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Picard rank jumps for K3 surfaces with bad reduction
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Let X be a K3 surface over a number field. We prove that X has infinitely many specializations where
its Picard rank jumps, hence extending our previous work with Shankar, Shankar and Tang to the case
where X has bad reduction. We prove a similar result for generically ordinary nonisotrivial families
of K3 surfaces over curves over F,, which extends previous work of Maulik, Shankar and Tang. As a
consequence, we give a new proof of the ordinary Hecke orbit conjecture for orthogonal and unitary
Shimura varieties.
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1. Introduction

Let X be a K3 surface over a number field K. Let 2" — . be a smooth projective model, where
< — Spec(Ok) is an open subset of the spectrum of the ring of integers Ok . For every place 13 of Ok
with finite residual field £(}3), we have an injective specialization map

PiC(XI?) — PIC(%W),

and both groups have finite rank, the Picard rank, denoted p (X ) and p(%m) respectively.

Inspired by the classical density result of Noether—Lefschetz loci for weight-2 polarized variations
of Hodge structures, see [Voisin 2002; Oguiso 2003], Charles [2014] asked what can be said about the
arithmetic Noether—Lefschetz locus

NL={P 7| p(Xg) < p(Zi)}
In a prior work [Shankar et al. 2022, Theorem 1.1], we proved that the set NL is infinite under the
additional assumption that X has potentially everywhere good reduction, i.e., up to taking a finite extension
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of K, we assumed that . = Spec(Ok). The first main result of this paper is the following unconditional
result.

Theorem 1.1. Let X be a K3 surface over a number field K. Then the set NL is infinite.

This theorem is a particular instance of Theorem 4.1 which is formulated for GSpin Shimura varieties
and which has many other applications. As a consequence, Theorems 1.4, 1.6, and Corollary 1.7 in
[Shankar et al. 2022] hold with no assumptions on the reduction type. In particular, we have the following
theorem.

Theorem 1.2. Let K be a number field and A an abelian surface over K. Then there exist infinitely many
places where A has good reduction, and the reduction is geometrically nonsimple.

1A. Picard rank jumps over function fields. Let p > 5 be a prime number. Let 2" — . be a family of
K3 surfaces over a curve .# over F p- Let n be the generic point of .. For every s € ./ (F p), we have
similarly an inequality of Picard ranks

p(Zy) = p(Z5),

and one can introduce similarly the Noether—Lefschetz locus as the subset of .7 where the above inequality
is strict:
NL={s € #(F)) | p(Z) < p(Z)}-

Maulik, Shankar and Tang [Maulik et al. 2022a, Theorem 1.1] proved that if . is proper and the family
2 — & is generically ordinary and not isotrivial then the set NL is infinite. Our second main theorem
in this paper is to remove the properness assumption in their result.

Theorem 1.3. Let 2" — ¥ be a generically ordinary nonisotrivial family of K3 surfaces over a smooth
curve . over F p with p > 5. Suppose that the discriminant of the generic geometric Picard lattice is
prime to p. Then the locus NL is infinite.

The theorem is also a particular instance of Theorem 4.8 for GSpin Shimura varieties, which has
several other applications and also has an analogue for unitary Shimura varieties, see Theorem 6.1. In
particular, we have the following theorem which extends [Maulik et al. 2022b, Theorem 1(1)] to the
quasiprojective case.

Theorem 1.4. Let A be a nonisotrivial ordinary abelian surface over the function field of a curve over F P
Then A has infinitely many smooth and nonsimple specializations.

Both Theorem 1.1 and Theorem 1.3 are motivated by the density of Hodge loci in polarized variations
of Hodge structure of weight 2 of K3 type; see for example [Voisin 2002; Oguiso 2003; Tayou 2020].
Recent density results for general polarized variations of Hodge structures of level less than 2 as in [Tayou
and Tholozan 2023; Baldi et al. 2024] suggest that density of Hodge loci in arithmetic and function field
settings are natural problems to investigate, and we hope to address these questions in future work.
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1B. Hecke orbit conjecture. As an application of Theorem 1.3, we give a new proof of the Hecke
orbit conjecture for orthogonal and certain unitary Shimura varieties. We refer to [Maulik et al. 2022a,
Section 1.2] for the context and prior results on this conjecture.

Theorem 1.5. Let My, be the reduction at p > 5 of the integral model of a Shimura variety of either:

(1) Orthogonal type associated to a lattice of signature (b, 2) having discriminant prime to p.

(2) Unitary type associated to an imaginary quadratic field K split at p and to a Hermitian lattice over
Ok of signature (n, 1) with discriminant prime to p.

Then the prime-to-p Hecke orbit of an ordinary point is Zariski dense in M.

The density of Hecke orbits in characteristic zero is a consequence of the work of Clozel and Ullmo
[2005], see also [Eskin and Oh 2006] for a dynamical approach using Ratner theory. Chai [1995] first
proved the Hecke orbit conjecture for the ordinary locus of the moduli space of principally polarized
abelian varieties. For orthogonal and some unitary Shimura varieties, a first proof of the Hecke orbit
conjecture in the ordinary case has been obtained by Maulik, Shankar and Tang [2022a] and our approach
is inspired from theirs. Very recently, Pol Van Hoften [2024] proved this conjecture for the ordinary locus
of Shimura varieties of abelian type under certain conditions on the reflex field and using completely
different methods.

1C. Strategy of the proof. Theorem 1.1 and Theorem 1.3 are proved using a strategy initiated by Chai
and Oort [2006] and Charles [2018] for the product of two modular curves and subsequently used in
[Maulik et al. 2022b; Shankar and Tang 2020] for Hilbert modular surfaces over number fields and Siegel
threefolds over F p- Here we follow the set-up in [Shankar et al. 2022] and [Maulik et al. 2022a] to which
we refer for more details. For Theorem 1.1, we first translate it into an intersection-theory-type statement
between a curve and a sequence of divisors in the integral model of a toroidal compactification of a
Shimura variety of GSpin type. For this matter, we use the Arakelov intersection theory with prelog
forms developed in [Bruinier et al. 2007]. We follow a similar approach for Theorem 1.3, using the usual
intersection theory on the reduction modulo p of the aforementioned compactification of the integral
model of a GSpin Shimura variety. The new ingredients which were missing in both [Shankar et al. 2022]
and [Maulik et al. 2022a] are the local estimates on multiplicities of intersection with special divisors at
points of bad reduction and the estimates of extra terms coming from the boundary divisors in the global
intersection numbers coming from the work of [Bruinier and Zemel 2022]; see also [Engel et al. 2023] for
a recent approach. These are the main contributions of this paper. To obtain the first estimates, we use an
explicit description of the special divisors in the formal completions along toroidal boundary components.
This allows us to define in each case a decreasing sequence of positive definite lattices (L,, Q) which
computes the local intersection number. We give an estimate on the growth of the successive minima of
these lattices, then a geometry-of-numbers-type argument allows us to derive the desired estimates. To
obtain the bounds on the extra terms in the global intersection number, we use the explicit expressions
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from [Bruinier and Zemel 2022] and [Bruinier 2002] combined with an equidistribution result from [Duke
1988; Eskin and Oh 2006].

1D. Organization of the paper. The key input of this paper is the description of the special divisors
in terms of local coordinates of integral models of toroidal compactifications of Shimura varieties of
GSpin type. In Section 2, we explain these constructions following [Howard and Madapusi Pera 2020]
and [Madapusi Pera 2016], and the section culminates with a description of the special divisors in
formal completions along locally closed boundary divisors. In Section 3, we recall briefly Arakelov
arithmetic intersection theory with prelog forms following [Bruinier et al. 2007], and we assemble
different ingredients from the literature [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;
Borcherds 1999] to state the modularity of the generating series of special divisors in the integral models
of toroidal compactifications of Shimura varieties of GSpin type. In Section 4, we state the archimedean
and finite place estimates needed to prove our main theorems, and then we prove the archimedean
estimates. Section 5 is devoted to estimating contributions from bad reduction places. Finally, we prove
the application to Hecke orbit conjecture in Section 6.

2. GSpin Shimura varieties: integral models and their compactifications

This section summarizes the construction of the GSpin Shimura variety, its toroidal compactifications
and their integral models following [Bruinier and Zemel 2022; Howard and Madapusi Pera 2020;
Madapusi Pera 2019; Andreatta et al. 2018], see also [Kisin 2010; Madapusi Pera 2016; Pink 1989] for
earlier work. The ultimate goal is to describe the special divisors in formal completions along the toroidal
boundary strata. The familiar reader may wish to skip directly to Section 2D for these results.

2A. The GSpin Shimura variety. Let (L, Q) be an even quadratic lattice of signature (b, 2) with b > 1
and with associated even bilinear form

(H):LxL—Z

such that Q(x) = (x.x)/2 € Z forall x € L.
Let G = GSpin(Lg) be the algebraic group over Q of spinor similitudes defined as in [Madapusi Pera
2016, Section 1.2]. The group G(R) acts on the Hermitian symmetric space

D=:{zeP(Lc)|(z.2) =0, (z.2) <0}.

The pair (G, D) is the GSpin Shimura datum. Its reflex field is Q@ by [Madapusi Pera 2016, Section 3.1].
For K C G(Ay) a compact open subgroup, the GSpin Shimura variety

M(C) = G(@)\D x G(Ay)/K

is the set of complex points of a Deligne-Mumford stack M defined over (2. In what follows, we
choose the compact open group K C G(Ay) as in [Andreatta et al. 2018, Equation (4.1.2)]. Its image in
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SO(Lg)(Ay) stabilizes L ® ZCL®A r and is equal to the subgroup that acts trivially on the quotient
LV/L = LV/L, where the dual lattice L is defined as

LY={xeLg|VYyelL,(x.y)eZ}.

