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Abstract  21 

 Fungal contamination of drinking water distribution systems can impact water quality 22 

with implications for public health. We document several Exophiala spp. biofilm contamination 23 

events at customer taps in the Midwest United States (Ohio) following consumer complaints. 24 

Three samples of biofilm were collected and processed using next-generation DNA sequencing 25 

of the bacterial 16S rRNA gene and the fungal internal transcribed spacer region. Two samples 26 

with successful fungal sequencing were dominated by Exophiala spp., putatively identified as E. 27 

cancerae, E. lecanii-corni, and E. oligosperma. The dominant bacterial phyla were 28 

Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied 29 

substantially at the family and genus levels. Presence of potentially pathogenic bacteria (i.e., 30 

Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp.) and fungi (i.e., 31 

Exophiala spp., Knufia spp., Cyphellophora spp., Ochroconis spp., Rhinocladiella spp.) suggests 32 

these biofilms could be of public health concern. 33 

 34 
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 36 

 37 

Introduction 38 

Contamination of drinking water distribution systems by microorganisms has been 39 

recognized since the mid-1800s, and contamination events may result from introduction and/or 40 

regrowth of bacteria, viruses, protozoa, and fungi (Rochelle and Clancey 2006).  For example, 41 

contamination with opportunistic pathogen bacteria such as Acinetobacter baumannii, Legionella 42 

pneumophila, and Mycobacterium avium is well-known (Falkinham 2011; Carvalheira et al. 43 
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2021; CDC 2021) with healthcare costs from these three species estimated at $600 million 44 

annually for the elderly in the United States (Naumova et al. 2016). 45 

Fungal contamination of drinking water distribution systems is less frequently studied but 46 

is increasingly recognized (Mhlongo et al. 2019) with impacts upon water quality (e.g., color, 47 

odor, and taste), degradation of materials, and concerns about mycotoxin exposure and 48 

opportunistic infections (Nucci et al. 2002; Hageskal et al. 2009; Mesquita-Rocha et al. 2013; 49 

Mhlongo et al. 2020; Afonso et al. 2021). Available reports of fungal growth within distribution 50 

systems primarily implicate common, terrestrial, and filamentous genera, including Aspergillus, 51 

Cladosporium, and Penicillium (Afonso et al. 2021). These may co-occur with bacteria and 52 

protozoa in biofilm communities, and interkingdom interactions within such biofilms are poorly 53 

understood (Afonso et al. 2021). 54 

Aside from common terrestrial fungi, members of the black yeast genus Exophiala are 55 

occasionally reported as distribution system contaminants in tap water and especially around 56 

outlets in bathrooms, kitchens, dishwashers, and laundry machines  (Matos et al. 2002; Lian and 57 

De Hoog 2010; Adams et al. 2013; Isola et al. 2013; Biedunkiewicz and Schulz 2012; Babič et 58 

al. 2016; Moat et al. 2016; Zupančič et al. 2016; Babič et al. 2017; Wang et al. 2018; Kulesza et 59 

al. 2021). Within such environments, oligotrophy and tolerance of extreme conditions by certain 60 

Exophiala species enables their growth (Hamada and Abe 2010; Lian and De Hoog, 2010; 61 

Heinrichs et al. 2013b; Zupančič et al., 2016; Wang et al. 2018; Kulesza et al. 2021; Romsdahl et 62 

al. 2021). Moreover, many Exophiala spp. are opportunistic pathogens affecting both immune-63 

competent and immune-compromised persons (Zeng et al. 2007; Sav et al. 2016; Singh et al. 64 

2021; Usuda et al. 2021). Infections with Exophiala spp. are most often superficial but do 65 

include deep-tissue and systemic mycoses which most commonly affect the lungs (Zeng et al. 66 
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2007; Woo et al. 2013; Usuda et al. 2021). Dermal contact, ingestion, and inhalation may be 67 

relevant routes of exposure.  68 

Recently, Heinrichs et al. (2013a, b) investigated black biofilms growing on aerators, 69 

shower heads, and toilet tanks in Germany. These biofilms were dominated by Exophiala lecanii-70 

corni and smaller amounts of other Exophiala spp and black yeast-like fungi. E. lecanii-corni 71 

may cause superficial mycoses effecting skin, nails, eyes, and sinuses in addition to deeper 72 

mycoses of the lungs, digestive system, and central nervous system (Futatsuya et al., 2023; Hatta 73 

et al., 2021; Lee et al., 2016; Miyakubo et al., 2020; Woo et al., 2013; Zeng et al., 2007) . After 74 

further sampling of that distribution system, retrograde contamination with E. lecanii-corni was 75 

suggested (Heinrichs et al. 2013b). However, it is unknown how frequently similar, extensive E. 76 

lecanii-corni biofilms contaminate other distribution systems. 77 

In this study, we report a series of Exophiala spp. biofilm contamination events at taps 78 

within a central Ohio (USA) distribution system similar to that reported by Heinrichs et al. 79 

