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Demystifying unsupervised learning: how it
helps and hurts
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Humans andmachines rarely have access to explicit external feedback or super-

vision, yet manage to learn. Mostmodernmachine learning systems succeed be-

cause they benefit from unsupervised data. Humans are also expected to benefit

and yet, mysteriously, empirical results are mixed. Does unsupervised learning

help humans or not? Here, we argue that the mixed results are not conflicting an-

swers to this question, but reflect that humans self-reinforce their predictions in

the absence of supervision, which can help or hurt depending onwhether predic-

tions and task align. We use this framework to synthesize empirical results

across various domains to clarify when unsupervised learning will help or hurt.

This provides new insights into the fundamentals of learning with implications

for instruction and lifelong learning.

“There was, Carter thought, a downside to experience. ‘Experience is making the same

mistake over and over again, only with greater confidence,’ he said. The line wasn’t his, but

he liked it.”

[Michael Lewis, The Premonition: A Pandemic Story]

Supervised and unsupervised learning

We live and learn in an environment that rarely provides us with supervision (see Glossary) in the

form of explicit external feedback. For example, we have learned to call some animals ‘sheep’

and others ‘goats’. Many of us acquired this distinction at a young age when we spent much

time around our caretakers. Like an external teacher, they provided us explicitly with the correct

labels by naming animals in our field of view. Getting older, we still encounter sheep and goats, as

well as animals we have never seen before, but we now rarely have a teacher in tow. Thus, our

learning about the world could be helped if we also made use of the information contained in all

these unsupervised experiences (Figure 1).

Machine learning faces a conspicuously similar problem. Typically, an abundance of unsuper-

vised data is available for learning (e.g., images of sheep and goats), but supervision

(e.g., human-annotated sheep/goat labels for each image) is rare and expensive. This has led

to extensive research aiming to harness the information contained in unsupervised data. As a re-

sult, we now have powerful learning algorithms able to extract statistical information and fea-

tures from unsupervised data [1], which can be further fine-tuned to specific tasks [2] or used

to boost supervised learning [3]. Ultimately, the tremendous success of machine learning

methods stems from their ability to learn in the absence of supervision.

The mystery of unsupervised learning in humans

It appears clear that both humans and machines benefit from leveraging unsupervised experi-

ences. Thus, there has been a surge in empirical and computational work over the past decades
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proposing that humans perform unsupervised learning by applying information-processing ca-

pabilities that they share with machine learning algorithms [4–6]. A simple and intuitive prediction

results from this: if humans share unsupervised information-processing capabilities with ma-

chines, and machines show benefits leveraging unsupervised data, then humans should benefit

from their unsupervised experience in the same way. That is, humans should be able to recover

statistical information from their unsupervised experiences and they should be able to combine it

with their rare, supervised experiences.

Paradoxically, this is not supported by the scientific literature. In the most basic learning experi-

ments, humans are not guaranteed to extract statistical information from their unsupervised expe-

riences [7–10] or to boost their supervised learning [11–13]. In fact, unsupervised experiences can

reduce performance in category learning [14], language learning [15,16], motor learning [17], and
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(A) Different quantities of supervision

(B) Learning from unsupervised experiences 
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Figure 1. Learning with and without supervision. (A) Illustration of supervised, unsupervised, and semi-supervised learning problems. (B) Empirical results conflict as

to whether unsupervised experiences improve human performance in unsupervised and semi-supervised learning tasks. We refer to the momentary learning from

unsupervised experiences as simply ‘unsupervised learning’ throughout the text. The reader is encouraged to guess whether the test animal is a sheep or a goat.

(While most nonexperts make their sheep/goat predictions based on unreliable features, such as woolliness, the easiest way to tell them apart is by their tails: goats

point their tails upward while sheep cannot lift their tails. Thus, the test animal in B is a goat.)
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stereotyping [18,19]. Thus, instead of supporting the view that unsupervised experiences help

humans in their learning, the literature on laboratory studies is riddled with equivocal results

about their benefits. In one experiment, people may need feedback to learn how to distinguish be-

tween different visual inputs; in another, they do not [7,20].

