to the ray Cϒ .

2B2. Boundary components of type III. Let 4 be a cusp label representative of type III. Then P is the

stabilizer of a primitive isotropic line IQ ¢ LQ and let I = IQ ∩ h.L . Set K I = I §/I . Then by [Howard

and Madapusi Pera 2020, Equation (4.4.2)], we have U4 = W4 and we have an isomorphism of vector

spaces

K I,Q ¹ IQ ≃ W4(Q).

The lattice (K I , Q) is a Lorentzian lattice of signature (b − 1, 1). Under the above isomorphism, and

assuming we have chosen a primitive generator of I , the open convex cone C4 ¢ W4(R), see [Howard

and Madapusi Pera 2020, Section 2.4] is identified with a connected component of the light cone

{x ∈ K I,R, Q(x) < 0}.

The spaces Mh
4 and M4 are equal and are Shimura varieties of dimension zero that we can describe as

follows. Let (Gm,H0) be the Shimura data given by

H0 := {2Ãϵ : ϵ2 = −1},

on which R× acts naturally through the quotient R×/R
×
+. There is a morphism of mixed Shimura data

(Q4,D4) → (Gm,H0) given by a canonical character v4 : Q4 → Gm defined as in [Howard and Mada-

pusi Pera 2020, Equation (4.4.1)] and a map D4 → H0 given as in [loc. cit., Equation (4.6.3)]. Then the
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Shimura variety Sh¿4(K4)(Gm,H0) is zero-dimensional and the canonical map M4 → Sh¿4(K4)(Gm,H0)

is a torsor under the torus T4 = Spec(Q[q³]³∈0(
4
) with cocharacter group 04 = K I by [Bruinier and

Zemel 2022, Proposition 3.7].

The intermediate cone C∗
8 can be described explicitly as follows, see also [Bruinier and Zemel 2022,

page 23]: for any type-II boundary component ϒ with corresponding isotropic plane J containing I , the

quotient J/I has a generator É4,ϒ lying on the boundary of the C4. Hence

C∗
4 = C4 ∪

⋃

ϒ

RÉ4,ϒ .

The rays RÉ4,ϒ will be referred to as the external rays and the rays in C4 are the inner rays.

2B3. Toroidal compactifications. Recall from [Howard and Madapusi Pera 2020, Definition 2.4.4] that a

K -admissible rational polyhedral cone decomposition for (G,D) is a collection 6 = {64, 6ϒ } such that

64 and 6ϒ are rpcd for any cusp label representative 4 and ϒ respectively satisfying the compatibility

conditions of [loc. cit., Definitions 2.4.3, 2.4.4]. It is said smooth (resp. complete) if every 68 is smooth

(resp. complete).

A toroidal stratum representative is a pair (8, Ã) where 8 is a cusp label representative and Ã ¢ C∗
8 is

a rational polyhedral cone whose interior is contained in C8. There is similarly a notion of K -morphism

between stratum representatives, see [loc. cit., Definition 2.4.6] and the set of K -isomorphism classes of

toroidal stratum representatives will be denoted StartK (G,D, 6). We say that 6 is finite if

|StartK (G,D, 6)| < ∞.

Let 6 be a finite K -admissible complete cone decomposition. The main result of [Pink 1989, Sec-

tion 12], see also [Madapusi Pera 2019, Theorem 2.1.27], ensures that there exists a proper toroidal

compactification

M ↪→ M6

in the category of Deligne–Mumford stacks over Q such that M6 is proper over Q and has a stratification

M6 =
⊔

(8,Ã)∈StartK (G,D,6)

B8,Ã (2B.4)

by locally closed subspaces indexed by the finite set of strata StartK (G,D, 6). The stratum indexed by

(8, Ã) lies in the closure of the stratum index by (8′, Ã ′) if and only if there is a K -morphism of strata

representatives (8, Ã) → (8′, Ã ′). Then the closure of the stratum B8,Ã
K is given by

B8,Ã =
⋃

(8′,Ã ′)→(8,Ã)

B8′,Ã ′
.

Moreover, by [Howard and Madapusi Pera 2020, Theorem 3.4.1] following the work of Harris and

Zucker [2001], the line bundle of weight-1 modular forms L extends to a line bundle on M6 which we

still denote L by abuse of notation.
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Let (8, Ã) be a toroidal stratum representative. Then (8, Ã) determines a partial compactification

of the mixed Shimura variety M8 ↪→ M8(Ã ) with boundary component index by Ã denoted by Z8(Ã ).

Pink proved that there is a canonical isomorphism [Pink 1989, Corollary 7.17, Theorem 12.4], see also

[Madapusi Pera 2019, Theorem 2.1.27], of Deligne–Mumford stacks

1K (8, Ã)\ZÃ (Ã ) ≃ B8,Ã ,

where 1K (8, Ã) is the finite group defined in [Madapusi Pera 2019, 2.1.19]. The latter induces an

isomorphism of formal Deligne–Mumford stacks

1K (8, Ã)\M̂8(Ã ) ≃ M̂6, (2B.5)

where M̂8(Ã ) is the completion of M8(Ã ) along the locally closed subspace Z8(Ã ) and M̂6 is the formal

completion of M6 along the locally closed stratum B8,Ã .

Our goal in the next two sections is to make the above isomorphisms explicit for type-II and type-III

boundary strata.

2B4. Formal completion along type-II boundary strata. Let ϒ be a cusp label representative of type II.

By the discussion in Section 2B1, there is a unique choice of a one-dimensional ray Ã and hence a unique

choice of boundary stratum representative (ϒ, Ã ) which corresponds to a locally closed divisor Bϒ,Ã .

The morphism Mϒ → Mϒ is then a torsor under a one-dimensional torus Tϒ with cocharacter group

0ϒ ≃Z, i.e., Tϒ ≃Spec(Q[q, q−1]). The partial compactification Tϒ(Ã ) is then isomorphic to Spec(Q[q])
and the partial toroidal compactification of Mϒ is given as a twisted torus embedding over Mϒ with fiber

Spec(Q[q]). Hence we have the following description of M̂ϒ(Ã )

M̂ϒ(6)
Spf(Q[[X ]])−−−−−→ Mϒ

D¹E−−→ Mh
ϒ .

2B5. Formal completion along type-III boundary strata. Let (4, Ã ) be a toroidal stratum representative

of type III such that Ã is a one-dimensional inner ray. The corresponding boundary component is denoted

by B8,Ã and is a locally closed divisor. Write Ã = RÉ, where É ∈ C4 ∩ K is an integral primitive

generator that satisfies (É.É) < 0.

The morphism M4 → Sh¿4(K4)(Gm,H0) is a torsor under the torus

T4 = Spec(Q[q³]³∈0(
4
).

The partial compactification T4(Ã ) is equal to

T4(Ã ) = Spec(Q[q³](³.É)g0,³∈0(
4
)

and the ideal defining the boundary divisor is given by IÃ = (q³, (³, É) > 0). It is generated by qÉ′ for

any É′ ∈ 0(
4 for which (É, É′) = 1. We fix such É′.

The formal completion along the boundary divisor is then given by

T̂4(Ã ) = Spec(Q[q³, ³ ∈ 0(
4 ∩ É§][[qÉ′]]),
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and the map M4(Ã ) → Sh¿4(K4)(Gm,H0) is a twisted torus embedding with fibers T̂4(Ã ). We will

trivialize this fibration following an approach similar to [Howard and Madapusi Pera 2020, page 34].

First choose an auxiliary isotropic line I∗ ¢ LQ such that (I.I∗) ̸= 0. Then by [Howard and Mada-

pusi Pera 2020, Equation (4.6.6)] and the discussion that follows, this determines a section

(Gm,H0)
s−→ (Q4,D4).

The section s determines a Levi decomposition Q4 = Gm ëU4. Let K0 ¢ Gm(A f ) be a compact open

subgroup small enough such that the image under the section s is contained in K4 and let

K4,0 = K0 ë (U4(A f ∩ K4)) ¢ K4.

Then by reasoning similarly to [Howard and Madapusi Pera 2020, Proposition 4.6.2], we have the

following.

Proposition 2.1. We have an isomorphism of formal algebraic spaces
⊔

a∈Q
×
>0\A

×
f /K0

T̂4(Ã )/C
≃−→ M̂K4,0(Ã )/C,

and the map

M̂K4,0(Ã )/C → M̂K4
(Ã )/C

is a formally étale map of formal Deligne–Mumford stacks given by the quotient by K4/K4,0. In

particular, if K is neat, then the above map is a formally étale surjection of algebraic spaces.

Proof. The same proof as in [Howard and Madapusi Pera 2020, Proposition 4.6.2] works with no change

in our setting. □

2C. Integral models. We recall in this section the construction of integral models of GSpin Shimura

varieties and their compactifications following [Howard and Madapusi Pera 2020; Andreatta et al. 2018;

Madapusi Pera 2019]. We assume henceforth that the lattice (L , Q) is a maximal lattice, i.e., there is no

strict superlattice in LQ containing L over which Q is Z-valued.