The Shimura variety M carries a line bundle of weight-1 modular forms that we denote by Lg and we
refer to [Andreatta et al. 2018, Section 4.1] for a definition. The Shimura datum (G, D) is of Hodge type
by [Andreatta et al. 2017, Section 2.2]: there exists a Shimura datum of Siegel type (G5¢, D5¢) and a
compact open subgroup K*¢ C G*¢(A ) such that we have an embedding of Shimura varieties over Q

M < ME,

This is the Kuga—Satake embedding. The pull-back of the universal abelian scheme on M58 yields the
Kuga—Satake abelian scheme A — M.

2B. Toroidal compactifications over C. In this section, we describe the toroidal compactifications of M
as well as the structure of the boundary components following [Bruinier and Zemel 2022] and [Howard
and Madapusi Pera 2020]. See also [Ash et al. 1975] for the general theory of toroidal compactifications
over C.

Recall from [Howard and Madapusi Pera 2020, Section 2.2] that an admissible parabolic subgroup
P C G is either a maximal proper parabolic subgroup of G or G itself.! A cusp label representative
® = (P, D°, h) is a triple constituted from an admissible parabolic subgroup P, a connected component
D° C D and an element 1 € G(Ay).

Attached to a cusp label representative ® = (P, D°, h), there exists a mixed Shimura variety that we
now describe. Let Ug be the unipotent radical of P and let Wg be the center of Ug.> Let Q¢ be the
normal subgroup of P defined as in [Pink 1989, Sectoin 4.7], see also [Howard and Madapusi Pera 2020,
2.2]. Define as in [loc. cit.] Dy = Qo (R)We(C)D° and let Ko =hKh™'N Qo (Ayr). We define then the
mixed Shimura variety

Mo(C) = Qo (@\Do x Qo (Af)/Ko. (2B.1)

By [Pink 1989, Proposition 12.1], M®(C) has a canonical model M® also defined over Q. Let Q¢ =
Q¢/We and Dy = We(C)\Do. Let K o be the image of K¢ under the quotient map Q¢ (Ay) — Qq)(Af).
Then from the data (Qcp, Do, K o) we define similarly to (2B.1) a mixed Shimura variety M ¢ and we
have a canonical morphism

Mo — M. (2B.2)

This map has a torsor structure that we now describe. Let ' = Ko N We (Q). It is a Z-lattice in We (Q).
By [Howard and Madapusi Pera 2020, Proposition 2.3.1], the map (2B.2) is canonically a torsor under
the torus Tp g whose cocharacter group is I'g.

lgad g simple in our case.

2We follow the notation of [Madapusi Pera 2019] which differs from other references.
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The mixed Shimura variety M ¢ has itself a fibration structure over a pure Shimura variety constructed
as follows; see [Madapusi Pera 2019, 2.1.7] for more details.

Let G’}D = Q_¢ /Ug be the Levi quotient of Q¢, Vo = Ugp/ We the unipotent radical of Q¢ and let
Dg) = Vo (R)\Dg. Then the pair (G! | DQ’,) is a pure Shimura datum with reflex field equal to Q. Let
K g) C Gﬁ,(& r) be the image of K¢. Then the quotient

M4(C) = GhL(@\(Dh x Gh(Ap) /KD

is the set of complex points of a Shimura variety which admits a canonical model Mé‘) defined over Q@
and we have a canonical map
Mg — ML, (2B.3)

By [Madapusi Pera 2019, 2.1.12], there exists a natural abelian scheme Ag (®) — M ff, such that the map
(2B.3) is a torsor under Ag (D).

In what follows, we will describe the above data for the GSpin Shimura variety introduced in Section 2A
following [Howard and Madapusi Pera 2020, Section 4] and [Bruinier and Zemel 2022, Section 3]. Let ®
be a cusp label representative. The admissible parabolic subgroup P is the stabilizer of a totally isotropic
subspace g of Lg of dimension at most 2. The dimension-0 case corresponds to P = G. If P is the
stabilizer of a primitive isotropic line Ig C Lg, then the cusp label representative is said to be of type III.
If P is the stabilizer of a primitive isotropic plane Jg C Lq, then @ is said to be of type III. We will
follow the notation of [Bruinier and Zemel 2022] and denote by Y, resp. E, a cusp label representative of
type 11, resp. of type III.

Given two cusp label representatives ®; and ®,, there is a notion of a K-morphism & a2k, (02
given by y € G(Q) and ¢, € Q¢,(Ay) which we don’t define here and refer to [Madapusi Pera 2019,
2.1.14] for the definition, see also [Howard and Madapusi Pera 2020, Definition 2.4.1].

Let @ be a cusp label representative. By the general theory of toroidal compactifications, see [Pink
1989, 4.15] or [Ash et al. 1975, Chapter II, Section 1.1] for the definitions, there exists a canonical open
nondegenerate self-adjoint convex cone Co C We (R) homogeneous under P(R) and which allows to
realize D° as a tube domain inside an affine space, see [Madapusi Pera 2019, 2.1.5]. We define the
extended cone C} as in [Madapusi Pera 2019, 2.1.22]: for any map ¢’ NN ®, the conjugation by y ~!
induces an embedding

int(y ™) : Wor(R) > Wo (R)
and we define then
Cy= J int(Co).
d'—P
This cone lies between C¢ and its topological closure in Wg (R) but in general, it is neither open nor
closed. See also [Pink 1989, Definition-Proposition 4.22] for more details.

Recall from [Howard and Madapusi Pera 2020, Definition 2.4.3] that a rational polyhedral cone

decomposition (rpcd for short) of Cj is a collection Yo = {0} of rational polyhedral cones o C Wg (R)
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satisfying natural compatibility conditions (we don’t recall these conditions here and invite the reader to
consult the reference above for more information). The rpcd X ¢ is said to be smooth if it is smooth in
the sense of [Pink 1989, Section 5.2] with respect to the lattice I'¢. It is complete if

Cy= U o.

o€y

2B1. Boundary components of type Il. Let Y be a cusp label representative of type II. Then P is the
stabilizer of a primitive isotropic plane Jo C Lg and let J = JoNh.L, where h € G(Ay) acts on L via
the map G(Ay) — SO(Lg)(Ay). Then by [Howard and Madapusi Pera 2020, page 31], the group W is
identified with /\2 Jo; hence it is one-dimensional. The lattice I'y C Wr is also of rank 1. The open
convex cone Cr is given by a half line R™\{0} and the extended cone is C% = {0} U C~.

Let My and M~ be the mixed Shimura varieties associated to Y. Then My — M~ is a torsor under
the one-dimensional torus 7y with cocharacter group I'y. The group G;wlr is equal to SL, and Dé’r is equal
to the Poincaré upper half-plane. The Shimura variety Mé’r is a modular curve and the abelian scheme
A~ is equal to the Kuga—Sato variety D ® E where E — M%} is the universal elliptic curve over Mth and
D is the positive definite plane J+/J; see [Bruinier and Zemel 2022, Corollary 3.17] and [Zemel 2020,
Proposition 4.3] for details and proofs. Notice that our choice for the compact open subgroup K gives
exactly the stable orthogonal group used in [Bruinier and Zemel 2022] and [Zemel 2020].

The only possible cone decomposition of C3 in this situation is X ={{0}, C+U{0}} and this determines
a partial compactification My <> M~ x which is a fibration by Aqu over M~. Finally, there is only one
boundary divisor denoted by By associated to the ray Cr.

2B2. Boundary components of type IIl. Let E be a cusp label representative of type III. Then P is the
stabilizer of a primitive isotropic line Ig C Lg and let I = IgNh.L. Set K; = I+/1. Then by [Howard
and Madapusi Pera 2020, Equation (4.4.2)], we have Uz = Wg and we have an isomorphism of vector
spaces

Ko ®Ig >~ Wg(Q).

The lattice (K, Q) is a Lorentzian lattice of signature (b — 1, 1). Under the above isomorphism, and
assuming we have chosen a primitive generator of I, the open convex cone Cg C Wg(R), see [Howard
and Madapusi Pera 2020, Section 2.4] is identified with a connected component of the light cone

{x e K;r, O(x) <0}.

The spaces M é and Mg are equal and are Shimura varieties of dimension zero that we can describe as
follows. Let (G,,;, Ho) be the Shimura data given by

Ho :={2me: €2 = -1},

on which R* acts naturally through the quotient R* /R. There is a morphism of mixed Shimura data
(Qg, Dg) — (G, Hop) given by a canonical character vg : Qg — G, defined as in [Howard and Mada-
pusi Pera 2020, Equation (4.4.1)] and a map Dg — Hp given as in [loc. cit., Equation (4.6.3)]. Then the
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Shimura variety Sh,x.)(Gm, Ho) is zero-dimensional and the canonical map Mz — Sh,_ (k) (G, Ho)
is a torsor under the torus Tz = Spec(Q[gqlyery) With cocharacter group I's = K by [Bruinier and
Zemel 2022, Proposition 3.7].

The intermediate cone Cj, can be described explicitly as follows, see also [Bruinier and Zemel 2022,
page 23]: for any type-II boundary component Y with corresponding isotropic plane J containing /, the
quotient J/I has a generator wg v lying on the boundary of the Cz. Hence

E = CE UURa)E,T.
T

The rays Rwg v will be referred to as the external rays and the rays in Cg are the inner rays.

2B3. Toroidal compactifications. Recall from [Howard and Madapusi Pera 2020, Definition 2.4.4] that a
K -admissible rational polyhedral cone decomposition for (G, D) is a collection ¥ = {¥z, Xy} such that
Yz and X~ are rped for any cusp label representative Z and Y respectively satisfying the compatibility
conditions of [loc. cit., Definitions 2.4.3, 2.4.4]. It is said smooth (resp. complete) if every ¢ is smooth
(resp. complete).

