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1 | INTRODUCTION
Let X be a K3 surface over a number field K and let « € Br(X) be a Brauer classon X.Let Z — &

be a smooth projective model, where & < Spec(Oy) is an open subset of the spectrum of the ring
of integers Oy.
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For a prime P of & where «a is unramified, we have a reduction of « in the Brauer group of the
reduction 2y that we denote by:

This paper aims to understand the following locus:
S, ) = {P € S| ay =0},

and which was first investigated by Frei, Hassett, and Varilly-Alvarado in [14]. To state our main
result, let 0 : K & C be a complex embedding and let T(X(C)) be the transcendental lattice of
X,(C). Let N be the product of primes above which X has bad reduction. In this paper, we prove
the following result.

Theorem 1.1. Assume that the rank of T(X,(C)) is different from 2,4, and that the torsion order of
o in Br(Xz) is coprime to the discriminant of T(X,(C)) and N. Then the set S(X, a) is infinite.

1.1 | Prior work and applications

The question of triviality of Brauer classes on smooth projective surfaces under reduction has been
raised in [14]. The authors proved loc. cit. that on a K3 surface, a Brauer class becomes trivial for
a positive density of primes, when the following assumptions are satisfied: The endomorphism
field E of T(X,(C)) is totally real and dim;(T(X,(C))) is odd. If these assumptions are not satisfied
and if the Brauer class is transcendental, then as explained in the introduction of [14], the set in
Theorem 1.1 has density zero, up to a finite extension of K, by a result of Charles [11, Theorem
1-(1)]. Our result hence gives a fairly general answer to this question with no assumptions on the
Hodge structure of X, see [14, Remark 1.4]. The technical conditions appearing in the theorem are
artifacts of the proof and we explain their appearance in the strategy of the proof below.

Theorem 1.1 has several applications to rationality problems of cubic fourfolds and derived
equivalences of twisted K3 surfaces which have been developed in [14], see Sections 1.2 and 1.3. It
has also the following application:

Corollary 1.2. Let X be an elliptic K3 surface over a number field K which admits a multisection of
degree coprime to the product of the discriminant of T(X,(C)) and the primes of bad reduction of X.
Then there exists infinitely many primes ' where the elliptic fibration on Xy admits a section.

Theorem 1.1 admits also a natural formulation over the complex numbers and in this case
it follows from the results of [36, section 17.3], which can be furthermore sharpened into an
equidistribution-type statement in the spirit of [33, 35]. We simply formulate the statement here.

Theorem 1.3. Let & — & be a non-isotrivial smooth projective family of K3 surfaces over a complex
quasi-projective algebraic variety S and let a be a Brauer class on the generic fiber 2. Then the locus
in & where the reduction of the Brauer class o vanishes is analytically dense and equidistributed with
respect to the metric given by the Chern form of the Hodge bundle.
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3 of 32 | MAULIK and TAYOU

1.2 | Strategy of the proof

The proof of Theorem 1.1 relies on Arakelov intersection theory on integral models of toroidal
compactifications of GSpin Shimura varieties as developed in [30] and [34] and is local-global in
nature. If we denote by r the torsion order of a in Br(X%), also called the geometric torsion order of
a, then we interpret the locus S(X, «r) as an intersection locus of & with a family of special divisors
in a Shimura variety M, with level structure of level r. Following a method initiated by Charles in
[12] and generalized in [30, 34] (see also [27, 28, 31] for the function field setting), we control the
global and local intersection numbers of & with a sequence of special divisors indexed by integers
m at archimedean and non-archimedean places and compare the order of growths. If there were
only finitely many primes where a vanishes, then this means that the intersection is supported
at finitely many primes independent of m. As m grows, we get a contradiction by comparing the
order of growths of the local and the global estimates.

In performing this strategy, many new difficulties arise compared to the previous work [30, 34].
The Shimura variety M, that we work with has level structure r and hence the results of [17] do
not apply directly at the primes that divide r. We have thus to construct a suitable integral model
MV which is ad hoc for our purposes and which is defined by a normalization process, similar to
the one considered in [25]. In particular, it does not admit a moduli interpretation over the primes
that divide r. The assumption of r being coprime to the discriminant of T(X_(C)) is crucial as it
shows that Mr admits a finite map to the integral model constructed by Kisin [21] (see also [24]),
which is smooth at the primes dividing . In particular, we obtain by pullback an abelian scheme
over Mr as well as a system of realizations (£-adic, crystalline, de Rham). We use these to define
special divisors and show their compatibility with the pullback of the divisors appearing in [17].

The second difficulty in our paper is to construct a suitable Borcherds product whose divisor
only involve the special divisors that we have constructed. We construct such a Borcherds prod-
uct and we show that [17, Theorem A] extends over primes dividing r. This allows us to derive the
global estimate on the intersection number of & with a well-chosen sequence of special divisors.
The assumption on r is used again to compare the special divisors and the Borcherds products
with those from the smooth integral model via a flatness argument. In our approach, we do not
prove that the resulting generating series of special divisors is a modular form, a result not needed
for our purposes and which requires a deeper understanding of the integral models with full level
structure r. To obtain the local estimates, we use a compatibility result between our special divi-
sors and the divisors defined in [17] to bound the local contributions using the estimates already
appearing in [30, 34]. The additional assumptions on r are used at this level to allow us to input
the estimates from [30] and [34].

1.3 | Organization of the paper

In Section 2, we explain how to reduce Theorem 1.1 to an intersection theoretic statement in GSpin
Shimura varieties. In Section 3, we introduce GSpin Shimura varieties, their integral models,
special divisors, and toroidal compactifications. We construct suitable integral models with level
structure at r and use them to write down the local and global estimates needed from Arakelov
theory. In Section 4, we prove the global estimate on the intersection number using a well-chosen
Borcherds products. In Section 5, we estimate the archimedean contributions, and in Section 6 we
estimate the non-archimedean contributions.

d ‘1 'STOT ‘0SLLE9YT

:sdny wouy

sy suompuop) pue swa, 3 3§ *[SZ07/L0/20] U0 AIeIqr auIuO KM “EOATIOD HLOOWLAYA £Q 1S00L SWI/ZL11°01/10p/wioo Ao

Ko

nipt

asuaOIT suoILIO) aAEar) AqEaNIdde AU Aq PaIAAT AIE SA[AIIT YO 135N JO Sa[nE 10§ AIEIQIT AUTUO) AS[IAL UO (5
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2 | K3 SURFACES AND BRAUER CLASSES: SOME REDUCTIONS
We prove in this section how to deduce Theorem 1.1 from Theorem 2.2. Then we explain the

connection to special quasi-endomorphisms on Kuga-Satake abelian varieties. For a detailed
discussion on Brauer classes and K3 surfaces, we refer to [19, Chapter 18] and [14, section 4].

2.1 | Background results
Let X be a K3 surface over a number field K and let « € Br(X). Let 0 : K & C be a complex
embedding and let (L, Q) be the transcendental lattice of the complex K3 surface X_(C). Then we
have the following maps between the different Brauer groups:
Br(X) — Br(Xz) ~ Br(X,) C Br*"(X,(C)),

where Br**(X_(C)) is the analytic Brauer group of X_(C). By a theorem of Gabber, the Brauer
group Br(Xz) is torsion and is in fact equal to the torsion part of the analytic group Br*"(X,(C)).

It follows that the image of the class o in Br®*(X,(C)) is torsion of order r > 1, which may be
different from its torsion order in Br(X). We refer to r as the geometric torsion order of c.

