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Abstract
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a number field, we prove that there exists infinitely

many reductions where the Brauer class vanishes, under

certain technical hypotheses, answering a question

of Frei–Hassett–Várilly-Alvarado.
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1 INTRODUCTION

Let ÿ be a K3 surface over a number field ÿ and let ÿ ∈ Br(ÿ) be a Brauer class on ÿ. Letÿ → ÿ

be a smooth projective model, whereÿ ↪ Spec(ÿ) is an open subset of the spectrum of the ring
of integers ÿ .

© 2024 The Author(s). The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
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For a primeÿ of ÿ where ÿ is unramified, we have a reduction of ÿ in the Brauer group of the
reductionÿÿ that we denote by:

ÿÿ ∈ Br(ÿÿ) .

This paper aims to understand the following locus:

(ÿ, ÿ) = {ÿ ∈ ÿ|ÿÿ = 0} ,

and which was first investigated by Frei, Hassett, and Várilly-Alvarado in [14]. To state our main
result, let ÿ ∶ ÿ ↪ ℂ be a complex embedding and let ÿ(ÿÿ(ℂ)) be the transcendental lattice of
ÿÿ(ℂ). Let ý be the product of primes above which ÿ has bad reduction. In this paper, we prove
the following result.

Theorem 1.1. Assume that the rank of T(ÿÿ(ℂ)) is different from 2,4, and that the torsion order of

ÿ in Br(ÿÿ) is coprime to the discriminant of T(ÿÿ(ℂ)) andý. Then the set (ÿ, ÿ) is infinite.

1.1 Prior work and applications

The question of triviality of Brauer classes on smooth projective surfaces under reduction has been
raised in [14]. The authors proved loc. cit. that on a K3 surface, a Brauer class becomes trivial for
a positive density of primes, when the following assumptions are satisfied: The endomorphism
field ý of T(ÿÿ(ℂ)) is totally real and dimý(T(ÿÿ(ℂ))) is odd. If these assumptions are not satisfied
and if the Brauer class is transcendental, then as explained in the introduction of [14], the set in
Theorem 1.1 has density zero, up to a finite extension of ÿ, by a result of Charles [11, Theorem
1-(1)]. Our result hence gives a fairly general answer to this question with no assumptions on the
Hodge structure ofÿ, see [14, Remark 1.4]. The technical conditions appearing in the theorem are
artifacts of the proof and we explain their appearance in the strategy of the proof below.
Theorem 1.1 has several applications to rationality problems of cubic fourfolds and derived

equivalences of twisted K3 surfaces which have been developed in [14], see Sections 1.2 and 1.3. It
has also the following application:

Corollary 1.2. Let ÿ be an elliptic K3 surface over a number field ÿ which admits a multisection of

degree coprime to the product of the discriminant of T(ÿÿ(ℂ)) and the primes of bad reduction of ÿ.

Then there exists infinitely many primesÿ where the elliptic fibration on ÿÿ admits a section.

Theorem 1.1 admits also a natural formulation over the complex numbers and in this case
it follows from the results of [36, section 17.3], which can be furthermore sharpened into an
equidistribution-type statement in the spirit of [33, 35]. We simply formulate the statement here.

Theorem 1.3. Letÿ → ÿ be a non-isotrivial smooth projective family of K3 surfaces over a complex

quasi-projective algebraic variety ÿ and let ÿ be a Brauer class on the generic fiberÿÿ . Then the locus

inÿ where the reduction of the Brauer class ÿ vanishes is analytically dense and equidistributed with

respect to the metric given by the Chern form of the Hodge bundle.
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1.2 Strategy of the proof

The proof of Theorem 1.1 relies on Arakelov intersection theory on integral models of toroidal
compactifications of GSpin Shimura varieties as developed in [30] and [34] and is local–global in
nature. If we denote by ÿ the torsion order of ÿ in Br(ÿÿ), also called the geometric torsion order of
ÿ, thenwe interpret the locus(ÿ, ÿ) as an intersection locus ofÿwith a family of special divisors
in a Shimura variety ̃ÿ with level structure of level ÿ. Following amethod initiated by Charles in
[12] and generalized in [30, 34] (see also [27, 28, 31] for the function field setting), we control the
global and local intersection numbers ofÿ with a sequence of special divisors indexed by integers
ÿ at archimedean and non-archimedean places and compare the order of growths. If there were
only finitely many primes where ÿ vanishes, then this means that the intersection is supported
at finitely many primes independent ofÿ. Asÿ grows, we get a contradiction by comparing the
order of growths of the local and the global estimates.
In performing this strategy, many new difficulties arise compared to the previous work [30, 34].

The Shimura variety ̃ÿ that we work with has level structure ÿ and hence the results of [17] do
not apply directly at the primes that divide ÿ. We have thus to construct a suitable integral model
̃ÿ which is ad hoc for our purposes and which is defined by a normalization process, similar to
the one considered in [25]. In particular, it does not admit a moduli interpretation over the primes
that divide ÿ. The assumption of ÿ being coprime to the discriminant of T(ÿÿ(ℂ)) is crucial as it
shows that ̃ÿ admits a finite map to the integral model constructed by Kisin [21] (see also [24]),
which is smooth at the primes dividing ÿ. In particular, we obtain by pullback an abelian scheme
over ̃ÿ as well as a system of realizations (ý-adic, crystalline, de Rham). We use these to define
special divisors and show their compatibility with the pullback of the divisors appearing in [17].
The second difficulty in our paper is to construct a suitable Borcherds product whose divisor

only involve the special divisors that we have constructed. We construct such a Borcherds prod-
uct and we show that [17, TheoremA] extends over primes dividing ÿ. This allows us to derive the
global estimate on the intersection number of ÿ with a well-chosen sequence of special divisors.
The assumption on ÿ is used again to compare the special divisors and the Borcherds products
with those from the smooth integral model via a flatness argument. In our approach, we do not
prove that the resulting generating series of special divisors is a modular form, a result not needed
for our purposes and which requires a deeper understanding of the integral models with full level
structure ÿ. To obtain the local estimates, we use a compatibility result between our special divi-
sors and the divisors defined in [17] to bound the local contributions using the estimates already
appearing in [30, 34]. The additional assumptions on ÿ are used at this level to allow us to input
the estimates from [30] and [34].

1.3 Organization of the paper

In Section 2, we explain how to reduce Theorem 1.1 to an intersection theoretic statement inGSpin
Shimura varieties. In Section 3, we introduce GSpin Shimura varieties, their integral models,
special divisors, and toroidal compactifications. We construct suitable integral models with level
structure at ÿ and use them to write down the local and global estimates needed from Arakelov
theory. In Section 4, we prove the global estimate on the intersection number using a well-chosen
Borcherds products. In Section 5, we estimate the archimedean contributions, and in Section 6 we
estimate the non-archimedean contributions.
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2 K3 SURFACES AND BRAUER CLASSES: SOME REDUCTIONS

We prove in this section how to deduce Theorem 1.1 from Theorem 2.2. Then we explain the
connection to special quasi-endomorphisms on Kuga-Satake abelian varieties. For a detailed
discussion on Brauer classes and K3 surfaces, we refer to [19, Chapter 18] and [14, section 4].

2.1 Background results

Let ÿ be a K3 surface over a number field ÿ and let ÿ ∈ Br(ÿ). Let ÿ ∶ ÿ ↪ ℂ be a complex
embedding and let (ÿ, ý) be the transcendental lattice of the complex K3 surface ÿÿ(ℂ). Then we
have the following maps between the different Brauer groups:

Br(ÿ) → Br(ÿÿ) ≃ Br(ÿÿ) ⊂ Brÿÿ(ÿÿ(ℂ)) ,

where Brÿÿ(ÿÿ(ℂ)) is the analytic Brauer group of ÿÿ(ℂ). By a theorem of Gabber, the Brauer
group Br(ÿÿ) is torsion and is in fact equal to the torsion part of the analytic group Br

ÿÿ(ÿÿ(ℂ)).
It follows that the image of the class ÿ in Brÿÿ(ÿÿ(ℂ)) is torsion of order ÿ ⩾ 1, which may be

different from its torsion order in Br(ÿ). We refer to ÿ as the geometric torsion order of ÿ.
The class ÿ admits B-lifts to ÿ2(ÿÿ(ℂ),ℚ) that we now recall following [19, p. 415]. From the

exponential exact sequence, we get the exact sequence

0 → ÿ2(ÿÿ(ℂ),ℤ)∕Pic(ÿÿ(ℂ)) → ÿ2(ÿÿ(ℂ),ÿÿ(ℂ)
) → Brÿÿ(ÿÿ(ℂ)) → 0 .

Since the torsion part of Brÿÿ(ÿÿ(ℂ)) is equal to Br(ÿÿ), we get

0 → ÿ2(ÿÿ(ℂ),ℤ) + NS(ÿÿ(ℂ))ℚ → ÿ2(ÿÿ(ℂ),ℚ) → Br(ÿÿ) → 0,

yielding an isomorphism

Homℤ(ÿ,ℚ∕ℤ) ≃ Br(ÿÿ) .

In particular, the ÿ-torsion sub-groups are isomorphic:

1

ÿ
ÿ∨∕ÿ∨ ≃ Homℤ

(
ÿ,

1

ÿ
ℤ∕ℤ

)
≃ Br(ÿÿ)[ÿ].

Let ÿ ∈ 1

ÿ
ÿ∨∕ÿ∨ be a preimage of ÿ. To summarize, we have proven the following proposition.

Proposition 2.1. Let ÿ be the transcendental lattice of ÿÿ(ℂ) and let ÿ ∈ Br(ÿ) be a Brauer class

of geometric torsion order ÿ ⩾ 1. Then there exists ÿ ∈ 1

ÿ
ÿ∨∕ÿ∨ which corresponds to the image of ÿ

in Br(ÿÿ)[ÿ].

2.2 Compatibility with reductions

We keep the notations from the previous section and letÿ → ÿ be a smooth projective model of
ÿ where ÿ ↪ Spec(ÿ) is a Zariski open subset.
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Let ÿ be a prime of good reduction for ÿ, that is, in ÿ, where the Brauer class ÿ is unram-
ified and has torsion ÿ coprime to the residual characteristic of ÿ. This excludes only finitely
many primes.
The Kummer exact sequence yields the following commutative diagram, where the middle

vertical arrow is an isomorphism by smooth base change theorem:

By Artin’s comparison theorem [3, XVI 4], for every prime number ý, we have a natural
Gal(ÿ∕ÿ)-module ÿℤý

inÿ2
ét
(ÿÿ ,ℤý(1)). By compatibility of Poincaré pairings in Betti and étale

cohomology, the dual lattice of ÿℤý
is equal to ÿ∨

ℤý
. If ý does not divide the discriminant of ÿ, then

in fact ÿ is self-dual at ý and ÿ∨
ℤý

= ÿℤý
.