These results stem from highly influential experimental designs that have shaped our understand-

ing of how humans extract statistical information. Unsupervised studies often use a simple

stimulus–response or passive exposure paradigm. These well-controlled designs are popular be-

cause they parallel supervised designs, allowing comparisons. In unsupervised studies, learners

predict task-appropriate responses from stimuli without feedback. The statistics in the stimuli are

the only information available for learning. Supervised studies are close analogs that provide ad-

ditional corrective feedback or correct labels, giving learners more information.

Outside the laboratory, human learning operates on a larger scale in terms of data and time. For

example, an abundance of additional information can inform learning about sheep and goats,

such as separate housing. Learning also serves long-term performance in the world rather

than on one specific task. Similarly, modern machine learning solves increasingly large-scale

learning problems. Given that machine learning algorithms can be flexibly chosen for specific

problems, supervised algorithms now solve unsupervised problems by adapting the objective

of the learning task, as in self-supervised learning. Another example is large language

models, which learn not by receiving feedback on text they generate, but from predicting

words in a sequence. This then serves as a foundation model for further supervised fine-

tuning on how to engage in friendly chat with users. These developments increase the

complexity in technical approaches and terminology that has yet to be reconciled with

human learning inside and outside the laboratory. While an analogy between human and

machine unsupervised learning is compelling and often assumed, the devil appears to be in

the details.

Here, we mainly focus on laboratory studies that test unsupervised or semi-supervised learn-

ing using well-controlled, influential designs. Other unsupervised paradigms exist, but are rarer

[21]. Our narrower focus ensures that results across various learning contexts are informative

about the same learning principles. We refer to momentary learning from unsupervised experi-

ences in experimental tasks as simply ‘unsupervised learning’ to differentiate it from momentary

learning with supervisory signals. While focusing on laboratory studies, we also present evidence

suggesting unsupervised learning to be limited more generally, because it can worsen perfor-

mance in machines [3] and human learning outside the laboratory [22]. In fact, telling sheep

apart from goats is a task on which many people fail despite recurring exposure (Figure 1B).

The unsupervised snowball effect

How can we explain the mysterious results? When does unsupervised learning help and when

does it not? We think that the answer lies in the way in which unsupervised learning is affected

by the relationship between the experimenter-defined task and the representations that sub-

jects have acquired from prior experience (representation-to-task alignment [14]).

Concretely, we propose the unsupervised learning mechanism to be self-reinforcement,

by which humans learn from their own predictions, such that pre-existing associations be-

tween experiences and appropriate responses are strengthened (Figure 2B, Key figure) and

decision confidence increases. For example, when seeing the woolly goat in Figure 1B, readers

who categorize by woolliness would incorrectly self-reinforce their predictions that it is a sheep,

whereas readers who know to attend to the tail would correctly self-reinforce their prediction

that it is a goat.
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Glossary

Learning algorithm: specific algorithm

used tomaximize a task objective, which

can be supervised or unsupervised. A

supervised algorithm (e.g., a standard

neural network) learns an input/stimulus

to output/response mapping and uses

supervision to improve its predictions.

Apart from solving supervised learning

problems, supervised algorithms can

also be used to tackle unsupervised

learning problems by adapting the task

objective (e.g., self-supervised learning).

An unsupervised algorithm (e.g., a

standard Bayesian Graphical Model)

extracts information from the inputs/

stimuli without accessing ground-truth

supervision. Unsupervised algorithms

are designed to solve unsupervised

problems, but can also be adapted to

tackle supervised learning problems.

Learning problem: type of learning

problem that is partially defined by the

data, especially whether supervision is

available (i.e., supervised or

unsupervised learning problem).

Learning task: specific task (or task

objective) that is definedwithin a learning

problem andwhich can be supervised or

unsupervised. In experimental studies,

the task objective derives from the

experimenter-defined stimulus–

response mapping.

Representation-to-task alignment:

degree to which the internal

representations of a learning system

create a similarity space that suggests

an input/stimulus to output/response

mapping that is in agreement with the

objective mapping defined by the task.