The class a admits B-lifts to H*(X,(C), Q) that we now recall following [19, p. 415]. From the
exponential exact sequence, we get the exact sequence

0 — H*(X,(C), 2)/Pic(X,(C)) = H*(X,(C), Ox_(c)) = Br"(X,(C)) = 0.
Since the torsion part of Br**(X(C)) is equal to Br(X,), we get
0 = H*(X4(C), Z) + NS(X,(€))g = H*(X,(C), Q) — Br(X,) — 0,
yielding an isomorphism
Hom,(L,Q/Z) ~ Br(X,) .
In particular, the r-torsion sub-groups are isomorphic:

% LY/LY ~ Hom, (L, %z /z) ~ Br(X,)[r].

Letf € %LV /LY be a preimage of a. To summarize, we have proven the following proposition.
Proposition 2.1. Let L be the transcendental lattice of X ;(C) and let « € Br(X) be a Brauer class

of geometric torsion order r > 1. Then there exists € %LV /LY which corresponds to the image of «
in Br(Xz)[r].

2.2 | Compatibility with reductions

We keep the notations from the previous section and let  — & be a smooth projective model of
X where & & Spec(Oy) is a Zariski open subset.
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50f32 | MAULIK and TAYOU

Let *B be a prime of good reduction for X, that is, in &, where the Brauer class « is unram-
ified and has torsion r coprime to the residual characteristic of *B. This excludes only finitely
many primes.

The Kummer exact sequence yields the following commutative diagram, where the middle
vertical arrow is an isomorphism by smooth base change theorem:

0 — NS(Xz) ® Z/rZ —— H(Xg, 4,) — Br(Xg)[r] ——0

| | |

0—=NS(Lp ® Z/rZ — Hgt(%ﬁ’ Hr) —= Br(Agp)lr] —o0.

By Artin’s comparison theorem [3, XVI 4], for every prime number #, we have a natural
Gal(I?/K )-module Ly, in Hézt(XI?, Z,(1)). By compatibility of Poincaré pairings in Betti and étale
cohomology, the dual lattice of sz isequal to L}/ If # does not divide the discriminant of L, then
in fact L is self-dual at # and L;i =Ly, /

Let o € Br(X) be a Brauer class of geometric torsion order r. By Proposition 2.1, there exists
g e %LV /LY that lifts a. For every prime number ¢, we let 8, € %LV /LY ® Z, denote the #-adic
component of 5. If # is coprime to r, then 8, = 0, and if # is coprime to the discriminant of L,
then

1 1
B, € ;LV/LV ®Z, ~ ;L/L ®Z, =Ly, [TLy, .
Theorem 1.1 is then a consequence of the following statement.

Theorem 2.2. Assume that r is coprime to the discriminant of L. Then there exist infinitely many
prime ideals *B such that there exists 1 € Pic(.fl"ﬁ) which satisfies the following: For every prime £

coprime to B, the image of A under the isomorphism
Hé(flp@ 7,(1)) ~ H; (X%, Z,(1)),

liesin L,, and the residue class of AinL,, [rL,, is equal to .

2.3 | Proof of Theorem 1.1

Assuming Theorem 2.2, we will prove in this section Theorem 1.1. Let 8 be a prime ideal given
by Theorem 2.2, and where « is unramified. Let r be the geometric torsion order of «, which is
coprime to p, the residual characteristic of 8. We have then the following diagram, where the
middle vertical arrow is an isomorphism by proper and smooth base change theorem:

®¢ Lz, C B¢ H; Xz, Z,(1)) — Br(Xg)[r] ——0

| |

Deyr € S Hy (X5 Z,(1)) —— Br(Ap)lr] — 0.
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VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION | 6 of 32

By construction, the image of 4 in Br(Xg)[r] is equal to a. By commutativity of the diagram,
this implies that the image of 1 in Br(&”ﬁ)[r] is equal to the reduction ag; of a. Since 4 € NS(EL%),
we can conclude that agy = 0 in Br(235)[r]. Finally, we use the following lemma, which is taken
from [14, Lemma 4.4], to conclude.

Lemma 2.3. We have agy = 0in Br(X ‘D)'

2.4 | Special endomorphisms on Kuga-Satake abelian varieties

We explain in this section our strategy for proving Theorem 2.2. By [23, Theorem 3] (and [20, 22]
when the characteristic is equal to 2), up to a harmless extension of the number field K, we can
associate to X an abelian variety A defined over K, the Kuga-Satake abelian variety such that for
any prime ‘B of good reduction for X and A, the Z, and crystalline realizations of the primitive
cohomology of 23 embed in those of End(Asp).

Let P be a place where both X and A have good reduction. For every 8 € L/rL, let

be the groups of special endomorphisms of Af’ as defined later in Sections 3.1.2 and 3.2.1.

Proposition 2.4. Letr > 1 and let B be a prime of good reduction of residual characteristic coprime
to r. Then there exists 3 € L/rL such that Vﬁ(Aﬁ) is different from zero if and only if there exists

Ae Pic(.fl”ﬁ) that satisfies the conditions of Theorem 2.2.

Proof. Let B € %L /L be alift of the class « as given by Proposition 2.1 and let 8 € L/rL its image
after multiplication by r.
From the properties of the Kuga-Satake abelian variety, we have an inclusion:

Then for any non-zero endomorphism f € Vﬁ(Aﬁ), the class 1 = f gives the desired result.
Indeed, by definition of special endomorphisms, for any prime #, we have an Z-adic realization
f € L, which by definition has residue equal to 8 in L /rL, hence it satisfies Theorem 2.2.  []

We conclude that Theorem 2.2 is implied by the following statement which we will prove in
Section 3.5.

Theorem 2.5. For § € L/rL as in the proof above, there exists infinitely many primes *B coprime to
r such that A has good reduction at B and Vﬁ(Ai) # {0}

3 | GSpin SHIMURA VARIETIES: INTEGRAL MODELS AND
ARAKELOV INTERSECTION THEORY

We introduce in this section GSpin Shimura varieties, their integral models and their toroidal
compactifications. Our main references are [2, 17, 24, 25] to which we refer for more details.
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7 of 32 | MAULIK and TAYOU

3.1 | GSpin Shimura varieties over Q

Let (L,Q) be a quadratic even lattice of signature (n,2), n > 1 and denote the bilinear form
associated to (L, Q) by:

x-y)=0(x+y)—Q(x)—Q(), Vx,y €L.

We can construct a Shimura datum associated to (L, Q) as follows: Let G = GSpin(Lg) be the
reductive algebraic group over Q of spinor similitudes and consider the Hermitian symmetric
domain

D={weP(l),(w -w)=0,(w-w) <0}

Then (G, D) is a Hodge-type Shimura datum with reflex field equal to Q. For any choice of a
compact open subgroup K C G(A ), we get a Shimura variety defined over @ whose set of complex
points is

M(C) = G@\D x G(A )/K,

and whose canonical model M is a smooth Deligne-Mumford stack over Q.