Let ÿ ∈ Br(ÿ) be a Brauer class of geometric torsion order ÿ. By Proposition 2.1, there exists
ÿ ∈ 1

ÿ
ÿ∨∕ÿ∨ that lifts ÿ. For every prime number ý, we let ÿý ∈ 1

ÿ
ÿ∨∕ÿ∨ ⊗ ℤý denote the ý-adic

component of ÿ. If ý is coprime to ÿ, then ÿý = 0, and if ý is coprime to the discriminant of ÿ,
then

ÿý ∈
1

ÿ
ÿ∨∕ÿ∨ ⊗ ℤý ≃

1

ÿ
ÿ∕ÿ ⊗ ℤý ≃ ÿℤý

∕ÿÿℤý
.

Theorem 1.1 is then a consequence of the following statement.

Theorem 2.2. Assume that ÿ is coprime to the discriminant of ÿ. Then there exist infinitely many

prime ideals ÿ such that there exists ÿ ∈ Pic(ÿ
ÿ
) which satisfies the following: For every prime ý

coprime toÿ, the image of ÿ under the isomorphism

ÿ2
ét(ÿÿ

,ℤý(1)) ≃ ÿ2
ét(ÿÿ ,ℤý(1)),

lies in ÿℤý
and the residue class of ÿ in ÿℤý

∕ÿÿℤý
is equal to ÿý .

2.3 Proof of Theorem 1.1

Assuming Theorem 2.2, we will prove in this section Theorem 1.1. Let ÿ be a prime ideal given
by Theorem 2.2, and where ÿ is unramified. Let ÿ be the geometric torsion order of ÿ, which is
coprime to ý, the residual characteristic of ÿ. We have then the following diagram, where the
middle vertical arrow is an isomorphism by proper and smooth base change theorem:
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By construction, the image of ÿ in Br(ÿÿ)[ÿ] is equal to ÿ. By commutativity of the diagram,
this implies that the image of ÿ in Br(ÿ

ÿ
)[ÿ] is equal to the reduction ÿÿ of ÿ. Since ÿ ∈ NS(ÿ

ÿ
),

we can conclude that ÿÿ = 0 in Br(ÿ
ÿ
)[ÿ]. Finally, we use the following lemma, which is taken

from [14, Lemma 4.4], to conclude.

Lemma 2.3. We have ÿÿ = 0 in Br(ÿÿ).

2.4 Special endomorphisms on Kuga–Satake abelian varieties

We explain in this section our strategy for proving Theorem 2.2. By [23, Theorem 3] (and [20, 22]
when the characteristic is equal to 2), up to a harmless extension of the number field ÿ, we can
associate to ÿ an abelian variety ý defined over ÿ, the Kuga–Satake abelian variety such that for
any prime ÿ of good reduction for ÿ and ý, the ℤý and crystalline realizations of the primitive
cohomology ofÿÿ embed in those of End(ÿ).
Letÿ be a place where both ÿ and ý have good reduction. For every ÿ ∈ ÿ∕ÿÿ, let

ýÿ(ÿ
) ⊂ End(

ÿ
)

be the groups of special endomorphisms of
ÿ
, as defined later in Sections 3.1.2 and 3.2.1.

Proposition 2.4. Let ÿ ⩾ 1 and letÿ be a prime of good reduction of residual characteristic coprime

to ÿ. Then there exists ÿ ∈ ÿ∕ÿÿ such that ýÿ(ÿ
) is different from zero if and only if there exists

ÿ ∈ Pic(ÿ
ÿ
) that satisfies the conditions of Theorem 2.2.

Proof. Let ÿ̃ ∈ 1

ÿ
ÿ∕ÿ be a lift of the class ÿ as given by Proposition 2.1 and let ÿ ∈ ÿ∕ÿÿ its image

after multiplication by ÿ.
From the properties of the Kuga–Satake abelian variety, we have an inclusion:

ýÿ(ÿ
) ↪ Pic(ÿ

ÿ
).

Then for any non-zero endomorphism ÿ ∈ ýÿ(ÿ
), the class ÿ = ÿ gives the desired result.

Indeed, by definition of special endomorphisms, for any prime ý, we have an ý-adic realization
ÿ ∈ ÿℤý

which by definition has residue equal to ÿ in ÿ∕ÿÿ, hence it satisfies Theorem 2.2. □

We conclude that Theorem 2.2 is implied by the following statement which we will prove in
Section 3.5.

Theorem 2.5. For ÿ ∈ ÿ∕ÿÿ as in the proof above, there exists infinitely many primesÿ coprime to

ÿ such that ý has good reduction atÿ and ýÿ(ÿ
) ≠ {0}.

3 GSpin SHIMURA VARIETIES: INTEGRALMODELS AND
ARAKELOV INTERSECTION THEORY

We introduce in this section GSpin Shimura varieties, their integral models and their toroidal
compactifications. Our main references are [2, 17, 24, 25] to which we refer for more details.
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3.1 GSpin Shimura varieties over ℚ

Let (ÿ, ý) be a quadratic even lattice of signature (ÿ, 2), ÿ ⩾ 1 and denote the bilinear form
associated to (ÿ, ý) by:

(ý ⋅ ÿ) = ý(ý + ÿ) − ý(ý) − ý(ÿ), ∀ý, ÿ ∈ ÿ .

We can construct a Shimura datum associated to (ÿ, ý) as follows: Let ÿ = GSpin(ÿℚ) be the
reductive algebraic group over ℚ of spinor similitudes and consider the Hermitian symmetric
domain

 = {ÿ ∈ ℙ(ÿℂ), (ÿ ⋅ ÿ) = 0, (ÿ ⋅ ÿ) < 0}.

Then (ÿ,) is a Hodge-type Shimura datum with reflex field equal to ℚ. For any choice of a
compact open subgroupÿ ⊂ ÿ(ýÿ), we get a Shimura variety defined overℚwhose set of complex
points is

ý(ℂ) = ÿ(ℚ)∖ × ÿ(ýÿ)∕ÿ,

and whose canonical modelý is a smooth Deligne–Mumford stack over ℚ.
The choice of the lattice (ÿ, ý) specifies a particular open subgroup of ÿ(ýÿ) defined as ÿ =

ÿ(ÿ ⊗ ℤ̂) ∩ ÿ(ýÿ), where ÿ(ÿ ⊗ ℤ̂) is the ℤ̂-Clifford algebra of (ÿ ⊗ ℤ̂, ý). The group ÿ is the

largest compact-open subgroup of ÿ(ýÿ) that stabilizes ÿ ⊗ℤ ℤ̂ and acts trivially on ÿ∨∕ÿ where
ÿ∨ is the dual lattice of ÿ defined as

ÿ∨ = {ý ∈ ÿℚ|∀ÿ ∈ ÿ, (ý ⋅ ÿ) ∈ ℤ}.

The Shimura varietyý is of Hodge type and carries a family of Kuga–Satake abelian varieties

ý
ÿ
@→ ý whose relative cohomology can be understood in terms of algebraic representations of ÿ

as follows. By construction, ÿ has an algebraic action by left multiplication on ÿ(ý) where ý =

ÿ ⊗ℤ ℚ, andÿ(ý) is theClifford algebra of (ý, ý). There is also an action ofÿ oný via an algebraic
group morphism ÿ → SO(ý). Lettingÿ = ÿ(ý), then we have an inclusion ý ↪ Endℚ(ÿ) given
by left multiplication and it is in fact aÿ-equivariant map. This yields filtered vector bundles with
integrable connection oný, denoted (ýýý, ý

∙ýýý) and (ℍýý, ý
∙ℍýý) related by amorphism of flat

filtered vector bundles

ýýý ↪ ℍýý .

The vector bundle ýýý is endowed with a bilinear form

( ⋅ ) ∶ ýýý × ýýý → ý ,

for which the line bundle ÿ = ý1ýýý is isotropic and ý0ýýý = (ý1ýýý)
⊥. Moreover, we have a

canonical isomorphism of filtered vector bundles:

ℍýý ≃ Hom(ý1ÿ∗Ω
∙
ý∕ý

,ý),

see [2, section 4.1] for more details.
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The constructions above are functorial in the following way: For any inclusion (ÿ1, ý) ⊆ (ÿ2, ý)

of quadratic lattices, then the previous discussion produces Shimura varietiesý1 andý2 over ℚ
which admit Kuga–Satake abelian schemes ýÿ → ýÿ and filtered vector bundles with integrable
connections (ýÿ

ýý
, ý∙ýÿ

ýý
) and (ℍÿ

ýý
, ý∙ℍÿ

ýý
), for ÿ = 1, 2.We have a finitemorphism ÿ ∶ ý1 → ý2,

which is étale ifÿ1 has finite index inÿ2.We also havemorphismofKuga–Satake abelian schemes

which is an isogeny in the finite index case, of degree a power of |ÿ2∕ÿ1|. Finally, we have
canonical isomorphisms of filtered vector bundles with integrable connections:

ÿ∗ý2
ýý

≃ ý1
ýý
, and ÿ∗ℍ2

ýý
≃ ℍ1

ýý
.

Remark 3.1. Since ý1 and ý2 are defined using the Clifford algebras of two different lattices, they
are different as abelian schemes. Even in the case where ÿ1 = ÿÿ2, the isogenyý1 → ÿ∗ý1, which
is induced from the map of Clifford algebras ÿ(ÿ1) → ÿ(ÿ2), is not the multiplication by a power
of ÿ but rather the multiplication by different powers of ÿ on each degree of the Clifford algebra.

3.1.1 Integral models and their compactifications

We recall in this section the construction of integral models of GSpin Shimura varieties following
[17, section 6], [2, sections 4.2, 4.3], and their toroidal compactifications following [17, 25].
Let ý be a prime number. The lattice ÿ is said to bemaximal at ý if ÿ ⊗ ℤý is a maximal lattice

of ÿ ⊗ ℚý over which the quadratic form is ℤý-valued. In particular, if the lattice ÿ is self-dual at
ý, then ÿ is maximal at ý. We say that ÿ is maximal if it is maximal at all primes.
Let Ω be the finite set of primes ý ∈ ℤ at which the lattice ÿℤý

is not maximal. Then by [17,

section 6], there is a normal and flat integral model → ℤ[Ω−1] with generic fiberý, which is
a Deligne–Mumford stack and which enjoys the following properties:

(1) The Kuga–Satake abelian scheme extends to an abelian scheme → .
(2) The line bundle ÿ = ý1ýýý extends to a line bundle ÿ on.
(3)  is smooth at a prime ý if the lattice (ÿ, ý) is almost self-dual and regular if ý is odd, and

ý2 does not divide the discriminant of ÿ.