By [Andreatta et al. 2018, Section 4.4], there exists a flat and normal integral model M → Spec(Z)

which is a Deligne–Mumford stack of finite type over Z. It enjoys the following properties:

(1) If the lattice (L , Q) is almost self dual at a prime p then the restriction of the integral model to

Spec(Z(p)) is smooth.3

(2) If p is odd and p2 does not divide the discriminant of (L , Q), the restriction of M to Spec(Z(p)) is

regular.

(3) If n g 6, the reduction mod p is geometrically normal.

(4) The line bundle of modular forms of weight 1 extends to a line bundle on M that we denote by L.

3See [Howard and Madapusi Pera 2020, Definition 6.1.1].
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Furthermore, given a K -admissible polyhedral complete cone decomposition, M admits by [Mada-

pusi Pera 2019, Theorem 4.1.5] a toroidal compactification M6 proper over Spec(Z) and which extends

the compactification M6 previously defined over Q. Moreover, it has a stratification

M
6 =

⊔

(8,Ã)∈StartK (G,D,6)

B
8,Ã (2C.1)

which extends the stratification in (2B.4) and such every stratum is flat over Z. The unique open stratum

is M and its complement is a Cartier divisor. Moreover, for any cusp label representative (8, Ã), the

tower of maps

M8(Ã ) → MÆ → Mh
8

has an integral model

M8(Ã ) → MÆ → M
h
8

which satisfies the following: the abelian scheme A8 has an extension A8 → Mh
8 such that the map

MÆ →Mh
8 is a torsor under A8 and the map M8(Ã ) →MÆ is a twisted torus embedding with structure

group the torsor T4 extending T4. Finally, the boundary component Z8(Ã ) has a flat extension Z8(Ã )

such that we have an isomorphism of completions:

1K (8, Ã)\M̂8(Ã ) ≃ M̂
6

(2C.2)

extending the isomorphism in (2B.5). See [Madapusi Pera 2019, Theorem 4.1.5] and [Howard and

Madapusi Pera 2020, Section 8.1] for more details.

Fix a prime p. The goal of the next two subsections is to describe the formal completions of M6 along

the boundary divisors of these compactifications explicitly over Z(p) in the type-II and the type-III case.

2C1. Type II. Let (ϒ, Ã ) be a toroidal stratum representative of type II where Ã is the unique one-

dimensional ray.

Let Tϒ = Spec(Z(p)[q, q−1]) with partial compactification Tϒ(Ã ) = Spec(Z(p)[q]). By (2C.1) and

[Madapusi Pera 2019, Theorem 4.1.5(2–4)], the morphism Mϒ → Mϒ is a torsor under Tϒ and the

morphism Mϒ →Mh
4 is a torsor under D ¹E , where E →Mh

4 is the universal elliptic curve. Moreover,

the partial toroidal compactification of M4 is given as a twisted torus embedding over Mϒ with fibers

isomorphic to Tϒ(Ã ). In particular, the formal completion of Mϒ along the boundary component is

describe by the following diagram:

M̂ϒ(Ã )
T̂ϒ (Ã )−−→ Mϒ

D¹E−−→ M
h
ϒ , (2C.3)

where T̂ϒ(Ã ) = Spf(Z(p)[[q]]).

2C2. Type III. Let (4, Ã ) be a toroidal stratum representative of type III such that Ã is one-dimensional

and generated by a primitive integral element É ∈ C4 with (É.É) = −2N . Let T4 = Spec(Z(p)[q³]³∈0(
4
)

and recall that we have a T4 torsor structure

M4 → Sh¿4(K4)(Gm,H0).
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The cone Ã determines a partial compactification T4(Ã )= Spec(Z(p)[q³](³,É)g0,³∈0(
4
) and also a partial

compactification M4 ↪→ M4(Ã ) which is a twisted torus embedding with fibers T4(Ã ).

The boundary divisor in T4(Ã ) is defined by the ideal IÃ = (q³, (³, É) > 0). If É′ ∈ 0(
4 is as before an

element such that (É′.É) = 1, then IÃ = (qÉ′). The formal completion of T4(Ã ) along IÃ is then given by

T̂4 = Spf(Z(p)[q³, ³ ∈ 0(
4 ∩ É§][[qÉ′]]).

Recall that we have a morphism of Shimura data

(Q4,D4)
v4−→ (Gm,H0),

and let s be the section of v4 defined in Section 2B5. Let K0 ¢ A
×
f be a compact open subgroup such

that s(K0) ¢ K4. We can furthermore assume that K0 factors as

K0 = Z
×
p .K p

0 .

Let F be the abelian extension of Q determined by the reciprocity morphism in global class field theory:

rec : Q
×
>0\A

×
f /K0 ≃ Gal(F/Q).

Fix a prime P ¢ OF above p and let R be the localization of OF at P. Then using similar arguments as

in [Howard and Madapusi Pera 2020, Proposition 8.2.3], we have the following proposition.

Proposition 2.2. There is an isomorphism
⊔

Q
×
>0\A

×
f /K0

T̂4(Ã )/R → M̂4,0(Ã )/R

of formal Deligne–Mumford stacks over R whose base change to C agrees with Proposition 2.1. Moreover,

the map

M̂4,0(Ã )/R → M̂4(Ã )/R

is an étale map of Deligne–Mumford stacks given as the quotient by K4/K4,0.

The proof follows from the description given over C Proposition 2.1, the flatness of both sides over Z(p)

and the fact the normalization of Spec(Z(p)) in ShK0(Gm,H0) is isomorphic to
⊔

a∈Q
×
>0\A

×
f /K0

Spec(R),

see [Howard and Madapusi Pera 2020, Proposition 8.2.3] for a proof and more details.

2D. Special divisors. We continue to assume in this section that the lattice (L , Q) is maximal and let 6

be a smooth K -admissible cone decomposition.

For every ´ ∈ L(/L , m ∈ Q(´)+ Z such that m > 0, one can define a special divisor Z(´, m) → M

following [Andreatta et al. 2018, Definition 4.5.6]. We recall briefly the definition and refer to [loc. cit.]

for more details.

The Shimura variety M carries the family of Kuga–Satake abelian varieties A → M. For any scheme

S →M, a group of special quasiendomorphisms V´(AS) is defined in [Andreatta et al. 2018, Section 4.5].
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Then the functor sending a scheme S to

Z(´, m)(S) = {x ∈ V´(AS) | Q(x) = m}

is representable by a Deligne–Mumford stack which is étale locally an effective Cartier divisor on M.

We will rather consider its image in M by a procedure described in [Howard and Madapusi Pera 2020]

after Proposition 6.5.2. By abuse of notation, we also denote by Z(´, m) its closure in M6 , which is

again a Cartier divisor.

In what follows, we will give an explicit description of Z(´, m) in the formal completions of M6

along its boundary components. Since for our purposes we only need ´ = 0 and m coprime to p, we will

only describe what happens in this situation and we abbreviate for short Z(´, m) = Z(m). We assume

that m g 1 is coprime to p for the rest of this section.

By [Andreatta et al. 2018, page 434], Z(m)(C) has a complex uniformization as follows: for any

g ∈ G(A f ), let Lg = g.L̂ ∩ LQ and consider the sub-Hermitian domain of D

D
◦(¼) = {x ∈ D

◦ | (x, ¼) = 0},

where ¼ ∈ Lg, Q(¼) = m. Then Z(m)(C) is equal to the union of D◦(¼) for g ∈ G(A f ) and ¼ ∈ Lg with

Q(¼) = m.

For any ¼ ∈ Lg with Q(¼) = m, let G¼ be the fixator of ¼, L¼ the orthogonal lattice to ¼ in LQ, and let

D¼ ¢ D be the orthogonal to ¼. Notice that D¼ does not depend on g but only on ¼ ∈ LC. Notice that

since m is coprime to p, the lattice L¼ is also maximal at p. Then (G¼, D¼) is again a Shimura datum of

GSpin associated to the lattice (L¼, Q) which is of signature (b − 1, 2) and has reflex field equal to Q. If

we choose K¼ ¢ G¼(A f ) a compact open subgroup as in [Andreatta et al. 2018, Equation (4.1.2)], then

K¼ ¢ K ∩ G¼(A f ) and we obtain a morphism of complex Shimura varieties

M¼(C) → M(C).

By the description [loc. cit., Equation (2.4)], the union over g ∈ G(A f ), ¼ ∈ Lg with Q(¼) = m of the

images of M¼(C) is equal to Z(m)(C).

Now since (G¼, D¼) is again a Shimura variety of GSpin type associated to a lattice maximal at p,

the discussion in the previous sections applies verbatim to the Shimura variety M¼ and yields similar

description for the compactification and the integral model over Z(p). In particular, we have a map between

integral models M¼ → M over Z(p) which factors through Z(m) by [Howard and Madapusi Pera 2020,

page 82].