A toroidal stratum representative is a pair (®, o) where @ is a cusp label representative and o C Cj, is
a rational polyhedral cone whose interior is contained in Cg. There is similarly a notion of K-morphism
between stratum representatives, see [loc. cit., Definition 2.4.6] and the set of K-isomorphism classes of
toroidal stratum representatives will be denoted Startx (G, D, X). We say that X is finite if

|Startg (G, D, X)| < o0.

Let X be a finite K-admissible complete cone decomposition. The main result of [Pink 1989, Sec-
tion 12], see also [Madapusi Pera 2019, Theorem 2.1.27], ensures that there exists a proper toroidal
compactification

M~ M*

in the category of Deligne-Mumford stacks over @ such that M ¥ is proper over @ and has a stratification
M* = | | B®° (2B.4)
(®,0)€Startg (G, D, %)
by locally closed subspaces indexed by the finite set of strata Startx (G, D, ¥). The stratum indexed by
(®, o) lies in the closure of the stratum index by (@', ¢’) if and only if there is a K-morphism of strata
representatives (®, o) — (@', 0’). Then the closure of the stratum B?” is given by

B*= ) B¥.
(®',0")— (P,0)

Moreover, by [Howard and Madapusi Pera 2020, Theorem 3.4.1] following the work of Harris and
Zucker [2001], the line bundle of weight-1 modular forms £ extends to a line bundle on M* which we
still denote £ by abuse of notation.
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Let (®, o) be a toroidal stratum representative. Then (®, o) determines a partial compactification
of the mixed Shimura variety Mg — Mg (o) with boundary component index by o denoted by Z® (o).
Pink proved that there is a canonical isomorphism [Pink 1989, Corollary 7.17, Theorem 12.4], see also
[Madapusi Pera 2019, Theorem 2.1.27], of Deligne-Mumford stacks

Ag (P, 0)\Z°(c) ~ B®?,

where Ak (®, o) is the finite group defined in [Madapusi Pera 2019, 2.1.19]. The latter induces an
isomorphism of formal Deligne-Mumford stacks

Ag (P, 0)\My(o) ~ M~, (2B.5)

where Mq; (o) is the completion of Mg (o) along the locally closed subspace Z® (o) and MZ is the formal
completion of M* along the locally closed stratum B®°.

Our goal in the next two sections is to make the above isomorphisms explicit for type-II and type-III
boundary strata.

2B4. Formal completion along type-I1I boundary strata. Let Y be a cusp label representative of type II.
By the discussion in Section 2B1, there is a unique choice of a one-dimensional ray o and hence a unique
choice of boundary stratum representative (Y, o) which corresponds to a locally closed divisor B™-?.

The morphism M~y — M~ is then a torsor under a one-dimensional torus Ty with cocharacter group
Iy ~7,ie., Ty ~Spec(Q[g, g~ '1). The partial compactification T (¢') is then isomorphic to Spec(@[g])
and the partial toroidal compactification of M~ is given as a twisted torus embedding over M~ with fiber
Spec(Q[q]). Hence we have the following description of MT (0)

e Spf(QIX — DQ®E
My (%) QXD 57 M.

2BS. Formal completion along type-11I1 boundary strata. Let (2, o) be a toroidal stratum representative
of type III such that o is a one-dimensional inner ray. The corresponding boundary component is denoted
by B®? and is a locally closed divisor. Write 0 = Rw, where @ € Cz N K is an integral primitive
generator that satisfies (w.w) < 0.

The morphism Mg — Sh,_(kx.)(Gn. Ho) is a torsor under the torus

Tz = Spec(Qlgalgery)-
The partial compactification Tz (o) is equal to
Tz(0) = Spec(Qlga ]l (¢.0)>0,0ery)

and the ideal defining the boundary divisor is given by I, = (g4, (o, ) > 0). It is generated by ¢, for
any o’ € I'Z for which (0, ') = 1. We fix such o'.
The formal completion along the boundary divisor is then given by

T=(0) = Spec(Qlga, @ € Ty N 1lgw 1),
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and the map Mz(c) — Shy_(k.)(Gn. Ho) is a twisted torus embedding with fibers 7"\: (o). We will
trivialize this fibration following an approach similar to [Howard and Madapusi Pera 2020, page 34].

First choose an auxiliary isotropic line I, C Lg such that (/.1,) # 0. Then by [Howard and Mada-
pusi Pera 2020, Equation (4.6.6)] and the discussion that follows, this determines a section

(G, Ho) = (Qz, Dz).

The section s determines a Levi decomposition Qz = G, X Uz. Let Ko C G, (A ¢) be a compact open
subgroup small enough such that the image under the section s is contained in Kz and let

Kzo0=Kox (Us(AyNKg)) C Kz.

Then by reasoning similarly to [Howard and Madapusi Pera 2020, Proposition 4.6.2], we have the

following.

Proposition 2.1. We have an isomorphism of formal algebraic spaces

|| Tee),c = My (o).
aE@iO\A;/KQ
and the map
1\711@.0(0')/0 — 1‘711(5 (0)/c

is a formally étale map of formal Deligne—Mumford stacks given by the quotient by Kg/Kg. In

particular, if K is neat, then the above map is a formally étale surjection of algebraic spaces.

Proof. The same proof as in [Howard and Madapusi Pera 2020, Proposition 4.6.2] works with no change
in our setting. U

2C. Integral models. We recall in this section the construction of integral models of GSpin Shimura
varieties and their compactifications following [Howard and Madapusi Pera 2020; Andreatta et al. 2018;
Madapusi Pera 2019]. We assume henceforth that the lattice (L, Q) is a maximal lattice, i.e., there is no
strict superlattice in Lg containing L over which Q is Z-valued.

By [Andreatta et al. 2018, Section 4.4], there exists a flat and normal integral model M — Spec(Z)
which is a Deligne-Mumford stack of finite type over Z. It enjoys the following properties:

(1) If the lattice (L, Q) is almost self dual at a prime p then the restriction of the integral model to
Spec(Z,,)) is smooth.?

(2) If p is odd and p? does not divide the discriminant of (L, Q), the restriction of M to Spec(Zp)) is

regular.
(3) If n > 6, the reduction mod p is geometrically normal.

(4) The line bundle of modular forms of weight 1 extends to a line bundle on M that we denote by L.

3See [Howard and Madapusi Pera 2020, Definition 6.1.1].
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Furthermore, given a K-admissible polyhedral complete cone decomposition, M admits by [Mada-
pusi Pera 2019, Theorem 4.1.5] a toroidal compactification M* proper over Spec(Z) and which extends
the compactification M* previously defined over Q. Moreover, it has a stratification

M* = | | B®° (2C.1)
(P,0)eStartg (G, D, X)

which extends the stratification in (2B.4) and such every stratum is flat over Z. The unique open stratum
is M and its complement is a Cartier divisor. Moreover, for any cusp label representative (P, o), the
tower of maps

Me(o) > M 6> Mé’,
has an integral model

Mo (o) > My — M,

which satisfies the following: the abelian scheme Ag has an extension A¢ — M’}D such that the map
My — /\/léi> is a torsor under A and the map M (o) — M, is a twisted torus embedding with structure
group the torsor 7z extending Tz. Finally, the boundary component Z4 (o) has a flat extension Z¢ (o)
such that we have an isomorphism of completions:

Ag(®, N\ Mo (o) = M> (2C.2)

extending the isomorphism in (2B.5). See [Madapusi Pera 2019, Theorem 4.1.5] and [Howard and
Madapusi Pera 2020, Section 8.1] for more details.

Fix a prime p. The goal of the next two subsections is to describe the formal completions of M?* along
the boundary divisors of these compactifications explicitly over Z(,) in the type-II and the type-III case.

2C1. Type II. Let (Y, o) be a toroidal stratum representative of type II where o is the unique one-
dimensional ray.

Let Ty = Spec(Zp)lq., g~ '1) with partial compactification Ty (c) = Spec(Zplq]). By (2C.1) and
[Madapusi Pera 2019, Theorem 4.1.5(2—4)], the morphism M~y — M is a torsor under 7 and the
morphism M~y — M}é is a torsor under D ® £, where £ — M’é is the universal elliptic curve. Moreover,
the partial toroidal compactification of Mg is given as a twisted torus embedding over M~ with fibers
isomorphic to 7y (o). In particular, the formal completion of M+ along the boundary component is
describe by the following diagram:

Mry(o) 9 My 225 aqh (2C.3)

where Ty (0) = Spf(Z [ ]).

2C2. Type Ill. Let (E, o) be a toroidal stratum representative of type III such that o is one-dimensional
and generated by a primitive integral element w € Cg with (w.w) = —2N. Let Tz = Spec(Zp)[qaluery)
and recall that we have a Tz torsor structure

Mz — Shyg (k) (G, Ho).
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The cone o determines a partial compactification 7z (o) = Spec(Z p)[¢al(q,0)>0,¢ery) and also a partial
compactification Mg < Mg(o) which is a twisted torus embedding with fibers 7z (o).

The boundary divisor in 7z(o) is defined by the ideal I, = (gq, (&, @) > 0). If ' € T'{ is as before an
element such that (o".w) = 1, then I, = (q,y). The formal completion of Tz (o) along I, is then given by

Te = SPfZ p)[qa» @ € TE N 0 g0 -
Recall that we have a morphism of Shimura data
(Qg, Dg) == (Gy, Ho),

and let s be the section of vg defined in Section 2B5. Let Ko C AJXC be a compact open subgroup such
that s (Ky) C Kz. We can furthermore assume that K factors as

Ko=73.K{.
Let F be the abelian extension of Q determined by the reciprocity morphism in global class field theory:
rec: QZ\A% /Ko ~ Gal(F/Q).

Fix a prime *3 C OF above p and let R be the localization of Of at *J3. Then using similar arguments as
in [Howard and Madapusi Pera 2020, Proposition 8.2.3], we have the following proposition.