The choice of the lattice (L, Q) specifies a particular open subgroup of G(A) defined as K =
CL®2)N G(Af), where C(L ® 2) is the Z-Clifford algebra of (L ® Z,Q). The group K is the
largest compact-open subgroup of G(A ;) that stabilizes L ® 7 and acts trivially on LY /L where
LV is the dual lattice of L defined as

LY ={xeLy|VyeL,(x-y) €z}

The Shimura variety M is of Hodge type and carries a family of Kuga-Satake abelian varieties

AL M whose relative cohomology can be understood in terms of algebraic representations of G
as follows. By construction, G has an algebraic action by left multiplication on C(V) where V =
L ®, Q,and C(V)is the Clifford algebra of (V, Q). There is also an action of G on V via an algebraic
group morphism G — SO(V). Letting H = C(V), then we have an inclusion V' < Endg(H) given
by left multiplication and it is in fact a G-equivariant map. This yields filtered vector bundles with
integrable connection on M, denoted (V,z, F*V,4z) and (H;z, F*Hyg) related by a morphism of flat
filtered vector bundles

The vector bundle V,;, is endowed with a bilinear form
() . \/dRX\/dR b OM’

for which the line bundle w = F'V, is isotropic and FV,4, = (F'V)*. Moreover, we have a
canonical isomorphism of filtered vector bundles:

Hyp =~ Hom(Rln'*Q;l/M, Oy,

see [2, section 4.1] for more details.
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The constructions above are functorial in the following way: For any inclusion (L,, Q) C (L,, Q)
of quadratic lattices, then the previous discussion produces Shimura varieties M; and M, over Q
which admit Kuga—Satake abelian schemes A; — M, and filtered vector bundles with integrable
connections (\/;R, F'\/;R) and (I]-I]iiR, F* [I-I]ZR), fori = 1,2. We have a finite morphism# : M; — M,,
which is étale if L, hasfinite index in L,. We also have morphism of Kuga-Satake abelian schemes

Ay

N A,
N
M

1

which is an isogeny in the finite index case, of degree a power of |L,/L,|. Finally, we have
canonical isomorphisms of filtered vector bundles with integrable connections:

4,2 /1
7 Vg = Vag»

#0102~ ol
and n"HI, ~H,, .
Remark 3.1. Since A, and A, are defined using the Clifford algebras of two different lattices, they
are different as abelian schemes. Even in the case where L, = rL,, the isogeny A; — n*A;, which
is induced from the map of Clifford algebras C(L,) — C(L,), is not the multiplication by a power
of r but rather the multiplication by different powers of r on each degree of the Clifford algebra.

3.1.1 | Integral models and their compactifications

We recall in this section the construction of integral models of GSpin Shimura varieties following
[17, section 6], [2, sections 4.2, 4.3], and their toroidal compactifications following [17, 25].

Let p be a prime number. The lattice L is said to be maximal at p if L ® Z, is a maximal lattice
of L® Q p over which the quadratic form is Z P -valued. In particular, if the lattice L is self-dual at
D, then L is maximal at p. We say that L is maximal if it is maximal at all primes.

Let Q be the finite set of primes p € Z at which the lattice LZp is not maximal. Then by [17,
section 6], there is a normal and flat integral model M — Z[Q~!] with generic fiber M, which is
a Deligne-Mumford stack and which enjoys the following properties:

(1) The Kuga-Satake abelian scheme extends to an abelian scheme A — M.

(2) The line bundle w = F'V; extends to a line bundle w on M.

(3) M is smooth at a prime p if the lattice (L, Q) is almost self-dual and regular if p is odd, and
p? does not divide the discriminant of L.

To explain the last condition, we say that L is almost self-dual at p if either p is odd and L is
self-dual at p or p = 2 and v,(|LY/L|) < 1, where v, is the 2-adic valuation.

3.1.2 | Special divisors

By [2, section 4.5], for every scheme S — M, there is a functorial subspace

V(Ag) C End(Ag)g
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9 0f 32 | MAULIK and TAYOU

of special quasi-endomorphisms, the construction of which will be recalled in Section 3.2. The
space V(Ag) is endowed with a positive definite quadratic form Q such that x o x = Q(x) - Id Ag
for x € V(Ay). One in fact can define for every 8 € LY /L a subset

Va(A) C V(A)

of special quasi-endomorphisms whose different cohomological realizations are prescribed by S,
see [2, p. 447]. We have then the following result which is [2, Proposition 4.5.8].

Proposition 3.2. Forevery § € LV/L, m € Q(B) + Z, there is a finite, unramified, and relatively
representable M-stack whose functor of points assigns to every scheme S — M the set

Z(B,m)(S) = {x € V(A Qx) = m}.

By [18, Proposition 2.4.3], Z(3, m) is a generalized Cartier divisor in the sense of [18, Definition
2.4.1] and can also be seen as Cartier divisor on M by [18, Remark 2.4.2]. We will henceforth refer
to it as special divisor.

‘We can give an explicit description of the set of complex points of the special divisors as follows:
In M(C), a point s € M(C) can be lifted to a pair

(h’ g) € D X G(Af)5
and the group of special quasi-endomorphisms of A, is canonically identified with
{xeLgl(x-h)=0}.

Then the special divisors are given, for every § € LY /L and m, by the following double quotient:

Z@m©=6@\ |J {hg9eDxGMAp.(h-)=0/K.

A€g.(B+L)
Q)=m

3.2 | GSpin Shimura varieties with level structure

We fix a maximal quadratic lattice (L, Q) for the rest of the paper and let r > 1. Consider the
inclusion of quadratic lattices

(rL,Q) € (L, Q).

The discussion from the previous section applies to both lattices (L, Q) and (rL, Q) yielding
normal flat integral models

M — Spec(Z), and M, — Spec(Z[Q ')

of M and M,. Here Q is the set of primes where rL is not maximal, that is, the prime divisors of
r. We have thus an abelian scheme A, — M,, and a Hodge line bundle w,. We also have a finite
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VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION | 10 of 32

étale map 7 : M, — M which extends to a finite map over Z[Q~!] by [17, Proposition 6.6.1] that
we still denote by

n - M,, - MZ[Q—l] ,

and such that n*w ~ w,.
The Kuga-Satake abelian scheme .4 — M pulls back to an abelian scheme 7*.4 on M, with
an isogeny

A

, n*A
NS

M,

which extends the isogeny over the generic fibers.

The following lemma is an easy consequence of the construction of the module of special quasi-
endomorphisms, see also [17, Proposition 6.6.2, 6.6.3] which refers to [1, Proposition 2.6.4] for the
proof. To simplify notations, we will drop the index r in the notation of special divisors in M,., as
it will be clear from their coset in which space they live.

Lemma 3.3. Forevery 8 € LV/L, m € Q(f) + Z, we have an equality of Cartier divisors:

nzem= || Zo.m.
y€ELY /rL
=B

Definition 3.4. Let M, be the normalization of M in M,.. This a normal flat integral model over
Z of M, extending M, — Spec(Z[Q7!]).

It follows from the definition that we have the following commutative diagram:

Spec(Z) M, M,
) )
Spec(Z) M Mzio-17 -

The Kuga-Satake abelian scheme .4 — M pulls back to an abelian scheme 7*.A on Mr, and
the line bundle w pulls back to a line bundle 7*w on M, which extends w,. By abuse of notations,
we still denote w, this extension.

Our goal in the next section is to extend the Cartier divisors Z(8, m) — M, to M, such that the
extension has good moduli interpretation and Lemma 3.3 still holds. We will work at each prime
in Q and then glue the constructions.

3.2.1 | Almost self-dual case

Let p be a prime number dividing r, hence p € Q. We make the additional assumption that the
lattice L is almost self-dual at p as this will be satisfied in our applications. Then the level K at p is
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11 of 32 | MAULIK and TAYOU

hyperspecial and the Shimura variety M) is the smooth canonical model over Z ) constructed in
[21,22,24]. Let T : A — M be the Kuga-Satake abelian scheme. For £ # p, we have an inclusion
of étale sheaf of Z,-modules

Vv, C EndZK(IH]f),
where
H, = Hy(A/ M), Z,) .
We also have an inclusion of filtered vector bundles with integrable connections:
Vyr C End(Hgg) ,
where
Hag = Hip(A/ M) ,
and a crystal of modules over the formal completion of M, along the special fiber:

Verys © End([l-{lcrys),

where Heys = Rln*(sz ® . Moreover, the formal completion of the de Rham vector bundle V5
Fp
with its integrable connection is isomorphic to V.
We recall now the construction of special divisors in M, ). For any scheme S over Z,,, the mod-
ule of special quasi-endomorphisms V(Ag), » is by definition the set of quasi-endomorphisms

x € End, (p)(As) such that

* the de Rham realization X,z lies in Vgp
* the /-adic realization x, liesin V.| ® Qy,
* the p-adic realization x, over the generic fiber S lies in \/P|s@ ® Q), and

* its crystalline realization x . liesin Vg, .
F
p

Let B e LY/Landlet 8, € LY/L ® Z, be its £-adic component for every prime #. For £ # p,
the local system \/}/ [V, is trivial on M,y and isomorphic to LV/L ® Z,. Thus, we have a well-
defined subsheaf

Br+V,CV].
We define
Vp(As) ={x € V(Ag)z,), V€ # P, Xp € Br + Vi xp € By + Vo 3.