M¼ → Z(m) ↪→ M

and the union over of images of such maps for g ∈ G(A f ) and ¼ ∈ Lg with Q(¼) = m is equal to Z(m).4

Let (8, Ã) be a toroidal stratum representative for M. From the description of the parabolic subgroups

of GSpin(b, 2), we have the following lemma.

4This union is in fact finite.
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Lemma 2.3. The group P ∩ G¼ is an admissible parabolic subgroup of G¼ if and only if ¼ ∈ I §
8 .

Notice also that if ¼ /∈ I §
8 , then the image of D¼ in M6(C) will not intersect the boundary components

parametrized by 8, as its projection to the Baily–Borel compactification will not do so. Hence they will

not appear in the formal completions of M6 along these boundary components.

We can write 8 = (P,D◦, h) and let ¼ ∈ Lg with Q(¼) = m such that ¼ ∈ I §
8 . Lemma 2.3 shows

that (8, Ã) can also be seen as a toroidal stratum representative with respect to (G¼,D¼) by considering

P ∩ G¼; see [Madapusi Pera 2016, Section 2.1.28] for more details. Let M¼,ϒ be the integral model over

Z(p) of the mixed Shimura variety associated to 8. We get then a morphism of mixed Shimura varieties

M¼,8 → M8,

as well as a morphism of partial compactifications respecting the strata

M¼,8(Ã ) → M8(Ã ).

By [Madapusi Pera 2019, Proposition 2.1.29], the morphism induced at the level of formal completions

along the boundary strata given by Ã is compatible with the toroidal compactifications of M¼ and M. In

particular, we get a commutative diagram

M̂¼,8(Ã ) //

��

M̂8(Ã )

��

Ẑ(m) // M̂
6

where the right vertical map is an étale cover of Deligne–Mumford stacks, the left vertical map is an étale

cover of an open and closed subset by [Howard and Madapusi Pera 2020, page 82]. Finally, the union

over g ∈ G(A f ), ¼ ∈ Lg with Q(¼) = m of the images of the left map covers the whole Ẑ(m).

2D1. Special divisors along type-II boundary components. Let (ϒ, Ã ) be a toroidal stratum representative

of type II.

Let ¼ ∈ L with Q(¼) = m such that ¼ ∈ I §
ϒ and m is coprime to p. We have a morphism of formal

completions of the partial compactifications of mixed Shimura varieties

M̂¼,ϒ(Ã ) → M̂ϒ(Ã ).

Let x ∈ Bϒ,Ã (Fp) ¢ Mϒ(Ã )(Fp) and let OMϒ (Ã ),x be the local ring at x . Let x̄ be the image of x in

Mϒ(Fp) and let z the image in Mh
ϒ(Fp). If follows from (2C.3) that the formal completion ÔMϒ (Ã ),x is

isomorphic to

ÔMϒ (Ã ),x ≃ Zp[[X ]] ¹̂ ÔM8,x̄ .

Moreover, the pull-back of the torsor Mϒ → Mh
ϒ to Spf(ÔMh

ϒ ,z) is trivial, as it is trivial by reduction to

Fp and we can lift formally any section. Hence

ÔM8,x̄ ≃ ÔD¹E,x̄ .
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For ¼ ∈ D, consider the map over Mh
ϒ

D ¹ E
(¼.)¹Id−−−→ E . (2D.1)

Its kernel is flat over Mh
ϒ . Let I¼ ¢ ¼ be the ideal defining it. Then Î¼ ↪→ ÔD¹E,x̄ is flat over ÔMh

ϒ ,z .

Proposition 2.4. The formal completion Ẑ(m) along x is the union over ¼ ∈ D with Q(¼) = m of the

vanishing loci inside ÔMϒ (Ã ),x of the ideals Zp[[X ]] ¹̂ Î¼.

Proof. Let ¼ ∈ L such that ¼ ∈ J§ and Q(¼) = m. Then we have a description of the mixed Shimura

variety Mϒ,¼ similar to (2C.3), namely, it has a fibration structure which fits into the following diagram:

M̂¼,ϒ(Ã )
T̂ϒ (Ã )

//

��

M¼,ϒ

D¼¹E
//

��

Mh
¼,ϒ

��

M̂ϒ(Ã )
T̂ϒ (Ã )

// Mϒ
D¹E

// Mh
ϒ

One can check that D¼ = ¼§, where ¼ is the image of ¼ in D = J§/J . Moreover, the right vertical map

in the above diagram is an étale cover and the vertical middle map is equivariant with respect to the

inclusion

¼§ ¹ E ↪→ D ¹ E,

and the left vertical map has image given by an open and closed subset of Ẑ(m).

Let z′ ∈Mh
¼,ϒ(Fp) be a point mapping to z, then ÔMh

¼,ϒ,z′
≃ ÔMh

ϒ,z
. Hence the above diagram becomes

at the level of completed local rings

Spf(Zp[[X ]] ¹̂ Ô¼§¹E,x ′) //

��

Spf(Ô¼§¹E,x ′) //

��

Spf(ÔMh
¼,ϒ,z′

)

≃
��

Spf(Zp[[X ]] ¹̂ ÔD¹E,x̄) // Spf(ÔD¹E,x̄) // Spf(ÔMh
ϒ,z

)

where the vertical map is contained in the kernel of the map (2D.1). By considering all the ¼ ∈ J§ that

map to a given class ¼ ∈ D, we get that the image is exactly the kernel of the map (2D.1) and hence the

image of left vertical map is defined by the ideal Zp[[X ]] ¹̂ Î¼, see [Zemel 2020, Equation (26)] for a

description over C. Finally, since Ẑ(m) is equal to the union of such images, the conclusion follows. □

2D2. Special divisors along type-III boundary components. Let (4, Ã ) be a stratum representative of

type III. Let K I = I §/I be the Lorentzian lattice as introduced in Section 2B2 and we continue to assume

that Ã is a one-dimensional inner ray. Let É ∈ K I ∩ C4 be a generator of Ã with (É.É) = −2N , N g 1.

Let É′ ∈ K (
I be an element such that (É.É′) = 1.

Let ¼ ∈ L with Q(¼) = m and such that ¼ ∈ I §. The projection ¼ ∈ K I defines a divisor in the torus

T4 = Spec(Z(p)[q³]³∈0(
4
) given by the equation q¼ = 1.
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In the partial compactification T4 ↪→T4(Ã ), the equation of this divisor becomes q¼−1 = 0 if (¼.É)g 0

or q−¼ − 1 = 0 otherwise. Notice also that this divisor intersects the toric boundary divisor defined by Ã

if and only if (É.¼) = 0. We will hence restrict ourselves to this latter situation and we denote by

T4(¼, Ã ) ↪→ T4(Ã )

the divisor defined by ¼. By construction, it only depends on the class of ¼ in K I .

Proposition 2.5. Let Ẑ(m) be the formal completion of Z(m) along the boundary component of M4

index by (4, Ã ). Then the following diagram is commutative and compatible with Proposition 2.1.

⊔
a∈Q

×
>0\A

×
f /K0

⊔
¼∈K ,Q(¼)=m,(¼.É)=0 T̂4,0(¼, Ã )/C

//

��

⊔
a∈Q

×
>0\A

×
f /K0

T̂4,0(Ã )

��

Ẑ(m) // M̂
6

The vertical maps are étale coverings of formal Deligne–Mumford stacks and the union over ¼ ∈ I §

covers Ẑ(m).

Proof. Let ¼ ∈ L ∩ I § with Q(¼) = m and such that projection ¼ ∈ I §/I is orthogonal to É. Then we have

similarly a description of the mixed Shimura variety M¼,4 associated to the Shimura datum (G¼,D¼) as

a torus fibration and such that the following diagram is commutative:

M̂¼,4(Ã )
T̂4,0(¼,Ã )

//

��

S(Gm,H0)/R

��

M̂4(Ã )
T̂4,0(Ã )

// S(Gm,H0)/R

The left vertical map is equivariant with respect to the inclusion T̂4(¼, Ã ) ↪→ T̂4(Ã ) and its image only

depends on ¼ ∈ I §/I . Since the formal completion Ẑ(m) is the union over ¼ ∈ L of the images of the

left vertical maps, we get the desired result. □

3. Arithmetic intersection theory and modularity

We recall in this section the Arakelov arithmetic intersection theory on M6 following [Bruinier et al.

2007], the modularity results of the special divisors from [Howard and Madapusi Pera 2020; Borcherds

1999] and its extension to complex toroidal compactification by [Bruinier and Zemel 2022]. Then we

derive a further extension to the integral model of the toroidal compactifications of GSpin Shimura

varieties.

3A. Modularity of special divisors. Let (L , Q) be a maximal quadratic lattice with signature (b, 3) and

assume that b g 3.