Proposition 2.2. There is an isomorphism

|_| Tz(0)/r — Mz o(0)/R
Q%\A% /Ko

of formal Deligne—Mumford stacks over R whose base change to C agrees with Proposition 2.1. Moreover,
the map
Mz(0)/R — Mz(0)/R

is an étale map of Deligne—Mumford stacks given as the quotient by Kg/Kz .

The proof follows from the description given over C Proposition 2.1, the flatness of both sides over Z,)
and the fact the normalization of Spec(Zp)) in Shg, (G, Ho) is isomorphic to UQEQXO\A?/KO Spec(R),
see [Howard and Madapusi Pera 2020, Proposition 8.2.3] for a proof and more details.

2D. Special divisors. We continue to assume in this section that the lattice (L, Q) is maximal and let X
be a smooth K-admissible cone decomposition.

For every B € LY/L, m € Q(B) + Z such that m > 0, one can define a special divisor Z(8, m) - M
following [Andreatta et al. 2018, Definition 4.5.6]. We recall briefly the definition and refer to [loc. cit.]
for more details.

The Shimura variety M carries the family of Kuga—Satake abelian varieties .4 — M. For any scheme
S — M, a group of special quasiendomorphisms Vg (Ag) is defined in [Andreatta et al. 2018, Section 4.5].
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Then the functor sending a scheme S to

Z(B,m)(S) ={x € Vg(As) | Q(x) =m}

is representable by a Deligne—-Mumford stack which is étale locally an effective Cartier divisor on M.
We will rather consider its image in M by a procedure described in [Howard and Madapusi Pera 2020]
after Proposition 6.5.2. By abuse of notation, we also denote by Z(8, m) its closure in MZ*, which is
again a Cartier divisor.

In what follows, we will give an explicit description of Z(8, m) in the formal completions of M*
along its boundary components. Since for our purposes we only need 8 = 0 and m coprime to p, we will
only describe what happens in this situation and we abbreviate for short Z(8, m) = Z(m). We assume
that m > 1 is coprime to p for the rest of this section.

By [Andreatta et al. 2018, page 434], Z(m)(C) has a complex uniformization as follows: for any
g€G(Ay), let L, = g.f N Lg and consider the sub-Hermitian domain of D

D°(A) ={x €D°| (x, 1) =0},

where A € L, Q(A) =m. Then Z(m)(C) is equal to the union of D°(A) for g € G(Ay) and A € L, with
Q1) =m.

For any A € L, with Q(A) =m, let G, be the fixator of A, L the orthogonal lattice to A in Lg, and let
D, C D be the orthogonal to A. Notice that D, does not depend on g but only on A € L¢. Notice that
since m is coprime to p, the lattice L, is also maximal at p. Then (G,, D, ) is again a Shimura datum of
GSpin associated to the lattice (L;, Q) which is of signature (b — 1, 2) and has reflex field equal to Q. If
we choose K C G, (Ay) a compact open subgroup as in [Andreatta et al. 2018, Equation (4.1.2)], then
K; C KNG, (Ayr) and we obtain a morphism of complex Shimura varieties

M, (C) - M(C).

By the description [loc. cit., Equation (2.4)], the union over g € G(Ay), A € L, with Q(A) = m of the
images of M, (C) is equal to Z(m)(C).

Now since (G, D,) is again a Shimura variety of GSpin type associated to a lattice maximal at p,
the discussion in the previous sections applies verbatim to the Shimura variety M, and yields similar
description for the compactification and the integral model over Z ;). In particular, we have a map between
integral models M; — M over Z,, which factors through Z(m) by [Howard and Madapusi Pera 2020,
page 82].

My — Z(m) — M

and the union over of images of such maps for g € G(Ay) and A € L, with Q(A) =m is equal to Z (m).*
Let (P, o) be a toroidal stratum representative for M. From the description of the parabolic subgroups
of GSpin(b, 2), we have the following lemma.

4This union is in fact finite.
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Lemma 2.3. The group P N G, is an admissible parabolic subgroup of G, if and only if L € I (f;.

Notice also that if A ¢ I3, then the image of D, in M *(C) will not intersect the boundary components
parametrized by &, as its projection to the Baily—Borel compactification will not do so. Hence they will
not appear in the formal completions of M* along these boundary components.

We can write ® = (P, D°, h) and let A € L, with Q(A) = m such that A € I;. Lemma 2.3 shows
that (®, o) can also be seen as a toroidal stratum representative with respect to (G, D,) by considering
P N Gy; see [Madapusi Pera 2016, Section 2.1.28] for more details. Let M, y be the integral model over
Z ) of the mixed Shimura variety associated to ®. We get then a morphism of mixed Shimura varieties

M0 > Mo,
as well as a morphism of partial compactifications respecting the strata
Mj,e(0) > Mo(0).

By [Madapusi Pera 2019, Proposition 2.1.29], the morphism induced at the level of formal completions
along the boundary strata given by o is compatible with the toroidal compactifications of M, and M. In
particular, we get a commutative diagram

Mj 0(0) ———— Mo(0)

l l

Zm) —— M

where the right vertical map is an étale cover of Deligne-Mumford stacks, the left vertical map is an étale
cover of an open and closed subset by [Howard and Madapusi Pera 2020, page 82]. Finally, the union
over g € G(Ay), A € L, with Q(A) =m of the images of the left map covers the whole z (m).

2D1. Special divisors along type-1I boundary components. Let (Y, o) be a toroidal stratum representative
of type 1L

Let A € L with Q(A) = m such that A € I% and m is coprime to p. We have a morphism of formal
completions of the partial compactifications of mixed Shimura varieties

My (o) = My (o).

Let x € BT (Fp) C MT(U)(U_:p) and let Oty (0),x be the local ring at x. Let x be the image of x in
Mo (F,) and let z the image in M% (F ). If follows from (2C.3) that the formal completion Oy (o). i
isomorphic to

Omriorx 2 ZpIX1® Oy, .

Moreover, the pull-back of the torsor M~ — M’% to Spf(@ M .) is trivial, as it is trivial by reduction to
F » and we can lift formally any section. Hence

o~

Mok = Obee -
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For A € D, consider the map over M/}
Dee LB ¢ (2D.1)

Its kernel is flat over M}wlr Let I, C A be the ideal defining it. Then IAA LR (/’)\D@,g,g is flat over 6M’§,z'

Proposition 2.4. The formal completion Zz (m) along x is the union over A € D with Q(A) = m of the
vanishing loci inside 6MT(0),x of the ideals Z,[[ X1 ® IA;L.

Proof. Let A € L such that A € J L and Q(1) = m. Then we have a description of the mixed Shimura
variety M~ ; similar to (2C.3), namely, it has a fibration structure which fits into the following diagram:

Tr(0) D, ®E

/Q,\,T(G) — My MQ,T
.//\;IT(O') Tx (o) ./\_/l’y‘ DRE MI:;-

One can check that D; = A, where A is the image of A in D = J+/J. Moreover, the right vertical map
in the above diagram is an étale cover and the vertical middle map is equivariant with respect to the
inclusion

M R®E— DRE,

and the left vertical map has image given by an open and closed subset of Z(m).
Letz' e Mﬁ T(F p») be a point mapping to z, then 9] M 9] - Hence the above diagram becomes
’ A7 T,z
at the level of completed local rings

SPEZIX1® Ojg 1) ——— SPH(Osge 1) ——— SPEOppr )

| | |

SPE(ZpI X1 ® Opge. i) ——— Spf(Opege.5) ——— Spf(O s )

where the vertical map is contained in the kernel of the map (2D.1). By considering all the A € J* that
map to a given class A € D, we get that the image is exactly the kernel of the map (2D.1) and hence the
image of left vertical map is defined by the ideal Z,[[X]| ® I 2, see [Zemel 2020, Equation (26)] for a
description over C. Finally, since Z(m) is equal to the union of such images, the conclusion follows. []

2D2. Special divisors along type-I11I boundary components. Let (E, o) be a stratum representative of
type III. Let K; = I+ /1 be the Lorentzian lattice as introduced in Section 2B2 and we continue to assume
that o is a one-dimensional inner ray. Let w € K; N Cg be a generator of o with (w.w) = —2N, N > 1.
Let € K, be an element such that (w.0') = 1.

Let A € L with Q(X) = m and such that A € I*. The projection A € K; defines a divisor in the torus
Te = Spec(Zp)[q*laery) given by the equation qX =1.
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In the partial compactification 7z < Tg(0), the equation of this divisor becomes q;\ —1=0if h.w)>0

A

or g~ * — 1 =0 otherwise. Notice also that this divisor intersects the toric boundary divisor defined by o

if and only if (w.1) = 0. We will hence restrict ourselves to this latter situation and we denote by
Ta(r,0) = Ta(o)
the divisor defined by A. By construction, it only depends on the class of A in K;.

Proposition 2.5. Let Z(m) be the formal completion of Z(m) along the boundary component of M=

index by (E, o). Then the following diagram is commutative and compatible with Proposition 2.1.

Uae@jo\A;/Ko I-lkeK,Q(A):m,(A.w):O Teol, 0))c — Uae@jo\Aj/Ko Tz.0(0)

| |

Z(m) M

The vertical maps are étale coverings of formal Deligne-Mumford stacks and the union over A € I+

covers Z, (m).

Proof. Let A € LN I+ with Q(A) =m and such that projection A € I*/1 is orthogonal to . Then we have
similarly a description of the mixed Shimura variety M g associated to the Shimura datum (G,, D;) as
a torus fibration and such that the following diagram is commutative:

o

o~ "7\—3, )\,O’)
M g(0) ——— S(Gu, Ho)/r

l Tz0(0) l

Mz(0) ————— S(Gp, Ho)/r

The left vertical map is equivariant with respect to the inclusion Tz (A, 0) — Te (o) and its image only
depends on A € I*/1. Since the formal completion Z(m) is the union over A € L of the images of the
left vertical maps, we get the desired result. O

3. Arithmetic intersection theory and modularity

We recall in this section the Arakelov arithmetic intersection theory on M?* following [Bruinier et al.
2007], the modularity results of the special divisors from [Howard and Madapusi Pera 2020; Borcherds
1999] and its extension to complex toroidal compactification by [Bruinier and Zemel 2022]. Then we
derive a further extension to the integral model of the toroidal compactifications of GSpin Shimura
varieties.

