

1 **Case Report: Contamination of a Drinking Water Distribution System by *Exophiala-***
2 **dominated Biofilm in the Midwestern United States**

3
4 Jon C. King^{1,2,3}, Emma Lancaster^{1,3}, Alicia Murphy³, Jiyoung Lee^{3,4,5}, Karen C. Dannemiller^{2,3,6}
5

6 1. Environmental Sciences Graduate Program, The Ohio State University, 3138A Smith Lab, 174
7 W 18th Ave, Columbus, OH, 43210

8 2. Department of Civil, Environmental, and Geodetic Engineering, College of Engineering, The
9 Ohio State University, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH, 43210

10 3. Division of Environmental Health Sciences, College of Public Health, The Ohio State
11 University, 50 Cunz Hall, 1841 Neil Ave, Columbus, OH, 43210

12 4. Department of Food Science & Technology, The Ohio State University, 2015 Fyffe Rd,
13 Columbus, OH, 43210

14 5. Infectious Diseases Institute, The Ohio State University, 08D Bricker Hall, 190 North Oval
15 Mall, Columbus, OH, 43210

16 6. Sustainability Institute, The Ohio State University, 3018 Smith Lab, 174 W 18th Ave,
17 Columbus, OH, 43210

18
19 Corresponding author: Karen Dannemiller, 470 Hitchcock Hall, 2070 Neil Ave, Columbus, OH,
20 43210, Phone: 614-292-4031, Email: Dannemiller.70@osu.edu, Fax: (614) 292-3780

21 **Abstract**

22 Fungal contamination of drinking water distribution systems can impact water quality
23 with implications for public health. We document several *Exophiala* spp. biofilm contamination
24 events at customer taps in the Midwest United States (Ohio) following consumer complaints.
25 Three samples of biofilm were collected and processed using next-generation DNA sequencing
26 of the bacterial 16S rRNA gene and the fungal internal transcribed spacer region. Two samples
27 with successful fungal sequencing were dominated by *Exophiala* spp., putatively identified as *E.*
28 *cancerae*, *E. lecanii-corni*, and *E. oligosperma*. The dominant bacterial phyla were
29 Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied
30 substantially at the family and genus levels. Presence of potentially pathogenic bacteria (i.e.,
31 *Acinetobacter* spp., *Legionella* spp., *Mycobacterium* spp., and *Pseudomonas* spp.) and fungi (i.e.,
32 *Exophiala* spp., *Knufia* spp., *Cyphellophora* spp., *Ochroconis* spp., *Rhinocladiella* spp.) suggests
33 these biofilms could be of public health concern.

34

35 **Keywords:** bacteria; faucet; fungi; microbial communities; opportunistic pathogens; shower head

36

37

38 **Introduction**

39 Contamination of drinking water distribution systems by microorganisms has been
40 recognized since the mid-1800s, and contamination events may result from introduction and/or
41 regrowth of bacteria, viruses, protozoa, and fungi (Rochelle and Clancey 2006). For example,
42 contamination with opportunistic pathogen bacteria such as *Acinetobacter baumannii*, *Legionella*
43 *pneumophila*, and *Mycobacterium avium* is well-known (Falkinham 2011; Carvalheira et al.

44 2021; CDC 2021) with healthcare costs from these three species estimated at \$600 million
45 annually for the elderly in the United States (Naumova et al. 2016).

46 Fungal contamination of drinking water distribution systems is less frequently studied but
47 is increasingly recognized (Mhlongo et al. 2019) with impacts upon water quality (e.g., color,
48 odor, and taste), degradation of materials, and concerns about mycotoxin exposure and
49 opportunistic infections (Nucci et al. 2002; Hageskal et al. 2009; Mesquita-Rocha et al. 2013;
50 Mhlongo et al. 2020; Afonso et al. 2021). Available reports of fungal growth within distribution
51 systems primarily implicate common, terrestrial, and filamentous genera, including *Aspergillus*,
52 *Cladosporium*, and *Penicillium* (Afonso et al. 2021). These may co-occur with bacteria and
53 protozoa in biofilm communities, and interkingdom interactions within such biofilms are poorly
54 understood (Afonso et al. 2021).

55 Aside from common terrestrial fungi, members of the black yeast genus *Exophiala* are
56 occasionally reported as distribution system contaminants in tap water and especially around
57 outlets in bathrooms, kitchens, dishwashers, and laundry machines (Matos et al. 2002; Lian and
58 De Hoog 2010; Adams et al. 2013; Isola et al. 2013; Biedunkiewicz and Schulz 2012; Babić et
59 al. 2016; Moat et al. 2016; Zupančič et al. 2016; Babić et al. 2017; Wang et al. 2018; Kulesza et
60 al. 2021). Within such environments, oligotrophy and tolerance of extreme conditions by certain
61 *Exophiala* species enables their growth (Hamada and Abe 2010; Lian and De Hoog, 2010;
62 Heinrichs et al. 2013b; Zupančič et al., 2016; Wang et al. 2018; Kulesza et al. 2021; Romsdahl et
63 al. 2021). Moreover, many *Exophiala* spp. are opportunistic pathogens affecting both immune-
64 competent and immune-compromised persons (Zeng et al. 2007; Sav et al. 2016; Singh et al.
65 2021; Usuda et al. 2021). Infections with *Exophiala* spp. are most often superficial but do
66 include deep-tissue and systemic mycoses which most commonly affect the lungs (Zeng et al.

67 2007; Woo et al. 2013; Usuda et al. 2021). Dermal contact, ingestion, and inhalation may be
68 relevant routes of exposure.