Picard rank jumps for K3 surfaces with bad reduction 93

Let K ¢ G(A f ) be the compact open subgroup from Section 2A and let 6 be a K -admissible smooth

polyhedral cone decomposition. Denote by M6 the toroidal compactification of the integral model of

the GSpin Shimura variety constructed in Section 2C. Let ĈH
1
(M6,Dpre)Q be the first Chow group of

prelog forms as defined in [Bruinier et al. 2007, Definition 1.15].

Let ϒ be a cusp label representative of type II. Then there is a unique one-dimensional ray in the

cone decomposition associated to ϒ and we denote by abuse of notation Bϒ the closure of the boundary

divisor associated to ϒ .

Consider now (4, Ã ) a toroidal stratum representative of type III such that Ã is a one-dimensional

inner ray in the cone decomposition 6. Then we denote by B4,Ã the closed boundary divisor in M6

associated to (4, Ã ).

Let ´ ∈ L(/L and m ∈ Q(´)+ Z with m > 0. For every toroidal stratum representative ϒ and (4, Ã ),

let µϒ(´, m) and µ4,É(´, m) be the real numbers defined by (4E.1) and (4F.1), see also [Bruinier and

Zemel 2022]. Consider then the following divisor on M6:

Z
tor(´, m) = Z(´, m) +

∑

ϒ

µϒ(µ, m) ·Bϒ +
∑

(4,É)

µ4,É(µ, m) ·B4,É, (3A.1)

where the two last sums are over toroidal stratum representatives of type II and type III respectively. Then

by [Bruinier and Zemel 2022], the Cartier divisor Z tor(´, m) can be endowed with a Green function 8´,m

such that the resulting pair

Ẑ
tor

(´, m) = (Z tor(´, m), 8´,m)

is an element of the first Chow group of prelog forms ĈH
1
(M6,Dpre)Q. For m = 0 and ´ = 0, we define

Ẑ(0, 0) to be any arithmetic divisor whose is class is the dual of the hermitian line bundle L̂= (L, ∥ · ∥pet)

endowed with the Petersson metric ∥z∥2 = [z, z̄].
Consider then the following generating series

8L :=
∑

´∈L(/L

∑

m∈Q(´)+Z

Ẑ
tor

(´, m)qme´ ∈ C[L(/L][[q1/DL ]] ¹ ĈH
1
(M6,Dpre)Q,

where (e´)´∈L(/L is a basis of the C-vector space C[L(/L], DL is the discriminant of L , and q = e2iÃÄ ,

where Ä ∈ H is in the upper-half plane.

Let

ÄL : Mp2(Z) → AutC(C[L(/L])

be the Weil representation associated to the quadratic lattice (L , Q), where Mp2(R) is the metaplectic

double cover if Mp2(R). For k ∈ 1
2 Z, let Modk(ÄL) denote the vector space of vector valued modular

forms of weight k with respect to ÄL . We then have the following theorem.

Theorem 3.1. The generating series 8L is the Fourier development of a vector-valued modular forms of

weight 1 + b
2 and representation ÄL , i.e.,

8L ∈ Mod1+b/2(ÄL) ¹ ĈH
1
(M6,Dpre)Q.
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Proof. Let F ∈ M !
1−b/2(ÄL) be a weakly holomorphic modular form of weight 1 − b

2 with respect to the

complex conjugate Weil representation of ÄL such that F has integral principal part, and let 9 be the

associated Borcherds product. Then by [Bruinier and Zemel 2022, Theorem 5.5], the divisor in M6(C)

of 9(F)C is equal to ∑

´∈L(/L

∑

m∈Q(´)+Z

c´(−m)Z tor(´, m)(C).

Since Borcherds products are defined rationally by [Howard and Madapusi Pera 2020, Theorem A],

we only need to check that the divisor of the Borcherds products has the expected form over Z and this

will be automatic if all the special divisors and the boundary divisors are flat. By [Madapusi Pera 2019,

Theorem 4.1.5], the boundary divisors are flat and by [Howard and Madapusi Pera 2020, Proposition 7.2.2],

the special divisors are flat over Z
[ 1

2

]
and over Z if b g 4. For b = 3, one can use the algebraic version

of the Borcherds embedding trick as in [Howard and Madapusi Pera 2020, Section 9.2] to prove that

no further components appear at 2 and hence the divisor of the Borcherds product has the correct form.

Hence we conclude by the criterion in [Bruinier and Zemel 2022, Proposition 5.4]. □

4. The main estimates and proof of the main theorems

We state in this section the local and global estimates that will allow us to prove Theorem 1.1 and

Theorem 1.3. Then we will prove the global estimates and we postpone the proof of local estimates to the

next section.

4A. Number field setting. Let X be K3 surface over a number field K . Given an embedding Ä : K ↪→ C,

let (L , Q) be a maximal lattice containing the transcendental lattice of X Ä (C). It is an even lattice of

signature (b, 2) whose genus is independent from Ä . We can assume furthermore that b g 3, as the case

b f 2 has already been treated, see [Charles 2018; Shankar and Tang 2020].

Let M be the integral model of the GSpin Shimura variety associated to the lattice (L , Q) and, given

an admissible polyhedral cone decomposition 6, let M6 be its toroidal compactifications as in Section 2.

By [Madapusi Pera 2015], the K3 surface has an associated Kuga–Satake abelian variety which we can

also assume to be defined over the number field K , up to taking a finite extension. Hence it defines a

K -point of M6 . By the extension property of the integral model, there exists N g 1 such that, up to

taking a finite extension of K , we have a flat morphism over Z:

Spec
(
OK

[ 1
N

])
→ M,

and by properness, this map extends to

Ä : Y = Spec(OK ) → M
6.

By construction, the image of this map is not contained in any special divisor. A prime over N is said to

be a prime of bad reduction and otherwise of good reduction.
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As in [Shankar et al. 2022, Theorem 2.4], we will rather prove the following more general version,

which is easily seen to imply Theorem 1.1.

Theorem 4.1. Let Y ∈ M6(OK ) with smooth reduction outside N. Let D ∈ Z>0 be a fixed integer

represented by (L , Q) and coprime to N. Assume that YK ∈ M(K ) is not contained in any special divisor

Z(m)(K ). Then there are infinitely many places P of K of good reduction such that YP lies in the image

of Z(Dm2) → M for some m ∈ Z>0 coprime to N.

Let Ä : Y → M6 be as in the previous theorem. We first begin by the following proposition.

Proposition 4.2. There exists a refinement of the cone decomposition 6, such that the map Ä : Y → M6

satisfies the following property: for any prime P of bad reduction, the image of the closed point {P} under

Ä is contained in a stratum which is a locally closed divisor of M6 .

Proof. Let sP ∈ Y be the closed point P of Y . By (2C.1), the image of sP lies in a stratum indexed either

by either a type-II boundary component ϒ or a type-III (4, Ã ) toroidal stratum representative. In the

type-II case, the boundary is already a divisor and there is nothing to prove. In the type-III case, let r be

the dimension of the cone Ã . Then we get a morphism

Spf(W (Fp)) → M̂
6
, (4A.1)

where M̂
6

is the formal completion along the boundary component defined by (4, Ã ). By a similar

analysis to Section 2C2, we have an étale cover of formal Deligne–Mumford stacks

T̂4(Ã ) → M̂
6
.

Hence the map (4A.1) lifts to a morphism

Spf(W (Fp)) → T̂4(Ã ), (4A.2)

where

T̂4(Ã ) = Spf(Zp[q³ | (³, Ã ) = 0] ¹Zp Zp[[q³ | (³, Ã ) > 0]]).

Hence this corresponds to a map

Zp[[q³ | (³, C) > 0]] ¹ Zp[q³ | (³, C) = 0] → W (Fp).

The linear form on 0(
4 given by sending an element ³ to the p-adic valuation of the image of q³

under the above map is represented by an element É ∈ 04 which satisfies (É.³) > 0 whenever (³.Ã ) > 0;

hence É is in Ã . The cocharacter defined by É is in fact tangent to the map given in (4A.2). Let Ã ′ in Ã

be the ray defined by É and let 6′ be the new cone decomposition obtained by refining 6 and which

contains Ã ′ as a one-dimensional ray. Then M6′
is a blow-up of M6 and by the preceding discussion,

the point sP belongs to the boundary divisor parametrized by (4, Ã ′). Since there are only finitely many

primes of bad reduction, then by repeating this procedure finitely many times, we get the desired cone

decomposition. □
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We will work from now on with the toroidal compactification given by the above proposition. For

m g 1 an integer, let Z(m) be the closed special divisor Z(0, m) ↪→ M6 and Ẑ
tor

(m) the arithmetic

divisor associated to Z tor(m) by (3A.1). The pullback via the period map Ä : Y → M6 allows us to

define the height h
Ẑ

tor
(m)

(Y) of Y with respect to the arithmetic divisor Ẑ
tor

(m) as its image under the

composition

ĈH
1
(M6,Dpre)Q → ĈH

1
(Y,Dpre)Q

d̂eg−→ R, Ẑ
tor

(m) → h
Ẑ

tor
(m)

(Y).