3A. Modularity of special divisors. Let (L, Q) be a maximal quadratic lattice with signature (b, 3) and
assume that b > 3.
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Let K C G(Ay) be the compact open subgroup from Section 2A and let X be a K-admissible smooth
polyhedral cone decomposition. Denote by M?* the toroidal compactification of the integral model of
the GSpin Shimura variety constructed in Section 2C. Let éﬁl (MZ, Dypre)a be the first Chow group of
prelog forms as defined in [Bruinier et al. 2007, Definition 1.15].

Let Y be a cusp label representative of type II. Then there is a unique one-dimensional ray in the
cone decomposition associated to Y and we denote by abuse of notation BT the closure of the boundary
divisor associated to Y.

Consider now (&, o) a toroidal stratum representative of type III such that o is a one-dimensional
inner ray in the cone decomposition . Then we denote by B%-“ the closed boundary divisor in M*
associated to (&, o).

Let B € LY/L and m € Q(B) +Z with m > 0. For every toroidal stratum representative Y and (E, o),
let uy (B, m) and pg (B, m) be the real numbers defined by (4E.1) and (4F.1), see also [Bruinier and
Zemel 2022]. Consider then the following divisor on M*:

2B, m)=Z(B.m)+ (. m) BN+ Y pzo(u,m)-BS, (A.1)
T (8,0)
where the two last sums are over toroidal stratum representatives of type II and type III respectively. Then
by [Bruinier and Zemel 2022], the Cartier divisor Z'°"(8, m) can be endowed with a Green function ® B.m
such that the resulting pair

2B, m) = (27 (B, m), Dp.m)

is an element of the first Chow group of prelog forms CH' (MZ, Dypre)a- For m =0 and B =0, we define
4 (0, 0) to be any arithmetic divisor whose is class is the dual of the hermitian line bundle L= (L, - Mlpe)
endowed with the Petersson metric ||z]|?> = [z, Z].

Consider then the following generating series

o= Y > Z(B.m)g"es € CILY/LIlg" "1 ® CH (M®, Dye)a.
BeLV/LmeQ(B)+Z
where (eg)gerv,1 is a basis of the C-vector space C[LY /L], Dy is the discriminant of L, and ¢ = T
where 7 € H is in the upper-half plane.
Let
pr : Mp,(Z) — Autc(C[LY /L))

be the Weil representation associated to the quadratic lattice (L, Q), where Mp,(R) is the metaplectic
double cover if Mp,(R). For k %Z, let Mod, (pr) denote the vector space of vector valued modular
forms of weight k with respect to p;. We then have the following theorem.

Theorem 3.1. The generating series @ is the Fourier development of a vector-valued modular forms of
weight 1+ g and representation py, i.e.,

1
®;, € Mod;4p2(p1) ® CH (ME, Dypre)a-
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Proof. Let F e M i_ b2 (pr) be a weakly holomorphic modular form of weight 1 — % with respect to the
complex conjugate Weil representation of py such that F has integral principal part, and let ¥ be the
associated Borcherds product. Then by [Bruinier and Zemel 2022, Theorem 5.5], the divisor in MZ*(C)
of W(F)c is equal to

Yo D> cp(=mE(B,m)(C).

BeLY/L meQ(B)+Z

Since Borcherds products are defined rationally by [Howard and Madapusi Pera 2020, Theorem A],
we only need to check that the divisor of the Borcherds products has the expected form over Z and this
will be automatic if all the special divisors and the boundary divisors are flat. By [Madapusi Pera 2019,
Theorem 4.1.5], the boundary divisors are flat and by [Howard and Madapusi Pera 2020, Proposition 7.2.2],
the special divisors are flat over Z[%] and over Z if b > 4. For b = 3, one can use the algebraic version
of the Borcherds embedding trick as in [Howard and Madapusi Pera 2020, Section 9.2] to prove that
no further components appear at 2 and hence the divisor of the Borcherds product has the correct form.
Hence we conclude by the criterion in [Bruinier and Zemel 2022, Proposition 5.4]. ]

4. The main estimates and proof of the main theorems

We state in this section the local and global estimates that will allow us to prove Theorem 1.1 and
Theorem 1.3. Then we will prove the global estimates and we postpone the proof of local estimates to the
next section.

4A. Number field setting. Let X be K3 surface over a number field K. Given an embedding 7 : K — C,
let (L, Q) be a maximal lattice containing the transcendental lattice of X*(C). It is an even lattice of
signature (b, 2) whose genus is independent from t. We can assume furthermore that b > 3, as the case
b < 2 has already been treated, see [Charles 2018; Shankar and Tang 2020].

Let M be the integral model of the GSpin Shimura variety associated to the lattice (L, Q) and, given
an admissible polyhedral cone decomposition X, let M* be its toroidal compactifications as in Section 2.
By [Madapusi Pera 2015], the K3 surface has an associated Kuga—Satake abelian variety which we can
also assume to be defined over the number field K, up to taking a finite extension. Hence it defines a
K -point of M*. By the extension property of the integral model, there exists N > 1 such that, up to
taking a finite extension of K, we have a flat morphism over Z:

Spec(Ox[4]) > M.
and by properness, this map extends to
p:Y =Spec(Okg) — ME.

By construction, the image of this map is not contained in any special divisor. A prime over N is said to
be a prime of bad reduction and otherwise of good reduction.
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As in [Shankar et al. 2022, Theorem 2.4], we will rather prove the following more general version,
which is easily seen to imply Theorem 1.1.

Theorem 4.1. Let ) € M*(Ox) with smooth reduction outside N. Let D € Z~ be a fixed integer
represented by (L, Q) and coprime to N. Assume that Yx € M(K) is not contained in any special divisor
Z(m)(K). Then there are infinitely many places *3 of K of good reduction such that Vg lies in the image
of Z(Dm?) — M for some m € Z~ coprime to N.

Let p: Y — M?¥ be as in the previous theorem. We first begin by the following proposition.

Proposition 4.2. There exists a refinement of the cone decomposition X, such that the map p : Y — M*
satisfies the following property: for any prime *B3 of bad reduction, the image of the closed point {3} under
p is contained in a stratum which is a locally closed divisor of M*.

Proof. Let s € Y be the closed point 3 of ). By (2C.1), the image of sy lies in a stratum indexed either
by either a type-1I boundary component Y or a type-IIl (&, o) toroidal stratum representative. In the
type-1I case, the boundary is already a divisor and there is nothing to prove. In the type-III case, let r be
the dimension of the cone o. Then we get a morphism

Spf(W (F,)) — M™, (4A.1)

where M” is the formal completion along the boundary component defined by (E, o). By a similar
analysis to Section 2C2, we have an étale cover of formal Deligne-Mumford stacks

Te(o) > M”.
Hence the map (4A.1) lifts to a morphism

Spt(W (F ) — Tz(0), (4A.2)
where
Te(o) = Spf(Z,[q® | (@, 0) =01 ®z, Z,[[¢* | (e, &) > O1)).

Hence this corresponds to a map
Zpllg* | (. €) > 01 ® Zp[¢” | (e, C) = 0] — W(F}).

The linear form on '} given by sending an element « to the p-adic valuation of the image of g
under the above map is represented by an element w € I'g which satisfies (w.«) > 0 whenever («.o) > 0;
hence w is in 0. The cocharacter defined by w is in fact tangent to the map given in (4A.2). Let o’ in o
be the ray defined by w and let X’ be the new cone decomposition obtained by refining ¥ and which
contains o’ as a one-dimensional ray. Then M is a blow-up of M> and by the preceding discussion,
the point sq3 belongs to the boundary divisor parametrized by (2, o). Since there are only finitely many
primes of bad reduction, then by repeating this procedure finitely many times, we get the desired cone
decomposition. U
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We will work from now on with the toroidal compactification given by the above proposition. For

m > 1 an integer, let Z(m) be the closed special divisor Z(0, m) < M?* and gtor(m) the arithmetic

divisor associated to Z''(m) by (3A.1). The pullback via the period map p : ) — M?* allows us to
define the height /1 zor (m)(y) of V) with respect to the arithmetic divisor Z tOr(m) as its image under the
composition

~tor

1 1 deg
CH (ME, Dpre)@ — CH (), Dpre)@ d_g) R, Z(m)— h§‘°‘(m)(y)-

By choice of the lattice (L, Q), the arithmetic curve ) intersects properly the divisors Z(m), B=“ and
BY for every T and (E, w). Hence we have

hzury ) =D Pu)+ Y (V.2 (m)yloglOk /B, (4A3)
T:K—C Py

where for 7 : K < C, we use J* to denote the point in M (C) induced by

Spec(C) SLEN Spec(Og) =Y — ME.
We have
V-2 m)p = V-Zm)p + ) pr(m)VBDg+ Y pzolm) - (V.55)q. (4A.4)
Y (E,0)
Let us denote by nyMzZ(m),v the étale local ring of V x ( Z(m) at v. Then
Y. Zmyp= Y length(Oyx s zm.); (4A.5)
VeV X M Z(m) (Fp)

where [z denotes the residue field of 3.
Let

V.Z(m) =Y _(V.Z(m))y log|Ok /Bl
B

The first new contribution of this paper is to prove the following estimate which results from Borcherds

modularity and ad hoc bounds on the multiplicities wy (m) and pg ,(m).

Proposition 4.3. As m — 0o, we have

YVZm)+ Y DuV)=0(m"/2).

7:K—C

As a corollary, we get the following bound, which is referred to as the diophantine bound in [Shankar
et al. 2022, Equation (5.2)].