69 Recently, Heinrichs et al. (2013a, b) investigated black biofilms growing on aerators,
70 shower heads, and toilet tanks in Germany. These biofilms were dominated by *Exophiala lecanii-*
71 *corni* and smaller amounts of other *Exophiala* spp and black yeast-like fungi. *E. lecanii-corni*
72 may cause superficial mycoses effecting skin, nails, eyes, and sinuses in addition to deeper
73 mycoses of the lungs, digestive system, and central nervous system (Futatsuya et al., 2023; Hatta
74 et al., 2021; Lee et al., 2016; Miyakubo et al., 2020; Woo et al., 2013; Zeng et al., 2007) . After
75 further sampling of that distribution system, retrograde contamination with *E. lecanii-corni* was
76 suggested (Heinrichs et al. 2013b). However, it is unknown how frequently similar, extensive *E.*
77 *lecanii-corni* biofilms contaminate other distribution systems.

78 In this study, we report a series of *Exophiala* spp. biofilm contamination events at taps
79 within a central Ohio (USA) distribution system similar to that reported by Heinrichs et al.
80 (2013a). Our objective was to characterize these biofilms through DNA sequencing of the
81 bacterial 16S and fungal ITS regions and to identify potentially pathogenic taxa of concern to
82 water resource managers and for public health. This work highlights the potential importance of
83 fungal biofilms in drinking water systems.

84

85

86 **Methods**

87 Three biofilm samples were collected during November 2022 from homes that belong to
88 a central Ohio, USA distribution system (Figure 1). Samples were collected from an area within
89 the distribution system where multiple homeowners had complained to operators about excessive

90 biofilm growth on taps. Biofilms growing on kitchen sinks (i.e., samples S1 and S2) and a
91 shower head (i.e., sample S3) were collected without prior flushing, using sterile cotton swabs
92 and 4 oz Whirl-Pak® bags (Pleasant Prairie, WI, USA). Samples were promptly transported to
93 The Ohio State University and stored at -20 °C. Microscopic observation, DNA extraction
94 procedure, Illumina sequencing, and bioinformatics are detailed in supplemental materials.

95

96

97 **Results and Discussion**

98 Fungal sequences were identified for samples S1 and S2, which yielded 36,342 and
99 26,873 sequences per sample respectively, before denoising. Sample S3 failed to amplify during
100 ITS sequencing. Both samples were dominated Order Chaetothyriales, and specifically by
101 *Exophiala* spp. (Table 1). In sample S1, the putative species *E. canceriae* (85% of the reads) and
102 *Knufia epidermidis* (11% of the reads) were dominant, whereas in S2, the putative species *E.*
103 *lecanii-corni* was dominant (98% of the reads). *E. lecanii-corni* dominated the biofilm samples
104 characterized by Heinrichs et al. (2013a). We view the identification of *E. canceriae* with caution
105 because species-level identifications from next-generation DNA sequencing are tentative owing
106 in part to sequencing and database shortcomings (Nilsson et al. 2006; Yamamoto et al. 2014).
107 Moreover, *E. canceriae* is primarily reported from tropical locations. In South America, it is a
108 causative agent of Lethargic Crab Disease (Orélis-Ribeiro et al. 2011) and we are aware of one
109 report of gastrointestinal infection by *E. canceriae* from Hong Kong (Woo et al. 2013).

110 Several additional melanistic, black yeast-like fungi from orders Chaetothyriales and
111 Venturiales that are commonly found in bathrooms (Lian and de Hoog 2010; Wang et al. 2018),
112 and that are capable of human opportunism were detected. First, *E. oligosperma* (0.6% of reads

113 in S2) opportunistically infects cutaneous, subcutaneous, and various deep tissues including the
114 lungs, heart, gastrointestinal tract, spleen, lymphatic system, blood, and brain (Tintelnot et al.
115 1991; de Hoog et al. 2003; al-Obaid et al. 2006; Zeng et al. 2007; Woo et al. 2013). Several
116 additional species that opportunistically primarily infect human skin and nails were also
117 detected, including *Knufia epidermidis* (11% of reads in S1; Li et al. 2008; Saunte et al. 2012;
118 Martin-Gomez et al. 2019), *Cyphelophora europaea* (4% of reads in S2; de Hoog et al. 2000;
119 Lian and de Hoog 2010; Saunte et al. 2012; Feng et al. 2014), *Rhinocladiella similis* (<0.001%
120 of reads in S2; Lian an de Hoog 2010; Richarz et al. 2018; de Hoog et al. 2003), and *Ochroconis*
121 *mirabilis* (0.1% of reads in S1; Giraldo et al. 2014; Shi et al. 2016; Yew et al. 2016).

122 Bacterial sequencing was successful for all samples with 25,019 to 44,339 sequences per
123 sample before denoising. Across all samples, 114 amplicon sequence variants (ASVs) were
124 identified. Only 19 ASVs (17%) were detected in all three samples and 31 additional ASVs
125 (27%) were present in two samples. Measures of alpha diversity after rarefaction were computed,
126 including Shannon Entropy (Shannon 1948) and Chao 1 Index (Chao 1984) (Figure 2). Shannon
127 diversity values were comparable to previous analyses of biofilms within water distribution
128 systems (Gomez-Smith et al. 2015; Ren et al. 2024), whereas Chao I values were lower (Cruz et
129 al. 2020).