By choice of the lattice (L , Q), the arithmetic curve Y intersects properly the divisors Z(m), B4,É and

Bϒ for every ϒ and (4, É). Hence we have

h
Ẑ

tor
(m)

(Y) =
∑

Ä :K ↪→C

8m(YÄ ) +
∑

P

(Y.Z tor(m))P log|OK /P|, (4A.3)

where for Ä : K ↪→ C, we use YÄ to denote the point in M(C) induced by

Spec(C)
Ä−→ Spec(OK ) = Y → M

6.

We have

(Y.Z tor(m))P = (Y.Z(m))P +
∑

ϒ

µϒ(m)(Y.Bϒ)P +
∑

(4,É)

µ4,É(m) · (Y.B4,É)P. (4A.4)

Let us denote by OY×
M6Z(m),v the étale local ring of Y ×M Z(m) at v. Then

(Y.Z(m))P =
∑

v∈Y×MZ(m)(FP)

length(OY×
M6Z(m),v), (4A.5)

where FP denotes the residue field of P.

Let

(Y.Z(m)) =
∑

P

(Y.Z(m))P log|OK /P|.

The first new contribution of this paper is to prove the following estimate which results from Borcherds

modularity and ad hoc bounds on the multiplicities µϒ(m) and µ4,É(m).

Proposition 4.3. As m → ∞, we have

(Y.Z(m)) +
∑

Ä :K ↪→C

8m(YÄ ) = O(mb/2).

As a corollary, we get the following bound, which is referred to as the diophantine bound in [Shankar

et al. 2022, Equation (5.2)].

Corollary 4.4. For any finite place P, we have the following bound:

(Y.Z(m))P = O(mb/2 log m), 8m(YÄ ) = O(mb/2 log m).
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For our next estimate, we recall the notion of asymptotic density from [Shankar et al. 2022]: for a

subset S ¢ Z>0, the logarithmic asymptotic density of S is defined to be

lim sup
X→∞

log|SX |
log X

,

where SX := {a ∈ S | X f a < 2X}.
Recall from Theorems 5.7 and 6.1 in [loc. cit.] that we have the following estimate:

Proposition 4.5. There exists a subset Sbad ¢ Z>0 of zero logarithmic asymptotic density such that
∑

Ä :K ↪→C

8m(YÄ ) = c(m) log(m) + o(mb/2 log(m)),

where −c(m) ≍ mb/2 and is defined in [loc. cit., Section 3.3].

For a prime P of good reduction, i.e., where the intersection of Y and Z(m) above P is supported

in M, we have the following estimate which follows easily from [loc. cit., Theorem 7.1].

Proposition 4.6. Let P be a finite place of good reduction. Let D ∈ Zg1 coprime to N. For X ∈ Z>0, let

SD,X denote the set
{

m ∈ Z>0
∣∣ X f m < 2X,

m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have ∑

m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

Finally, for a prime P of bad reduction, we prove the following proposition which is the second new

contribution of this paper.

Proposition 4.7. Let P a finite place of bad reduction. Let D ∈ Zg1 coprime to N. For X ∈ Z>0, let SD,X

be the set defined in the previous proposition. Then we have
∑

m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

4B. Function field setting. We assume in this section that the lattice (L , Q) is self-dual at p. Then the

Shimura variety M has smooth reduction at p and we denote its reduction by MFp . Given an admissible

cone decomposition 6, we denote by M6
Fp

the reduction of the toroidal compactification M6 . We first

give a new formulation of Theorem 1.3, see Theorem 4.8, then we will give the main estimates that will

allow us to prove the latter.

Let X → S be a generically ordinary nonisotrivial family of K3 surfaces over a smooth curve S

over Fp. The quadratic lattice (L , Q) in this case corresponds to a maximal quadratic lattice orthogonal

to the generic geometric Picard group in the K3 lattice. Hence (L , Q) has discriminant coprime to p by

assumption and we get a period map by [Madapusi Pera 2015, section 4]

Ä : S → MFp ,
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which is a finite map and the image of the generic point is in the ordinary locus. The locus in S where

the Picard rank jumps corresponds then exactly to the union over m g 1 of the intersections S ∩Z(m)Fp .

Hence Theorem 1.3 follows from the following theorem.

Theorem 4.8. Let S → MFp be a finite map with generically ordinary image and not contained in any

special divisor. Then there exists infinitely many closed points in S in the union of Z(m)Fp for integers m

coprime with p.

Let S be a smooth curve as in the theorem above. By properness, we can extend the map

Ä : S → M
6
Fp

,

where S is the smooth compactification of S . We have the following proposition whose proof is similar

to Proposition 4.2 and hence we omit it.

Proposition 4.9. There exists a refinement of the cone decomposition 6 such that the image of S in M
Fp

intersects the boundary only in strata corresponding to locally closed divisors.

Let 6 be a polyhedral cone decomposition which satisfies the conditions of the previous proposition.

By abuse of notation, if D ¢ M6
Fp

is a Cartier divisor, we write

(D.S ) = deg
S

Ä∗D.

We have then the following global estimate.

Proposition 4.10. As m → ∞, we have

(Z(m)
Fp

.S ) = |c(m)|(S .LFp) + o(mb/2).

For any integer m, we have the decomposition

(Z(m)
Fp

.S ) =
∑

P∈Fp

m P(Z(m)Fp , S ),

where m P(Z(m)Fp , S ) is the multiplicity of intersection at P . Our next goal is to estimate in average

these local multiplicities and we start by the good reduction case already treated in [Maulik et al. 2022a,

Proposition 7.11, Theorem 7.18].

Let S be as in [loc. cit., Section 7.1], i.e., a set of integers of positive density such that every m ∈ S is

coprime to p and is representable by the quadratic lattice (L , Q).

For P ∈ (S ∩M)(Fp), we define as in [loc. cit., Definition 7.6]

gP(m) = h p

p − 1
|c(m)|,

where h p is the order of vanishing of the Hasse invariant at P , see [loc. cit.] The following proposition is

the combination of Proposition 7.11 and Theorem 7.18 from [loc. cit.].
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Proposition 4.11. Let P ∈ S (Fp). Then:

(1) If P is not supersingular then
∑

m∈SX

m P(Z(m)Fp .S ) = O(Xb/2 log X).

(2) There exists an absolute constant 0 < ³ < 1 such that for any supersingular point P we have
∑

m∈SX

m P(Z(m)Fp .S ) = ³
∑

m∈SX

gp(m) + O(X (b+1)/2).

Our new contribution in this setting is the following theorem which gives an estimate on intersection

multiplicities at points where S intersects the boundary of M6
p .

Proposition 4.12. Let P ∈ S (Fp) a point mapping to the boundary of M6
Fp

. Then we have the following

estimate: ∑

m∈SX

m P(Z(m)Fp .S ) = O(Xb/2 log X).

4C. Proof of the main theorems. Assuming the estimates in the previous section we now indicate how

to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. It is enough to prove Theorem 4.1 in a similar way to [Shankar et al. 2022,

Section 8]. For convenience of the reader, we will sketch the proof. Assume for the sake of contradiction

that there are only finitely many primes of good reduction such that Y intersects a special divisor of

the form Z(Dm2) where Dm2 is coprime with N and is represented by (L , Q). By Proposition 4.3 and

Proposition 4.5, there exists a subset Sbad ¢ Z>0 of logarithmic asymptotic density zero such that

(Y.Z(m)) = −c(m) log(m) + o(mb/2 log(m)) ≍ mb/2 log(m).

Let Sgood
D,X = {m ∈ SD,X , m /∈ Sbad, (m, N ) = 1}, then one can easily check that |Sgood

D,X | ≍ X1/2 and

c(m) k Xb/2 log X for m ∈ Sgood
D,X . Hence we get

∑

m∈Sgood
D,X

(Y.Z(m)) ≍ X (b+1)/2 log X. (4C.1)

On the other hand, by Propositions 4.5 and 4.7, we get by summing over the finitely many places where

either Y intersects a Z(Dm2) or which are of bad reduction
∑

m∈Sgood
D,X

(Y.Z(m)) = o(X (b+1)/2 log X),

which contradicts (4C.1). □

Proof Theorem 1.3. The proof is similar: assume that there are only finitely many points in the union(⋃
m,m'p=1 Z(m) ∩ S

)
(Fp) and let S be a set as in Section 4B. Then by Proposition 4.10, we have

∑

m∈SX

(Z(m)Fp .S ) =
∑

m∈SX

|c(m)|(S .LFp) + o(Xb/2+1).
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On the other hand, by Propositions 4.11 and 4.12 we have
∑

m∈SX

(Z(m)Fp .S ) =
∑

m∈SX

∑

P∈
(⋃

m,m'p=1 Z(m)∩S

)
(Fp)

m P(Z(m)Fp .S )

= ³
∑

m∈SX

|gP(m)| + O(X (b+1)/2).

f ³
∑

m∈SX

|c(m)|(S .LFp) + O(X (b+1)/2),

where the last equality results from the fact that the Hasse invariant is a section of L¹p−1
Fp

. These two

estimates contradict each other, hence the result. □

4D. Global estimate. We prove in this section simultaneously Propositions 4.3 and 4.10.