To explain the last condition, we say that ÿ is almost self-dual at ý if either ý is odd and ÿ is
self-dual at ý or ý = 2 and ÿ2(|ÿ∨∕ÿ|) ⩽ 1, where ÿ2 is the 2-adic valuation.

3.1.2 Special divisors

By [2, section 4.5], for every scheme ÿ → , there is a functorial subspace

ý(ÿ) ⊂ End(ÿ)ℚ
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9 of 32 MAULIK and TAYOU

of special quasi-endomorphisms, the construction of which will be recalled in Section 3.2. The
space ý(ÿ) is endowed with a positive definite quadratic form ý such that ý ◦ý = ý(ý) ⋅ Idÿ

for ý ∈ ý(ÿ). One in fact can define for every ÿ ∈ ÿ∨∕ÿ a subset

ýÿ() ⊂ ý(ÿ)

of special quasi-endomorphisms whose different cohomological realizations are prescribed by ÿ,
see [2, p. 447]. We have then the following result which is [2, Proposition 4.5.8].

Proposition 3.2. For every ÿ ∈ ÿ∨∕ÿ, ÿ ∈ ý(ÿ) + ℤ, there is a finite, unramified, and relatively

representable-stack whose functor of points assigns to every scheme  →  the set

(ÿ,ÿ)() = {ý ∈ ýÿ(ÿ)|ý(ý) = ÿ}.

By [18, Proposition 2.4.3],(ÿ,ÿ) is a generalized Cartier divisor in the sense of [18, Definition
2.4.1] and can also be seen as Cartier divisor on by [18, Remark 2.4.2]. We will henceforth refer
to it as special divisor.
We can give an explicit description of the set of complex points of the special divisors as follows:

In(ℂ), a point ý ∈ (ℂ) can be lifted to a pair

(ℎ, g) ∈  × ÿ(ýÿ),

and the group of special quasi-endomorphisms ofý is canonically identified with

{ý ∈ ÿℚ| (ý ⋅ ℎ) = 0} .

Then the special divisors are given, for every ÿ ∈ ÿ∨∕ÿ andÿ, by the following double quotient:

(ÿ,ÿ)(ℂ) = ÿ(ℚ)∖

»
¼¼¼¼½

⋃
ÿ∈g .(ÿ+ÿ̂)

ý(ÿ)=ÿ

{(ℎ, g) ∈  × ÿ(ýÿ), (ℎ ⋅ ÿ) = 0}

¿
ÀÀÀÀÁ
∕ÿ .

3.2 GSpin Shimura varieties with level structure

We fix a maximal quadratic lattice (ÿ, ý) for the rest of the paper and let ÿ ⩾ 1. Consider the
inclusion of quadratic lattices

(ÿÿ, ý) ⊂ (ÿ, ý).

The discussion from the previous section applies to both lattices (ÿ, ý) and (ÿÿ, ý) yielding
normal flat integral models

 → Spec(ℤ) , and ÿ → Spec(ℤ[Ω−1])

ofý andýÿ. Here Ω is the set of primes where ÿÿ is not maximal, that is, the prime divisors of
ÿ. We have thus an abelian schemeÿ → ÿ, and a Hodge line bundle ÿÿ. We also have a finite
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étale map ÿ ∶ ýÿ → ý which extends to a finite map over ℤ[Ω−1] by [17, Proposition 6.6.1] that
we still denote by

ÿ ∶ ÿ → ℤ[Ω−1] ,

and such that ÿ∗ÿ ≃ ÿÿ.
The Kuga–Satake abelian scheme  →  pulls back to an abelian scheme ÿ∗ on ÿ with

an isogeny

which extends the isogeny over the generic fibers.
The following lemma is an easy consequence of the construction of themodule of special quasi-

endomorphisms, see also [17, Proposition 6.6.2, 6.6.3] which refers to [1, Proposition 2.6.4] for the
proof. To simplify notations, we will drop the index ÿ in the notation of special divisors inÿ, as
it will be clear from their coset in which space they live.

Lemma 3.3. For every ÿ ∈ ÿ∨∕ÿ,ÿ ∈ ý(ÿ) + ℤ, we have an equality of Cartier divisors:

ÿ∗(ÿ,ÿ) =
⨆

ÿ∈ÿ∨∕ÿÿ
ÿ=ÿ

(ÿ,ÿ) .

Definition 3.4. Let ̃ÿ be the normalization of inÿ. This a normal flat integral model over
ℤ ofýÿ extendingÿ → Spec(ℤ[Ω−1]).

It follows from the definition that we have the following commutative diagram:

The Kuga–Satake abelian scheme  →  pulls back to an abelian scheme ÿ∗ on ̃ÿ, and
the line bundle ÿ pulls back to a line bundle ÿ∗ÿ on ̃ÿ which extends ÿÿ. By abuse of notations,
we still denote ÿÿ this extension.
Our goal in the next section is to extend the Cartier divisors(ÿ,ÿ) → ÿ to ̃ÿ such that the

extension has good moduli interpretation and Lemma 3.3 still holds. We will work at each prime
in Ω and then glue the constructions.

3.2.1 Almost self-dual case

Let ý be a prime number dividing ÿ, hence ý ∈ Ω. We make the additional assumption that the
lattice ÿ is almost self-dual atý as this will be satisfied in our applications. Then the levelÿÿ atý is
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11 of 32 MAULIK and TAYOU

hyperspecial and the Shimura variety(ý) is the smooth canonicalmodel overℤ(ý) constructed in
[21, 22, 24]. Let ÿ ∶  →  be the Kuga–Satake abelian scheme. For ý ≠ ý, we have an inclusion
of étale sheaf of ℤý-modules

ýý ⊂ Endℤý
(ℍý),

where

ℍý = ÿ1
ét(∕(ý),ℤý) .

We also have an inclusion of filtered vector bundles with integrable connections:

ýýý ⊂ End(ℍýý) ,

where

ℍýý = ÿ1
ýý
(∕(ý)) ,

and a crystal of modules over the formal completion of(ý) along the special fiber:

ýcrys ⊂ End(ℍcrys),

where ℍcrys = ý1ÿ∗
crys
2,ýý

. Moreover, the formal completion of the de Rham vector bundle ýýý

with its integrable connection is isomorphic to ýcrys.
We recall now the construction of special divisors in(ý). For any scheme ÿ overℤ(ý), themod-

ule of special quasi-endomorphisms ý(ÿ)ℤ(ý)
is by definition the set of quasi-endomorphisms

ý ∈ Endℤ(ý)
(ÿ) such that

∙ the de Rham realization ýýý lies in ýýý|ÿ ,
∙ the ý-adic realization ýý lies in ýý|ÿ ⊗ ℚý ,
∙ the ý-adic realization ýý over the generic fiber ÿℚ lies in ýý|ÿℚ ⊗ ℚý, and

∙ its crystalline realization ýcrys lies in ýýÿÿý|ÿýý
.

Let ÿ ∈ ÿ∨∕ÿ and let ÿý ∈ ÿ∨∕ÿ ⊗ ℤý be its ý-adic component for every prime ý. For ý ≠ ý,
the local system ý∨

ℤý
∕ýℤý

is trivial on(ý) and isomorphic to ÿ
∨∕ÿ ⊗ ℤý . Thus, we have a well-

defined subsheaf

ÿý + ýý ⊆ ý∨
ý
.

We define

ýÿ(ÿ) = {ý ∈ ý(ÿ)ℤ(ý)
, ∀ý ≠ ý, ýý ∈ ÿý + ýý|ÿ , ýý ∈ ÿý + ýý|ÿℚ } .

Via the morphism

ÿ ∶ ̃ÿ,(ý) → (ý) ,
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all the above data pull back to ̃ÿ,(ý): We have hence ý-adic sheaves ÿ∗ýý , a de Rham vector
bundle ÿ∗ýýý, and a crystal ÿ

∗ýcrys.

For any ℤ(ý)-scheme ÿ → ̃ÿ,(ý), we define the group of special quasi-endomorphisms:

ý(ÿ∗ÿ)ℤ(ý)
⊂ End(ÿ∗ÿ)ℤ(ý)

as the quasi-endomorphisms ÿ ∈ End(ÿ∗ÿ)ℤ(ý)
whose étale, de Rham, and crystalline real-

izations lie in the subsheaves ÿ∗ýý|ÿ ⊗ ℚý , ÿ
∗ýýý|ÿ , ÿ

∗ýýÿÿý|ÿ . This is simply the pull-back of
ý(ÿ)ℤ(ý)

.

For ý ≠ ý, notice that the étale local system 1

ÿ
ÿ∗ý∨

ý
∕ÿ ⋅ ÿ∗ýý is trivial on ̃ÿ,(ý) and isomorphic

to 1

ÿ
ÿ∨∕ÿÿ ⊗ ℤý . Hence, given ÿ ∈ ÿ∕ÿÿ and ÿý its ý-adic component, we have a well-defined

subsheaf

ÿý + ÿ ⋅ ÿ∗ýý .

We define then

ýÿý
(ÿ∗ÿ) = {ý ∈ ý(ÿ∗ÿ)ℤ(ý)

|ýý ∈ ÿý + ÿ ⋅ ÿ∗ýý}

and

ýÿý
(ÿ∗ÿ) = {ý ∈ ý(ÿ∗ÿ)ℤ(ý)

|ýý ∈ ÿý + ÿ ⋅ ÿ∗ýý,ÿℚ , andýcrys ∈ ÿ∗ýýÿÿý,ÿýý
}.

Finally, we define

ýÿ(ÿ
∗ÿ) = ∩ýýÿý

(ÿ∗ÿ) ∩ ýÿý
(ÿ∗ÿ) .

We define now a functor on ℤ(ý)-schemes as follows:

ÿ ↦ (ÿ,ÿ)(ÿ) = {ÿ ∈ ýÿ(ÿ
∗ÿ), ÿ ◦ÿ = ÿ ⋅ Idÿ∗ÿ

} .

Proposition 3.5. Let ÿ ∈ ÿ∕ÿÿ. Then the above functor is representable by a finite unramified

̃ÿ,(ý)-stack which coincides over ℚ with(ÿ,ÿ)ℚ.