130 Four phyla – Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria – were
131 present in all samples, accounting for 70-97% of reads (Figure 3). Bacterial composition of
132 samples was similar at the phylum and class levels, with more differentiation at the family and
133 genus levels (Figure 3) as reported previously (Li et al. 2016). Across different geographic
134 regions and distribution system designs, predominant phyla in distribution system biofilms are
135 Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidota, Nitrospira,

136 Firmicutes, and Planctomycetota (Proctor and Hammes 2015; Li et al. 2016; Stanish et al. 2016;
137 Cruz et al. 2020; Ren et al. 2024). The most abundant classes identified in our samples,
138 *Alphaproteobacteria*, *Betaproteobacteria*, *Cytophagia* and *Gammaproteobacteria*, were also
139 detected in a German distribution system, where biofilm samples also displayed high community
140 variance (Henne et al. 2012). The possible opportunistic pathogens *Legionella* spp.,
141 *Pseudomonas* spp., *Mycobacterium* spp., and *Acinetobacter* spp. were all detected in at least one
142 sample, as in previous studies (Douterelo et al. 2014; Li et al. 2016; Waak et al. 2018). Certain
143 members of these genera are capable of growth within distribution system biofilms, resulting in
144 illness (Falkinham 2011; Waak et al. 2018; Carvalheira et al. 2021). Moreover, emerging
145 evidence suggests microbial communities in drinking water influence human health through the
146 microbiome (Bowyer et al. 2020; Lugli et al. 2022; Vanhaecke et al. 2022). Microbiome impacts
147 from ingesting the bacterial and fungal communities we describe are unknown.

148 Beyond health implications, identification of ecological processes promoting growth of
149 biofilms dominated by *Exophiala* and other black yeast-like fungi may assist control efforts. *E.*
150 *lecanii-corni* is resistant to temperature, osmotic, and oxidative stresses (Romsdahl et al. 2021),
151 is oligotrophic and exhibits extreme shear strength (Heinrichs et al. 2013b), and thrives in
152 environments laden with toxic hydrocarbons (Woertz et al. 2001; Pirnie-Fisker and Woertz
153 2007). For these reasons, Heinrichs et al. (2013b) proposed that VOCs from cosmetics or
154 cleaning may contribute to biofilm contamination. Other considerations for future studies include
155 depletion of chlorine residual, microbial regrowth and its promoting conditions, and water age.
156 In the distribution system sampled, contamination events were somewhat clustered, especially in
157 areas where construction activity necessitated reduction of flow for extended periods. Future

158 studies of these biofilms could sample distribution systems more extensively and seek to
159 understand the source and conditions that encourage growth.

160

161

162 **Conclusions**

163 We document occurrence of *Exophiala*-dominant biofilm on distribution system taps
164 following Heinrichs et al. (2013a, b), this time in the Midwestern USA. Additionally, we report
165 on the bacterial composition of these biofilms. Biofilms samples contained potentially
166 pathogenic bacteria and fungi including *Acinetobacter* spp., *Legionella* spp., *Mycobacterium*
167 spp., *Pseudomonas* spp., *Exophiala* spp., and *Knufia* spp. Health implications of these biofilms
168 are uncertain. Future studies might include more extensive sampling of drinking water
169 distribution systems for fungal contamination and identifying the environmental conditions that
170 support growth to inform future control efforts.

171

172

173 **Acknowledgements**

174 This study was partially funded by the National Science Foundation (Grant 1942501). We
175 thank the water distribution company and the homeowners that contributed samples. Alauren
176 Lane created our graphical abstract. We also thank Mark Weir for consulting and Nick Nastasi
177 for assistance with microscopy.

178

179

180 **Data Availability**

181 Raw sequences are available from GenBank (BioProject: PRJNA1072827).

182

183 **Conflict of Interest**

184 The authors have no conflicts of interest to declare.

185

186

187

188 **References**

189 Adams, R.I., Miletto, M., Taylor, J.W., Bruns, T.D., 2013. The Diversity and Distribution of
190 Fungi on Residential Surfaces. PLoS ONE 8, e78866.

191 <https://doi.org/10.1371/journal.pone.0078866>

192 Afonso, T.B., Simões, L.C., Lima, N., 2021. Occurrence of filamentous fungi in drinking water:
193 their role on fungal-bacterial biofilm formation. Research in Microbiology 172, 103791.

194 <https://doi.org/10.1016/j.resmic.2020.11.002>

195 Al-Obaid, I., Ahmad, S., Khan, Z.U., Dinesh, B., Hejab, H.M., 2006. Catheter-associated
196 fungemia due to *Exophiala oligosperma* in a leukemic child and review of fungemia
197 cases caused by *Exophiala* species. Eur J Clin Microbiol Infect Dis 25, 729–732.

198 <https://doi.org/10.1007/s10096-006-0205-0>

199 Babič, M., Gunde-Cimerman, N., Vargha, M., Tischner, Z., Magyar, D., Veríssimo, C., Sabino,
200 R., Viegas, C., Meyer, W., Brandão, J., 2017. Fungal Contaminants in Drinking Water
201 Regulation? A Tale of Ecology, Exposure, Purification and Clinical Relevance. IJERPH
202 14, 636. <https://doi.org/10.3390/ijerph14060636>

203 Babič, M.N., Zalar, P., Ženko, B., Džeroski, S., Gunde-Cimerman, N., 2016. Yeasts and yeast-
204 like fungi in tap water and groundwater, and their transmission to household appliances.
205 Fungal Ecology 20, 30–39. <https://doi.org/10.1016/j.funeco.2015.10.001>