Via the morphism

N My = My
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all the above data pull back to M, (,
bundle 7"V, and a crystal "V .

) We have hence #7-adic sheaves *V,, a de Rham vector

—~

For any Z,)-scheme S — M, ),

V(n*AS)Z(p) C End(n*As)Z(p)

we define the group of special quasi-endomorphisms:

as the quasi-endomorphisms f € End(n*Ag), » whose étale, de Rham, and crystalline real-
izations lie in the subsheaves 7"V,  ® Q/, 7*Vyp o, 7*Vepyg- This is simply the pull-back of
V(Ag), "

For ¢ # p, notice that the étale local system %n*\/; /1 - 9™V, is trivial on M,’( p) and isomorphic
to %LV /rL ® Z,. Hence, given 8 € L/rL and §, its #-adic component, we have a well-defined

subsheaf
By +1r-n*V,.
We define then
Ve, (" Ag) = {x € V(0" Ag)z, | X, € Br + 11"V}
and
Ve, (" Ag) ={x € V(" Ag)z, | xp € By +1-0"V)p5,, and xery € n*\/crys,S[Fp 2
Finally, we define
V(™ As) =NV, (7" As) N Vg (0" As) .
We define now a functor on Z,,)-schemes as follows:
S ZB,m)S) ={f €V " Ag), fof=m-1dp 4}

Proposition 3.5. Let 3 € L/rL. Then the above functor is representable by a finite unramified

—~

M, (p)-stack which coincides over @ with Z(8, m)q.

Proof. We give an argument inspired by Proposition 2.7.1 in [1]. From the moduli interpretation,

we notice that we have an isomorphism of M, )-stacks:

r.(p

nZmy= || 2@ m)

BeL/rL

which shows that each Z(3, m) can be viewed as an open and closed substack of »* Z(m). Since
Z(m) is representable by a finite unramified M,)-stack, we conclude that the same is true for

—~

Z(B, m) over M, .

One can also give an alternative proof directly by following the proof explained in [1, Proposition
2.7.2] as we already have an abelian scheme A — ./\7,,( p) and so the maximality assumption used
there is not needed. O
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13 of 32 | MAULIK and TAYOU

In particular, it results from the previous proposition that the divisors Z(, m) glue as a finite
unramified M, -stack over Z and étale locally it is a Cartier divisor on M,. Moreover, we have an
equality of Cartier divisors:

nZm= || 2®B.m), (3.2.1)

BeL/rL
valid over Z, and which extends Lemma 3.3.

Proposition 3.6. Let§ € L/rL, m € Q(3) + rZ. Then the Cartier divisor Z(8, m) — M, is flat over
Z( 1.
(2]

Proof. We have the relation

nzm= || zo.m,

yeL/rL

Z(m) is flat over Z, by the same argument as in [24, Proposition 5.21], hence has no vertical
components. Since 7 is a finite map, we conclude that none of the Z(y, m) has vertical components
and by the lemma below applied to the complete local ring at a point, they are flat over Z ). [

Lemma 3.7. Let R be a normal, local, flat Z p)-algebra, and let a be a non-zero divisor. Then all the
associated primes of a have height 1. In particular, if div(a) C Spec(R) has no vertical components
of Spec(R ® [Fp), then div(a) is flat over Z(p)-

Proof. This lemma is similar to [17, Lemma 7.2.4] when R is Cohen-Macaulay but since we only
assume normality, we give a detailed proof. By Serre’s normality criterion, for every ideal 8 of
height > 2, R‘B has depth at least 2 and hence 3 cannot be associated to a, as otherwise the depth
of Ry3 /aRgyy would be 0, which is not possible as

depth(Ry/aRy) = depth(Rp) —1> 1,

by [32, Lemma 10.72.7.]. For the second part, to prove that div(a) is flat, it is enough to prove that
it has no p-torsion. By assumption, a is not contained in any minimal prime over p, which are
the same as the associated primes by the above. Hence a is not a zero divisor in R/pR, which is
equivalent to p not being a zero divisor in R/aR, since R is local and normal. [l

3.3 | Arithmetic Chow groups

We introduce in this section Arakelov Chow groups following [15] and [6]. For more details on
this section, we also refer to [30, section 3.1] and [34, section 3].

Let (rL,Q) C (L, Q) be an inclusion of quadratic lattices of signature (n, 2) as before, in particu-
lar L is maximal with discriminant coprime to r. Let M,, M be the normal integral models over Z
of the GSpin Shimura varieties associated to (rL, Q) and (L, Q) constructed in the previous section.

Let X be a rational polyhedral K,-admissible cone decomposition. By the main theorem of [25,
Theorem 1], M, has a toroidal compactification Mrz which is proper, normal, and flat over Z.

d ‘1 'STOT ‘0SLLE9YT

:sdny wouy

sy suompuop) pue swa, 3 3§ *[SZ07/L0/20] U0 AIeIqr auIuO KM “EOATIOD HLOOWLAYA £Q 1S00L SWI/ZL11°01/10p/wioo Ao

Ko

asuaOI] suowIO) aAEar) AqENdde AU Aq PaIAAT AIE SI[IIT YO 15N JO Sa[NI 0] AIRIGYT AUIUQ) AS[1AL UO (SUODI



VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION | 14 of 32

Over C, it is compatible with the toroidal compactification of its complex fiber as constructed
in [4, Chapter III]. Let C/I\{l(ﬂf, D,e)q be the first arithmetic Chow group of prelog forms as
defined in [6, Definition 1.15].

For any toroidal stratum representative (E, o) of type III where o is a ray, let B%9 be the cor-
responding boundary divisor of ME and for Y a toroidal stratum representative of type II, let BY
be the corresponding boundary divisor of type II. Then by [25, Theorem 1], both 5% and BY are
relative Cartier divisors over Z, hence flat over Z.

Let § € L/rL and m € Z. We have defined in the previous section a special divisor

Z(B,m) - M2,
and following [10], see also [13, Theorem 1.2], we define a corrected divisor in Mrz:

2B, m) = Z(B,m) + Y uy(B,mIBY + Y iz (B, m)B, (3.3.1)
Y

(E,0)
where the coefficients uy (8, m) and uz ,(8, m) are defined in [34, egs. (4.5.1), (4.6.1)].
Following [9, 10], the divisors Z'°"(3, m) can be endowed with a Green function <I>5’m such that
the pair:
2\[0}’(6’ m) = (Zmr(;69 m)’ (I)ﬁ,m)

. 1
is an element of CH (W, Dpredo-

The Hodge line bundle w, has a canonical Hermitian metric with prelog singularities, the
Petersson metric, see [17, eq. (4.2.3)] for a definition. Hence it defines an element

~ ~oyl
@, € CH (MZ,D,,,).

3.3.1 | Arithmetic height and main estimates
Let K be a number field and let
p: & =Spec(Of) - Mf

be an O-point. Then the height h 26 m)(cf) of & with respect to 2(,6, m) is defined as the image

of 2([5’, m) under the composition:
- PN deg
CH' (M2, D,,) & CH'(8) —> R.
It is given by, see [30, eq. (3.1)]:

hsm(S) = D, (7 E.m).S)plog|Ok/Bl+ Y, Pgpm(x).
PO X€8(C)
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where for a prime 8 C Og:
(Ztor(ﬁ, m)os));p = Z length <Ozmr(ﬁ7m)><ﬂ): §’U> ,
ve(Sx gz (m) ) Fyp)

and Fy; is the residual field of *B.