Proof. We give an argument inspired by Proposition 2.7.1 in [1]. From the moduli interpretation,
we notice that we have an isomorphism of ̃ÿ,(ý)-stacks:

ÿ∗(ÿ) =
⨆

ÿ∈ÿ∕ÿÿ

(ÿ,ÿ)

which shows that each (ÿ,ÿ) can be viewed as an open and closed substack of ÿ∗(ÿ). Since
(ÿ) is representable by a finite unramified (ý)-stack, we conclude that the same is true for

(ÿ,ÿ) over ̃ÿ,(ý).
One can also give an alternative proof directly by following the proof explained in [1, Proposition

2.7.2] as we already have an abelian scheme → ̃ÿ,(ý) and so the maximality assumption used
there is not needed. □
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13 of 32 MAULIK and TAYOU

In particular, it results from the previous proposition that the divisors (ÿ,ÿ) glue as a finite
unramified ̃ÿ-stack over ℤ and étale locally it is a Cartier divisor on ̃ÿ. Moreover, we have an
equality of Cartier divisors:

ÿ∗(ÿ) =
⨆

ÿ∈ÿ∕ÿÿ

(ÿ,ÿ), (3.2.1)

valid over ℤ, and which extends Lemma 3.3.

Proposition 3.6. Letÿ ∈ ÿ∕ÿÿ,ÿ ∈ ý(ÿ) + ÿℤ. Then theCartier divisor(ÿ,ÿ) → ̃ÿ is flat over

ℤ(ý).

Proof. We have the relation

ÿ∗(ÿ) =
⨆

ÿ∈ÿ∕ÿÿ

(ÿ,ÿ) ,

(ÿ) is flat over ℤ(ý) by the same argument as in [24, Proposition 5.21], hence has no vertical
components. Since ÿ is a finitemap,we conclude that none of the(ÿ,ÿ)has vertical components
and by the lemma below applied to the complete local ring at a point, they are flat over ℤ(ý). □

Lemma 3.7. Let ý be a normal, local, flat ℤ(ý)-algebra, and let ÿ be a non-zero divisor. Then all the

associated primes of ÿ have height 1. In particular, if div(ÿ) ⊂ Spec(ý) has no vertical components

of Spec(ý ⊗ ýý), then div(ÿ) is flat over ℤ(ý).

Proof. This lemma is similar to [17, Lemma 7.2.4] when ý is Cohen–Macaulay but since we only
assume normality, we give a detailed proof. By Serre’s normality criterion, for every ideal ÿ of
height ⩾ 2, ýÿ has depth at least 2 and henceÿ cannot be associated to ÿ, as otherwise the depth
of ýÿ∕ÿýÿ would be 0, which is not possible as

depth(ýÿ∕ÿýÿ) = depth(ýÿ) − 1 ⩾ 1 ,

by [32, Lemma 10.72.7.]. For the second part, to prove that div(ÿ) is flat, it is enough to prove that
it has no ý-torsion. By assumption, ÿ is not contained in any minimal prime over ý, which are
the same as the associated primes by the above. Hence ÿ is not a zero divisor in ý∕ýý, which is
equivalent to ý not being a zero divisor in ý∕ÿý, since ý is local and normal. □

3.3 Arithmetic Chow groups

We introduce in this section Arakelov Chow groups following [15] and [6]. For more details on
this section, we also refer to [30, section 3.1] and [34, section 3].
Let (ÿÿ, ý) ⊂ (ÿ, ý) be an inclusion of quadratic lattices of signature (ÿ, 2) as before, in particu-

lar ÿ is maximal with discriminant coprime to ÿ. Let ̃ÿ, be the normal integral models overℤ
of the GSpin Shimura varieties associated to (ÿÿ, ý) and (ÿ, ý) constructed in the previous section.
Let Σ be a rational polyhedral ÿÿ-admissible cone decomposition. By the main theorem of [25,

Theorem 1], ̃ÿ has a toroidal compactification ̃Σ
ÿ which is proper, normal, and flat over ℤ.
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Over ℂ, it is compatible with the toroidal compactification of its complex fiber as constructed

in [4, Chapter III]. Let ĈH
1
(̃Σ

ÿ ,ýÿÿ)ℚ be the first arithmetic Chow group of prelog forms as
defined in [6, Definition 1.15].
For any toroidal stratum representative (Ξ, ÿ) of type III where ÿ is a ray, let Ξ,ÿ be the cor-

responding boundary divisor of ̃Σ
ÿ and for Υ a toroidal stratum representative of type II, let Υ

be the corresponding boundary divisor of type II. Then by [25, Theorem 1], both Ξ,ÿ and Υ are
relative Cartier divisors over ℤ, hence flat over ℤ.
Let ÿ ∈ ÿ∕ÿÿ andÿ ∈ ℤ. We have defined in the previous section a special divisor

(ÿ,ÿ) → ̃Σ
ÿ ,

and following [10], see also [13, Theorem 1.2], we define a corrected divisor in ̃Σ
ÿ :

ýýÿ(ÿ,ÿ) = (ÿ,ÿ) +
∑
Υ

ÿΥ(ÿ,ÿ)Υ +
∑
(Ξ,ÿ)

ÿΞ,ÿ(ÿ,ÿ)Ξ,ÿ, (3.3.1)

where the coefficients ÿΥ(ÿ,ÿ) and ÿΞ,ÿ(ÿ,ÿ) are defined in [34, eqs. (4.5.1), (4.6.1)].
Following [9, 10], the divisorsýýÿ(ÿ,ÿ) can be endowed with a Green functionΦÿ,ÿ such that

the pair:

̂ýýÿ(ÿ,ÿ) = (ýýÿ(ÿ,ÿ), Φÿ,ÿ)

is an element of ĈH
1
(̃Σ

ÿ ,ýÿÿ)ℚ.
The Hodge line bundle ÿÿ has a canonical Hermitian metric with prelog singularities, the

Petersson metric, see [17, eq. (4.2.3)] for a definition. Hence it defines an element

ÿ̂ÿ ∈ ĈH
1
(̃Σ

ÿ ,ýÿÿ) .

3.3.1 Arithmetic height and main estimates

Let ÿ be a number field and let

ÿ ∶ ÿ = Spec(ÿ) → ̃Σ
ÿ

be an ÿ-point. Then the height ℎ̂(ÿ,ÿ)(ÿ) of ÿ with respect to ̂(ÿ,ÿ) is defined as the image

of ̂(ÿ,ÿ) under the composition:

ĈH
1
(̃Σ

ÿ ,ýÿÿ)
ÿ∗

@@→ ĈH
1
(ÿ)

d̂eg
@@@→ ℝ .

It is given by, see [30, eq. (3.1)]:

ℎ
̂(ÿ,ÿ)(ÿ) =

∑
ÿ⊂ÿ

(ýýÿ(ÿ,ÿ).ÿ)ÿ log |ÿ∕ÿ| +
∑

ý∈ÿ(ℂ)

Φÿ,ÿ(ý) ,
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where for a primeÿ ⊂ ÿ :

(ýýÿ(ÿ,ÿ).ÿ)ÿ =
∑

ÿ∈
(
ÿ×

̃Σ
ÿ
ýýÿ(ÿ,ÿ)

)
(ýÿ)

length

(
ýýÿ(ÿ,ÿ)×

̃Σ
ÿ
ÿ,ÿ

)
,

and ýÿ is the residual field ofÿ.

3.4 Main estimates

Let ÿ ∈ ÿ∕ÿÿ and letÿ ∈ ℤ represented by ÿ + ÿÿ.
Let ý(ÿ,ÿ) be the (ÿ,ÿ)th Fourier coefficient of Eisentein series ýÿÿ as in [7, Proposition 3.1,

(3.3)], see also [30, section 3.3]. For ÿ ⩾ 3, we have |ý(ÿ,ÿ)| = −ý(ÿ,ÿ) ≪ÿ ÿ
ÿ
2 along the integers

ÿ representable by ÿ + ÿÿ.
Our first main result is the following global height bound.

Proposition 3.8. Asÿ → ∞ and represented by ÿ + ÿÿ, we have

∑
ÿ⊂ÿ

((ÿ,ÿ).ÿ)ÿ log |ÿ∕ÿ| +
∑

ý∈ÿ(ℂ)

Φÿ,ÿ(ý) = ÿ(ý(ÿ,ÿ)) .

Recall from [30, section 6] that for a subset ÿ ⊂ ℕ, the logarithmic asymptotic density is defined
as:

lim sup
ÿ→∞

log(||{ý ∈ ÿ|ÿ ⩽ ý < 2ÿ}||)
logÿ

.

The second main results are estimates in average of multiplicities at archimedean and non-
archimedean places.

Proposition 3.9. For every ý ∈ ÿ(ℂ), there is a decomposition:

Φÿ,ÿ(ý) = ý(ÿ,ÿ) log(ÿ) + ý(ÿ,ÿ) + ý(ý(ÿ,ÿ) log(ÿ)).

Moreover, there exists a subset ÿbad ⊂ ℤ>0 of logarithmic asymptotic density 0 such that

lim
ÿ→∞
ÿ∉ÿbad

ý(ÿ,ÿ)

ÿ
ÿ
2 logÿ

= 0.

Next, we have the estimate at the non-archimedean places. Let ý be the product of primes
where ÿ intersects the boundary of ̃Σ

ÿ .

Proposition 3.10. Given ÿ,ÿ ∈ ℤ>0, ÿ coprime toý, let ÿÿ,ÿ denote the set

{
ÿ ∈ ℤ>0 ∣ ÿ ⩽ ÿ < 2ÿ,

√
ÿ

ÿ
∈ ℤ, (ÿ,ý) = 1

}
.
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For a fixed primeÿ and a fixed ÿ, we have

∑
ÿ∈ÿÿ,ÿ

(ÿ.(ÿ,ÿ))ÿ = ý(ÿ
ÿ+1
2 logÿ).