206 Biedunkiewicz, A., Schulz, Ł., 2012. Fungi of the genus Exophiala in tap water – potential
207 etiological factors of phaeohyphomycoses. Mikologia Lekarska 19. Bowyer, R.C.E.,
208 Schillereff, D.N., Jackson, M.A., Le Roy, C., Wells, P.M., Spector, T.D., Steves, C.J.,
209 2020. Associations between UK tap water and gut microbiota composition suggest the
210 gut microbiome as a potential mediator of health differences linked to water quality.
211 Science of The Total Environment 739, 139697.
212 <https://doi.org/10.1016/j.scitotenv.2020.139697>

213 Carvalheira, A., Silva, J., Teixeira, P., 2021. Acinetobacter spp. in food and drinking water – A
214 review. Food Microbiology 95, 103675. <https://doi.org/10.1016/j.fm.2020.103675>

215 Centers for Disease Control and Prevention (CDC), 2021. About Legionnaires Disease and
216 Pontiac Fever [WWW Document]. URL <https://www.cdc.gov/legionella/about/index.html>
217 (accessed 2.29.24).

218 Chao, A., 1984. Nonparametric Estimation of the Number of Classes in a Population.
219 Scandinavian Journal of Statistics 11, 265–270.

220 Committee on Indicators for Waterborne Pathogens, National Research Council (Ed.), 2004.
221 Indicators for waterborne pathogens. National Academies Press, Washington, DC.

222 Cruz, M.C., Woo, Y., Flemming, H.-C., Wuertz, S., 2020. Nitrifying niche differentiation in
223 biofilms from full-scale chloraminated drinking water distribution system. Water
224 Research 176, 115738. <https://doi.org/10.1016/j.watres.2020.115738>

225 De Hoog, G.S., Mayser, P., Haase, G., Horré, R., Horrevorts, A.M., 2000. A new species,
226 Phialophora europaea, causing superficial infections in humans Eine neue Art,
227 Phialophora europaea, als Erreger oberflächlicher Infektionen beim Menschen. Mycoses
228 43, 409–416. <https://doi.org/10.1111/j.1439-0507.2000.00601.x>

229 De Hoog, G.S., Vicente, V., Caligorne, R.B., Kantacioglu, S., Tintelnot, K., Gerrits Van Den
230 Ende, A.H.G., Haase, G., 2003. Species Diversity and Polymorphism in the *Exophiala*
231 *spinifera* Clade Containing Opportunistic Black Yeast-Like Fungi. J Clin Microbiol 41,
232 4767–4778. <https://doi.org/10.1128/JCM.41.10.4767-4778.2003>

233 Douterelo, I., Sharpe, R., Boxall, J., 2014. Bacterial community dynamics during the early stages
234 of biofilm formation in a chlorinated experimental drinking water distribution system:
235 implications for drinking water discolouration. J Appl Microbiol 117, 286–301.
236 <https://doi.org/10.1111/jam.12516>

237 Falkinham, J.O., 2011. Nontuberculous Mycobacteria from Household Plumbing of Patients with
238 Nontuberculous Mycobacteria Disease. Emerg. Infect. Dis. 17, 419–424.
239 <https://doi.org/10.3201/eid1703.101510>

240 Feng, P., Lu, Q., Najafzadeh, M.J., Gerrits Van Den Ende, A.H.G., Sun, J., Li, R., Xi, L., Vicente,
241 V.A., Lai, W., Lu, C., De Hoog, G.S., 2014. Cyphellophora and its relatives in
242 Phialophora: biodiversity and possible role in human infection. Fungal Diversity 65, 17–
243 45. <https://doi.org/10.1007/s13225-012-0194-5>

244 Futatsuya, T., Mura, T., Anzawa, K., Mochizuki, T., Shimizu, A., Iinuma, Y., 2023. MALDI-TOF
245 MS identification of *Exophiala* species isolated in Japan: Library enrichment and faster
246 sample preparation. The Journal of Dermatology 50, 1313–1320.
247 <https://doi.org/10.1111/1346-8138.16878>

248 Giraldo, A., Sutton, D.A., Samerpitak, K., De Hoog, G.S., Wiederhold, N.P., Guarro, J., Gené, J.,
249 2014. Occurrence of Ochroconis and Verruconis Species in Clinical Specimens from the
250 United States. *J Clin Microbiol* 52, 4189–4201. <https://doi.org/10.1128/JCM.02027-14>

251 Gomez-Smith, C.K., LaPara, T.M., Hozalski, R.M., 2015. Sulfate Reducing Bacteria and
252 Mycobacteria Dominate the Biofilm Communities in a Chloraminated Drinking Water
253 Distribution System. *Environ. Sci. Technol.* 49, 8432–8440.
254 <https://doi.org/10.1021/acs.est.5b00555>

255 Hageskal, G., Lima, N., Skaar, I., 2009. The study of fungi in drinking water. *Mycological*
256 *Research* 113, 165–172. <https://doi.org/10.1016/j.mycres.2008.10.002>

257 Hatta, J., Anzawa, K., Kubota, K., Ohtani, T., Mochizuki, T., 2021. A Case of Recalcitrant
258 Phaeohyphomycosis of the Face Caused by *Exophiala lecanii-corni*. *Medical Mycology*
259 *Journal* 62, 35–39. <https://doi.org/10.3314/mmj.20-00018>

260 Heinrichs, G., Hübner, I., Schmidt, C.K., De Hoog, G.S., Haase, G., 2013a. Analysis of Black
261 Fungal Biofilms Occurring at Domestic Water Taps (I): Compositional Analysis Using
262 Tag-Encoded FLX Amplicon Pyrosequencing. *Mycopathologia* 175, 387–397.
263 <https://doi.org/10.1007/s11046-013-9618-3>