Self-reinforcement: mechanism by

which a system learns from its own

predictions in lieu of ground-truth

supervision. This has the effect that

existing predictions from inputs/stimuli

to outputs/responses are strengthened.

In principle, this mechanism can be

implemented by both supervised and

unsupervised algorithms. This

mechanism is popular in semi-

supervised machine learning and is

called ‘self-training’ or ‘pseudo-labeling’.

Self-supervised learning: machine

learning approach that solves an

unsupervised learning problem by

turning it into a supervised task so that a

supervised algorithm can be applied.

Since no external supervision is

available, supervision is created directly

from the unsupervised data.

Semi-supervised learning: learning in

a problem/task that offers a mixture of



Key figure

The unsupervised snowball effect
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Figure 2. Two key factors affect unsupervised learning: representation-to-task alignment and self-reinforcement, resulting in the

unsupervised snowball effect, as illustrated in the example of a category learning task. (A) Relationship between experimenter-

defined task, its internal representation, and the resulting predictions, responses, and accuracy. Factors including prior

experience, context, or attention transform observed stimuli and warp their similarities into an internal representational space that

might or might not recover experimenter-defined task statistics. If learners have a task-aligned representation, stimuli from different

categories are sufficiently separated in the learner’s representational space such that it supports accurate predictions. The task

will appear easy, and performance will be high. If learners have a task-misaligned representation, items from different categories

are not well separated in the learner’s representational space, such that they make incorrect predictions based on whichever

task-irrelevant statistics their representations reflect. The task will appear hard, and performance will be low. Thus, we can

assume an equivalence between alignment in representations, accuracy of predictions, and task difficulty. (B) Self-reinforcement

of predictions. When a stimulus is observed without supervision, an appropriate response is predicted and subsequently self-

reinforced. This results in changes in the representations and predictions. (C) If prior representations and predictions are

sufficiently aligned with the task, self-reinforcement leads to performance improvement. In the case of misalignment, self-

reinforcement has detrimental or no effect on performance. This results in a snowball effect, the course of which can only be

changed if supervision is provided to correct mistakes and align representations with the task. Adapted from [19] (B).
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supervised and unsupervised inputs/

stimuli.

Supervised learning: learning in a

problem/task that requires the learning

of an input/stimulus to output/response

mapping and in which ground-truth

supervision is available.

Supervision/feedback: in machine

learning, supervision is defined as the

delivery of ground-truth outputs

(e.g., labels) following some inputs

(e.g., images). In human learning studies,

supervision more often refers to the

delivery of corrective feedback

(e.g., correct/incorrect response) on

their response to some preceding

stimulus.

Unsupervised learning: learning in a

problem/task without supervision,

simply through extraction of information

from the observation of inputs/stimuli.



Since strengthening predictions snowballs existing learning without changing its course, self-

reinforcement can help or hurt depending on how accurate the predictions are for the task at

hand (Figure 2A). Self-reinforcing predictions that are largely correct will improve performance

in the task. However, predictions will only be largely correct if prior experiences shaped the

learner’s representations in a way that new experiences elicit appropriate predictions. If this is

the case, representations and task are aligned, the task feels ‘easy’, and supervision is superflu-

ous. By contrast, self-reinforcing predictions that are largely incorrect will have a detrimental, or at

best no, effect on performance. Predictions will be largely incorrect if prior experiences have

shaped the learner’s representations to be misaligned with the task. In this case, the task feels

‘hard’, and supervision is necessary to adjust the unhelpful representations and predictions of

the learner. That self-reinforcing existing representations results in these types of learning dynam-

ics has previously been described in the specific context of unsupervised Hebbian (correlational)

learning [23,24]. Our framing of unsupervised learning in terms of representation-to-task align-

ment and self-reinforcement is more general in that it does not assume specific representations

or a specific computational model of learning.

This type of self-reinforcing snowball effect can also be seen when trying to master a new skill,

such as playing the violin. This requires practicing with the correct technique because a faulty

technique engrains mistakes if left uncorrected. Thus, from our perspective, the equivocal results

in the literature about the benefit of unsupervised experiences do not reflect a conflict, but are in

fact expected from representation-to-task alignment and its interaction with unsupervised self-

reinforcement. Our argument not only follows an intuitive logic, but is also supported by the the-

oretical principles that allow machine learning algorithms to leverage unsupervised data on many,

but not all, occasions (Box 1).