3.4 | Main estimates

Let 8 € L/rL and let m € Z represented by 8 + rL.

Let c¢(f, m) be the (8, m)th Fourier coefficient of Eisentein series E,; as in [7, Proposition 3.1,
(3.3)], see also [30, section 3.3]. For n > 3, we have |c(8,m)| = —c(B, m) <, m3 along the integers
m representable by 8 + rL.

Our first main result is the following global height bound.

Proposition 3.8. Asm — oo and represented by 5 + rL, we have

D (Z(B,m).S)plog|Ok /Pl + Y, Dp,(x) = O(c(B, m)).

PcOk xeS(C)

Recall from [30, section 6] that for a subset S C N, the logarithmic asymptotic density is defined
as:

. log(|{s € S|X < s < 2X}|)
lim sup .
X—o0 IOgX

The second main results are estimates in average of multiplicities at archimedean and non-
archimedean places.

Proposition 3.9. Forevery x € §(C), there is a decomposition:
®p (%) = c(B, m)log(m) + A(B, m) + o(c(8, m)log(m)).

Moreover, there exists a subset Sy,,q C Z of logarithmic asymptotic density O such that

m—oo b

meSyq M2 logm

Next, we have the estimate at the non-archimedean places. Let N be the product of primes
where p intersects the boundary of ./\/lrZ

Proposition 3.10. Given D,X € Z., D coprime to N, let Sy, X denote the set

{mez>0|X<m<2X,,/%eZ,(m,N)=1}.
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VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION 16 of 32

For a fixed prime P and a fixed D, we have

Y ($.Z2(8, M)y =o(X * logX).

mMESp x

3.5 | Proofof Theorem 2.5

Assuming Propositions 3.8 to 3.10 from the previous section, we prove here Theorem 2.5 which
proves Theorem 2.2 and hence Theorem 1.1.

Let K be a number field and fix an embedding ¢ : K < C. Let X be a K3 surface over
K, and let (T(X,(C)),Q) be the transcendental lattice of X _(C). Let @ € Br(X) be a Brauer
class of geometric torsion order r, assumed to be coprime to the discriminant of T(X,(C)). Let
B € T(X,(C))/rT(X,(C)) be a lift (multiplied by r) given by Proposition 2.1 and let A be the
Kuga-Satake abelian variety associated to X.

Let T(X,(C)) C L be a maximal lattice containing T(X,(C)). Then we can see § € L/rL. We
are now in the setup of the previous sections: Let ./\71? be the toroidal compactification of the
integral model of the Shimura variety associated to (¥L, Q) constructed in the previous sections.
The Kuga-Satake abelian variety defines a K-point in ./Wr2 which extends to a morphism:

ME

re

p.85 -

where & = Spec(O).

Assume by contradiction that the conclusion of Theorem 2.5 does not hold. Then there exists
finitely many primes B, ..., B, such that for every m € Z, the support of the intersection of &
and Z(B, m) is contained in {{f, ..., B}

By Proposition 3.9, there exists a subset Sy,4 C Z., of logarithmic asymptotic density zero such
that outside Sy,,4 we have:

Z Qg (x) < (B, m)log(m) + o(c(B, m)log(m)) < —|c(B, m)| log(m).
xS (C)

Let
St = {m € Sp x|m & Spaq, (M N) =1, m = Q(F) (mod r)}.
Since r is coprime to N, the set {m € Sp, x|(m,N) = 1, m = Q(f) (mod r)} has asymptotic density

1
%, and we see that |Sg°;d | < X2.Lemma 5.3 ensures thatanym € Sf)o)o(d isrepresentable by 8 + rL,

hebce [c(B, m)| > Xg form e Sg?;d. Thus, we get

PIEEDINK FeS > X7 logX. (3.5.1)

good xe&(C
mESDx ©

On the other hand, by Proposition 3.10, we get by summing over the finitely many places where
either & intersects a Z(3, m) or which are of bad reduction:

Y (8.2(8,m)ylog [0k /Bl = oX T logX). (352)

good
meSD,X
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The combination of Equation 3.5.1 and Equation 3.5.2 contradicts Proposition 3.8. This proves
the desired result.
The rest of the paper is devoted to proving the main estimates in Section 3.4.

Remark 3.11. In the previous discussion, the assumption (v, N) = 1 was used to produce infinitely
many integers m that satisfy (m, N) = 1 and m = Q() (mod r), hence its appearance in our main
theorem. In fact, if (r, N) > 1, then we can still prove Theorem 1.1 under a weaker assumption as
follows. First, observe that the norm Q(«) of the class « is a well-defined element in Z/rZ and
is equal to Q(B), for a lift 8. If the reduction of Q(cr) modulo ged(r, N) is invertible, then we can
still find an infinite sequence of integers m that satisfy (m, N) = 1 and m = Q(a) (mod r). This
is enough to prove Theorem 1.1.

4 | GLOBAL ESTIMATE

We prove in this section Proposition 3.8. Our method is inspired from [17] and relies on Fourier—
Jacobi expansions of Borcherds products at the cusps of GSpin Shimura varieties.

4.1 | Background results

Let (L, Q) be a quadratic lattice of signature (n,2) and let M be the normal integral model over
Z[Q~'] of the GSpin Shimura variety associated to (L, Q) constructed in [17]. Let f € M 'i_ﬂ(PL)
2

be a weakly holomorphic modular form of weight 1 — g with respect to the conjugate Weil

representation p; . We assume that the principal part of f has integral coefficients and denote it by:

2 Z c(B,m)q™, c(B,m) € Z.

BeLY /L me—-Q(p)+Z

m<0

By the main theorem of [17, Theorem A], there exists a Borcherds products ¥ (f) associated to

¢(0,0)
f which defines, after multiplying f by a suitable integer, a rational section of w 2~ over Q and
its divisor in M is equal to:

div@p(f) = Y, e(B—m)Z(B, m).
(B,m)

Let = be an admissible polyhedral cone decomposition and let Z/°"(3, m) be the completed divi-
sor as defined in Equation 3.3.1. Then by [34, Proof of Theorem 3.1], the divisor of the Borcherds
products on M? is equal to

div@p(N) = Y, c(B—m)Z" (B.m).
(8,m)

In fact, the above relation can be upgraded into an equality by [17, eq. (1.2.2)] in éﬁl(Mz, Dreda:

divp(f) = Y, (B —m)Z(B.m).
(B8,m)
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VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION 18 of 32

On the other hand,
= c(0,0)
avwn = %%
Hence we get the following equality:
C(O, 0) A~ 2t
——@= Y cBmZBm).

(B.m)

4.2 | Expansions at the cusp

We assume now that we are given two quadratic lattices (rL, Q) C (L, Q) where L is a maximal
lattice, almost self-dual at r. Let £ be a K,-admissible polyhedral cone decomposition and let ME
be the toroidal compactification of the integral model of the GSpin Shimura variety associated to
(rL, Q) constructed in Section 3.2. It is normal, proper, and flat over Z.

We recall in this section the theory of integral g-expansions at the cusps following [17, sec-
tions 5,8]. We assume that (rL, Q) is isotropic and let (E, o) be a toroidal stratum representative
such that o is top dimensional.