264 Heinrichs, G., Hübner, I., Schmidt, C.K., De Hoog, G.S., Haase, G., 2013b. Analysis of Black
265 Fungal Biofilms Occurring at Domestic Water Taps (II): Potential Routes of Entry.
266 *Mycopathologia* 175, 399–412. <https://doi.org/10.1007/s11046-013-9619-2>

267 Henne, K., Kahlisch, L., Brettar, I., Höfle, M.G., 2012. Analysis of Structure and Composition of
268 Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a
269 Citywide Network in Germany. *Appl Environ Microbiol* 78, 3530–3538.
270 <https://doi.org/10.1128/AEM.06373-11>

271 Isola, D., Selbmann, L., De Hoog, G.S., Fenice, M., Onofri, S., Prenafeta-Boldú, F.X., Zucconi,
272 L., 2013. Isolation and Screening of Black Fungi as Degraders of Volatile Aromatic
273 Hydrocarbons. *Mycopathologia* 175, 369–379. <https://doi.org/10.1007/s11046-013-9635-2>

274 2

275 Kulesza, K., Biedunkiewicz, A., Nowacka, K., Dynowska, M., Urbaniak, M., Stępień, Ł., 2021.
276 Dishwashers as an Extreme Environment of Potentially Pathogenic Yeast Species.
277 *Pathogens* 10, 446. <https://doi.org/10.3390/pathogens10040446>

278 Lee, K.C., Kim, M.J., Chae, S.Y., Lee, H.S., Jang, Y.H., Lee, S.-J., Kim, D.W., Lee, W.J., 2016. A
279 Case of Phaeohyphomycosis Caused by *Exophiala lecanii-corni*. *Ann Dermatol* 28, 385.
280 <https://doi.org/10.5021/ad.2016.28.3.385>

281 Lian, X., De Hoog, G.S., 2010. Indoor wet cells harbour melanized agents of cutaneous
282 infection. *Med Mycol* 48, 622–628. <https://doi.org/10.3109/13693780903405774>

283 Li, Weiying, Wang, F., Zhang, J., Qiao, Y., Xu, C., Liu, Y., Qian, L., Li, Wenming, Dong, B.,
284 2016. Community shift of biofilms developed in a full-scale drinking water distribution
285 system switching from different water sources. *Science of The Total Environment* 544,
286 499–506. <https://doi.org/10.1016/j.scitotenv.2015.11.121>

287 Li, D.M., De Hoog, G.S., Saunte, D.M.L., Van Den Ende, A.H.G.G., Chen, X.R., 2008.
288 *Coniosporium epidermidis* sp. nov., a new species from human skin. *Studies in Mycology*
289 61, 131–136. <https://doi.org/10.3114/sim.2008.61.13>

290 Lugli, G.A., Longhi, G., Mancabelli, L., Alessandri, G., Tarracchini, C., Fontana, F., Turroni, F.,
291 Milani, C., Van Sinderen, D., Ventura, M., 2022. Tap water as a natural vehicle for
292 microorganisms shaping the human gut microbiome. *Environmental Microbiology* 24,
293 3912–3923. <https://doi.org/10.1111/1462-2920.15988>

294 Martin-Gomez, M.T., Valenzuela-Lopez, N., Cano-Lira, J.F., 2019. *Knufia epidermidis*: a rare

295 finding in a paediatric dermatological sample. Clinical Microbiology and Infection 25,
296 65–66. <https://doi.org/10.1016/j.cmi.2018.08.006>

297 Matos, T., De Hoog, G.S., De Boer, A.G., De Crom, I., Haase, G., 2002. High prevalence of the
298 neurotrope *Exophiala dermatitidis* and related oligotrophic black yeasts in sauna
299 facilities. Mycoses 45, 373–377. <https://doi.org/10.1046/j.1439-0507.2002.00779.x>

300 Mesquita-Rocha, S., Godoy-Martinez, P.C., Gonçalves, S.S., Urrutia, M.D., Carlesse, F., Seber,
301 A., Silva, M.A.A., Petrilli, A.S., Colombo, A.L., 2013. The water supply system as a
302 potential source of fungal infection in paediatric haematopoietic stem cell units. BMC
303 Infect Dis 13, 289. <https://doi.org/10.1186/1471-2334-13-289>

304 Mhlongo, N.T., Tekere, M., Sibanda, T., 2019. Prevalence and public health implications of
305 mycotoxigenic fungi in treated drinking water systems. Journal of Water and Health 17,
306 517–531. <https://doi.org/10.2166/wh.2019.122>

307 Mhlongo, T.N., Ogola, H.J.O., Selvarajan, R., Sibanda, T., Kamika, I., Tekere, M., 2020.
308 Occurrence and diversity of waterborne fungi and associated mycotoxins in treated
309 drinking water distribution system in South Africa: implications on water quality and
310 public health. Environ Monit Assess 192, 519. <https://doi.org/10.1007/s10661-020-08477-x>

311

312 Miyakubo, T., Todokoro, D., Satake, Y., Makimura, K., Miyakubo, S., Akiyama, H., 2020.
313 *Exophiala lecanii-corni* keratitis presenting as a serpiginous pigmented superficial lesion:
314 a case report. Medicine 99, e22121.
315 <https://doi.org/10.1097/MD.0000000000022121>

316 Moat, J., Rizoulis, A., Fox, G., Upton, M., 2016. Domestic shower hose biofilms contain fungal species capable of causing

317 opportunistic infection. Journal of Water and Health 14, 727–737.