Here, we provide support for this perspective by synthesizing various cognitive science literatures

that have long investigated the questions about how feedback influences human learning. The

Box 1. Theoretical principles predict unsupervised snowball effect

We propose that human predictions self-reinforce in the absence of supervision. Since self-reinforcement simply snow-

balls prior learning, it can help or hurt performance depending on whether predictions and their underlying representations

align with the task. Unsupervised learning only succeeds in tasks aligned with the learner’s representations.

This intuitive reasoning is supported by the theoretical and computational principles that allow unsupervised and semi-

supervised machine learning algorithms to be successful. Inevitably, unsupervised learning can only recover ground-

truth structure in the data if this structure is reflected in salient data statistics. For example, for clustering to work, sim-

ilar points must belong to the same cluster and dissimilar points must belong to different clusters (this is known as the cluster

assumption [95]). In other words, clusters need to be sufficiently easy to tell apart to be accurately recovered. In the same

way, successful semi-supervised learning requires the to-be-learned input classes to be sufficiently distinctive to work effec-

tively [3,96–98]. Given that this is not always guaranteed and, in practice, is often difficult to validate, unsupervised data are

not guaranteed to boost the supervised performance of an algorithm. In fact, much of the success of semi-supervised ma-

chine learning could be due to standard-practice data curation, which removes difficult data points from unsupervised train-

ing with the effect that input classes becomemore distinct [99]. Thus, while learning from unlabeled data has led to themuch-

reported performance boosts inmachine learning, it can also lead to degradation. In fact, reports of performance degradation

following the addition of unsupervised data exist and are likely under-reported [3].

Returning to empirical studies, sufficient cluster ‘distinctiveness’ may appear to be a theoretical prerequisite that is easy

enough to control experimentally to assess successful, rather than detrimental, unsupervised learning. However, there

is a subtle, yet crucial, twist: while experimental tasksmay appear to complywith the prerequisite in the experimenter-defined

input space, they can simultaneously violate it in the space relevant for learning, which is not routinely assessed: the learner’s

internal representations of the input space (see Figure 2A in the main text). When overlooked, equivocal results about the

benefit of unsupervised experiences can appear conflictingwhen, in fact, they are predictable. To understandwhether results

conflict or are simply evidence for the varied directions unsupervised self-reinforcement can take, the alignment between in-

ternal representations and experimenter-defined task needs to be considered.

Trends in Cognitive Sciences

Trends in Cognitive Sciences, Month 2024, Vol. xx, No. xx 5



fact that related research fields have largely developed in isolation allows us to test our predictions

against their extensive independent evidence. First, we show that representation-to-task align-

ment correlates with the efficacy of unsupervised learning, as predicted by our hypothesized un-

supervised snowball effect. The evidence we consider for the effect of alignment is often

somewhat indirect because learners’ representations, let alone their alignment with the task,

are not typically assessed. Thus, we leverage the equivalences between representation-to-task

alignment, predictions, and task difficulty as described in Figure 2A to contextualize the results.

Second, we show that unsupervised self-reinforcement has been reported repeatedly across di-

verse learning settings. We conclude by discussing the implications of our analysis and promising

future avenues.

Representation-to-task alignment determines efficacy of unsupervised learning

Representation-to-task alignment is a theoretical concept capturing how well a learner’s repre-

sentations set them up for learning in a new task. Alignment is sufficient when task-relevant sta-

tistics are prominent in the representations (e.g., well-separated clusters), when only adaptation

of existing representations is needed (e.g., repositioning cluster centers), or both when a benefi-

cial learning sequence builds on prominent representations and subsequently adapts them

(e.g., an easy-to-hard curriculum). In these cases, performance is high and tasks are easy

(Figure 2A). Given that representation-to-task alignment is independent of any specific type of

representation or task, we can expect to observe its effects on the efficacy of unsupervised learn-

ing across all types of learning. Here, we test this prediction against the evidence from different,

independent literatures.