By Theorem 3.1, the generating series
∑

´∈L(/L

∑

m∈Q(´)+Z

h
Ẑ

tor
(´,m)

(Y)qme´

and ∑

´∈L(/L

∑

m∈Q(´)+Z

(Z tor(´, m)Fp .S )qme´

are elements of Mod1+b/2(ÄL). Classical estimates on the growth of coefficients of modular forms imply

that (see [Tayou 2020, Example 2.3] for more details)

h
Ẑ

tor
(m)

(Y) = O(mb/2)

and

(Z(m)tor
Fp

.S ) = |c(m)|(S .LFp) + o(mb/2).

By (4A.3) and (4A.4), we can write

(Y.Z(m)) +
∑

Ä :K ↪→C

8m(YÄ )

= h
Ẑ

tor
(m)

(Y) −
∑

ϒ

µϒ(m)(Y.Bϒ)P log|OK /P| −
∑

4

µ4,Ã (m) · (Y.B4,Ã )P log|OK /P| (4D.1)

and similarly, we can write

(S .Z(m)Fp) = (Z tor(m)Fp .S ) −
∑

ϒ

µϒ(m)(S .Bϒ,Fp) −
∑

4,Ã

µ4,É(m) · (S .B
4,Ã
Fp

). (4D.2)

Hence we only have to bound the growth of the multiplicities µϒ(m) and µ4,É(m).5 This is given by

the following lemma.

Proposition 4.13. As m → ∞, we have the following estimates:

(1) For any type-II cusp label representative ϒ , we have

µϒ(m) jϵ mb/2−1+ϵ .

5É is the unique integral generator of Ã .
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(2) For any type-III toroidal stratum representative (4, Ã ) such that Ã is a ray, we have

µ4,É(m) jϵ m(b−1)/2+ϵ .

This proposition will be proved in the following two sections.

4E. Estimates on type-II multiplicities. The goal of this section is to prove the type-II estimate in

Proposition 4.13. First we recall some notation associated to isotropic planes introduced in [Bruinier and

Zemel 2022, Section 3.2].

Let ϒ = (P,D◦, h) be a cusp label representative corresponding to a boundary component of type II.

Recall from Section 2B1 that P is the stabilizer of an isotropic plane JQ and J = JQ ∩ h.L is a primitive

isotropic plane of h.L ∩ LQ.

To simplify the notation, assume that h.L ∩ LQ = L , the reader may otherwise replace L by Lh =
h.L ∩ LQ in what follows. Define then

JL( = JR ∩ L(, J§
L = J§ ∩ L , J§

L( = J§ ∩ L(, and D = J§
L /J.

The lattice D is positive definite lattice of rank b − 2. Its dual lattice can be described as

D( = J§
L(/JL( .

and the discriminant lattice is given by

1D = D(/D = J§
L(/(J§

L + JL( = L(
J /(L + JL(),

where L(
J is the subgroup of L(

L + J§
L( = {µ ∈ L( | ∃¿ ∈ L such that (µ, ¼) = (¿, ¼)∀¼ ∈ J }.

Let 2D denote the vector-valued Theta function associated to D defined by

2D(Ä ) =
∑

´∈D(

q Q(´)e´+D ∈ C[1D][[q1/|1D |]].

It is an element of Mb/2−1(ÄD), which is the space of vector-valued modular forms of weight b
2 −1 with

respect to the Weil representation ÄD associated to the positive definite lattice (D, Q). We can also write

2D(Ä ) =
∑

´∈D(/D

∑

mg0

c(D, ´, m)qme´,

where for ´ ∈ D(/D, m ∈ Q(´) + Z, m g 0, we have

c(D, ´, m) = |{¼ ∈ ´ + D, Q(¼) = m}|.

Following Bruinier and Zemel’s notation [2022, Section 4.4], define

↑L
D (2D)(Ä ) =

∑

´∈J§
L(/J

q Q(´)/2e´+L =
∑

´∈L(/L

∑

m∈Q(´)+L

c(D, ´, m)qme´ ∈ Mb/2−1(ÄL),
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where c(D, ´, m) = 0 if ´ /∈ J§
L(/J§ or m /∈ Q(´) + Z, and otherwise c(D, ´, m) = c(D, ´, m) where

´ is the image of ´ under the reduction map J§
L( → D(/D.

In particular, we have

q
d

dq
↑L

D (2D)(Ä ) =
∑

´∈L(/L

∑

m∈Q(´)+L

mc(D, ´, m)qme´,

which is a quasimodular form in the sense of [Imamoğlu et al. 2014, Definition 1].

Then by [Bruinier and Zemel 2022, Definition 4.18, Proposition 4.21 4.15], we can define

µϒ(m) = 1

b − 2
CT

(〈
q

d

dq
↑L

D (2D), F+
m

〉

L

)
, (4E.1)

where F+
m is the holomorphic part of the harmonic mass form Fm,0 from [Bruinier and Zemel 2022,

Proposition 4.2]. A direct computation shows then (see also the second formula in [Bruinier 2002,

Theorem 2.14])

µϒ(m) = 2

b − 2
mc(D, 0, m).

Classical estimates on coefficients of modular forms, see for example [Sarnak 1990, Proposition 1.5.5],

show that

|c(D, ´, m)| jϵ mb/2−2+ϵ (4E.2)

for all ϵ > 0. Hence we get that

|µϒ(m)| jϵ mb/2−1+ϵ,

which proves the first part of Proposition 4.13.

4F. Estimates on type-III multiplicities. In this section, we prove the estimates on the type-III multiplic-

ities in Proposition 4.13.

Let (4, Ã ) be a toroidal stratum representative of type III such that Ã is a ray. Keeping the notation

from Section 2B2, let IQ be the isotropic line of LQ whose stabilizer is the parabolic subgroup attached

to 4 and let I = IQ ∩ h.L . To simplify notation, we assume that h.L = L , the reader may notice that this

is harmless, up to replacing L by h.L in what follows.

The line I is an isotropic line of L and the lattice K I = I §/I is Lorentzian. Let CR be the cone of

negative elements of the Lorentzian space K I,R and let C = CR ∩ K . As is explained in Section 2B2, the

ray É is generated by an element É ∈ K I ∩ C which is primitive and such that Q(É) = −N . Following

[Bruinier and Zemel 2022, Definition 4.18], we define

µ4,É(m) =
√

N

8
√

2Ã
8K

m

(
É√
N

)
. (4F.1)

Let v = É√
N

. By [Bruinier 2002, Proposition 2.11 and Theorem 2.14], we have

8K
m (v) = 8K

m

(
v, 1

2 + b
4

)
=

20
(

b−1
2

)
(4Ãm)b/2

1 + b
2

∑

¼∈K I ,Q(¼)=m

F
(

b−1
2 , 1, 1 + b

2 ; m
(Q(¼

v§ ))

)

(4Ã |Q(¼v§)(b−1)/2|) ,
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where F(a, b, c; z) is the usual Gauss hypergeometric function given by

F(a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)n

zn

n! ,

and (a)n = 0(a + n)/0(a). Recall that the above series has 1 as a radius of convergence and converges

absolutely in the unit circle |z| = 1 if R(c − a − b) > 0. In our situation, the latter quantity is equal

to 1 + b/2 − 1 − (b − 1)/2 = 1
2 > 0. Hence the series F((b − 1)/2, 1, 1 + b/2; z) is globally bounded

over the unit disc. For ¼ ∈ K such that Q(¼) = m, we have m = Q(¼v) + Q(¼v§) and Q(¼v) f 0, hence

0 < m f Q(¼v§). Hence we get

|8K
m (v)| j

√
m.

∑
√

m¼∈K I ,Q(¼)=1

1

Q(¼v§)(b−1)/2
j

√
m

∑

Ng1

∑

Q(¼§
v )∈[N ,N+1[√

m¼∈K I
Q(¼)=1

1

N (b−1)/2
.

By Proposition 4.14 below, we have

|{¼ ∈ K I,R, Q(¼) = 1,
√

m¼ ∈ K , Q(¼§
v ) ∈ [N , N + 1[}| jϵ mb/2−1+ϵ N b/2−2.

Hence

|8K
m (v)| jϵ m(b−1)/2+ϵ

∑

Ng1

N b/2−2

N (b−1)/2
jϵ m(b−1)/2+ϵ

∑

Ng1

1

N 3/2
jϵ m(b−1)/2+ϵ,

which proves the second part of Proposition 4.13.