318 <https://doi.org/10.2166/wh.2016.297>

319 Naumova, E.N., Liss, A., Jagai, J.S., Behlau, I., Griffiths, J.K., 2016. Hospitalizations due to

320 selected infections caused by opportunistic premise plumbing pathogens (OPPP) and

321 reported drug resistance in the United States older adult population in 1991–2006. J

322 Public Health Pol 37, 500–513. <https://doi.org/10.1057/s41271-016-0038-8>

323 Nilsson, R.H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K.-H., Köljalg, U., 2006.

324 Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal

325 Perspective. PLoS ONE 1, e59. <https://doi.org/10.1371/journal.pone.0000059>

326 Nucci, M., Akiti, T., Barreiros, G., Silveira, F., Revankar, S.G., Wickes, B.L., Sutton, D.A.,

327 Patterson, T.F., 2002. Nosocomial Outbreak of *Exophiala jeanselmei* Fungemia

328 Associated with Contamination of Hospital Water. CLIN INFECT DIS 34, 1475–1480.

329 <https://doi.org/10.1086/340344>

330 Orélis-Ribeiro, R., Boeger, W.A., Vicente, V.A., Chammas, M., Ostrensky, A., 2011. Fulfilling

331 Koch's postulates confirms the mycotic origin of Lethargic Crab Disease. Antonie van

332 Leeuwenhoek 99, 601–608. <https://doi.org/10.1007/s10482-010-9531-4>

333 Proctor, C.R., Hammes, F., 2015. Drinking water microbiology — from measurement to

334 management. Current Opinion in Biotechnology 33, 87–94.

335 <https://doi.org/10.1016/j.copbio.2014.12.014>

336 Ren, A., Yao, M., Fang, J., Dai, Z., Li, X., Van Der Meer, W., Medema, G., Rose, J., Liu, G.,

337 2024. Bacterial Communities of Planktonic Bacteria and Mature Biofilm in the Drinking

338 Water Distribution System of a Megacity: Composition, Diversity, and Influencing

339 Factors. <https://doi.org/10.2139/ssrn.4690022>

340 Richarz, N.A., Jaka, A., Fernández-Rivas, G., Bassas, J., Bielsa, I., Ferrández, C., 2018. First case
341 of chronic cutaneous chromoblastomycosis by *Rhinocladiella similis* aquired in Europe.
342 Clinical and Experimental Dermatology 43, 925–927. <https://doi.org/10.1111/ced.13659>

343 Rochelle, P., Clancey, J., 2006. The evolution of microbiology in the drinking water industry.
344 Journal AWWA 98, 163–191. <https://doi.org/10.1002/j.1551-8833.2006.tb07614.x>

345 Romsdahl, J., Schultzhaus, Z., Cuomo, C.A., Dong, H., Abeyratne-
346 Perera, H., Hervey, W.J., Wang, Z., 2021. Phenotypic Characterization and Comparative
347 Genomics of the Melanin-Producing Yeast *Exophiala lecanii-corni* Reveals a Distinct
348 Stress Tolerance Profile and Reduced Ribosomal Genetic Content. JoF 7, 1078.
349 <https://doi.org/10.3390/jof7121078>

350 Saunte, D.M., Tarazooie, B., Arendrup, M.C., de Hoog, G.S., 2012. Black yeast-like fungi in skin
351 and nail: it probably matters. Mycoses 55, 161–167. <https://doi.org/10.1111/j.1439-0507.2011.02055.x>

353 Sav, H., Ozakkas, F., Altınbas, R., Kiraz, N., Tümgör, A., Gümral, R., Dögen, A., İlkit, M., De
354 Hoog, G.S., 2016. Virulence markers of opportunistic black yeast in *Exophiala*. Mycoses
355 59, 343–350. <https://doi.org/10.1111/myc.12478>

356 Shannon, C.E., 1948. A mathematical theory of communication. The Bell System Technical
357 Journal 27, 378–423.

358 Shi, D., Lu, G., Mei, H., De Hoog, G.S., Samerpitak, K., Deng, S.,
359 Shen, Y., Liu, W., 2016. Subcutaneous infection by *Ochroconis mirabilis* in an
360 immunocompetent patient. Medical Mycology Case Reports 11, 44–47.
361 <https://doi.org/10.1016/j.mmcr.2016.04.007>

362 Singh, S., Rudramurthy, S.M., Padhye, A.A., Hemashetter, B.M., Iyer, R., Hallur, V., Sharma, A.,
Agnihotri, S., Gupta, S., Ghosh, A., Kaur, H., 2021. Clinical Spectrum, Molecular

363 Characterization, Antifungal Susceptibility Testing of *Exophiala* spp. From India and
364 Description of a Novel *Exophiala* Species, *E. arunalokei* sp. nov. *Front. Cell. Infect.*
365 *Microbiol.* 11, 686120. <https://doi.org/10.3389/fcimb.2021.686120>

366 Stanish, L.F., Hull, N.M., Robertson, C.E., Harris, J.K., Stevens, M.J., Spear, J.R., Pace, N.R.,
367 2016. Factors Influencing Bacterial Diversity and Community Composition in Municipal
368 Drinking Waters in the Ohio River Basin, USA. *PLoS ONE* 11, e0157966.
369 <https://doi.org/10.1371/journal.pone.0157966>

370 Tintelnot, K., de Hoog, G.S., Thomas, E., Steudel, W.I., Huebner, K., Seeliger, H.P.R., 1991.
371 Cerebral phaeohyphomycosis caused by an *Exophiala* species. *Mycoses* 34, 239–244.
372 <https://doi.org/10.1111/j.1439-0507.1991.tb00651.x>