Perceptual and category learning

Perceptual and category learning experiments share many methodological commonalities. Per-

ceptual learning investigates how perception is changed because of experience with sensory in-

puts, such as the ability to distinguish different line lengths. This fundamental form of learning is

often studied by manipulating simple, physical stimulus dimensions (e.g., line length). Category

learning investigates the process of assigning labels (or other distinct responses) to groups of in-

puts, such as assigning either ‘sheep’ or ‘goat’ to each input. This is often studied by manipulat-

ing stimulus distributions and boundaries defining categories within them. Stimuli can range from

simple shapes or sounds, akin to those used in perceptual learning, to complex, high-

dimensional artificial objects. In both paradigms, learners are usually presented with stimuli on

a trial-by-trial basis and respond by guessing category membership or, in the case of perceptual

learning, by making a same-different judgment between two stimuli.

The perceptual learning literature has extensively studied the effect of different forms of supervi-

sion [25,26] and, thus, serves as a superb source of evidence on the effectiveness of unsuper-

vised learning. Results can be summarized simply: unsupervised perceptual training can help in

some, but not all, tasks. It does this in a way that correlates with task difficulty, as predicted by

our representation-to-task alignment view, which requires sufficient class separation or conve-

nient presentation order. Concretely, unsupervised learning helps if the task is easy and training

accuracy is high, as predicted for aligned tasks, [27] or if high-accuracy, easy trials precede or

are interleaved with low-accuracy, difficult trials [28–30]. By contrast, feedback appears neces-

sary for learning when task difficulty is high and initial performance is low, as predicted for

misaligned tasks [27,31].

Unsupervised and semi-supervised categorization studies in adults echo results from perceptual

learning: unsupervised experiences facilitate learning in easier tasks, but not in more difficult ones

[9,10]. Learning to separate low-variability categories is easy (aligned task) and equally effective
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with or without feedback, whereas learning to separate high-variability categories is hard

(misaligned task) and requires feedback [32]. Extending this finding, category learning is influ-

enced by the degree of within-category variance [8], with unsupervised learning beingmost effec-

tive and robust when categories are statistically dense and category separation is large [33–35].

This further indicates that sufficient class separation is necessary for successful unsupervised

learning (Box 1).

Moreover, unsupervised experiences can have both beneficial and detrimental effects in the exact

same task, depending on the alignment of a learner’s representations [14]. This pattern is also

reflected across tasks. In simple category structures, where stimuli vary along a single dimension,

learners can recover categories [20] or shift previously supervised category boundaries without

feedback [36–40]. By contrast, in 2D tasks, subjects appear unable to recover categories without

feedback [7] and the addition of unsupervised experiences does not boost supervised perfor-

mance [11,12], except under limiting conditions [41–43]. While experimenter-defined task dimen-

sionality does not imply task difficulty per se, in these experiments, representations required to

succeed in the 2D tasks were unmistakably less obvious compared with those required for the

1D tasks. In line with these results, prior knowledge relevant to the task can enhance unsuper-

vised learning [44].

This pattern of results is echoed in language acquisition. When learning non-native phonetic

contrasts, unsupervised exposure has been shown to be unsuccessful unless it is

complemented by sufficient supervised learning [45] or only involves shifting boundaries of

existing phonetic contrasts [46], or if phonetic contrasts are made distinctive [47,48]. We can

rephrase these results within our perspective: learning new phonetic contrasts is challenging

due to their misalignment with the native speech sound space. To make unsupervised expo-

sure succeed, the task needs to be simplified either by providing feedback that fosters the for-

mation of more aligned representations, by changing the task to only involve modulation of

existing, sufficiently aligned representations, or by amplifying the to-be-learned contrast as a

form of class separation. Similarly, unsupervised exposure to an artificial language leads to sim-

ple word learning, whereas learning its complex syntactic regularities requires feedback [49].