3.5 Proof of Theorem 2.5

Assuming Propositions 3.8 to 3.10 from the previous section, we prove here Theorem 2.5 which
proves Theorem 2.2 and hence Theorem 1.1.
Let ÿ be a number field and fix an embedding ÿ ∶ ÿ ↪ ℂ. Let ÿ be a K3 surface over

ÿ, and let (T(ÿÿ(ℂ)), ý) be the transcendental lattice of ÿÿ(ℂ). Let ÿ ∈ Br(ÿ) be a Brauer
class of geometric torsion order ÿ, assumed to be coprime to the discriminant of T(ÿÿ(ℂ)). Let
ÿ ∈ T(ÿÿ(ℂ))∕ÿT(ÿÿ(ℂ)) be a lift (multiplied by ÿ) given by Proposition 2.1 and let ý be the
Kuga–Satake abelian variety associated to ÿ.
Let T(ÿÿ(ℂ)) ⊂ ÿ be a maximal lattice containing T(ÿÿ(ℂ)). Then we can see ÿ ∈ ÿ∕ÿÿ. We

are now in the setup of the previous sections: Let ̃Σ
ÿ be the toroidal compactification of the

integral model of the Shimura variety associated to (ÿÿ, ý) constructed in the previous sections.
The Kuga–Satake abelian variety defines a ÿ-point in ̃Σ

ÿ which extends to a morphism:

ÿ ∶ ÿ → ̃Σ
ÿ ,

where ÿ = Spec(ÿ).
Assume by contradiction that the conclusion of Theorem 2.5 does not hold. Then there exists

finitely many primes ÿ1, … ,ÿý such that for every ÿ ∈ ℤ, the support of the intersection of ÿ
and (ÿ,ÿ) is contained in {ÿ1, … ,ÿý}.
By Proposition 3.9, there exists a subset ÿbad ⊂ ℤ>0 of logarithmic asymptotic density zero such

that outside ÿbad we have:

∑
ý∈ÿ(ℂ)

Φÿ,ÿ(ý) ≍ ý(ÿ,ÿ) log(ÿ) + ý(ý(ÿ,ÿ) log(ÿ)) ≍ −|ý(ÿ,ÿ)| log(ÿ).

Let

ÿgýýý
ÿ,ÿ

= {ÿ ∈ ÿÿ,ÿ|ÿ ∉ ÿÿÿý, (ÿ,ý) = 1, ÿ ≡ ý(ÿ) (mod ÿ)}.

Since ÿ is coprime toý, the set {ÿ ∈ ÿÿ,ÿ|(ÿ,ý) = 1, ÿ ≡ ý(ÿ) (mod ÿ)} has asymptotic density
1

2
, andwe see that |ÿgýýý

ÿ,ÿ
| ≍ ÿ

1
2 . Lemma 5.3 ensures that anyÿ ∈ ÿgýýý

ÿ,ÿ
is representable by ÿ + ÿÿ,

hebce |ý(ÿ,ÿ)|≫ ÿ
ÿ
2 forÿ ∈ ÿgýýý

ÿ,ÿ
. Thus, we get

∑
ÿ∈ÿ

gýýý
ÿ,ÿ

∑
ý∈ÿ(ℂ)

Φÿ,ÿ(ý) ≫ ÿ
ÿ+1
2 logÿ. (3.5.1)

On the other hand, by Proposition 3.10, we get by summing over the finitely many places where
either ÿ intersects a (ÿ,ÿ) or which are of bad reduction:

∑
ÿ∈ÿ

good
ÿ,ÿ

(ÿ.(ÿ,ÿ))ÿ log |ÿ∕ÿ| = ý(ÿ
ÿ+1
2 logÿ). (3.5.2)
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The combination of Equation 3.5.1 and Equation 3.5.2 contradicts Proposition 3.8. This proves
the desired result.
The rest of the paper is devoted to proving the main estimates in Section 3.4.

Remark 3.11. In the previous discussion, the assumption (ÿ, ý) = 1was used to produce infinitely
many integersÿ that satisfy (ÿ,ý) = 1 andÿ ≡ ý(ÿ) (mod ÿ), hence its appearance in ourmain
theorem. In fact, if (ÿ, ý) > 1, then we can still prove Theorem 1.1 under a weaker assumption as
follows. First, observe that the norm ý(ÿ) of the class ÿ is a well-defined element in ℤ∕ÿℤ and
is equal to ý(ÿ), for a lift ÿ. If the reduction of ý(ÿ) modulo gcd(ÿ, ý) is invertible, then we can
still find an infinite sequence of integers ÿ that satisfy (ÿ,ý) = 1 and ÿ ≡ ý(ÿ) (mod ÿ). This
is enough to prove Theorem 1.1.

4 GLOBAL ESTIMATE

We prove in this section Proposition 3.8. Our method is inspired from [17] and relies on Fourier–
Jacobi expansions of Borcherds products at the cusps of GSpin Shimura varieties.

4.1 Background results

Let (ÿ, ý) be a quadratic lattice of signature (ÿ, 2) and let  be the normal integral model over
ℤ[Ω−1] of the GSpin Shimura variety associated to (ÿ, ý) constructed in [17]. Let ÿ ∈ ý!

1− ÿ
2

(ÿÿ)

be a weakly holomorphic modular form of weight 1 − ÿ

2
with respect to the conjugate Weil

representationÿÿ.We assume that the principal part ofÿ has integral coefficients and denote it by:

∑
ÿ∈ÿ∨∕ÿ

∑
ÿ∈−ý(ÿ)+ℤ

ÿ<0

ý(ÿ,ÿ)ÿÿ, ý(ÿ,ÿ) ∈ ℤ .

By the main theorem of [17, Theorem A], there exists a Borcherds products ÿ(ÿ) associated to

ÿ which defines, after multiplying ÿ by a suitable integer, a rational section of ÿ
ý(0,0)
2 over ℚ and

its divisor in is equal to:

div(ÿ(ÿ)) =
∑
(ÿ,ÿ)

ý(ÿ, −ÿ)(ÿ,ÿ).

LetΣ be an admissible polyhedral cone decomposition and letýýÿ(ÿ,ÿ) be the completed divi-
sor as defined in Equation 3.3.1. Then by [34, Proof of Theorem 3.1], the divisor of the Borcherds
products onΣ is equal to

div(ÿ(ÿ)) =
∑
(ÿ,ÿ)

ý(ÿ, −ÿ)ýýÿ(ÿ,ÿ) .

In fact, the above relation can be upgraded into an equality by [17, eq. (1.2.2)] in ĈH
1
(Σ,ýÿÿ)ℚ:

d̂iv(ÿ(ÿ)) =
∑
(ÿ,ÿ)

ý(ÿ, −ÿ)̂ýýÿ(ÿ,ÿ) .
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On the other hand,

d̂iv(ÿ(ÿ)) =
ý(0, 0)

2
ÿ̂ .

Hence we get the following equality:

ý(0, 0)

2
ÿ̂ =

∑
(ÿ,ÿ)

ý(ÿ,ÿ)̂ýýÿ(ÿ,ÿ) .

4.2 Expansions at the cusp

We assume now that we are given two quadratic lattices (ÿÿ, ý) ⊂ (ÿ, ý) where ÿ is a maximal
lattice, almost self-dual at ÿ. Let Σ be a ÿÿ-admissible polyhedral cone decomposition and let ̃

Σ
ÿ

be the toroidal compactification of the integral model of the GSpin Shimura variety associated to
(ÿÿ, ý) constructed in Section 3.2. It is normal, proper, and flat over ℤ.
We recall in this section the theory of integral ÿ-expansions at the cusps following [17, sec-

tions 5,8]. We assume that (ÿÿ, ý) is isotropic and let (Ξ, ÿ) be a toroidal stratum representative
such that ÿ is top dimensional.
We will first describe the Fourier–Jacobi expansion over ℂ and then over ℤ(ý) where ý is a

prime number. Associated to the cusp label representative Ξ, there is an admissible parabolic
subgroup ÿΞ ⊂ ÿ, a connected component ◦ of , and an element ℎ ∈ ÿ(ýÿ). Such cusp label
representative determines a mixed Shimura datum (ýΞ,Ξ), see [17, section 4.4]. The unipo-
tent radical ÿΞ and its center ýΞ are both equal and are described at the level of ℚ-points
by:

ýΞ(ℚ) ≃ ÿℚ ⊗ ýℚ,

where ýℚ is the ℚ-isotropic line determined by the cusp label representative Ξ, ý = ÿÿ ∩ ýℚ, and
ÿ = ý⊥∕ý. Define the ℤ-lattice ΓΞ = ÿΞ ∩ ýΞ(ℚ) and the torus:

ÿΞ = ΓΞ(−1) ⊗ ÿÿ.

The level ÿÿ determines a mixed Shimura varietyýΞ associated to the mixed Shimura datum
(ýΞ,Ξ). Let ÿΞ0 be the compact open subgroup of ýΞ(ýÿ) determined as in the end of p. 220 of
[17]. It defines another mixed Shimura varietyýΞ0 overℚ associated to the same datum (ýΞ,Ξ)

and an étale morphism of Deligne–Mumford stacksýΞ0 → ýΞ.
The toroidal stratum representative (Ξ, ÿ) determines partial compactificationsýΞ(ÿ),ýΞ0(ÿ)

and 0-dimensional boundary component ýΞ,ÿ ofýΣ
ÿ ,ýΞ(ÿ), andýΞ0(ÿ). We denote by ý̂

Σ
ÿ , resp.

ý̂Ξ(ÿ), ý̂Ξ0(ÿ), the formal completion of ý
Σ
ÿ , resp. ýΞ(ÿ), ýΞ0(ÿ) along ý

Ξ,ÿ. By a theorem of
Pink [29, Corollary 7.17, Theorem 12.4], see also [17, section 2.6] which is our reference, we have
an isomorphism

ý̂Σ
ÿ ≃ ý̂Ξ(ÿ) .
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Then by [17, Proposition 4.6.2], there existsÿ0 ⊂ ý×
ÿ
compact open subgroup such that we have

the following commutative diagram of formal Deligne–Mumford stacks over ℂ:

(4.2.1)

such that the vertical arrows are formally étale surjections and

ÿ̂Ξ(ÿ) = Spf

(
ℚ[[ÿÿ]]ÿ∈Γ∨

Ξ
(1)

(ÿ⋅ÿ)⩾0

)
.

Now given a section ÿ of ÿ⊗ý
ÿ , we get by [17, eq. (4.6.10)] a trivialization, the Fourier–Jacobi

expansion on each copy of ÿ̂Ξ(ÿ)∕ℂ indexed by ÿ ∈ ℚ×
>0
∖ý×

ÿ
∕ÿ0:

FJ(ÿ)(ÿ) =
∑

ÿ∈Γ∨
Ξ
(1)

(ÿ⋅ÿ)⩾0

FJ(ÿ)ÿ (ÿ) ⋅ ÿÿ ∈ ℂ[[ÿÿ]]ÿ∈Γ∨
Ξ
(1)

(ÿ⋅ÿ)⩾0

.

Let ÿ be a weakly holomorphic modular from of weight 1 − ÿ

2
with respect to ÿÿÿ and with

integral principal part. Let ÿ(ÿ) be the associated Howard–Madapusi–Borcherds product, which

is a rational section of ÿ
ý(0,0)
2

ÿ . Let ý be the abelian extension of ℚ determined by the reciprocity
isomorphism in class field theory:

rec ∶ ℚ×
>0∖ý

×
ÿ
∕ÿ0 ≃ Gal(ý∕ℚ) .

