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Abstract

Fungal contamination of drinking water distribution systems can impact water quality
with implications for public health. We document several Exophiala spp. biofilm contamination
events at customer taps in the Midwest United States (Ohio) following consumer complaints.
Three samples of biofilm were collected and processed using next-generation DNA sequencing
of the bacterial 16S rRNA gene and the fungal internal transcribed spacer region. Two samples
with successful fungal sequencing were dominated by Exophiala spp., putatively identified as E.
cancerae, E. lecanii-corni, and E. oligosperma. The dominant bacterial phyla were
Proteobacteria, Bacteroidetes, Actinobacteria, and Acidobacteria. Bacterial composition varied
substantially at the family and genus levels. Presence of potentially pathogenic bacteria (i.e.,
Acinetobacter spp., Legionella spp., Mycobacterium spp., and Pseudomonas spp.) and fungi (i.e.,
Exophiala spp., Knufia spp., Cyphellophora spp., Ochroconis spp., Rhinocladiella spp.) suggests

these biofilms could be of public health concern.

Keywords: bacteria; faucet; fungi; microbial communities; opportunistic pathogens; shower head

Introduction

Contamination of drinking water distribution systems by microorganisms has been
recognized since the mid-1800s, and contamination events may result from introduction and/or
regrowth of bacteria, viruses, protozoa, and fungi (Rochelle and Clancey 2006). For example,
contamination with opportunistic pathogen bacteria such as Acinetobacter baumannii, Legionella

pneumophila, and Mycobacterium avium is well-known (Falkinham 2011; Carvalheira et al.
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2021; CDC 2021) with healthcare costs from these three species estimated at $600 million
annually for the elderly in the United States (Naumova et al. 2016).

Fungal contamination of drinking water distribution systems is less frequently studied but
is increasingly recognized (Mhlongo et al. 2019) with impacts upon water quality (e.g., color,
odor, and taste), degradation of materials, and concerns about mycotoxin exposure and
opportunistic infections (Nucci et al. 2002; Hageskal et al. 2009; Mesquita-Rocha et al. 2013;
Mhlongo et al. 2020; Afonso et al. 2021). Available reports of fungal growth within distribution
systems primarily implicate common, terrestrial, and filamentous genera, including Aspergillus,
Cladosporium, and Penicillium (Afonso et al. 2021). These may co-occur with bacteria and
protozoa in biofilm communities, and interkingdom interactions within such biofilms are poorly
understood (Afonso et al. 2021).

Aside from common terrestrial fungi, members of the black yeast genus Exophiala are
occasionally reported as distribution system contaminants in tap water and especially around
outlets in bathrooms, kitchens, dishwashers, and laundry machines (Matos et al. 2002; Lian and
De Hoog 2010; Adams et al. 2013; Isola et al. 2013; Biedunkiewicz and Schulz 2012; Babic et
al. 2016; Moat et al. 2016; Zupancic et al. 2016; Babic et al. 2017; Wang et al. 2018; Kulesza et
al. 2021). Within such environments, oligotrophy and tolerance of extreme conditions by certain
Exophiala species enables their growth (Hamada and Abe 2010; Lian and De Hoog, 2010;
Heinrichs et al. 2013b; Zupancic et al., 2016; Wang et al. 2018; Kulesza et al. 2021; Romsdahl et
al. 2021). Moreover, many Exophiala spp. are opportunistic pathogens affecting both immune-
competent and immune-compromised persons (Zeng et al. 2007; Sav et al. 2016; Singh et al.
2021; Usuda et al. 2021). Infections with Exophiala spp. are most often superficial but do

include deep-tissue and systemic mycoses which most commonly affect the lungs (Zeng et al.
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2007; Woo et al. 2013; Usuda et al. 2021). Dermal contact, ingestion, and inhalation may be
relevant routes of exposure.

Recently, Heinrichs et al. (2013a, b) investigated black biofilms growing on aerators,
shower heads, and toilet tanks in Germany. These biofilms were dominated by Exophiala lecanii-
corni and smaller amounts of other Exophiala spp and black yeast-like fungi. E. lecanii-corni
may cause superficial mycoses effecting skin, nails, eyes, and sinuses in addition to deeper
mycoses of the lungs, digestive system, and central nervous system (Futatsuya et al., 2023; Hatta
et al., 2021; Lee et al., 2016; Miyakubo et al., 2020; Woo et al., 2013; Zeng et al., 2007) . After
further sampling of that distribution system, retrograde contamination with E. lecanii-corni was
suggested (Heinrichs et al. 2013b). However, it is unknown how frequently similar, extensive E.
lecanii-corni biofilms contaminate other distribution systems.