Furthermore, research on infants’ capacity to integrate labeled and unlabeled exposure to

new categories indicates that learning is successful only when labels are introduced initially,

but not when they are presented at the end or omitted entirely [50,51]. This lends credence

to our prediction that supervision is required to transition from a misaligned to an aligned rep-

resentational space before unsupervised experiences can improve performance. A study in-

vestigating children’s acquisition of linguistic category labels revealed that unsupervised

exposure to structured, straightforward labels (regular plural nouns) impaired performance

on unstructured, difficult labels (irregular plural nouns) among younger, error-prone children

who had not yet mastered the regularities and irregularities. Conversely, it boosted perfor-

mance among older, more proficient children capable of making adequate predictions

[15,16]. This underscores that the outcomes of unsupervised training can vary within the

same task, contingent on the learners’ representations.

Pre-exposure studies assess the impact of initial unsupervised exposure on later supervised

learning and have received independent attention. The effects of pre-exposure vary with cate-

gory structures [13], with improvements seen for statistically dense categories [52] and expo-

sure to easy stimuli [53,54]. This is in line with our perspective: unsupervised pre-exposure

helps in easy tasks but does not affect, or even hinders, difficult ones. Interestingly, rat studies

show the opposite (Box 2). This discrepancy is likely due to humans’ ability to reason about

tasks [55].
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Selective feedback

Real-world feedback is selective and action dependent, which can lead to learning traps due to

unchallenged false predictions [56]. For example, a negative first impression may deter future in-

teractions, preventing the revision of potentially false initial impressions [57]. Similarly,

stereotyping can be perpetuated by initial negative experiences with a group, leading to future

avoidance. This selective information sampling prevents updating of false predictions about

group members, and the likelihood of future avoidance increases when predictions are made

without feedback [18]. Consequently, stereotyping intensifies over time, with untested predic-

tions often misremembered as validated [19]. In this way, the selective-feedback literature high-

lights the detrimental effects of unsupervised learning when predictions are misaligned with

reality, as seen in stereotyping.

Expertise

So far, we have seen that unsupervised learning effects vary in controlled laboratory studies. To

gauge whether this generalizes to real-world learning, we can assess uncontrolled, long-term

learning. Expertise is the product of extensive learning from a varying quantity and quality of su-

pervisory signals outside the laboratory. For instance, radiologists initially receive supervised train-

ing but later get less feedback, often not knowing if their diagnoses were correct. If unsupervised

experiences had only beneficial effects, we would expect performance to improve over time,

leading to expertise even without supervision. However, this prediction has received substantial

opposition [58–62] and has even led critics to claim that ‘At best, experience is an uncertain pre-

dictor of degree of expertise. At worst, experience reflects seniority – and little more.’ [60].

Biases, a form of prior expectations, can distort learning and hinder steady improvement through ex-

perience. For instance, confirmation bias gives more weight to information that aligns with learners’

expectations, skewing learning away from actual evidence [63,64]. In other circumstances, learners

Box 2. Results requiring further attention

Pre-exposure in rodents

Interestingly, the effects of unsupervised pre-exposure in rodents are the opposite of those observed in humans. Rodent

studies showed that unsupervised learning benefits are greater when stimuli are perceptually similar and, thus, hard to dis-

criminate [100]. Conversely, rodent learning can be hindered when the stimuli are perceptually distinct and, thus, easier to

discriminate [101,102]. This effect is attributed to a combination of two learning principles: unsupervised differentiation,

which refines representations over time, and latent inhibition, which reduces the associability between inputs and a re-

sponse [102]. In this context, latent inhibition could explain the slower learning seen after exposure to stimuli that are easily

distinguishable.

The opposing effects observed in animals and humans could be due to humans’ awareness of their participation in an ex-

periment, leading to heightened attention to stimuli and potential weakening of latent inhibition [55,103]. This is supported

by the reversal of pre-exposure effects in rats when using hedonic stimuli, which are believed to stimulate attention [104].

Moreover, interleaving unsupervised and supervised trials in mice appear more effective compared with unsupervised pre-

exposure [105], potentially also modulated by attentional factors.