373 Usuda, D., Higashikawa, T., Hotchi, Y., Usami, K., Shimozawa, S., Tokunaga, S., Osugi, I.,
374 Katou, R., Ito, S., Yoshizawa, T., Asako, S., Mishima, K., Kondo, A., Mizuno, K.,
375 Takami, H., Komatsu, T., Oba, J., Nomura, T., Sugita, M., 2021. *Exophiala dermatitidis*.
376 *WJCC* 9, 7963–7972. <https://doi.org/10.12998/wjcc.v9.i27.7963>

377 Vanhaecke, T., Bretin, O., Poirel, M., Tap, J., 2022. Drinking Water Source and Intake Are
378 Associated with Distinct Gut Microbiota Signatures in US and UK Populations. *The*
379 *Journal of Nutrition* 152, 171–182. <https://doi.org/10.1093/jn/nxab312>

380 Waak, M.B., LaPara, T.M., Hallé, C., Hozalski, R.M., 2018. Occurrence of *Legionella* spp. in
381 Water-Main Biofilms from Two Drinking Water Distribution Systems. *Environ. Sci.*
382 *Technol.* 52, 7630–7639. <https://doi.org/10.1021/acs.est.8b01170>

383 Woertz, J.R., Kinney, K.A., McIntosh, N.D.P., Szaniszlo, P.J., 2001. Removal of toluene in a
384 vapor-phase bioreactor containing a strain of the dimorphic black yeast *Exophiala*
385 *lecanii-corni*. *Biotech & Bioengineering* 75, 550–558. <https://doi.org/10.1002/bit.10066>

386 Wang, X., Cai, W., Van Den Ende, A.H.G.G., Zhang, J., Xie, T., Xi, L., Li, X., Sun, J., De Hoog,
387 S., 2018. Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on
388 humans and other vertebrates. *Sci Rep* 8, 7685. [https://doi.org/10.1038/s41598-018-
390 26071-7](https://doi.org/10.1038/s41598-018-
389 26071-7)

390 Woo, P.C.Y., Ngan, A.H.Y., Tsang, C.C.C., Ling, I.W.H., Chan, J.F.W., Leung, S.-Y., Yuen, K.-Y.,
391 Lau, S.K.P., 2013. Clinical Spectrum of *Exophiala* Infections and a Novel *Exophiala*
392 Species, *Exophiala hongkongensis*. *J Clin Microbiol* 51, 260–267.
393 <https://doi.org/10.1128/JCM.02336-12>

394 Yamamoto, N., Dannemiller, K.C., Bibby, K., Peccia, J., 2014. Identification accuracy and
395 diversity reproducibility associated with internal transcribed spacer-based fungal
396 taxonomic library preparation: Accuracy of fungal ITS sequencing. *Environ Microbiol*
397 16, 2764–2776. <https://doi.org/10.1111/1462-2920.12338>

398 Yew, S.M., Chan, C.L., Kuan, C.S., Toh, Y.F., Ngeow, Y.F., Na, S.L., Lee, K.W., Hoh, C.-C., Yee,
399 W.-Y., Ng, K.P., 2016. The genome of newly classified *Ochroconis mirabilis*: Insights
400 into fungal adaptation to different living conditions. *BMC Genomics* 17, 91.
401 <https://doi.org/10.1186/s12864-016-2409-8>

402 Zeng, J.S., Sutton, D.A., Fothergill, A.W., Rinaldi, M.G., Harrak, M.J., De Hoog, G.S., 2007.
403 Spectrum of Clinically Relevant *Exophiala* Species in the United States. *J Clin Microbiol*
404 45, 3713–3720. <https://doi.org/10.1128/JCM.02012-06>

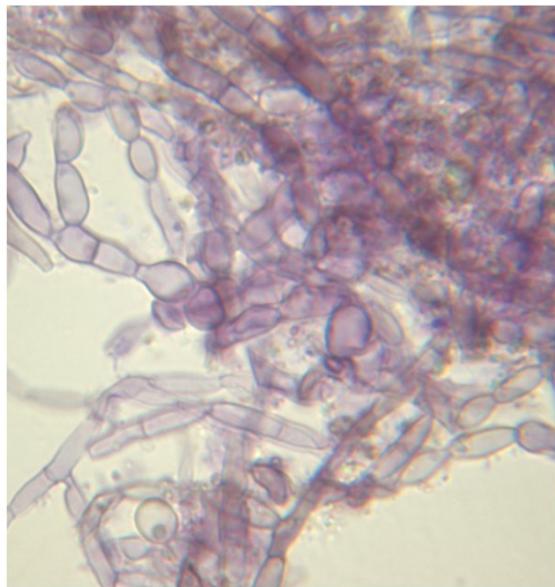
405 Zupančič, J., Novak Babič, M., Zalar, P., Gunde-Cimerman, N., 2016. The Black Yeast
406 *Exophiala dermatitidis* and Other Selected Opportunistic Human Fungal Pathogens
407 Spread from Dishwashers to Kitchens. *PLoS ONE* 11, e0148166.
408 <https://doi.org/10.1371/journal.pone.0148166>

409

410 Tables

411

Table 1. Read counts of putative fungal species identified through ITS sequencing.