We will first describe the Fourier-Jacobi expansion over C and then over Z,) where p is a
prime number. Associated to the cusp label representative =, there is an admissible parabolic
subgroup Pz C G, a connected component D° of D, and an element h € G(A ). Such cusp label
representative determines a mixed Shimura datum (Qsz, D), see [17, section 4.4]. The unipo-
tent radical Wz and its center Uy are both equal and are described at the level of Q-points

by:
U=(Q) ~ Ko ®1Ig,

where I is the Q-isotropic line determined by the cusp label representative 2, I = rL NI, and
K = I+ /I. Define the Z-lattice T'z = Kz N U=(Q) and the torus:

The level K, determines a mixed Shimura variety Mz associated to the mixed Shimura datum
(Qz, Dz). Let Kz, be the compact open subgroup of Qz(A ) determined as in the end of p. 220 of
[17]. It defines another mixed Shimura variety Mg, over Q associated to the same datum (Qz, Dx)
and an étale morphism of Deligne-Mumford stacks Mg, — Mxz.

The toroidal stratum representative (E, o) determines partial compactifications Mz (o), Mzy(0)
and 0-dimensional boundary component Z= of M>, Mz(), and Mz,(c). We denote by M, resp.
Mz(0), Mgo(0), the formal completion of MZ, resp. Mz (c), Mzy(o) along Z=°. By a theorem of
Pink [29, Corollary 7.17, Theorem 12.4], see also [17, section 2.6] which is our reference, we have
an isomorphism

oy o
M ~ Mg(0).
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Then by [17, Proposition 4.6.2], there exists K, C /-\>f< compact open subgroup such that we have
the following commutative diagram of formal Deligne-Mumford stacks over C:

I—'ae@é(,\A?/KU =2(0)jc —————> Mz,(0)/C

| T e

N, = M=(0)/C,

such that the vertical arrows are formally étale surjections and

Tz(0) = Spf(@[[qa]]aer;(1)> -

(e-0)>0

Now given a section ¢ of co;@k , we get by [17, eq. (4.6.10)] a trivialization, the Fourier-Jacobi
expansion on each copy of Tz(c) /c indexed by a € Qio\/&? /K,:

@) = Y FP@®) q, € cllgllucri -
OCEF;(I) (ovaj)O
(a-0)20

Let f be a weakly holomorphic modular from of weight 1 — % with respect to p,; and with
integral principal part. Let 1(f) be the associated Howard-Madapusi-Borcherds product, which

¢(0,0)
is a rational section of w, * . Let F be the abelian extension of Q determined by the reciprocity
isomorphism in class field theory:

¢ 1 QX\A%/K, = Gal(F/Q).

By [17, Proposition 5.4.2], for every a € @io\/&? /Ky, the Borcherds product ¢(f) has a Fourier-
Jacobi expansion given as follows:

FIO@(f)) = @ A™@g .\ - BP(f)ree® (42.2)
where (@ € C is a constant of absolute value 1, and

BP(f) € OF[[qoc]]oceFé(l) ’

(a-0)=20

is the infinite product:

BP(f) = H H (1-¢,- qa(/l))c(hilﬂ’_Q(m-

Ae(rt /1) uehLY /hL
QA-w)>0

In the product above, 7 is a Weyl chamber as defined in [17, eq. (5.3.1)] such that the interior of
the cone o is isomorphic to an open subset of 77". The number ¢, is a root of unity of order dividing

| 2LV /rL].
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Finally, the constant A is given as follows, see [17, eq. (5.3.6)]: Let I, be as before the isotropic
line corresponding to the cusp label representative E = (D, P, h) and let ¢ be a generatorof I N h -
rL. Let N be the order # in (h - ¥L,)V/(h - rL,). Then

xh~1s

a= I (%)

X€Z/NZ
xX#0

0)

0)
Remark 4.1. There is a (2i7) factor in [17, Proposition 5.4.2] that disappeared from Equa-
tion 4.2.2 and the reason is that Howard-Madapusi already rescaled the original Borcherds

¢(0,0)
constructed by Borcherds in [8], denoted by W(f) in loc. cit., by the factor (2ir) 2~ to obtain (f).

c(0,
2

Lemma 4.2. The constant '@ is equal to 1.

Proof. This is one of the main difficulties that was overcome in [17] in the course of the construc-
tion of (f). When the lattice (L, Q) satisfies the assumptions of [17, Proposition 9.1.2], then it
follows from the construction in the discussion of the middle of p. 283" loc. cit. that we can take
%@ = 1.1In general, {(f) is defined as the quotient of two regularized Borcherds products, see [17,
eq. (9.2.8)], associated to lattices L; = L @ A; and L, = L @ A, where A; and A, are certain self-
dual lattices of signature (24,0), see section 9.2. The lattices L, and L, satisfy the above conditions
and hence the constant x(®) appearing in their Borcherds product are equal to one. Moreover, the
regularization involves certain “analytic obstruction terms” defined in section 6.5. loc. cit. which
are simply the equations of the special divisors in the universal cover D and whose Fourier expan-
sions do not contribute to x(®). Since the different Fourier expansions of the Borcherds products
are compatible with each other, we conclude that %@ = 1 in our case too. O

4.3 | Integral theory

Let p be a prime number. We now extend the results from the previous section to Z,. We still
assume that rL has an isotropic vector, which is always true if n > 3. Let

?E(o) = Spf(Z(p)[[qa]]aeré(D) )

(a-0)20
and let R be the localization of Oy at a prime 8 C O above p.

Proposition 4.3. There is a unique morphism

|_| 72(0) R = M2
ae@io\A}(/KO

of formal Deligne—-Mumford stacks which agrees with Equation 4.2.1 by base change to C, and such
that for any s in the source with image t, the induced map on étale local rings is faithfully flat.

¥ Page 97 in arXiv version 2.
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For primes p where rL is maximal, that is, those primes who do not divide r, the result above
is [17, Proposition 8.2.3]. The proof of Proposition 8.2.3 in [17] uses Proposition 8.1.1 as the main
input. The latter relies on Theorem 4.1.5 from [25] and in fact the maximality assumption is not
needed in the latter result.

Lemma 4.4. Assume A = 1. Then the divisor of the Borcherds product {p(f) in Mr,(p) is flat over
Z( -
(p)

Proof. As Mr,( p isflatand normal over Z,,), it is enough to show by Lemma 3.7 that the divisor of
P(f)in ./\7,,,( p) does not contain any irreducible component of the special fiber of .A’Z,,[FP. Since the
Fourier-Jacobi expansion of ¢(f) in Equation 4.2.2 is not zero modulo 3, we deduce using the
faithful flatness of Proposition 4.3, that the divisor of {(f) in every irreducible component that
meets the cusp is flat. Hence it is enough to prove that each irreducible component of the special
fiber Mr,[Fp meets the zero cusp of M>.

Recall that we have a finite morphism

N My = M)

and M, is smooth over Z,), in particular, every irreducible component of M[Fp is connected and
meets the zero cusp. Since the morphism 7 is finite, every irreducible component of ﬂ,’[Fp maps
surjectivity to an irreducible component of MFp' Hence every irreducible component of ./\7,7[%

N

meets the 0-cusp of Mr,[Fp’ which concludes the proof. I

4.4 | Construction of a flat Borcherds product

We will construct in this section Borcherds products which satisfy the conditions of Lemma 4.4.
Letp € %LV /rL.Foreverym € Q(B) + Z,let ag ,, be the linear form on the space of cusp forms
S,4+1(p,r) which maps a cusp from g to its (3, m)!"-Fourier coefficient. Then there exists a finite
2
set of indices I such that ag ,, generates the Q-vector space

Span(ag | m € Q(B) + Z) C Sy, 1 (ppr)"

where S, n (0, )" is the dual of the space of cusp forms.
1+2Pp,, P P
2 18

Let (g;);e; be a dual family" of cusp forms to the family (ag,m,)icr and we can assume that the
(g;) have integral Fourier coefficients by [26]. Then for each m, there exists c;(3, m) € Q such that
we can write

a@,m) =Y ¢;(8, m)a(g,m)

il
and g;(8, m) = ¢;(8, m)g;(8, m;). Standard estimates on growths of coefficients of cups forms show

¢i(B,m) = O(c(B,m)) , (4.4.1)

TWe do not require aﬁ,m[(gi) =1, but only aﬁ’mi(gj) =0for j #1i.
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where c(8, m) is the (3, m)-coefficient of the Eisenstein series introduced in the paragraph before
Proposition 3.8.
By [9, Theorem 1.17], there exists a weakly holomorphic modular form f,, € M!I_E(EFL) such
2

that its principal part is equal to

(Vg +v_pg)g ™ — Z ¢i(B,—m)q~ " (vg + v_gp).

il
Letd = |%LV/rL| — 1 and let

C(m) = ((C(]/, 0))}/6 lLV/rL € @d

7#0

be the vector of constant Fourier coefficients of f,,. Then the span of (C(m)),,1 is a finite-
dimensional vector space of Q¢ which admits a basis given by (C(m;));e; for some finite
setJ.