Blocked testing effects

Although understanding learning is important, it is also important to examine how learning could be helped. Across do-

mains, research on optimal training schedules shows that interleaving supervised training with blocks of unsupervised

testing consistently improves human learning compared with no testing or restudying of materials. It helps learning and re-

tention of materials preceding or following testing [106,107] and even replacing interim active testing with passive expo-

sure improves performance [108,109]. While individual studies highlight the benefits of supervised testing, particularly its

ability to correct inaccuracies and confirm low-confidence predictions [110], a meta-analysis revealed that unsupervised

testing benefits are comparable [111]. Taken together, these results appear to suggest that unsupervised testing is exclu-

sively beneficial, a finding that would contradict our unsupervised snowballing theory. However, occasional evidence of

performance interactions with learner proficiency and confidence suggest that representation-to-task alignment effects

are at play and could simply have gone under-reported.
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may attribute their failure to external factors instead of modifying their erroneous behavior so that per-

formance deteriorates [22].

Irrespective of how expert performance is reached, the expertise literature supports, on a more

general level, the claim that unsupervised experiences alone do not guarantee improvement. In-

stead, reliable improvement appears to require rapid and regular feedback on decisions [62].

Given that acquiring expertise is not easy, but involves learning new skills beyond prior knowledge,

these results fit well with our representation-to-task alignment perspective. This is further supported

by work showing that initial feedback and guidance are crucial for skill learning [65]. For instance, a

laboratory study shows that withdrawing feedback early inmotor skill learning, when errors are high

(inaccurate predictions), causes performance to deteriorate, whereas doing so later, when errors

are low (accurate predictions), enables the skill to be maintained or improved [17].

Self-reinforcement underlies unsupervised learning

While representation-to-task alignment can predict the effectiveness of unsupervised learning, it

does not provide amechanism. Several specific learning procedures have been explored in this con-

text, all of which have self-reinforcement at their core, where learning uses the predictions of the sys-

tem in lieu of ground-truth supervision, snowballing existing learning without altering its direction.

Perceptual learning, category learning, and expertise

The perceptual learning literature not only supports representation-to-task alignment, but also of-

fers strong evidence for unsupervised self-reinforcement, formalized by Hebbian learning models.

Unsupervised Hebbian learning can improve or degrade performance depending on howwell rep-

resentations serve learning a task [23,24]. A Hebbian model that learns from both unsupervised

and supervised experiences by adapting representations and their associations with responses

[66,67] is successful in accounting for a broad range of results [27]. While trial-by-trial category

learning is only rarely modeled, self-reinforcement models have demonstrated their ability to ac-

count for semi-supervised categorization [14,68] and can also predict unsupervised learning trajec-

tories in children acquiring linguistic labels [16]. In expertise studies, computational work is limited.

However, theories of closed-loop motor skill learning suggest internal estimates guide learning in

the absence of feedback leading to either performance gains or decrements [69].

Selective feedback

As described earlier, false predictions that remain unchallenged can, for example, lead to the perpet-

uation of stereotypes. This can be accounted for by models using unsupervised self-reinforcement

[18,19]. Predictions also remain unchallenged when some actions are never followed by feedback

(i.e., unsupervised actions). Here, the same self-reinforcement can be observed: humans learn

from their own predictions as if they received validation for them (constructivist coding hypothesis

[70–72]), which can be modeled by a self-reinforcement mechanism [71].

Internal feedback signals

Self-reinforcement requires internal learning signals independent of external supervision. While

the neural mechanisms involved in external supervision (or at least rewards and punishments)

are fairly well understood [73], knowledge of the self-generated feedback signals of the brain is

limited. Recent studies indicate that brain areas active during external feedback processing are

also active when feedback is inferred [74–76]. Moreover, choice consistency and subjective con-

fidence increase in the absence of feedback reflecting self-reinforcement [77], which is in line with

evidence that chosen actions carry more internal weight compared with unchosen ones [78].

Subjective rewards can also self-reinforce choices [79]. Large-scale, real-world studies indicate

that this can cause people to fall into a learning trap, ceasing exploration and exploiting even
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when better options exist [80], which an error-driven learning model can account for by aligning

subjective preferences with past choices [81]. Neuroimaging also shows that preferences are up-

dated online and only for remembered choices [82]. Moreover, replay, another active research

area, involves a form of self-reinforcement in which the brain rehearses past experiences through

offline neural reactivation [83,84]. Overall, research supports the use of unsupervised self-

reinforcement mechanisms by the brain, with internal signals, such as confidence, having a key

role when feedback is absent.