Proposition 4.14. Let m g 1 be an integer and X > 0 a positive real number. Then

|{¼ ∈ K I,R, Q(¼) = 1,
√

m¼ ∈ K I , Q(¼§
v ) ∈ [N , N + 1[}| jϵ mb/2−1+ϵ N b/2−2.

Proof. Recall that (K I , Q) is a quadratic lattice of signature (b − 1, 1) and we have a canonical measure

µ∞ on the quadric K1 := {x ∈ K I,R | Q(x) = 1} defined as follows: for W an open subset of KR, let

µ∞(W ∩ K1) = lim
ϵ→0

Leb({x ∈ W, |Q(x) − 1| < ϵ})
2ϵ

.

Here Leb is the Lebesgue measure on KR for which the lattice K is of covolume 1. One can then prove

that (see for example the proof of [Shankar et al. 2022, Corollary 4.12]):

µ∞({¼ ∈ K1, Q(¼v§) ∈ [X, X + 1[}) j Xb/2−2.

On the other hand, by the equidistribution of integral points in quadrics, see [Eskin and Oh 2006; Duke

1988],6 we have

|{¼ ∈ K1,
√

m¼ ∈ K , Q(¼§
v ) ∈ [N , N + 1[}| jϵ mb/2−1+ϵµ∞({¼ ∈ K1, Q(¼v§) ∈ [X, X + 1[}),

which yields the desired result. □

6Or the circle method.
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5. Bounding the contribution from bad reduction places

In this section we prove Propositions 4.7 and 4.12. Let M6 be as before the toroidal compactification of

the GSpin Shimura variety associated to a quadratic lattice (L , Q) and a K -admissible polyhedral cone

decomposition 6. The lattice (L , Q) is assumed to be maximal in the number field case and moreover

self-dual at p in the function field case.

5A. Bad reduction in the number field setting. In this section, we prove Proposition 4.7. We assume

hence that the lattice (L , Q) is maximal and that the polyhedral cone decomposition 6 is chosen in such

way that Proposition 4.2 is satisfied.

By the choice of the cone decomposition 6, the intersection points of Y and M6 lie either in a

boundary divisor of type II or a boundary divisor of type III associated to a toroidal stratum representative

(4, Ã ) of type III where Ã is a ray.

Let P be a prime of bad reduction, i.e., where Y intersects the boundary of M6 . Let KP be the

completion at P of the number field K and vP its normalized valuation. Let kP be the residue field of P

and k̄P an algebraic closure.

5A1. Type-II degeneration. Assume in this section that the boundary point lies in Bϒ
Fp

where ϒ is a cusp

label representative of type II.

Let J be the primitive isotropic plane associated to ϒ and let D = J§
L /J ; see Section 4E for notation.

Recall from (2B.5) and (2C.3) that the completion of M6 along the boundary divisor Bϒ fits into the

following commutative diagram:

M̂ϒ
Ã

//

=
��

M̂6

M̂ϒ

Spf(Zp[[X ]])
// Mϒ

D¹E
// Mh

ϒ

where the map Ã is an étale map of formal Deligne–Mumford stacks.

The formal completion of Y along P induces a map

Spf(OKP
) → M̂6,

which lifts by étaleness of Ã to a map

Spf(OKP
) → M̂ϒ .

Denoting by x the image of the closed point sP, then we get a map of local rings

9 : ÔM̂ϒ ,x → OKP
.

Let m g 1 be an integer coprime to N . By Proposition 2.4, the formal completion of the divisor Z(m)

is described as the union over ¼ ∈ D with Q(¼) = m, of the vanishing set of the ideals Zp[X ]]¹ Î¼. If f¼
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is a generator of Î¼,7 then the multiplicity of intersection of the branch parametrized by ¼ at P is equal to

v(¼) = vP(9( f¼)).

Hence the multiplicity of intersection of Y and Z(m) at P is given by

(Y.Z(m))P = 1
d

∑

¼∈D,Q(¼)=m

v(¼),

where d is the degree of Ã at Ä(sP).

For an integer n, define the set

Ln = {¼ ∈ D | v(¼) g n}, (5A.1)

and notice that (Ln) is a decreasing chain of sets. It follows then

(Y.Z(m))P f
∑

¼∈D,Q(¼)=m

v(¼) f
∑

ng1

|{¼ ∈ Ln | Q(¼) = m}|. (5A.2)

The proposition below should be compared to what happens in the good reduction case in [Shankar

et al. 2022, Section 7]. For a definition of the successive minima used, we refer to [Eskin and Katznelson

1995, Definition 2.2].

Proposition 5.1. The sequence (Ln, Q)n is a decreasing sequence of positive definite lattices which all

have the same rank r f b − 2. Moreover, the following holds:

(1)
⋂

n Ln = {0}.
(2) For every n g 1, pLn ¦ Ln+1.

(3) For 1 f r f b − 2, let µi (Ln) be the i-th successive minima of Ln and let ai (Ln) =
∏

1fkfi µi (Ln).

Then we have

ai (Ln) kϵ ni/(b+ϵ).

Proof. Let ¼, ¼′ ∈ Ln . From (2D.1), we see that ker(p¼) ∩ ker(p¼′) and thus

Î¼+¼ ¢ Î¼ + Î¼′ .

It follows that

v(¼ + ¼′) g min{v(¼), v(¼′)} g n.

We conclude that Ln ¦ D is a subgroup and (Ln, Q) is obviously positive definite. Moreover, since the

curve Y is not contained in any special divisor, (1) follows immediately.

For (2), let ¼ ∈ Ln with v(¼) g n g 1. Then Îp¼ is the ideal defining the kernel of the composition

D ¹ Ê → Ê → Ê,

over Spf(ÔMh ,z).

7Recall that Z(m) is Cartier.
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Since the multiplication by p map is ramified at 0 with ramification degree equal to p, we conclude that

v(p¼) g pv(¼) g n + 1.

This also proves that the lattices Ln have the same rank.

For (3), let n g 1 and let w0 be a vector in Ln such that Q(w0) = µ1(Ln)
2. By choosing m0 = µ1(Ln)

2,

the height bound Corollary 4.4 implies

n f (Y.Z(m0))P jϵ m(b+ϵ)/2.

Hence µ1(Ln) kϵ n1/(b+ϵ). Since ai (n) g µ1(n)r , this concludes the proof. □

Proposition 5.2. Let D ∈ Zg1. For X ∈ Z>0, let SD,X denote the set
{

m ∈ Z>0 | X f m < 2X,
m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have ∑

m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

Proof. We have
∑

m∈SD,X

(Y.Z(m))P f
∑

m∈SD,X

∑

ng1

|{¼ ∈ Ln | Q(¼) = m}| =
∑

ng1

∑

m∈SD,X

|{¼ ∈ Ln | Q(¼) = m}|.

By [Eskin and Katznelson 1995, Lemma 2.4], we have the following estimate which only depends on the

rank r of the lattices Ln and hence not on n

∑

m∈SD,X

|{¼ ∈ Ln | Q(¼) = m}| j
r∑

j=0

X j

a j (Ln)
.

On the other hand, if ¼ ∈ Ln with Q(¼) = m ∈ SD,X , then µ1(Ln)
2 f m f X ; hence n j X (b+ϵ)/2 and

∑

m∈SD,X

(Y.Z(m))P j
∑

m∈SD,X

Oϵ(X (b+ϵ)/2)∑

ng1

|{¼ ∈ Ln | Q(¼) = m}|

j
r∑

j=0

X (b+ϵ)/2∑

ng1

X j/2

n j/(b+ϵ)

j
r∑

j=0

X j/2+(1− j/(b+ϵ))(b+ϵ)/2 = O(X (b+ϵ)/2).

Hence the result. □

5A2. Type-III degeneration. Let (4, Ã ) be a toroidal stratum representative of type III such that Ã is a

ray. We use notation from Section 2B2.
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By our choice of 6, the curve Y touches the boundary of M6 at a locally closed boundary divisor B4,Ã.

Let M̂6 be the formal completion of M6 along B4,Ã and hence we get a map

Ŷ → M̂6. (5A.3)

By Section 2B5, the following maps of formal Deligne–Mumford stacks are finite étale:
⊔

Q
×
>0\A

×
f /K0

T̂4/R → M̂4,Ã → M̂6.

Hence map (5A.3) lifts to map

Ŷ → Spf(Zp[q³ | ³ ∈ 0(
4 ∩ É§][[qÉ′]]).

This corresponds to a morphism

Z(p)[[qÉ′]][q³]³∈0(
4,(³.É)=0 → OKP

. (5A.4)

Let ¼ ∈ K I = 04 with Q(¼) = m. By Section 2D2 the branch of the special divisor Z(m) parametrized

by ¼ intersects the boundary only if (¼.É) = 0. In the latter case, by Proposition 2.5, its equation is given

by q¼ − 1 and the multiplicity of intersection of Y with the branch given by ¼ is the p-adic valuation of

the element q¼ − 1 under the map (5A.4).