Finally for any m, there exist coefficients u;(m) € Q such that u;(m) = O(c(8, m)) and

C(m) = Y uj(m)C(m)).

jel
Define

Fm=F = 2 m)f

jer
Then by construction, all the (y, 0)th Fourier coefficients of f,, vanish, except possibly the (0, 0)th

coefficient. Moreover, its principal part is equal to

(Vg + g™ = Y ci(Bm)(vg +v_g)g ™

iel

_ z uj(m)<(vﬁ +o_g)g ™ — 2 ci(B,m;)(vg + U_ﬁ)q—m,-> .

jel iel
The latter can be rewritten as

(Vg +v_glg ™ + Z z,(m)(vg +v_g)g ",
¢el

where I is finite set independent of m, m, are independent of m, and z,(m) are rational numbers
that satisfy

z,(m) = O(c(B, m)) . (4.4.2)
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Up to multiplying f,, by an integer, let )(f) be the Borcherds product associated to f as in Sec-

¢(0,0)
tion 4.1. Then (f,,) isa section of w, > and we have the following relation in CHl(Mf, Dpre)Q:

c(Oz, O)cﬁ, = div@(f,,) = 2178, m) + Z z,(m)Z' (8, m,). (4.4.3)

cel

Assume now that § € L/rL and we will extend the above relation above the primes p € Q. Let
Mrz be the proper, flat integral model over Z extending M?.

Assume also that 7L has an isotropic vector. Then, by choice of the Borcherds product ¢(f,,),
the constant A from Equation 4.2.2 is equal to 1, hence by Lemma 4.4, the divisor of the Borcherds
¥(f ) is flat over Z(,,). By Proposition 3.6, the special divisors Z(8, m) are flat over Z,, and the
boundary divisors are flat over Z,) by [25, Theorem 1]. Hence Equation 4.4.3 holds over Z,,) for
all p € Q. Hence we conclude.

sps .. . .1 —%
Proposition 4.5. Let 8 € L/rL and assume thatrL isisotropic. Thenwe havein CH (M, , D0 )q:

OO, = T = 27B.m) + 3, 2, (mZ B m,),

rel

where the integers m, are independent of m.

4.5 | Summary

«0.0)
Let m € N, then Proposition 4.5 provides a section ¥(f,,) of @, > that satisfies the following

relation in (fﬁl(]?l:z, Dyredat

div@(f,)) = 27 (B, m) + ) 2,(m)Z'" (B, m,)

cel

from which it follows that

¢(0,0)
hé\tor(ﬁ’m)(é)) = Thcﬁr(&) - sz(m) : hi’\“”(ﬁ,mi)(&) .
cel
Using Equation 4.4.2 and Equation 4.4.1, we get
hs5,m)(S) = 0(c(B,m)) . (4.5.)

Using Equation 3.3.1, we have the equality:

(.28, m) = (8.Z(B,m)) + ) py(B,m)(S.BY)
Y

+ ) uz(B,m)(8.85%), (4.5.2)

(E,0)
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and from [34, Proposition 4.13], we have the following estimate as m — oo:

(1) For any type II toroidal stratum representative Y, we have

b
py(m) <, m2717e (4.53)

(2) For any type III toroidal stratum representative (£, o) such that o is a ray, we have

bolye
oM <K, m2 . (4.5.4)

To prove Proposition 3.8, we first use Equation 4.5.2 to write:

2, B m).S)plog|O/BI+ Y Bpux) = hzg,,(S)

POk xe8(C)

= Yy Bm)(8.BY) = Y ps(B,m)(S.BE).
Y

(B,0)
Then we can bound the right-hand side above using the estimates from Equation (4.5.1),
Equation (4.5.3), and Equation (4.5.4). This finishes the proof.
5 | ARCHIMEDEAN ESTIMATES
Our goal in this section is to prove Proposition 3.9. We follow the approach explained in [30,
section 5].
5.1 | Development of the Green function
The Green function @ ,, has an explicit expression due to Bruinier [9, section 2] and which we
recall following [30, section 5].

Let (L, Q) be a quadratic lattice of signature (n,2). Let k =1 + %, Be€LY/L,and s > % a real
number. Let

F(s,z) =H<s—1+ g,s+1— %,2s;z>,

where

b n
H(a,b,c;z) = Z %%
n=0 n :

is the Gauss hypergeometric function as in [5, Chapter 15], and (a),, = F(Fa(—:)") fora,b,c,z € Cand
lz] < 1.
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For x € D, define

I(s—1+5) sT143
=2 2 m ) F< ,L> . 11
¢6,m(x ) ['(2s) Q)=m.A€p+L <m — Q(4y) ’ m = Q(4) D

Then ¢ ,(x, s) admits a meromorphic continuation to the complex plane with a pole at s = %
with residue —c(3, m). We define then

Bp.m(0) = lim [ g5, (x,5) + CBm| (51.2)
5= 3 s — 3

Let s — C(, m,s) be the holomorphic function for Re(s) > 1 defined in [30, eq. (3.3)], see also
[7, eq. (3.22)]. Then define

C(,@,m,s— %).(s— 1+ %)

PR = (25 — 1).F<s +1- %)

(5.1.3)

By [9, Proposition 2.11], we can write for x € D,

D (%) = gy (x) = b’ </3, m, g)

5.2 | Estimate on b’(8, m, '3‘)

We make the following assumptions in this section: L is maximal and § € L/rL has torsion
coprime to the discriminant of L. Our goal in this section to prove the following theorem.

Theorem 5.1. Let D > 1 be an integer. For m — oo representable by 8 + rL and such that 4 / % e Z,
we have

o' ((B.m. & ) = I8, ogtm) + (6 g,

Proof. The theorem above has been proved in [30, Proposition 5.2] under the assumption that L
is maximal and § = 0. We recall the main steps here and make the appropriate modifications.
Taking logarithmic derivatives at s = g in Equation 5.1.3 yields

o'(g.m.%) _CEBmO) 2 gy

b<,8,m,’§) - C(B,m,0) b
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Let
Nﬁ,m(a) =|fAeL/al|A = (modrL), Q(1)=m (mod a)}|.
Let also dg denote the order of 8 in %LV /rL and for a prime number p, let
w, =1+ 2v,(2mdp) .

Define the polynomial Lép V)n(t):

w,—1

p

L) = N (p“2)t% + (1 = p'71t) D) Ny n(p™" € Z[1] .

n=0
For s € C, define the function o ,,(s):

L <pl—%—s

o) |
—— 2 if r=2+n iseven,
1-xp,(pP)p~*

T m(s) =17 \2dgm det(l) G2
- 1 2.
1- 2 .
1 % P (pl—;—s>, if r isodd.
pedmiery P P

\

Here, xp, is the quadratic character associated to a fundamental discriminant D, of the number
field @(1/D) where D is defined by

(—1)2 det(L), if r is even,
r+1
2(—1)% dém det(L), otherwise.