By [17, Proposition 5.4.2], for every ÿ ∈ ℚ×
>0
∖ý×

ÿ
∕ÿ0, the Borcherds product ÿ(ÿ) has a Fourier–

Jacobi expansion given as follows:

FJ(ÿ)(ÿ(ÿ)) = ÿ(ÿ)ýrec(ÿ)ÿÿ(ÿ) ⋅ BP(ÿ)
rec(ÿ) , (4.2.2)

where ÿ(ÿ) ∈ ℂ is a constant of absolute value 1, and

BP(ÿ) ∈ ý[[ÿÿ]]ÿ∈Γ∨
Ξ
(1)

(ÿ⋅ÿ)⩾0

,

is the infinite product:

BP(ÿ) =
∏

ÿ∈(ý⊥∕ý)∨
(ÿ⋅ÿ)>0

∏
ÿ∈ℎÿ∨∕ℎÿ

(
1 − ÿÿ ⋅ ÿÿ(ÿ)

)ý(ℎ−1ÿ,−ý(ÿ))
.

In the product above,ÿ is a Weyl chamber as defined in [17, eq. (5.3.1)] such that the interior of
the cone ÿ is isomorphic to an open subset ofÿ. The number ÿÿ is a root of unity of order dividing

| 1
ÿ
ÿ∨∕ÿÿ|.
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Finally, the constant ý is given as follows, see [17, eq. (5.3.6)]: Let ýℚ be as before the isotropic
line corresponding to the cusp label representative Ξ = (, ÿ, ℎ) and let ý be a generator of ý ∩ ℎ ⋅

ÿÿ. Let ý be the order ý in (ℎ ⋅ ÿÿℤ)
∨∕(ℎ ⋅ ÿÿℤ). Then

ý =
∏

ý∈ℤ∕ýℤ
ý≠0

(
1 − ÿ

2ÿÿý
ý

)ý( ýℎ−1ý
ý

,0)

.

Remark 4.1. There is a (2ÿÿ)
ý(0,0)
2 factor in [17, Proposition 5.4.2] that disappeared from Equa-

tion 4.2.2 and the reason is that Howard–Madapusi already rescaled the original Borcherds

constructed by Borcherds in [8], denoted byΨ(ÿ) in loc. cit., by the factor (2ÿÿ)
ý(0,0)
2 to obtain ÿ(ÿ).

Lemma 4.2. The constant ÿ(ÿ) is equal to 1.

Proof. This is one of the main difficulties that was overcome in [17] in the course of the construc-
tion of ÿ(ÿ). When the lattice (ÿ, ý) satisfies the assumptions of [17, Proposition 9.1.2], then it
follows from the construction in the discussion of the middle of p. 283† loc. cit. that we can take
ÿ(ÿ) = 1. In general, ÿ(ÿ) is defined as the quotient of two regularized Borcherds products, see [17,
eq. (9.2.8)], associated to lattices ÿ1 = ÿ ⊕ Λ1 and ÿ2 = ÿ ⊕ Λ2 where Λ1 and Λ2 are certain self-
dual lattices of signature (24,0), see section 9.2. The lattices ÿ1 and ÿ2 satisfy the above conditions
and hence the constant ÿ(ÿ) appearing in their Borcherds product are equal to one. Moreover, the
regularization involves certain <analytic obstruction terms= defined in section 6.5. loc. cit. which
are simply the equations of the special divisors in the universal cover andwhose Fourier expan-
sions do not contribute to ÿ(ÿ). Since the different Fourier expansions of the Borcherds products
are compatible with each other, we conclude that ÿ(ÿ) = 1 in our case too. □

4.3 Integral theory

Let ý be a prime number. We now extend the results from the previous section to ℤ(ý). We still
assume that ÿÿ has an isotropic vector, which is always true if ÿ ⩾ 3. Let

̂Ξ(ÿ) = Spf

(
ℤ(ý)[[ÿÿ]]ÿ∈Γ∨

Ξ
(1)

(ÿ⋅ÿ)⩾0

)
,

and let ý be the localization of ý at a primeÿ ⊂ ý above ý.

Proposition 4.3. There is a unique morphism

⨆
ÿ∈ℚ×

>0
∖ý×

ÿ
∕ÿ0

̂Ξ(ÿ)∕ý → ˆ̃
Σ

ÿ

of formal Deligne–Mumford stacks which agrees with Equation 4.2.1 by base change to ℂ, and such

that for any ý in the source with image ý, the induced map on étale local rings is faithfully flat.

† Page 97 in arXiv version 2.
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For primes ý where ÿÿ is maximal, that is, those primes who do not divide ÿ, the result above
is [17, Proposition 8.2.3]. The proof of Proposition 8.2.3 in [17] uses Proposition 8.1.1 as the main
input. The latter relies on Theorem 4.1.5 from [25] and in fact the maximality assumption is not
needed in the latter result.

Lemma 4.4. Assume ý = 1. Then the divisor of the Borcherds product ÿ(ÿ) in ̃ÿ,(ý) is flat over

ℤ(ý).

Proof. As ̃ÿ,(ý) is flat and normal overℤ(ý), it is enough to show by Lemma 3.7 that the divisor of

ÿ(ÿ) in ̃ÿ,(ý) does not contain any irreducible component of the special fiber of ̃ÿ,ýý
. Since the

Fourier–Jacobi expansion of ÿ(ÿ) in Equation 4.2.2 is not zero modulo ÿ, we deduce using the
faithful flatness of Proposition 4.3, that the divisor of ÿ(ÿ) in every irreducible component that
meets the cusp is flat. Hence it is enough to prove that each irreducible component of the special
fiber ̃ÿ,ýý

meets the zero cusp ofΣ
ÿ .

Recall that we have a finite morphism

ÿ ∶ ̃ÿ,(ý) → (ý)

and(ý) is smooth overℤ(ý), in particular, every irreducible component ofýý
is connected and

meets the zero cusp. Since the morphism ÿ is finite, every irreducible component of ̃ÿ,ýý
maps

surjectivity to an irreducible component of ýý
. Hence every irreducible component of ̃ÿ,ýý

meets the 0-cusp of ̃Σ
ÿ,ýý

, which concludes the proof. □

4.4 Construction of a flat Borcherds product

We will construct in this section Borcherds products which satisfy the conditions of Lemma 4.4.
Let ÿ ∈ 1

ÿ
ÿ∨∕ÿÿ. For everyÿ ∈ ý(ÿ) + ℤ, let ÿÿ,ÿ be the linear form on the space of cusp forms

ÿ1+ ÿ
2
(ÿÿÿ) which maps a cusp from g to its (ÿ,ÿ)ýℎ-Fourier coefficient. Then there exists a finite

set of indices ý such that ÿÿ,ÿÿ
generates the ℚ-vector space

Span(ÿÿ,ÿ|ÿ ∈ ý(ÿ) + ℤ) ⊂ ÿ1+ ÿ
2
(ÿÿÿ)

∗ ,

where ÿ1+ ÿ
2
(ÿÿÿÿ )

∗ is the dual of the space of cusp forms.

Let (gÿ)ÿ∈ý be a dual family
† of cusp forms to the family (ÿÿ,ÿÿ

)ÿ∈ý and we can assume that the
(gÿ) have integral Fourier coefficients by [26]. Then for eachÿ, there exists ýÿ(ÿ,ÿ) ∈ ℚ such that
we can write

ÿ(ÿ,ÿ) =
∑
ÿ∈ý

ýÿ(ÿ,ÿ)ÿ(ÿ,ÿÿ)

and gÿ(ÿ,ÿ) = ýÿ(ÿ,ÿ)gÿ(ÿ,ÿÿ). Standard estimates on growths of coefficients of cups forms show

ýÿ(ÿ,ÿ) = ÿ(ý(ÿ,ÿ)) , (4.4.1)

†We do not require ÿÿ,ÿÿ
(gÿ) = 1, but only ÿÿ,ÿÿ

(gÿ) = 0 for ÿ ≠ ÿ.
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where ý(ÿ,ÿ) is the (ÿ,ÿ)-coefficient of the Eisenstein series introduced in the paragraph before
Proposition 3.8.
By [9, Theorem 1.17], there exists a weakly holomorphic modular form ÿ̃ÿ ∈ ý!

1− ÿ
2

(ÿÿÿ) such

that its principal part is equal to

(ÿÿ + ÿ−ÿ)ÿ
−ÿ −

∑
ÿ∈ý

ýÿ(ÿ, −ÿ)ÿ−ÿÿ (ÿÿ + ÿ−ÿ) .

Let ý = | 1
ÿ
ÿ∨∕ÿÿ| − 1 and let

ÿ(ÿ) = ((ý(ÿ, 0))ÿ∈ 1
ÿ
ÿ∨∕ÿÿ
ÿ≠0

∈ ℚý

be the vector of constant Fourier coefficients of ÿ̃ÿ. Then the span of (ÿ(ÿ))ÿ⩾1 is a finite-
dimensional vector space of ℚý which admits a basis given by (ÿ(ÿÿ))ÿ∈ý for some finite
set ý.
Finally for anyÿ, there exist coefficients ÿÿ(ÿ) ∈ ℚ such that ÿÿ(ÿ) = ÿ(ý(ÿ,ÿ)) and

ÿ(ÿ) =
∑
ÿ∈ý

ÿÿ(ÿ)ÿ(ÿÿ).

Define

ÿÿ = ÿ̃ÿ −
∑
ÿ∈ý

ÿÿ(ÿ)ÿ̃ÿÿ
.

Then by construction, all the (ÿ, 0)th Fourier coefficients of ÿÿ vanish, except possibly the (0, 0)th
coefficient. Moreover, its principal part is equal to

(ÿÿ + ÿÿ)ÿ
−ÿ −

∑
ÿ∈ý

ýÿ(ÿ,ÿ)(ÿÿ + ÿ−ÿ)ÿ
−ÿÿ

−
∑
ÿ∈ý

ÿÿ(ÿ)

(
(ÿÿ + ÿ−ÿ)ÿ

−ÿÿ −
∑
ÿ∈ý

ýÿ(ÿ,ÿÿ)(ÿÿ + ÿ−ÿ)ÿ
−ÿÿ

)
.