In this study, we report a series of Exophiala spp. biofilm contamination events at taps
within a central Ohio (USA) distribution system similar to that reported by Heinrichs et al.
(2013a). Our objective was to characterize these biofilms through DNA sequencing of the
bacterial 16S and fungal ITS regions and to identify potentially pathogenic taxa of concern to
water resource managers and for public health. This work highlights the potential importance of

fungal biofilms in drinking water systems.

Methods
Three biofilm samples were collected during November 2022 from homes that belong to
a central Ohio, USA distribution system (Figure 1). Samples were collected from an area within

the distribution system where multiple homeowners had complained to operators about excessive
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biofilm growth on taps. Biofilms growing on kitchen sinks (i.e., samples S1 and S2) and a
shower head (i.e., sample S3) were collected without prior flushing, using sterile cotton swabs
and 4 oz Whirl-Pak® bags (Pleasant Prairie, WI, USA). Samples were promptly transported to
The Ohio State University and stored at -20 °C. Microscopic observation, DNA extraction

procedure, [llumina sequencing, and bioinformatics are detailed in supplemental materials.

Results and Discussion

Fungal sequences were identified for samples S1 and S2, which yielded 36,342 and
26,873 sequences per sample respectively, before denoising. Sample S3 failed to amplify during
ITS sequencing. Both samples were dominated Order Chaetothryiales, and specifically by
Exophiala spp. (Table 1). In sample S1, the putative species E. cancerae (85% of the reads) and
Knufia epidermidis (11% of the reads) were dominant, whereas in S2, the putative species E.
lecanii-corni was dominant (98% of the reads). E. lecanii-corni dominated the biofilm samples
characterized by Heinrichs et al. (2013a). We view the identification of E. cancerae with caution
because species-level identifications from next-generation DNA sequencing are tentative owing
in part to sequencing and database shortcomings (Nilsson et al. 2006; Yamamoto et al. 2014).
Moreover, E. cancerae is primarily reported from tropical locations. In South America, it is a
causative agent of Lethargic Crab Disease (Orélis-Ribeiro et al. 2011) and we are aware of one
report of gastrointestinal infection by E. cancerae from Hong Kong (Woo et al. 2013).

Several additional melanistic, black yeast-like fungi from orders Chaetothryiales and
Venturiales that are commonly found in bathrooms (Lian and de Hoog 2010; Wang et al. 2018),

and that are capable of human opportunism were detected. First, E. oligosperma (0.6% of reads
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in S2) opportunistically infects cutaneous, subcutaneous, and various deep tissues including the
lungs, heart, gastrointestinal tract, spleen, lymphatic system, blood, and brain (Tintelnot et al.
1991; de Hoog et al. 2003; al-Obaid et al. 2006; Zeng et al. 2007; Woo et al. 2013). Several
additional species that opportunistically primarily infect human skin and nails were also
detected, including Knufia epidermidis (11% of reads in S1; Li et al. 2008; Saunte et al. 2012;
Martin-Gomez et al. 2019), Cyphellophora europaea (4% of reads in S2; de Hoog et al. 2000;
Lian and de Hoog 2010; Saunte et al. 2012; Feng et al. 2014), Rhinocladiella similis (<0.001%
of reads in S2; Lian an de Hoog 2010; Richarz et al. 2018; de Hoog et al. 2003), and Ochroconis
mirabilis (0.1% of reads in S1; Giraldo et al. 2014; Shi et al. 2016; Yew et al. 2016).

Bacterial sequencing was successful for all samples with 25,019 to 44,339 sequences per
sample before denoising. Across all samples, 114 amplicon sequence variants (ASVs) were
identified. Only 19 ASVs (17%) were detected in all three samples and 31 additional ASVs
(27%) were present in two samples. Measures of alpha diversity after rarefaction were computed,
including Shannon Entropy (Shannon 1948) and Chao 1 Index (Chao 1984) (Figure 2). Shannon
diversity values were comparable to previous analyses of biofilms within water distribution
systems (Gomez-Smith et al. 2015; Ren et al. 2024), whereas Chao I values were lower (Cruz et
al. 2020).