Concluding remarks

In summary, studies across different literatures and learning domains support our perspective:

humans self-reinforce their predictions in the absence of supervision, which can either help or

hurt performance depending on the alignment between the learner’s representations and the

task. While we focused on studies testing unsupervised learning under controlled conditions,

the expertise literature suggests that these considerations are also relevant to naturalistic set-

tings. This shift in perspective resolves the paradox of predicting learning successes and failures

in the laboratory, and fundamentally alters what we expect from unsupervised learning. Unsuper-

vised learning may not be the knight that battles to save us when we lack supervision; instead, it

appears to wield a double-edged sword. This raises new questions and lays the foundation for

future research on the role of supervision in learning that will have implications for the design of

instruction and learning over the lifespan (see Outstanding questions).

A key implication of this perspective is that a deeper understanding of unsupervised learning re-

quires consideration of the alignment betweenmental representation and task. This is challenging

because alignment depends on specific stimuli, task structures, and learners’ representations.

Efficiently assessing and modeling alignment to account for individual tasks and learners is an im-

portant future direction that can build on recent advances [85–88]. In fact, assessing alignment is

also important for predicting supervised learning [89,90], memory [91], and perception [92],

which suggests that it also applies to naturalistic, large-scale unsupervised learning. Future

models need to make explicit the concrete relationship between alignment and learning and be

constrained by neural evidence on biologically supported mechanisms [93].

Our efforts to understand when unsupervised learning succeeds and fails have illuminated the

rich interconnections between historically separate research areas that can be leveraged in future

studies. Beyond the topics discussed here, relevant research also encompasses areas such as

attention [94] and training schedules (Box 2). Linking results across these domains promotes a

more rigorous examination of learning principles.

Future research should also go beyond the traditional approach of studying unsupervised learn-

ing in isolation. To understand why humansmanage to learn despite all difficulties, we need to ex-

plore how supervised and unsupervised learning mechanisms interact and relate to feedback

sources more akin to reinforcement, self-supervised, or sequential learning that are blended in

modern machine learning systems. Crucially, future work should explore how unsupervised

self-reinforcement and learning from (self-)supervisory signals coexist in humans, who may use

one general-purpose mechanism instead of different special-purpose algorithms as machines

do. This crosstalk could lead to a more holistic theory of human learning, which is important for

understanding real-world learning, such as the acquisition of expertise.

In conclusion, we advocate for an interdisciplinary approach to studying the mechanisms of un-

supervised learning and the broader role of supervision, which should integrate representational

and neural constraints. This new direction contributes to our understanding of learning
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Outstanding questions

What exactly is the quantitative

relationship between representation-

to-task alignment and learning?How

does this relate to different sources of

the problem (e.g., poor extraction of

relevant features versus good feature

extraction, but poor cluster separa-

tion)? How does this relate to different

timescales (e.g., short-term learning

to direct attention versus long-term

representational change)?

How much representation-to-task

alignment is needed for unsupervised

learning to help?

How can we measure representation-

to-task alignment? How can we incor-

porate representation-to-task align-

ment into computational models of

learning?

Does representation-to-task alignment

affect supervised and unsupervised

learning differently?

How is self-reinforcement imple-

mented by the brain? Which role does

meta-cognition have in this? Is it

affected by brain development?

Does self-reinforcement also affect

supervised learning?

How do supervised and

unsupervised learning interact? Are

they fundamentally different or can

they be unified?

How does learning from other

feedback signals, such as reward,

compare with supervised and

unsupervised learning?

How does unsupervised learning

compare in humans and animals? Are

there differences between implicit/

subconscious and deliberate/

conscious unsupervised learning?

Which other factors related to the

presence and absence of supervision,

such as motivation, affect learning?

How does the sequential order

(e.g., blocked supervised and unsu-

pervised exposure) affect unsuper-

vised learning?



fundamentals and can improve the design of instructional systems that better support learning

across the lifespan to prevent us from mistaking goats for sheep with ever greater confidence.
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