Corollary 4.4. For any finite place 3, we have the following bound.:

V.Z(m)yp = 0(m"?logm), @, (V) = 0(m"*logm).
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For our next estimate, we recall the notion of asymptotic density from [Shankar et al. 2022]: for a
subset S C Z-, the logarithmic asymptotic density of S is defined to be

log| S|

lim sup ,
Xooo logX

where Sy :={ae S| X <a <2X}.

Recall from Theorems 5.7 and 6.1 in [loc. cit.] that we have the following estimate:

Proposition 4.5. There exists a subset Spaqg C Z~¢ of zero logarithmic asymptotic density such that

Y ®u(YY) = c(m) log(m) + o(m"* log(m)),
T:K—C

where —c(m) =< mP/? and is defined in [loc. cit., Section 3.3].

For a prime B3 of good reduction, i.e., where the intersection of ) and Z(m) above ‘B is supported
in M, we have the following estimate which follows easily from [loc. cit., Theorem 7.1].

Proposition 4.6. Let P be a finite place of good reduction. Let D € Z~ coprime to N. For X € Z~, let
Sp.x denote the set

{mez.o|x =m<2x,2 ezn@% m,N)=1}.

Then we have
Y V.2m)gp =o(X"TV 10g X).
mESD,X
Finally, for a prime 3 of bad reduction, we prove the following proposition which is the second new
contribution of this paper.

Proposition 4.7. Let B a finite place of bad reduction. Let D € Z> coprime to N. For X € Z~¢, let Sp x
be the set defined in the previous proposition. Then we have

> Y.2m)gp =XV log X).
meSp, x
4B. Function field setting. We assume in this section that the lattice (L, Q) is self-dual at p. Then the
Shimura variety M has smooth reduction at p and we denote its reduction by Mg,. Given an admissible
cone decomposition ¥, we denote by M%p the reduction of the toroidal compactification M*. We first
give a new formulation of Theorem 1.3, see Theorem 4.8, then we will give the main estimates that will
allow us to prove the latter.

Let X — . be a generically ordinary nonisotrivial family of K3 surfaces over a smooth curve .
over F p- The quadratic lattice (L, Q) in this case corresponds to a maximal quadratic lattice orthogonal
to the generic geometric Picard group in the K3 lattice. Hence (L, Q) has discriminant coprime to p by
assumption and we get a period map by [Madapusi Pera 2015, section 4]

p:S = Mg,
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which is a finite map and the image of the generic point is in the ordinary locus. The locus in . where
the Picard rank jumps corresponds then exactly to the union over m > 1 of the intersections . N Z(m)g,,.
Hence Theorem 1.3 follows from the following theorem.

Theorem 4.8. Let ¥ — Mg, be a finite map with generically ordinary image and not contained in any
special divisor. Then there exists infinitely many closed points in . in the union of Z(m)g, for integers m

coprime with p.
Let . be a smooth curve as in the theorem above. By properness, we can extend the map
.z by
p:S = Mg,
where .7 is the smooth compactification of .. We have the following proposition whose proof is similar
to Proposition 4.2 and hence we omit it.

Proposition 4.9. There exists a refinement of the cone decomposition X such that the image of .7 in M@p

intersects the boundary only in strata corresponding to locally closed divisors.

Let X be a polyhedral cone decomposition which satisfies the conditions of the previous proposition.
By abuse of notation, if D C M[Ep is a Cartier divisor, we write

(D.7)=degz p*D.
We have then the following global estimate.

Proposition 4.10. As m — oo, we have
(Z(m)g, %) = le(m)|(7.Lr,) +o0m""?).
For any integer m, we have the decomposition

(Z(m)g, .7y =Y mp(Z(m)g,, 7),
Pel,

where mp(Z(m)g,, ) is the multiplicity of intersection at P. Our next goal is to estimate in average
these local multiplicities and we start by the good reduction case already treated in [Maulik et al. 2022a,
Proposition 7.11, Theorem 7.18].

Let S be as in [loc. cit., Section 7.1], i.e., a set of integers of positive density such that every m € § is
coprime to p and is representable by the quadratic lattice (L, Q).

For P € (¥ N M)(F,), we define as in [loc. cit., Definition 7.6]

h
”1|c(m)|,

gp(m) =

where A, is the order of vanishing of the Hasse invariant at P, see [loc. cit.] The following proposition is
the combination of Proposition 7.11 and Theorem 7.18 from [loc. cit.].
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Proposition 4.11. Let P € #(F,). Then:

(1) If P is not supersingular then
> mp(Zm)g,.7) = O(X"*log X).
meSy
(2) There exists an absolute constant 0 < o < 1 such that for any supersingular point P we have
Z mp(Z(m)g,.) =« Z gp(m)+ O(X(b+1)/2)‘
meSy meSy

Our new contribution in this setting is the following theorem which gives an estimate on intersection
multiplicities at points where S intersects the boundary of Mf.

Proposition 4.12. Let P € ./ (F p) a point mapping to the boundary of M%p. Then we have the following
estimate:

> mp(Z(m),.7) = 0(X"?log X).

meSy
4C. Proof of the main theorems. Assuming the estimates in the previous section we now indicate how
to prove Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. It is enough to prove Theorem 4.1 in a similar way to [Shankar et al. 2022,
Section 8]. For convenience of the reader, we will sketch the proof. Assume for the sake of contradiction
that there are only finitely many primes of good reduction such that ) intersects a special divisor of
the form Z(Dm?) where Dm? is coprime with N and is represented by (L, Q). By Proposition 4.3 and
Proposition 4.5, there exists a subset Spag C Z-¢ of logarithmic asymptotic density zero such that

(V.Z(m)) = —c(m) log(m) + o(m®/? log(m)) =< m®/* log(m).

Let S%)O,(;? = {m € Sp x,m ¢ Spad, (m, N) = 1}, then one can easily check that |S%°’(;(d| = X!/2 and
c(m) > X"?1og X form e S%OS?. Hence we get

> .Zm) =< XD log x. (4C.1)

d
mess

On the other hand, by Propositions 4.5 and 4.7, we get by summing over the finitely many places where
either )V intersects a Z(Dm?) or which are of bad reduction

> .2(m) =o(X" 2 log X),
mesy
which contradicts (4C.1). O

Proof Theorem 1.3. The proof is similar: assume that there are only finitely many points in the union
(Um,m/\p=l Z(m)N 5”) (Ep) and let S be a set as in Section 4B. Then by Proposition 4.10, we have

Z (Z(m)g,.%) = Z lc(m)|(7.Lx,) + o(XP/*Th.

m€SX mESX
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On the other hand, by Propositions 4.11 and 4.12 we have
Y (Eme, A=) > mp(Zm,.7)

meSx meSx pe(U | Zmn7 ) Fp)

m,mAp=
=a Y lgp(m)|+ 0O,
meSyx
<a Y lem)|(F.Le,) + OXTV?),
meSy
where the last equality results from the fact that the Hasse invariant is a section of E[%p ~! These two
estimates contradict each other, hence the result. |

4D. Global estimate. We prove in this section simultaneously Propositions 4.3 and 4.10.
By Theorem 3.1, the generating series

Z Z h§‘°r(ﬂ,m)(y)qmeﬁ

BeLY/LmeQ(B)+Z

Yo > (@B m,. TN e

BeLV/LmeQ(B)+Z
are elements of Mod;4/2(p1). Classical estimates on the growth of coefficients of modular forms imply
that (see [Tayou 2020, Example 2.3] for more details)

hzor (V) = O(m"/?)

and

and
(Zm)E7) = le(m)|(7 Ls,) + 0(m"/?).

By (4A.3) and (4A.4), we can write
Y2m)+ Y P

T:K—C

= hzor,y (V) = Yy (m)(V.B )y log|Og /Bl = Y pz,o(m) - (V.B5)yplog|Ok /PB|  (4D.1)
Y =

=)

and similarly, we can write
(7. Z(m)e,) = (2" (g, 7) = Y (m)(FBT) =3 "z om) - (7.BE). (4D.2)
T 2,0
Hence we only have to bound the growth of the multiplicities uy (m) and g, (m).> This is given by
the following lemma.

Proposition 4.13. As m — 00, we have the following estimates:

(1) For any type-II cusp label representative Y, we have

oy (m) Ke mPA71Te

Swis the unique integral generator of o.
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(2) For any type-III toroidal stratum representative (E, o) such that o is a ray, we have

pzw(m) Lem=De,

This proposition will be proved in the following two sections.

4E. Estimates on type-1I multiplicities. The goal of this section is to prove the type-1I estimate in
Proposition 4.13. First we recall some notation associated to isotropic planes introduced in [Bruinier and
Zemel 2022, Section 3.2].

Let Y = (P, D°, h) be a cusp label representative corresponding to a boundary component of type IL.
Recall from Section 2B1 that P is the stabilizer of an isotropic plane Jg and J = Jg N A.L is a primitive
isotropic plane of 2.L N Lg.