(2013a). Our objective was to characterize these biofilms through DNA sequencing of the 80 

bacterial 16S and fungal ITS regions and to identify potentially pathogenic taxa of concern to 81 

water resource managers and for public health. This work highlights the potential importance of 82 

fungal biofilms in drinking water systems. 83 

 84 

 85 

Methods 86 

Three biofilm samples were collected during November 2022 from homes that belong to 87 

a central Ohio, USA distribution system (Figure 1). Samples were collected from an area within 88 

the distribution system where multiple homeowners had complained to operators about excessive 89 
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biofilm growth on taps. Biofilms growing on kitchen sinks (i.e., samples S1 and S2) and a 90 

shower head (i.e., sample S3) were collected without prior flushing, using sterile cotton swabs 91 

and 4 oz Whirl-Pak® bags (Pleasant Prairie, WI, USA). Samples were promptly transported to 92 

The Ohio State University and stored at -20 °C. Microscopic observation, DNA extraction 93 

procedure, Illumina sequencing, and bioinformatics are detailed in supplemental materials.  94 

 95 

 96 

Results and Discussion 97 

Fungal sequences were identified for samples S1 and S2, which yielded 36,342 and 98 

26,873 sequences per sample respectively, before denoising. Sample S3 failed to amplify during 99 

ITS sequencing. Both samples were dominated Order Chaetothryiales, and specifically by 100 

Exophiala spp. (Table 1). In sample S1, the putative species E. cancerae (85% of the reads) and 101 

Knufia epidermidis (11% of the reads) were dominant, whereas in S2, the putative species E. 102 

lecanii-corni was dominant (98% of the reads). E. lecanii-corni dominated the biofilm samples 103 

characterized by Heinrichs et al. (2013a). We view the identification of E. cancerae with caution 104 

because species-level identifications from next-generation DNA sequencing are tentative owing 105 

in part to sequencing and database shortcomings (Nilsson et al. 2006; Yamamoto et al. 2014). 106 

Moreover, E. cancerae is primarily reported from tropical locations. In South America, it is a 107 

causative agent of Lethargic Crab Disease (Orélis-Ribeiro et al. 2011) and we are aware of one 108 

report of gastrointestinal infection by E. cancerae from Hong Kong (Woo et al. 2013). 109 

Several additional melanistic, black yeast-like fungi from orders Chaetothryiales and 110 

Venturiales that are commonly found in bathrooms (Lian and de Hoog 2010; Wang et al. 2018), 111 

and that are capable of human opportunism were detected. First, E. oligosperma (0.6% of reads 112 
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in S2) opportunistically infects cutaneous, subcutaneous, and various deep tissues including the 113 

lungs, heart, gastrointestinal tract, spleen, lymphatic system, blood, and brain (Tintelnot et al. 114 

1991; de Hoog et al. 2003; al-Obaid et al. 2006; Zeng et al. 2007; Woo et al. 2013). Several 115 

additional species that opportunistically primarily infect human skin and nails were also 116 

detected, including Knufia epidermidis (11% of reads in S1; Li et al. 2008; Saunte et al. 2012; 117 

Martin-Gomez et al. 2019), Cyphellophora europaea (4% of reads in S2; de Hoog et al. 2000; 118 

Lian and de Hoog 2010; Saunte et al. 2012; Feng et al. 2014), Rhinocladiella similis (<0.001% 119 

of reads in S2; Lian an de Hoog 2010; Richarz et al. 2018; de Hoog et al. 2003), and Ochroconis 120 

mirabilis (0.1% of reads in S1; Giraldo et al. 2014; Shi et al. 2016; Yew et al. 2016). 121 

Bacterial sequencing was successful for all samples with 25,019 to 44,339 sequences per 122 

sample before denoising. Across all samples, 114 amplicon sequence variants (ASVs) were 123 

identified. Only 19 ASVs (17%) were detected in all three samples and 31 additional ASVs 124 