By our choice of m, the fundamental discriminant is independent of m, hence [7, Theorem 4.11,
(4.73), (4.74)] implies

/
C'(B,m,0) Tg.m)
———~ =log(m) + — + O(1).
c@mo) T o
It suffices thus to show Zﬁ - o= o(log(m). Taking the logarithmic derivative in (5.2.1) at s = k,
B.m
we get for r even
(-
o/, () P Ly, (P (p)

== + log(p) ,
k _
op.m(K) e LY (pir) P = an(p)
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and for r odd

! 1—r7 (01—
95 m(F) - p rLﬁ,m(p ") ~ Xp,(P) L2 log(p)
(p) _ _1 2k—1 _
%omlD padmaew| L) P —an ) P 1
‘We have Lg’r)n(pl—’) = Nﬁ’m(pwp)p(l—r)wp and
wp—l
’
L;grjr)n(pl—r) — prﬁ’m(pwp)p(l—r)(wp—l) _ Z Nﬁ’m(pn)p(n—l)(l—r) '
n=0
Hence
1-rp (@' (1- -1 .
Lm(pr) =|w —wpz _Nﬁ,m_(p”) (v=wp)(A-r)| — _wp 'L{P(‘B’m’v)
L%P;(pkr) P Npm(p"P) P& —/vtp(ﬁ,m,wp)

where p1,(8,m,v) = p LN 5m(p")- The proof of [30, Proposition 5.2] shows then it is enough
to prove Lemma 5.2 below. Assuming this lemma, we get:

—rr () 1-r
p"L” (p'") |
( )ﬁ,m log(p)| < C Z og(p)
p\Zdém det(L) Lﬁl,)m (pl—r) p\2d/23m det(L) p
= O(log log(m)). m

Lemma 5.2. Let 8 € L/rL be a primitive element, m € Z representable by 8 + rL, and p a prime
number. Then there exists a constant C independent of m and p such that

wp—l

up(B, m,v)
w,— Y <&

= op,(Bmawp)| Cp
Proof. For p coprime to r, the result follows from [30, Proposition 4.1]. Hence we can assume that
p divides r. By assumption, L is unimodular at p and 3 is primitive r-torsion, hence every solution
x € B +r(L/p*L) is good in the sense of [16, Definition 3.1]. Let § = 1 + Up(r). Then using that
B # 0 modulo p, we get for v > 6,

Ngm(p®) = pO=2 70 Ny o (p%) = p=2+0070),

and /,Lp(ﬁ,m, V) = /,Lp(ﬁ,m,c?) = %. Asforv < 8, we have N ,,(p”) = 1. Hence,

wp_l 6—1
Hp(B,m, V)
B N CCLO) B SR
= mpBmwy)| up(Bm,8) = p prD o p O

d ‘1 'STOT ‘0SLLE9YT

:sdny wouy

sy suompuop) pue swa, 3 3§ *[SZ07/L0/20] U0 AIeIqr auIuO KM “EOATIOD HLOOWLAYA £Q 1S00L SWI/ZL11°01/10p/wioo Ao

Kol

asuaOI] suowIO) aAEar) AqENdde AU Aq PaIAAT AIE SI[IIT YO 15N JO Sa[NI 0] AIRIGYT AUIUQ) AS[1AL UO (SUODI



VANISHING OF BRAUER CLASSES ON K3 SURFACES UNDER REDUCTION | 28 of 32

Lemma 5.3. Let L be a maximal lattice and letr > 1 coprime to the discriminant of L. Let 3 € L/rL
be a primitive r torsion element. Then any integer m large enough such that m = Q(f) (mod r) is
representable by 3 + rL.

Proof. There is no local obstruction to finding m and hence the argument of [30, Corollary 4.7]
still applies. O

5.3 | Proof of Proposition 3.9

We assume in this section that L is maximal lattice, self-dual at primes dividing . Let 3 € L/rL,
m € Q(B) +rzZ and let ¢g ,, be the Green function defined by Equation 5.1.1.
For x € D, define

ABmx)==2 Y log(lQAD.

VmAeB+rL
[R(x)I<1,Q(M)=1

Then by [30, Proposition 5.4], we have

$5.m(0) = A(B,m, x) + O(m?).

The reference only proves it for § = 0 and L maximal, but the same proof applies with minor
changes.

Proposition 5.4. There exists a subset Sy,q C Z, of logarithmic asymptotic density zero such that
forevery m & S,,4, we have

A(B,m,x) = o(mg log(m)).
Proof. Let

Amx)=-2 Y log(lQ@).
\/mAeL
|Q(Ay)I<1,Q(A)=1

Notice that A(3, m, x) > 0 and that

2 A(B,m,x) = A(m,x) .

BeL/rL
Hence
0 < A(B,m,x) < A(m, x).

Now we can use [30, Theorem 6.1] to bound A(m, x), yielding the desired result. This proves
Proposition 3.9. O
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6 | NON-ARCHIMEDEAN ESTIMATES

Our goal in this section is to prove the local non-archimedean estimates, Proposition 3.10.
Letp : & — ME be the period map, where W is the toroidal compactification of the integral
model of the GSpin Shimura variety associated to (rL, Q).

6.1 | Good reduction case

Let B be a prime of good reduction. By the moduli interpretation of Z(3, m), see [30, Lemma 7.2]
for a proof, we have

(8.2(,m)) = Z [{x lifts to order n, x € V5(Agp), Q(x) = m}| .

n=1
In particular,
0<(8.2(8,m)) < (8.2(m)),

where Z(m) — M is the special divisor in M
By [30, Theorem 7.1], we have the estimate

Y ($.2(m) = o(X"/log(X)).

MESp x

Hence, combined with the inequality above, we get

Y, ($.2(8,m)) = o(X"/*log(x)),

MeSp x

which proves Proposition 3.10]

6.2 | Bad reduction case: Type II

Let *B be a prime of bad reduction. The toroidal compactification Mrz has a stratification with
two types of boundary components as explained in [34]. We will use the results from that paper to
analyze the local intersection multiplicities and we focus now on boundary components of type II.
LetY be a toroidal stratum representative of type IT, BY the corresponding boundary component
of type II, and we assume in this section that boundary point S([F;B) lies in BY(FP).
By Equation 3.2.1, we have

0 < (S.Z(B, M)y < (S.Z(m)gp. (6.2.1)

LetD € Z,,,.For X € Z, let S, x denote the set

{meZ>O|X<m<2X,%GZﬁ(@X)2, (m,N)=1}-
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Then by [34, Proposition 5.2], we have

Z (8.2(m)y = o(szLl log X).

meSp x

Combining Equation 6.2.1 and the previous estimate, we get Proposition 3.10 in the type II case.

6.3 | Bad reduction case: Type III

Let (E,0) be a toroidal stratum representative of type III where o is a ray. Let 8% be the corre-
sponding boundary component of type III and we assume in this section that the boundary point
& liesin BE’U(FP).

Similarly, we have Equation 3.2.1

0 < (8.2(8,m)y < (S8.2(m)).

LetD € Z,, coprime to N and X € Z. Let S, x denote the set
{meZ>0 | X <m < 2X, % € 7N (@)% (m,N) = 1}.
Then we have by [34, Proposition 5.4],

Y (S.Z2m)y = o(x > logX).

MESp x

Combining the two previous estimates concludes the proof of Proposition 3.10 in the type III
case.

Remark 6.1. As m = Q(3) (mod r), we see that in order to apply the results proved in [34], we
need that Q(f) is coprime to N.
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