To simplify the notation, assume that #.L N Lg = L, the reader may otherwise replace L by L, =
h.L N Lg in what follows. Define then

Jpv=JgNLY, Jf=J'nL, Ji=J'NLY, and D=Jj/J.
The lattice D is positive definite lattice of rank b — 2. Its dual lattice can be described as
DY =Jk /Iy,
and the discriminant lattice is given by
Ap=DY/D=J& /(i + v =LY /(L+Jv),
where LY is the subgroup of LY
L+ J ={ueL"|3veL such that (u, 1) = (v, 1) VA € J}.
Let ®p denote the vector-valued Theta function associated to D defined by

Op(m) =Y ¢%Pegip e ClADIIG ™).
BeDV

It is an element of M}, />_1(pp), which is the space of vector-valued modular forms of weight % —1 with
respect to the Weil representation pp associated to the positive definite lattice (D, Q). We can also write

Op(m)= Y. Y c(D,B,mq" e,

peDV/D m=0

where for 8 € DY/D, m € Q(B) +Z, m > 0, we have
c(D, B,m)=[{re€ B+ D, Q) =m}|.
Following Bruinier and Zemel’s notation [2022, Section 4.4], define

1p@p) @)= Y q%PPeg = Y Y (D, B.m)q"es € Mpjp1(pL),

Belt /g BELY/L meQ(B)+L
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where c¢(D, B,m)=0if g ¢ J v/Jl orm ¢ Q(B) + Z, and otherwise c(D, B, m) = c(D, B, m) where
B is the image of B under the reduction map J LLV — DY/D.
In particular, we have

q— th@m@m= Y > meD.B.myq"ep,

BeLV/L meQ(B)+L

which is a quasimodular form in the sense of [Imamoglu et al. 2014, Definition 1].
Then by [Bruinier and Zemel 2022, Definition 4.18, Proposition 4.21 4.15], we can define

1 d
puy (m) = —CT(<qd— 5 (®D),F,;f> ) (4E.1)
q L

where F,;l|r is the holomorphic part of the harmonic mass form F;, ¢ from [Bruinier and Zemel 2022,
Proposition 4.2]. A direct computation shows then (see also the second formula in [Bruinier 2002,
Theorem 2.14])

2
px (m) = -—=mc(D, 0, m).

Classical estimates on coefficients of modular forms, see for example [Sarnak 1990, Proposition 1.5.5],
show that
lc(D, B, m)| < mP/?72+¢ (4E.2)
for all € > 0. Hence we get that

|y (m)| e mb/271Fe,

which proves the first part of Proposition 4.13.

4F. Estimates on type-I11I multiplicities. In this section, we prove the estimates on the type-III multiplic-
ities in Proposition 4.13.

Let (E, o) be a toroidal stratum representative of type III such that o is a ray. Keeping the notation
from Section 2B2, let Ig be the isotropic line of Lg whose stabilizer is the parabolic subgroup attached
to E and let I = Ig N h.L. To simplify notation, we assume that #.L = L, the reader may notice that this
is harmless, up to replacing L by h.L in what follows.

The line I is an isotropic line of L and the lattice K; = I+/I is Lorentzian. Let Cg be the cone of
negative elements of the Lorentzian space K; g and let C = Cr N K. As is explained in Section 2B2, the

ray w is generated by an element w € K; N C which is primitive and such that Q(w) = —N. Following
[Bruinier and Zemel 2022, Definition 4.18], we define
IN _of o
UE.oim) = D, ( > (4F.1)
¢ 827 VN
Letv= % By [Bruinier 2002, Proposition 2.11 and Theorem 2.14], we have
- b.
. oo 20 (55 dmmy? F(%7H 11435 i)
@, (v) =, (U’ 3T Z) = b (b—l)/2v ’
T+ @rI0G,n® D)
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where F(a, b, c; z) is the usual Gauss hypergeometric function given by

(@ () 2"
©n nl’

o0

F(a,b,c;z):Z

n=0

and (a), =T'(a+n)/I'(a). Recall that the above series has 1 as a radius of convergence and converges

absolutely in the unit circle |z| = 1 if R(c —a — b) > 0. In our situation, the latter quantity is equal

tol+b/2—-1—-(0b—-1)/2= % > 0. Hence the series F((b—1)/2,1,1+b/2; z) is globally bounded

over the unit disc. For A € K such that Q(A) = m, we have m = Q(A,) + Q(A,1) and Q(X,) <0, hence
0<m < Q(A,L). Hence we get

1 1
K
|©,, (V)] < V. Z 00, )b-1/2 <L /m Z Z NG-D2°
JmreK,00)=1 v N=1 Q(b)e[N . N+I1[
ﬁ)»éK]
on=1

By Proposition 4.14 below, we have

A€ Kip, QW) =1, Vmr e K, Q(Ay) € [N, N + 1[}| K mP/271TeNbI272,

Hence
K (b—1)/2+¢€ NP2
[P, (V)| Lem Z NG-D/2

1
< m(b—l)/2+€ Z N e m(b—l)/2+e’
N>1 N>1

3/2

which proves the second part of Proposition 4.13.
Proposition 4.14. Let m > 1 be an integer and X > 0 a positive real number. Then
A€ Kig, Q(A) =1, v/mr € K1, Q) € [N, N + 1[}] & mP/27 1T Nb/i2=2,
Proof. Recall that (K;, Q) is a quadratic lattice of signature (b — 1, 1) and we have a canonical measure

Uoo ON the quadric Ky :={x € K;r | Q(x) = 1} defined as follows: for W an open subset of Kp, let

Leb({fx e W, |Q(x) — 1] <€})

2¢ '
Here Leb is the Lebesgue measure on Ky for which the lattice K is of covolume 1. One can then prove
that (see for example the proof of [Shankar et al. 2022, Corollary 4.12]):

Hoo(WNK|) = lim
e—0

Uoo({M € K1, QM) € [X, X +1[}) K xb/2-2

On the other hand, by the equidistribution of integral points in quadrics, see [Eskin and Oh 2006; Duke
1988].° we have

{h €Ki, Vmre K, Q(A) € [N, N+ 1[}] e m"?7 " pu((n € K1, Q(hyr) € [X, X + 1)),
which yields the desired result. O

0r the circle method.
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5. Bounding the contribution from bad reduction places

In this section we prove Propositions 4.7 and 4.12. Let M¥ be as before the toroidal compactification of
the GSpin Shimura variety associated to a quadratic lattice (L, Q) and a K-admissible polyhedral cone
decomposition X. The lattice (L, Q) is assumed to be maximal in the number field case and moreover
self-dual at p in the function field case.

5A. Bad reduction in the number field setting. In this section, we prove Proposition 4.7. We assume
hence that the lattice (L, Q) is maximal and that the polyhedral cone decomposition ¥ is chosen in such
way that Proposition 4.2 is satisfied.

By the choice of the cone decomposition X, the intersection points of ) and M lie either in a
boundary divisor of type II or a boundary divisor of type III associated to a toroidal stratum representative
(8, o) of type III where o is a ray.

Let B be a prime of bad reduction, i.e., where ) intersects the boundary of MZ*. Let Kq be the
completion at 3 of the number field K and vy its normalized valuation. Let ks be the residue field of *J

and Izqg an algebraic closure.

SA1l. Type-II degeneration. Assume in this section that the boundary point lies in ng where Y is a cusp
label representative of type II.
Let J be the primitive isotropic plane associated to Y and let D = J Ll /J; see Section 4E for notation.
Recall from (2B.5) and (2C.3) that the completion of M= along the boundary divisor BY fits into the
following commutative diagram:

My
My

where the map 7 is an étale map of formal Deligne-Mumford stacks.

—

T M=

Spf(Z,[XIh  — DRE
: Moy M

The formal completion of ) along 3 induces a map

SPf(Oky) = M®,

which lifts by étaleness of 7 to a map
Spf(Oxy) — M.

Denoting by x the image of the closed point sy, then we get a map of local rings
v (/9\/\7‘%)( — Ok

Let m > 1 be an integer coprime to N. By Proposition 2.4, the formal completion of the divisor Z(m)
is described as the union over A € D with Q(A) =m, of the vanishing set of the ideals Z,[X]] ® I v I fa
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is a generator of L., then the multiplicity of intersection of the branch parametrized by A at 3 is equal to

v(d) = vp(W (/)
Hence the multiplicity of intersection of ) and Z(m) at ‘P is given by
1
YV Zmp=- Y v,
reD,Q(M)=m

where d is the degree of 7 at p(sq).
For an integer n, define the set
L,={reD|v(}) >n}, (5A.1)

and notice that (L,) is a decreasing chain of sets. It follows then
YZmHp< Y. v =) HreL,| QM) =m)|. (5A.2)
reD,Q(A)=m n>1

The proposition below should be compared to what happens in the good reduction case in [Shankar
et al. 2022, Section 7]. For a definition of the successive minima used, we refer to [Eskin and Katznelson
1995, Definition 2.2].

Proposition 5.1. The sequence (L,, Q), is a decreasing sequence of positive definite lattices which all
have the same rank r < b — 2. Moreover, the following holds:

() M, L. ={0}.
(2) Foreveryn > 1, pL, € L,41.

3) For 1 <r <b—2,let ui(L,) be the i-th successive minima of L, and let a;(L,) = nlfkfi i (Ly).
Then we have
ai(Ly) e n'/ 9.

Proof. Let A, M € L,. From (2D.1), we see that ker(p;) Nker(p;/) and thus

IA)\_H C a + I/):"
It follows that
v(A+2)) = minfv(h), v} = n,

We conclude that L, € D is a subgroup and (L,, Q) is obviously positive definite. Moreover, since the
curve ) is not contained in any special divisor, (1) follows immediately.
For (2), let A € L, with v(A) > n > 1. Then I p» 18 the ideal defining the kernel of the composition

D ®:€\—> ?—) :9\,
over Spf(@Mh,Z).

TRecall that Z (m) is Cartier.
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Since the multiplication by p map is ramified at O with ramification degree equal to p, we conclude that
v(pr) = pv(A) = n+1.

This also proves that the lattices L, have the same rank.
For (3), let n > 1 and let w be a vector in L, such that Q(wg) = 1 (Ly)>. By choosing my = (L,)?,
the height bound Corollary 4.4 implies

n<V.2(mp))p Le mPTO2,
Hence 1(L,) > n'/®*9_ Since a;(n) > w1 (n)", this concludes the proof. O

Proposition 5.2. Let D € Z~,. For X € Z-, let Sp x denote the set
{m €Z.01X =m<2X, 2 7N (@, (m, N) = 1}.