The latter can be rewritten as

(ÿÿ + ÿ−ÿ)ÿ
−ÿ +

∑
ý∈ý̃

ÿý(ÿ)(ÿÿ + ÿ−ÿ)ÿ
−ÿý ,

where ý̃ is finite set independent ofÿ,ÿý are independent ofÿ, and ÿý(ÿ) are rational numbers
that satisfy

ÿý(ÿ) = ÿ(ý(ÿ,ÿ)) . (4.4.2)
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Up to multiplying ÿÿ by an integer, let ÿ(ÿ) be the Borcherds product associated to ÿ as in Sec-

tion 4.1. Then ÿ(ÿÿ) is a section of ÿ
ý(0,0)
2

ÿ and we have the following relation in ĈH
1
(Σ

1
,ýÿÿ)ℚ:

ý(0, 0)

2
ÿ̂ÿ = d̂iv(ÿ(ÿÿ)) = ̂ýýÿ(ÿ,ÿ) +

∑
ý∈ý̃

ÿý(ÿ)̂ýýÿ(ÿ,ÿý). (4.4.3)

Assume now that ÿ ∈ ÿ∕ÿÿ and we will extend the above relation above the primes ý ∈ Ω. Let
̃Σ

ÿ be the proper, flat integral model over ℤ extendingΣ
ÿ .

Assume also that ÿÿ has an isotropic vector. Then, by choice of the Borcherds product ÿ(ÿÿ),
the constantý from Equation 4.2.2 is equal to 1, hence by Lemma 4.4, the divisor of the Borcherds
ÿ(ÿÿ) is flat over ℤ(ý). By Proposition 3.6, the special divisors (ÿ,ÿ) are flat over ℤ(ý) and the
boundary divisors are flat over ℤ(ý) by [25, Theorem 1]. Hence Equation 4.4.3 holds over ℤ(ý) for
all ý ∈ Ω. Hence we conclude.

Proposition 4.5. Letÿ ∈ ÿ∕ÿÿ andassume that ÿÿ is isotropic. Thenwe have in ĈH
1
(̃ÿ

Σ
,ýÿÿ)ℚ:

ý(0, 0)

2
ÿ̂ÿ = d̂iv(ÿ(ÿÿ)) = ̂ýýÿ(ÿ,ÿ) +

∑
ý∈ý̃

ÿý(ÿ)̂ýýÿ(ÿ,ÿý),

where the integersÿý are independent ofÿ.

4.5 Summary

Let ÿ ∈ ℕ, then Proposition 4.5 provides a section ÿ(ÿÿ) of ÿ
ý(0,0)
2

ÿ that satisfies the following

relation in ĈH
1
(̃Σ

ÿ ,ýÿÿ)ℚ:

d̂iv(ÿ(ÿÿ)) = ̂ýýÿ(ÿ,ÿ) +
∑
ý∈ý̃

ÿý(ÿ)̂ýýÿ(ÿ,ÿý)

from which it follows that

ℎ
̂ýýÿ(ÿ,ÿ)(ÿ) =

ý(0, 0)

2
ℎÿ̂ÿ (ÿ) −

∑
ý∈ý̃

ÿý(ÿ) ⋅ ℎ
̂ýýÿ(ÿ,ÿÿ)

(ÿ) .

Using Equation 4.4.2 and Equation 4.4.1, we get

ℎ
̂(ÿ,ÿ)(ÿ) = ÿ(ý(ÿ,ÿ)) . (4.5.1)

Using Equation 3.3.1, we have the equality:

(
ÿ.ýýÿ(ÿ,ÿ)

)
= (ÿ.(ÿ,ÿ)) +

∑
Υ

ÿΥ(ÿ,ÿ)
(
ÿ.Υ

)

+
∑
(Ξ,ÿ)

ÿΞ(ÿ,ÿ)
(
ÿ.Ξ,Σ

)
, (4.5.2)
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and from [34, Proposition 4.13], we have the following estimate asÿ → ∞:

(1) For any type II toroidal stratum representative Υ, we have

ÿΥ(ÿ) ≪ÿ ÿ
ÿ
2
−1+ÿ . (4.5.3)

(2) For any type III toroidal stratum representative (Ξ, ÿ) such that ÿ is a ray, we have

ÿΞ,ÿ(ÿ) ≪ÿ ÿ
ÿ−1
2
+ÿ. (4.5.4)

To prove Proposition 3.8, we first use Equation 4.5.2 to write:

∑
ÿ⊂ÿ

((ÿ,ÿ).ÿ)ÿ log |ÿ∕ÿ| +
∑

ý∈ÿ(ℂ)

Φÿ,ÿ(ý) = ℎ
̂(ÿ,ÿ)(ÿ)

−
∑
Υ

ÿΥ(ÿ,ÿ)
(
ÿ.Υ

)
−
∑
(Ξ,ÿ)

ÿΞ(ÿ,ÿ)
(
ÿ.Ξ,Σ

)
.

Then we can bound the right-hand side above using the estimates from Equation (4.5.1),
Equation (4.5.3), and Equation (4.5.4). This finishes the proof.

5 ARCHIMEDEAN ESTIMATES

Our goal in this section is to prove Proposition 3.9. We follow the approach explained in [30,
section 5].

5.1 Development of the Green function

The Green function Φÿ,ÿ has an explicit expression due to Bruinier [9, section 2] and which we
recall following [30, section 5].
Let (ÿ, ý) be a quadratic lattice of signature (ÿ, 2). Let ý = 1 + ÿ

2
, ÿ ∈ ÿ∨∕ÿ, and ý > ý

2
a real

number. Let

ý(ý, ÿ) = ÿ

(
ý − 1 +

ý

2
, ý + 1 −

ý

2
, 2ý; ÿ

)
,

where

ÿ(ÿ, ÿ, ý; ÿ) =
∑
ÿ⩾0

(ÿ)ÿ(ÿ)ÿ
(ý)ÿ

ÿÿ

ÿ!

is the Gauss hypergeometric function as in [5, Chapter 15], and (ÿ)ÿ =
Γ(ÿ+ÿ)

Γ(ÿ)
for ÿ, ÿ, ý, ÿ ∈ ℂ and

|ÿ| < 1.
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For ý ∈ , define

ÿÿ,ÿ(ý, ý) = 2
Γ(ý − 1 + ý

2
)

Γ(2ý)

∑
ý(ÿ)=ÿ,ÿ∈ÿ+ÿ

(
ÿ

ÿ − ý(ÿý)

)ý−1+ ý
2

ý

(
ý,

ÿ

ÿ − ý(ÿý)

)
. (5.1.1)

Then ÿÿ,ÿ(ý, ý) admits a meromorphic continuation to the complex plane with a pole at ý =
ý

2
with residue −ý(ÿ,ÿ). We define then

ÿÿ,ÿ(ý) = lim
ý→ ý

2

»
¼¼½
ÿÿ,ÿ(ý, ý) +

ý(ÿ,ÿ)

ý − ý

2

¿
ÀÀÁ
. (5.1.2)

Let ý ↦ ÿ(ÿ,ÿ, ý) be the holomorphic function for Re(ý) > 1 defined in [30, eq. (3.3)], see also
[7, eq. (3.22)]. Then define

ÿ(ÿ,ÿ, ý) = −
ÿ
(
ÿ,ÿ, ý − ý

2

)
.
(
ý − 1 + ý

2

)

(2ý − 1).Γ
(
ý + 1 − ý

2

) . (5.1.3)

By [9, Proposition 2.11], we can write for ý ∈ ,

Φÿ,ÿ(ý) = ÿÿ,ÿ)(ý) − ÿ′
(
ÿ,ÿ,

ý

2

)
.

5.2 Estimate on ÿ′(ÿ,ÿ, ý
ÿ
)

We make the following assumptions in this section: ÿ is maximal and ÿ ∈ ÿ∕ÿÿ has torsion
coprime to the discriminant of ÿ. Our goal in this section to prove the following theorem.

Theorem 5.1. Letÿ ⩾ 1 be an integer. Forÿ → ∞ representable by ÿ + ÿÿ and such that
√

ÿ

ÿ
∈ ℤ,

we have

ÿ′
(
ÿ,ÿ,

ý

2

)
= |ý(ÿ,ÿ)| log(ÿ) + ý(ý(ÿ,ÿ) log(ÿ)).

Proof. The theorem above has been proved in [30, Proposition 5.2] under the assumption that ÿ
is maximal and ÿ = 0. We recall the main steps here and make the appropriate modifications.
Taking logarithmic derivatives at ý = ý

2
in Equation 5.1.3 yields

ÿ′
(
ÿ,ÿ, ý

2

)

ÿ
(
ÿ,ÿ, ý

2

) =
ÿ′(ÿ,ÿ, 0)

ÿ(ÿ,ÿ, 0)
−
2

ÿ
− Γ′(1) .
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Let

ýÿ,ÿ(ÿ) = |{ÿ ∈ ÿ∕ÿÿ| ÿ = ÿ (mod ÿÿ), ý(ÿ) = ÿ (mod ÿ)}|.

Let also ýÿ denote the order of ÿ in
1

ÿ
ÿ∨∕ÿÿ and for a prime number ý, let

ýý = 1 + 2ÿý(2ÿýÿ) .

Define the polynomial L(ý)
ÿ,ÿ

(ý):

L
(ý)
ÿ (ý) = ýÿ,ÿ(ý

ýý )ýýý + (1 − ýÿ−1ý)

ýý−1∑
ÿ=0

ýÿ,ÿ(ý
ÿ)ýÿ ∈ ℤ[ý] .

For ý ∈ ℂ, define the function ÿÿ,ÿ(ý):

ÿÿ,ÿ(ý) =

⎧⎪⎪⎪«⎪⎪⎪¬

∏
ý∖2ý2

ÿ
ÿdet(ÿ)

L
(ý)

ÿ,ÿ

(
ý
1− ÿ

2 −ý
)

1−ÿÿ0 (ý)ý
−ý , if ÿ = 2 + ÿ is even,

∏
ý∖2ý2

ÿ
ÿdet(ÿ)

1−ÿÿ0 (ý)ý
1
2 −ý

1−ý1−2ý
⋅ L

(ý)

ÿ,ÿ

(
ý1−

ÿ
2
−ý
)
, if ÿ is odd.

(5.2.1)

Here, ÿÿ0
is the quadratic character associated to a fundamental discriminant ÿ0 of the number

field ℚ(
√
ÿ) where ÿ is defined by

(−1)
ÿ
2 det(ÿ), if ÿ is even,

2(−1)
ÿ+1
2 ý2

ÿ
ÿdet(ÿ), otherwise.

By our choice ofÿ, the fundamental discriminant is independent ofÿ, hence [7, Theorem 4.11,
(4.73), (4.74)] implies

ÿ′(ÿ,ÿ, 0)

ÿ(ÿ,ÿ, 0)
= log(ÿ) +

ÿ′
ÿ,ÿ

(ý)

ÿÿ,ÿ(ý)
+ ÿ(1).