Let x ∈ B4,Ã (Fp) be the image of P. Then by the previous discussion, we conclude that

(Y.Z(m))P = 1
d

∑

¼∈K I ∩É§,Q(¼)=m

vp(q
¼ − 1),

where d is the degree of the map (5A.3) at x .

For n g 1, let

Ln = {¼ ∈ K I ∩ É§ | vp(q
¼ − 1) g n}.

Then we can rewrite the multiplicity intersection at P as

(Y.Z(m))P = 1
d

∑

ng1

{¼ ∈ Ln | Q(¼) = m}.

Proposition 5.3. The lattices (Ln, Q) are positive definite lattices of rank r f b − 1 independent from n

and they satisfy the following properties:

(1)
⋂

n Ln = {0}.
(2) For every n g 1, pLn ¦ Ln+1.

(3) For 1 f r f b − 1, let µi (Ln) be the i-th successive minima and let ai (Ln) =
∏

1fkfi µi (Ln). Then

we have

ai (Ln) kϵ ni/(b+ϵ).

Proof. The proof is similar to the proof of Proposition 5.1. Let ¼, ¼′ ∈ K ∩ É§. By writing

q¼+¼′ − 1 = q¼(q¼′ − 1) + q¼ − 1,
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we get that Ln is a lattice and it is obviously positive definite as K I is Lorentzian and É is a negative

normed vector.

Let Ã be a uniformizer of OKP
and let ¼ ∈ Ln . Then q¼ = 1 + Ãn.u for some u ∈ OKP

. Hence

q p¼ − 1 = (1 + Ãn.u)p − 1 =
∑

ig1

( p
i

)
Ãni ui = Ãn+1u′.

Hence (2). The rest of the proof is similar to Proposition 5.1. □

As a consequence, we get the following proposition, whose proof is identical to that of Proposition 5.2

and we omit it.

Proposition 5.4. Let D ∈ Zg1 be coprime to N. For X ∈ Z>0, let SD,X denote the set
{

m ∈ Z>0 | X f m < 2X,
m
D

∈ Z ∩ (Q×)2, (m, N ) = 1
}
.

Then we have
∑

m∈SD,X

(Y.Z(m))P = o(X (b+1)/2 log X).

5B. Function field setting. In this section, we prove Proposition 4.11. We assume here that the lattice

(L , Q) is self-dual at p and we let MFp be the mod p GSpin Shimura variety associated to (L , Q). Let

6 be a polyhedral cone decomposition which satisfies Proposition 4.9.

Let S → M6
Fp

be a finite map as before and let P ∈ S (Fp) be a point mapping to the boundary

of M6
Fp

. Let denote k = Fp. The point P lies either in a boundary stratum of type II or type III. We treat

each case separately.

5B1. Type-II degeneration. Assume that the image of P is in Bϒ
Fp

(k) where ϒ is a cusp label representative

of type II.

Let Ŝ ≃ Spf(k[[t]]) be the formal completion of S along s. Then by reasoning similarly to Section 5A1,

specifically using the reduction mod p of (2C.3), we get for every ¼ ∈ D with Q(¼) = m g 1, m coprime

to N a map

8p : ÔMϒ,Fp ,x → k[[t]],

Let v(¼) denote the t-adic valuation of the generator f¼ of I¼,p. Then similarly to the number field

case, we have:

Lemma 5.5. The multiplicity of intersection of S and Z(m)Fp at P satisfies

m P(S ,Z(m)Fp) j
∑

ng1

|{¼ ∈ Ln | Q(¼) = m}|.

Now we are ready to prove Proposition 4.12.
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Proposition 5.6. The sequence of lattices (Ln, Q) satisfy the same properties as in Proposition 5.1 and

letting S be as in Section 4B, we have the following estimate for X > 0:
∑

m∈SX

m P(S ,Z(m)Fp) = Oϵ(X (b+ϵ)/2)

Proof. The same proof as in Proposition 5.1 shows that the lattices (Ln, Q) enjoy the same properties of

the aforementioned proposition. For the second part, we have
∑

m∈SX

m P(S ,Z(m)Fp) j
∑

m∈SX

∑

ng1

|{¼ ∈ Ln | Q(¼) = m}|

j
O(X (b+ϵ)/2)∑

n=1

|{¼ ∈ Ln | Q(¼) f m}|

j
O(X (b+ϵ)/2)∑

n=1

r∑

j=0

X j/2

a j (Ln)

j
r∑

j=0

O(X (b+ϵ)/2)∑

n=1

X j/2

n j/(b+ϵ)
= O(X (b+ϵ)/2). □

5B2. Type-III degeneration. Assume now that there exists a toroidal stratum representative (4, Ã ) such

that Ã is a ray and such that P lies in B
4,Ã
Fp

(k). Using a similar approach to Section 5A2 by taking

reduction mod p, we get a map

k[q³ | ³ ∈ 0(
4 ∩ É§][[qÉ′]] → k[[t]],

sending qÉ′ to an element of the ideal (t). Let v denote the t-adic valuation on k[[t]]. Then, for m coprime

to N , the multiplicity of intersection of S and Z(m)Fp at P satisfies

m P(S ,Z(m)Fp) f
∑

¼∈K I ∩É§,Q(¼)=m

v(q¼ − 1).

If we define the sequence lattices Ln as

Ln = {¼ ∈ K ∩ É§ | v(q¼ − 1) g n},
then

m P(S ,Z(m)Fp) f
∑

ng1

|{¼ ∈ Ln, Q(¼) = m}|.

Now the rest of the proof is similar to Section 5A2. This proves Proposition 4.12 in the remaining

type-III case.

6. Applications

In this section, we present a proof of Theorem 1.5. This approach is inspired from [Maulik et al. 2022a].
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6A. Hecke orbit conjecture.

6A1. The orthogonal case. Since GSpin Shimura varieties are finite covers of orthogonal ones, it is

enough to prove the result for GSpin Shimura varieties.

Let MFp be the reduction mod p g 5 of a GSpin-type Shimura variety with hyperspecial level at p

associated to a lattice (L , Q), which is assumed to be self-dual at p and of signature (b, 2). We will

prove Theorem 1.5 by induction on b, which is also the dimension of MFp .

The case b = 1 is immediate: the prime-to-p Hecke orbit of x is infinite, hence Zariski dense.

Assume now that n g 2 and the result of Theorem 1.5 holds for all ordinary points in GSpin Shimura

varieties of dimension less than b − 1 with hyperspecial level at p. Let x be an ordinary point in M(Fp)

and let Tx be the Zariski closure of its prime-to-p Hecke orbit. Then Tx has positive dimension and

intersects the ordinary locus nontrivially. Hence we can find a smooth quasiprojective curve S and a

finite map

S → MFp

whose image is contained in Tx and which is contained in the ordinary locus. Moreover, we can assume

that this image is not contained in any special divisor. Indeed, the same argument used for proper curves

in [Maulik et al. 2022a, Lemma 8.11] works in our setting with no change. By Theorem 1.3, the curve S

intersects infinitely many divisors Z(m)Fp with (m, p) = 1. The special divisors Z(m)Fp are themselves

the union of GSpin Shimura varieties of dimension b − 1 with hyperspecial level at p since m is coprime

to p. Let y ∈ S (Fp)∩Z ′(m)(Fp) for some irreducible component Z ′(m) of Z(m). Then y is ordinary

and the prime-to-p Hecke orbit of y in Z ′(m)Fp is Zariski dense by the induction hypothesis. Since

this orbit is a suborbit of the Hecke orbit in MFp , we conclude that Z ′(m)Fp ¢ Tx . Furthermore, it is

straightforward to check that the collection of the divisors Z ′(m)Fp must be infinite by Theorem 1.3.

Hence we conclude that Tx = MFp which is the desired result.

6A2. The unitary case. We prove in this section the Hecke orbit conjecture in the unitary case using the

reduction to the orthogonal case already used in [Maulik et al. 2022a, Remark 8.12] and in [Shankar et al.

2022, Section 9.3].

Let MFp be the mod p points of the canonical model of a unitary Shimura variety associated to an

imaginary quadratic field k, a unitary group of signature (r, 1) with hyperspecial level at p as described

in [Bruinier et al. 2020, Section 2.1] such that p is split in k. Consider the family of special divisors

ZKra(m) as described in [loc. cit., Section 2.5] which are themselves unitary Shimura varieties associated

to unitary groups of signature (r − 1, 1) and hyperspecial at p when p does not divide m. Then using

a similar argument to [Shankar et al. 2022, Section 9.3] and further explained in [Maulik et al. 2022a,

Remark 8.12], we have the following theorem which is a consequence of Theorem 1.3.

Theorem 6.1. Assume that p g 5 and let S → MFp be a finite map from a smooth quasiprojective curve

S over Fp and with generically ordinary image. Then the union over m prime to p of the intersections

S ∩ZKra(m) is infinite.
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Now the Hecke orbit conjecture in the unitary case is an easy consequence of the above theorem and

the induction method explained in the previous paragraph.
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