Then we have

3 WZm)p = o(XPH log X).

mESD,X
Proof. We have
Yo WEmyp< Y. Y Mrel QW) =ml=) Y |{reL,| Q0) =m}l.
mESD,X mESD,X n>1 n>1 mESD,X

By [Eskin and Katznelson 1995, Lemma 2.4], we have the following estimate which only depends on the
rank r of the lattices L, and hence not on n

Yo el om =m) < Z

meSp, x

J(Ln)

On the other hand, if A € L, with Q(A) =m € Sp x, then w1 (L,)*> <m < X; hence n < X®+9/2 and

O (Xb+e/2)

YT @EmHp< Y. > reLy| Q) =m}|
meSp, x meSp, x n>1

r X(b+é)/2 . 2

< Z Z ]/(b+€)

n>1

& Z XA B+GO/2 _ g (xb+o)/2),
=0
Hence the result. |

S5A2. Type-IlI degeneration. Let (2, o) be a toroidal stratum representative of type III such that o is a
ray. We use notation from Section 2B2.
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By our choice of X, the curve ) touches the boundary of M* at a locally closed boundary divisor B=-7.

Let M be the formal completion of MZ along BZ-? and hence we get a map
9 ", (5A.3)
By Section 2BS, the following maps of formal Deligne-Mumford stacks are finite étale:
|_| 7A'E/R—>A/;la,g—>ﬂ//l\>:.
Q\AX /Ko
Hence map (5A.3) lifts to map
/:)} - Spf(zp[Qa | € F\E/ ﬂwL][[qw/]])-

This corresponds to a morphism

29 Mgelaery, @.m=0 = Oky- (5A.4)

Let L € K; =T'g with Q (1) =m. By Section 2D2 the branch of the special divisor Z(m) parametrized
by A intersects the boundary only if (A.w) = 0. In the latter case, by Proposition 2.5, its equation is given
by ¢* — 1 and the multiplicity of intersection of )V with the branch given by A is the p-adic valuation of
the element g* — 1 under the map (5A.4).

Let x € BE°(F ») be the image of ‘B. Then by the previous discussion, we conclude that

@Zmp=1 3w -,
reKNot,Q0)=m
where d is the degree of the map (5A.3) at x.
Forn > 1, let
Ly={re K/ NoT|v,(g"—1)>n)}.

Then we can rewrite the multiplicity intersection at 3 as

1
YV-Zm)g ==Y (e Ly| Q) =m]).
n>1
Proposition 5.3. The lattices (L,, Q) are positive definite lattices of rank r < b — 1 independent from n
and they satisfy the following properties:

(1) M, L, =1{0}.
(2) Foreveryn > 1, pL, € L.
(3) For1 <r <b—1, let u;(L,) be the i-th successive minima and let a; (L,) = Hlikii wi(Ly). Then

we have
a;i(Ly) 3> n'/ 19,

Proof. The proof is similar to the proof of Proposition 5.1. Let A, A’ € K Nw*. By writing

q)n-i-)»/ -1 :qk(qk/ _ 1)+qk_ 1’
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we get that L, is a lattice and it is obviously positive definite as K; is Lorentzian and w is a negative
normed vector.
Let 7 be a uniformizer of Oky, and let A € L,. Then q’\ =14 7".u for some u € Ok, Hence
g —1=1+r"u)? —1= Z(?)n”iu" ="y

1
i>1

Hence (2). The rest of the proof is similar to Proposition 5.1. (I

As a consequence, we get the following proposition, whose proof is identical to that of Proposition 5.2
and we omit it.

Proposition 5.4. Let D € Z~1 be coprime to N. For X € Z~, let Sp x denote the set
{m €Z.0|X =m<2X. " €ZN (@) (m,N) = 1}.

Then we have

3 WZm)gp = o(XPHV log X).

meSp, x

5B. Function field setting. In this section, we prove Proposition 4.11. We assume here that the lattice
(L, Q) is self-dual at p and we let M, be the mod p GSpin Shimura variety associated to (L, Q). Let
% be a polyhedral cone decomposition which satisfies Proposition 4.9.

Let .7 — M[Ep be a finite map as before and let P € .7 (F ») be a point mapping to the boundary
of M[Ep. Let denote k = F p- The point P lies either in a boundary stratum of type II or type III. We treat
each case separately.

5B1. Type-1l degeneration. Assume that the image of P isin B[Erp (k) where T is a cusp label representative
of type IL.

Let . ~ Spf(k[[¢])) be the formal completion of .# along s. Then by reasoning similarly to Section 5A1,
specifically using the reduction mod p of (2C.3), we get for every A € D with Q(A) =m > 1, m coprime
to N a map

@, : Optyy,, — klIt,

Let v(A) denote the ¢-adic valuation of the generator fj of I, ,. Then similarly to the number field
case, we have:

Lemma 5.5. The multiplicity of intersection of .# and Z (m)g, at P satisfies

mp(7, Z(mg,) < Y [{reL,| Q) =m)].

n>1

Now we are ready to prove Proposition 4.12.
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Proposition 5.6. The sequence of lattices (L, Q) satisfy the same properties as in Proposition 5.1 and
letting S be as in Section 4B, we have the following estimate for X > 0:

> mp(F, Zm)g,) = 0(XFI?)

mGSx
Proof. The same proof as in Proposition 5.1 shows that the lattices (L,,, Q) enjoy the same properties of
the aforementioned proposition. For the second part, we have

D mp(Z, ZmE,) K< Y Y HheL, | QO =m}]

meSy meSy n>1
O(X(17+e)/2)

< D MreL, QM) =m)|

n=1

O(X(17+e)/2) r
<Y
n=1

ro 0(x®t9r2) xil2

_ (b+e€)/2
KX D s = 0XTTD. D
j=0 n=1

XJ/2

;L)

5B2. Type-IlI degeneration. Assume now that there exists a toroidal stratum representative (&, o) such
that o is a ray and such that P lies in B[FEP’”(k). Using a similar approach to Section 5A2 by taking
reduction mod p, we get a map

klgo | @ € TE Nt 1lgw 1 — k1,

sending ¢,y to an element of the ideal (¢). Let v denote the ¢-adic valuation on k[[#]]. Then, for m coprime
to N, the multiplicity of intersection of . and Z(m)f , at P satisfies

mp(Z, Zm),) < Y (gt —D).
reKNwt, Q()=m

If we define the sequence lattices L, as
Ly={he KN vg"—1)=n),
then
mp(Z, Z(me,) <Y (L € Ly, Q) =m}].

n>1

Now the rest of the proof is similar to Section SA2. This proves Proposition 4.12 in the remaining
type-1II case.

6. Applications

In this section, we present a proof of Theorem 1.5. This approach is inspired from [Maulik et al. 2022a].
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6A. Hecke orbit conjecture.

6A1. The orthogonal case. Since GSpin Shimura varieties are finite covers of orthogonal ones, it is
enough to prove the result for GSpin Shimura varieties.

Let Mg, be the reduction mod p > 5 of a GSpin-type Shimura variety with hyperspecial level at p
associated to a lattice (L, Q), which is assumed to be self-dual at p and of signature (b, 2). We will
prove Theorem 1.5 by induction on b, which is also the dimension of Mg, .

The case b = 1 is immediate: the prime-to-p Hecke orbit of x is infinite, hence Zariski dense.

Assume now that n > 2 and the result of Theorem 1.5 holds for all ordinary points in GSpin Shimura
varieties of dimension less than b — 1 with hyperspecial level at p. Let x be an ordinary point in M (F »)
and let T, be the Zariski closure of its prime-to-p Hecke orbit. Then T has positive dimension and
intersects the ordinary locus nontrivially. Hence we can find a smooth quasiprojective curve . and a
finite map

5”—>M[Fp

whose image is contained in T, and which is contained in the ordinary locus. Moreover, we can assume
that this image is not contained in any special divisor. Indeed, the same argument used for proper curves
in [Maulik et al. 2022a, Lemma 8.11] works in our setting with no change. By Theorem 1.3, the curve .7
intersects infinitely many divisors Z(m)g, with (m, p) = 1. The special divisors Z(m)g, are themselves
the union of GSpin Shimura varieties of dimension b — 1 with hyperspecial level at p since m is coprime
top.Letye.” (Fl,) N Z’(m)(Fp) for some irreducible component Z’(m) of Z(m). Then y is ordinary
and the prime-to-p Hecke orbit of y in Z'(m), is Zariski dense by the induction hypothesis. Since
this orbit is a suborbit of the Hecke orbit in M s WE conclude that Z'(m)f , CTx. Furthermore, it is
straightforward to check that the collection of the divisors Z’ (m)g, must be infinite by Theorem 1.3.
Hence we conclude that 7, = M[Fp which is the desired result.

6A2. The unitary case. We prove in this section the Hecke orbit conjecture in the unitary case using the
reduction to the orthogonal case already used in [Maulik et al. 2022a, Remark 8.12] and in [Shankar et al.
2022, Section 9.3].

Let Mg, be the mod p points of the canonical model of a unitary Shimura variety associated to an
imaginary quadratic field &, a unitary group of signature (r, 1) with hyperspecial level at p as described
in [Bruinier et al. 2020, Section 2.1] such that p is split in k. Consider the family of special divisors
Zkrqa(m) as described in [loc. cit., Section 2.5] which are themselves unitary Shimura varieties associated
to unitary groups of signature (r — 1, 1) and hyperspecial at p when p does not divide m. Then using
a similar argument to [Shankar et al. 2022, Section 9.3] and further explained in [Maulik et al. 2022a,
Remark 8.12], we have the following theorem which is a consequence of Theorem 1.3.

Theorem 6.1. Assume that p > 5 and let ¥ — M, be a finite map from a smooth quasiprojective curve
< over F p and with generically ordinary image. Then the union over m prime to p of the intersections
S N Zgrq(m) is infinite.
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Now the Hecke orbit conjecture in the unitary case is an easy consequence of the above theorem and

the induction method explained in the previous paragraph.
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