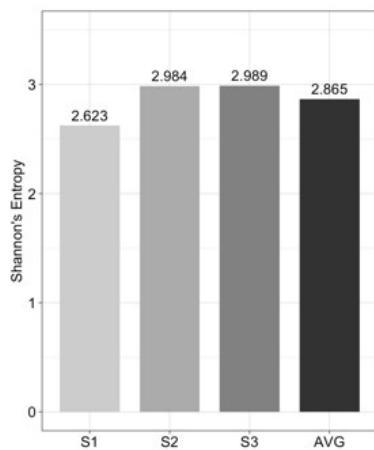

Species	S1	S2	413
<i>Exophiala canceriae</i>	20196	0	414
<i>Exophiala lecanii-corni</i>	834	14447	
<i>Knufia epidermidis</i>	2574	48	415
<i>Fusarium acutatum</i>	16	87	
<i>Exophiala oligosperma</i>	0	416	
<i>Dactylella zhongdianensis</i>	84	0	
<i>Cyphelophora europaea</i>	0	417	
<i>Ochroconis mirabilis</i>	30	0	
<i>Cyphelophora reptans</i>	0	418	
<i>Cyphelophora guyanensis</i>	0	6	
<i>Metacordyceps chlamydosporia</i>	0	419	
<i>Cystobasidium slooffiae</i>	1	0	
<i>Schizothecium inaequale</i>	1	420	
<i>Naganishia albida</i>	0	1	
<i>Rhinocladiella similis</i>	0	421	
Species unknown	0	1	422

423

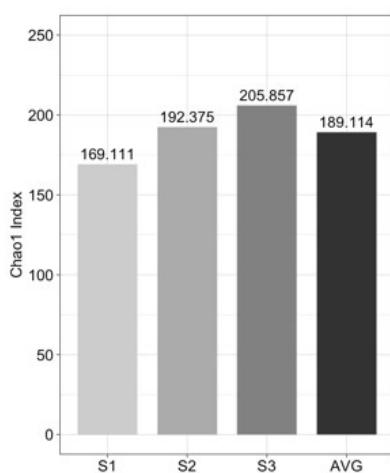
424 Figures

425

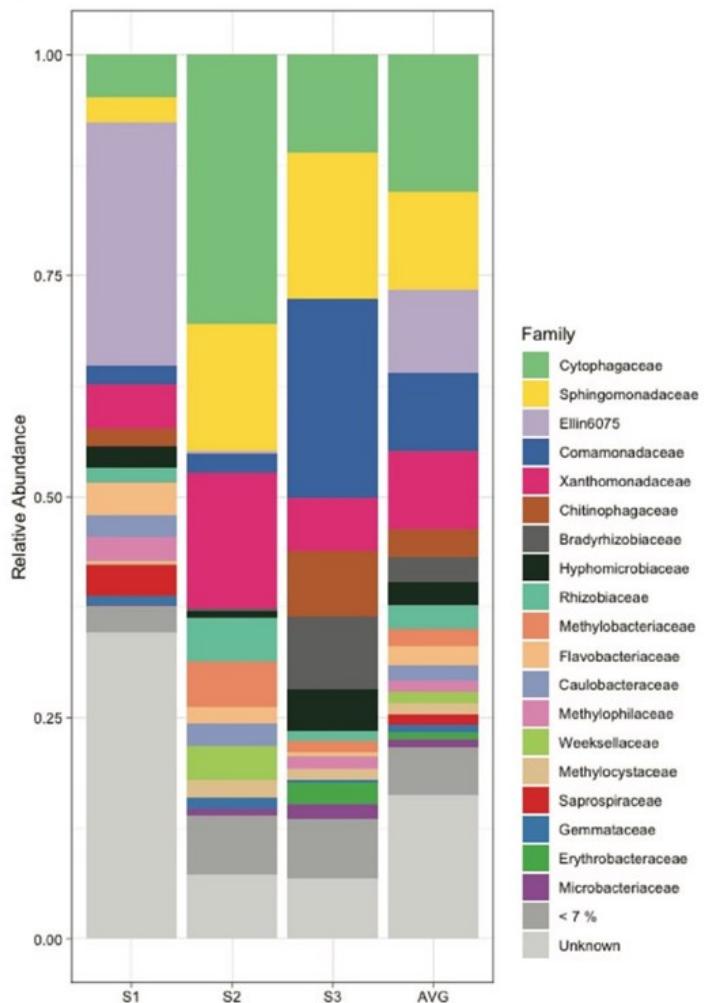
426 **Figure 1.** Biofilms on customer taps (left) and light microscope image of biofilm stained with
427 crystal violet solution at 1000 \times magnification (right).



428


429

430 **Figure 3.** Summary of bacterial communities in biofilm samples including A) Shannon index, B)
431 Chao 1 index, C) the top five most abundant taxa at phylum, class, family, and genus ranks, and
432 D) relative abundance of bacterial families.


A) D)

B)

D)

C)

Phyla	RA	Class	RA	Family	RA	Genus	RA
Proteobacteria	0.51	Alphaproteobacteria	0.30	Cytophagaceae	0.15	<i>Spirosoma</i>	0.10
Bacteroidetes	0.24	Cytophagia	0.16	Sphingomonadaceae	0.11	<i>Pseudoxanthomonas</i>	0.06
Acidobacteria	0.09	Betaproteobacteria	0.11	Ellin6075	0.09	<i>Sphingopyxis</i>	0.05
Actinobacteria	0.02	Gammaproteobacteria	0.10	Comamonadaceae	0.09	<i>Sphingobium</i>	0.03
Cyanobacteria	0.02	Chloracidobacteria	0.09	Xanthomonadaceae	0.09	<i>Hyphomicrobium</i>	0.02