It suffices thus to show
ÿ′
ÿ,ÿ

(ý)

ÿÿ,ÿ(ý)
= ý(log(ÿ). Taking the logarithmic derivative in (5.2.1) at ý = ý,

we get for ÿ even

ÿ′
ÿ,ÿ

(ý)

ÿÿ,ÿ(ý)
= −

∑
ý∖2ý2

ÿ
ÿdet(ÿ)

»
¼¼½

ý1−ÿL
(ý)′

ÿ,ÿ

(
ý1−ÿ

)

L
(ý)

ÿ,ÿ

(
ý1−ÿ

) +
ÿÿ0

(ý)

ýý − ÿÿ0
(ý)

¿
ÀÀÁ
log(ý) ,
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and for ÿ odd

ÿ′
ÿ,ÿ

(ý)

ÿÿ,ÿ(ý)
= −

∑
ý∖2ý2

ÿ
ÿdet(ÿ)

»
¼¼½

ý1−ÿL
(ý)′

ÿ,ÿ

(
ý1−ÿ

)

L
(ý)

ÿ,ÿ

(
ý1−ÿ

) −
ÿÿ0

(ý)

ýý−
1
2 − ÿÿ0

(ý)
+

2

ý2ý−1 − 1

¿
ÀÀÁ
log(ý)

We have L(ý)
ÿ,ÿ

(ý1−ÿ) = ýÿ,ÿ(ý
ýý )ý(1−ÿ)ýý and

L
(ý)′

ÿ,ÿ
(ý1−ÿ) = ýýýÿ,ÿ(ý

ýý )ý(1−ÿ)(ýý−1) −

ýý−1∑
ÿ=0

ýÿ,ÿ(ý
ÿ)ý(ÿ−1)(1−ÿ) .

Hence

|||||||

ý1−ÿL
(ý)′

ÿ,ÿ

(
ý1−ÿ

)

L
(ý)

ÿ,ÿ

(
ý1−ÿ

)
|||||||
=

||||||
ýý −

ýý−1∑
ÿ=0

ýÿ,ÿ(ý
ÿ)

ýÿ,ÿ(ý
ýý )

ý(ÿ−ýý)(1−ÿ)
||||||
=

||||||
ýý −

ýý−1∑
ÿ=0

ÿý(ÿ,ÿ, ÿ)

ÿý(ÿ,ÿ,ýý)

||||||
,

where ÿý(ÿ,ÿ, ÿ) = ý−ÿ(ÿ−1)ýÿ,ÿ(ý
ÿ). The proof of [30, Proposition 5.2] shows then it is enough

to prove Lemma 5.2 below. Assuming this lemma, we get:

|||||||

∑
ý∖2ý2

ÿ
ÿdet(ÿ)

ý1−ÿL
(ý)′

ÿ,ÿ

(
ý1−ÿ

)

L
(ý)

ÿ,ÿ

(
ý1−ÿ

) ⋅ log(ý)

|||||||
⩽ ÿ

∑
ý∖2ý2

ÿ
ÿdet(ÿ)

log(ý)

ý

= ÿ(log log(ÿ)). □

Lemma 5.2. Let ÿ ∈ ÿ∕ÿÿ be a primitive element, ÿ ∈ ℤ representable by ÿ + ÿÿ, and ý a prime

number. Then there exists a constant ÿ independent ofÿ and ý such that

||||||
ÿý −

ýý−1∑
ÿ=0

ÿý(ÿ,ÿ, ÿ)

ÿý(ÿ,ÿ,ýý)

||||||
⩽
ÿ

ý
.

Proof. For ý coprime to ÿ, the result follows from [30, Proposition 4.1]. Hence we can assume that
ý divides ÿ. By assumption, ÿ is unimodular at ý and ÿ is primitive ÿ-torsion, hence every solution
ý ∈ ÿ + ÿ(ÿ∕ýýÿ) is good in the sense of [16, Definition 3.1]. Let ÿ = 1 + ÿý(ÿ). Then using that
ÿ ≠ 0modulo ý, we get for ÿ ⩾ ÿ,

ýÿ,ÿ(ý
ÿ) = ý(ÿ−ÿ)(ÿ−1) ⋅ýÿ,ÿ(ý

ÿ) = ý(ÿ−ÿ+1)(ÿ−1),

and ÿý(ÿ,ÿ, ÿ) = ÿý(ÿ,ÿ, ÿ) = 1

ý
. As for ÿ < ÿ, we have ýÿ,ÿ(ý

ÿ) = 1. Hence,

||||||
ÿý −

ýý−1∑
ÿ=0

ÿý(ÿ,ÿ, ÿ)

ÿý(ÿ,ÿ,ýý)

||||||
=

1

ÿý(ÿ,ÿ, ÿ)

||||||

ÿ−1∑
ÿ=0

1

ý
−

1

ýÿ(ÿ−1)

||||||
≪

1

ý
.

□
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Lemma 5.3. Let ÿ be amaximal lattice and let ÿ ⩾ 1 coprime to the discriminant of ÿ. Let ÿ ∈ ÿ∕ÿÿ

be a primitive ÿ torsion element. Then any integer ÿ large enough such that ÿ ≡ ý(ÿ) (mod ÿ) is

representable by ÿ + ÿÿ.

Proof. There is no local obstruction to finding ÿ and hence the argument of [30, Corollary 4.7]
still applies. □

5.3 Proof of Proposition 3.9

We assume in this section that ÿ is maximal lattice, self-dual at primes dividing ÿ. Let ÿ ∈ ÿ∕ÿÿ,
ÿ ∈ ý(ÿ) + ÿℤ and let ÿÿ,ÿ be the Green function defined by Equation 5.1.1.
For ý ∈ , define

ý(ÿ,ÿ, ý) = −2
∑

√
ÿÿ∈ÿ+ÿÿ

|ý(ÿý)|⩽1,ý(ÿ)=1

log(|ý(ÿý)|).

Then by [30, Proposition 5.4], we have

ÿÿ,ÿ(ÿ) = ý(ÿ,ÿ, ý) + ÿ(ÿ
ÿ
2 ) .

The reference only proves it for ÿ = 0 and ÿ maximal, but the same proof applies with minor
changes.

Proposition 5.4. There exists a subset ÿbad ⊂ ℤ>0 of logarithmic asymptotic density zero such that

for everyÿ ∉ ÿbad, we have

ý(ÿ,ÿ, ý) = ý(ÿ
ÿ
2 log(ÿ)).

Proof. Let

ý(ÿ, ý) = −2
∑

√
ÿÿ∈ÿ

|ý(ÿý)|⩽1,ý(ÿ)=1

log(|ý(ÿý)|) .

Notice that ý(ÿ,ÿ, ý) ⩾ 0 and that

∑
ÿ∈ÿ∕ÿÿ

ý(ÿ,ÿ, ý) = ý(ÿ, ý) .

Hence

0 ⩽ ý(ÿ,ÿ, ý) ⩽ ý(ÿ, ý).

Now we can use [30, Theorem 6.1] to bound ý(ÿ, ý), yielding the desired result. This proves
Proposition 3.9. □
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6 NON-ARCHIMEDEAN ESTIMATES

Our goal in this section is to prove the local non-archimedean estimates, Proposition 3.10.
Let ÿ ∶ ÿ → ̃Σ

ÿ be the period map, where ̃
Σ
ÿ is the toroidal compactification of the integral

model of the GSpin Shimura variety associated to (ÿÿ, ý).

6.1 Good reduction case

Letÿ be a prime of good reduction. By the moduli interpretation of(ÿ,ÿ), see [30, Lemma 7.2]
for a proof, we have

(ÿ.(ÿ,ÿ)) =

∞∑
ÿ=1

|{ý lifts to order ÿ, ý ∈ ýÿ(ÿ), ý(ý) = ÿ}| .

In particular,

0 ⩽ (ÿ.(ÿ,ÿ)) ⩽ (ÿ.(ÿ)) ,

where (ÿ) →  is the special divisor in

By [30, Theorem 7.1], we have the estimate

∑
ÿ∈ÿÿ,ÿ

(ÿ.(ÿ)) = ý(ÿÿ∕2 log(ÿ)).

Hence, combined with the inequality above, we get

∑
ÿ∈ÿÿ,ÿ

(ÿ.(ÿ,ÿ)) = ý(ÿÿ∕2 log(ÿ)) ,

which proves Proposition 3.10]

6.2 Bad reduction case: Type II

Let ÿ be a prime of bad reduction. The toroidal compactification ̃Σ
ÿ has a stratification with

two types of boundary components as explained in [34]. We will use the results from that paper to
analyze the local intersectionmultiplicities andwe focus now on boundary components of type II.
LetΥ be a toroidal stratum representative of type II,Υ the corresponding boundary component

of type II, and we assume in this section that boundary point ÿ(ýÿ) lies in Υ(ýý).
By Equation 3.2.1, we have

0 ⩽ (ÿ.(ÿ,ÿ))ÿ ⩽ (ÿ.(ÿ)))ÿ. (6.2.1)

Let ÿ ∈ ℤ⩾1. For ÿ ∈ ℤ>0, let ÿÿ,ÿ denote the set

{
ÿ ∈ ℤ>0 ∣ ÿ ⩽ ÿ < 2ÿ,

ÿ

ÿ
∈ ℤ ∩ (ℚ×)2, (ÿ,ý) = 1

}
.
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Then by [34, Proposition 5.2], we have

∑
ÿ∈ÿÿ,ÿ

(ÿ.(ÿ))ÿ = ý(ÿ
ÿ+1
2 logÿ).

Combining Equation 6.2.1 and the previous estimate, we get Proposition 3.10 in the type II case.

6.3 Bad reduction case: Type III

Let (Ξ, ÿ) be a toroidal stratum representative of type III where ÿ is a ray. Let Ξ,ÿ be the corre-
sponding boundary component of type III and we assume in this section that the boundary point
ÿ lies in Ξ,ÿ(ýý).
Similarly, we have Equation 3.2.1

0 ⩽ (ÿ.(ÿ,ÿ))ÿ ⩽ (ÿ.(ÿ)) .

Let ÿ ∈ ℤ⩾1 coprime to ý and ÿ ∈ ℤ>0. Let ÿÿ,ÿ denote the set

{
ÿ ∈ ℤ>0 ∣ ÿ ⩽ ÿ < 2ÿ,

ÿ

ÿ
∈ ℤ ∩ (ℚ×)2, (ÿ,ý) = 1

}
.

Then we have by [34, Proposition 5.4],

∑
ÿ∈ÿÿ,ÿ

(ÿ.(ÿ))ÿ = ý(ÿ
ÿ+1
2 logÿ).

Combining the two previous estimates concludes the proof of Proposition 3.10 in the type III
case.

Remark 6.1. As ÿ ≡ ý(ÿ) (mod ÿ), we see that in order to apply the results proved in [34], we
need that ý(ÿ) is coprime to ý.
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