Four phyla — Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria — were
present in all samples, accounting for 70-97% of reads (Figure 3). Bacterial composition of
samples was similar at the phylum and class levels, with more differentiation at the family and
genus levels (Figure 3) as reported previously (Li et al. 2016). Across different geographic
regions and distribution system designs, predominant phyla in distribution system biofilms are

Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidota, Nitrospira,
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Firmicutes, and Planctomycetota (Proctor and Hammes 2015; Li et al. 2016; Stanish et al. 2016;
Cruz et al. 2020; Ren et al. 2024). The most abundant classes identified in our samples,
Alphaproteobacteria, Betaproteobacteria, Cytophagia and Gammaproteobacteria, were also
detected in a German distribution system, where biofilm samples also displayed high community
variance (Henne et al. 2012). The possible opportunistic pathogens Legionella spp.,
Pseudomonas spp., Mycobacterium spp., and Acinetobacter spp. were all detected in at least one
sample, as in previous studies (Douterelo et al. 2014; Li et al. 2016; Waak et al. 2018). Certain
members of these genera are capable of growth within distribution system biofilms, resulting in
illness (Falkinham 2011; Waak et al. 2018; Carvalheira et al. 2021). Moreover, emerging
evidence suggests microbial communities in drinking water influence human health through the
microbiome (Bowyer et al. 2020; Lugli et al. 2022; Vanhaecke et al. 2022). Microbiome impacts
from ingesting the bacterial and fungal communities we describe are unknown.

Beyond health implications, identification of ecological processes promoting growth of
biofilms dominated by Exophiala and other black yeast-like fungi may assist control efforts. E.
lecanii-corni is resistant to temperature, osmotic, and oxidative stresses (Romsdahl et al. 2021),
is oligotrophic and exhibits extreme shear strength (Heinrichs et al. 2013b), and thrives in
environments laden with toxic hydrocarbons (Woertz et al. 2001; Pirnie-Fisker and Woertz
2007). For these reasons, Heinrichs et al. (2013b) proposed that VOCs from cosmetics or
cleaning may contribute to biofilm contamination. Other considerations for future studies include
depletion of chlorine residual, microbial regrowth and its promoting conditions, and water age.
In the distribution system sampled, contamination events were somewhat clustered, especially in

areas where construction activity necessitated reduction of flow for extended periods. Future
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studies of these biofilms could sample distribution systems more extensively and seek to

understand the source and conditions that encourage growth.

Conclusions

We document occurrence of Exophiala-dominant biofilm on distribution system taps
following Heinrichs et al. (2013a, b), this time in the Midwestern USA. Additionally, we report
on the bacterial composition of these biofilms. Biofilms samples contained potentially
pathogenic bacteria and fungi including Acinetobacter spp., Legionella spp., Mycobacterium
spp., Pseudomonas spp., Exophiala spp., and Knufia spp. Health implications of these biofilms
are uncertain. Future studies might include more extensive sampling of drinking water
distribution systems for fungal contamination and identifying the environmental conditions that

support growth to inform future control efforts.
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409

410 Tables

411

Table 1. Read counts of putative fungal species identifzet2
through ITS sequencing.

Species S1 sp 413
Exophiala cancerae 20196 214
Exophiala lecanii-corni 834 14447
Knufia epidermidis 2574 41%8
Fusarium acutatum 16 87
Exophiala oligosperma 0 41%
Dactylella zhongdianensis 84 0
Cyphellophora europaea 0 4160
Ochroconis mirabilis 30 0
Cyphellophora reptans 0 418l
Cyphellophora guyanensis 0 6
Metacordyceps chlamydosporia 0 419
Cystobasidium slooffiae 1 0
Schizothecium inaequale 1 420
Naganishia albida 0 1
Rhinocladiella similis 0 421
Species unknown 0 1
422

423
424  Figures

425

426  Figure 1. Biofilms on customer taps (left) and light microscope image of biofilm stained with

427  crystal violet solution at 1000x magnification (right).
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428

429
430  Figure 3. Summary of bacterial communities in biofilm samples including A) Shannon index, B)
431  Chao 1 index, C) the top five most abundant taxa at phylum, class, family, and genus ranks, and

432 D) relative abundance of bacterial families.
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C)
Phyla RA  Class RA  Family RA  Genus RA
Protecbacteria 0.51 Alphaprotecbacteria  0.30 Cyfophagaceae 0.15 Spirosoma 0.10
Bacteroidetes 0.24 Cytophagia 0.16 Sphingomonadaceae 0.11 Pseudoxanthomonas 0.06
Acidobacteria 0.09 Betaproteobacteria 0.11 Ellin6075 0.09 Sphingopyxis 0.05
Actinobacteria 0.02 Gammaproteobacteria 0.10 Comamonadaceae 0.09 Sphingobium 0.03

Cyanobacteria 0.02 Chloracidobacteria 0.09 Xanthomonadaceae 0.09 Hyphomicrobium 0.02
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