(27%) were present in two samples. Measures of alpha diversity after rarefaction were computed, 125 

including Shannon Entropy (Shannon 1948) and Chao 1 Index (Chao 1984) (Figure 2). Shannon 126 

diversity values were comparable to previous analyses of biofilms within water distribution 127 

systems (Gomez-Smith et al. 2015; Ren et al. 2024), whereas Chao I values were lower (Cruz et 128 

al. 2020).   129 

Four phyla – Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria – were 130 

present in all samples, accounting for 70-97% of reads (Figure 3). Bacterial composition of 131 

samples was similar at the phylum and class levels, with more differentiation at the family and 132 

genus levels (Figure 3) as reported previously (Li et al. 2016). Across different geographic 133 

regions and distribution system designs, predominant phyla in distribution system biofilms are 134 

Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidota, Nitrospira, 135 
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Firmicutes, and Planctomycetota (Proctor and Hammes 2015; Li et al. 2016; Stanish et al. 2016; 136 

Cruz et al. 2020; Ren et al. 2024). The most abundant classes identified in our samples, 137 

Alphaproteobacteria, Betaproteobacteria, Cytophagia and Gammaproteobacteria, were also 138 

detected in a German distribution system, where biofilm samples also displayed high community 139 

variance (Henne et al. 2012). The possible opportunistic pathogens Legionella spp., 140 

Pseudomonas spp., Mycobacterium spp., and Acinetobacter spp. were all detected in at least one 141 

sample, as in previous studies (Douterelo et al. 2014; Li et al. 2016; Waak et al. 2018). Certain 142 

members of these genera are capable of growth within distribution system biofilms, resulting in 143 

illness (Falkinham 2011; Waak et al. 2018; Carvalheira et al. 2021). Moreover, emerging 144 

evidence suggests microbial communities in drinking water influence human health through the 145 

microbiome (Bowyer et al. 2020; Lugli et al. 2022; Vanhaecke et al. 2022). Microbiome impacts 146 

from ingesting the bacterial and fungal communities we describe are unknown. 147 

Beyond health implications, identification of ecological processes promoting growth of 148 

biofilms dominated by Exophiala and other black yeast-like fungi may assist control efforts. E. 149 

lecanii-corni is resistant to temperature, osmotic, and oxidative stresses (Romsdahl et al. 2021), 150 

is oligotrophic and exhibits extreme shear strength (Heinrichs et al. 2013b), and thrives in 151 

environments laden with toxic hydrocarbons (Woertz et al. 2001; Pirnie-Fisker and Woertz 152 

2007). For these reasons, Heinrichs et al. (2013b) proposed that VOCs from cosmetics or 153 

cleaning may contribute to biofilm contamination. Other considerations for future studies include 154 

depletion of chlorine residual, microbial regrowth and its promoting conditions, and water age. 155 

In the distribution system sampled, contamination events were somewhat clustered, especially in 156 

areas where construction activity necessitated reduction of flow for extended periods. Future 157 
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studies of these biofilms could sample distribution systems more extensively and seek to 158 

understand the source and conditions that encourage growth. 159 

 160 

 161 

Conclusions 162 

 We document occurrence of Exophiala-dominant biofilm on distribution system taps 163 

following Heinrichs et al. (2013a, b), this time in the Midwestern USA. Additionally, we report 164 

on the bacterial composition of these biofilms. Biofilms samples contained potentially 165 

pathogenic bacteria and fungi including Acinetobacter spp., Legionella spp., Mycobacterium 166 

spp., Pseudomonas spp., Exophiala spp., and Knufia spp. Health implications of these biofilms 167 

are uncertain. Future studies might include more extensive sampling of drinking water 168 

distribution systems for fungal contamination and identifying the environmental conditions that 169 

support growth to inform future control efforts. 170 

 171 
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Figures 424 

 425 

Figure 1. Biofilms on customer taps (left) and light microscope image of biofilm stained with 426 

crystal violet solution at 1000× magnification (right). 427 

Table 1. Read counts of putative fungal species identified 

through ITS sequencing.  

Species S1 S2 

Exophiala cancerae 20196 0 

Exophiala lecanii-corni 834 14447 

Knufia epidermidis 2574 48 

Fusarium acutatum 16 87 

Exophiala oligosperma 0 95 

Dactylella zhongdianensis 84 0 

Cyphellophora europaea 0 65 

Ochroconis mirabilis 30 0 

Cyphellophora reptans 0 11 

Cyphellophora guyanensis 0 6 

Metacordyceps chlamydosporia 0 2 

Cystobasidium slooffiae 1 0 

Schizothecium inaequale 1 0 

Naganishia albida 0 1 

Rhinocladiella similis 0 1 

Species unknown 0 1 
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 428 

 429 

Figure 3. Summary of bacterial communities in biofilm samples including A) Shannon index, B) 430 

Chao 1 index, C) the top five most abundant taxa at phylum, class, family, and genus ranks, and 431 

D) relative abundance of bacterial families. 432 
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